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Abstract—The scope of this paper is to use the semianalytic 

technique of the Moment Method to study pulse propagation in 

optical fibers. It is made an overview of pulse propagation in 

both the linear and non-linear regime, exploring the effects of 

Group Velocity Dispersion (GVD) and Self-Phase Modulation 

(SPM) as well as an analysis of bit rate dependencies. Both the 

Gaussian pulse and the hyperbolic-secant pulse are evaluated in 

the linear and non-linear regimes, analysing the evolution of their 

parameters using the Moment Method. Dispersion maps are also 

studied using the Moment Method so as to assess how different 

optical fiber characteristics influence the pulse parameters and 

propagation. Finally, the Moment Method the Moment Method 

for both the Gaussian and hyperbolic-secant pulses in the non-

linear regime is analysed, being compared against the Split-Step 

Fourier Method (SSFM) for the same propagation conditions in 

order to evaluate the Moment Method merits and shortcomings. 
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technique, GVD, SPM, chirp, soliton, SSFM, linear regime, non-
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I. INTRODUCTION 

ptical fibers communication systems are systems that use 

optical fibers to transmit information. These systems 

have been being used on a global scale since 1980 and have 

revolutionized the telecommunications field [1]. The main 

limitation factors in optical fibers are attenuation and GVD. 

However, another factor which condition pulse propagation is 

the development of non-linear effects, most notably, SPM [9]. 

 The study of pulse propagation can have three distinct 

approaches. We may consider the analytical approach which 

results in precise and closed solutions but is not always 

possible. Another approach is a pure numerical one, which 

despite its precision requires a considerable computational 

effort. Finally, we have the semi analytic approach which can 

be variational or the Moment Method. Although the Moment 

Method cannot offer, by itself, a solution for pulse propagation 

it enables us to consider a parametric space in order to gain 

physical insight of the pulse through its parameters. A simple 

example of the application of the Moment Method can be 

considered in [2][3]. It is my goal to show how one can use 

the Moment Method in different pulse shapes, propagation 

conditions and compare it with the SSFM in order to draw 

conclusions about its advantages and shortcomings as an 

alternative, versatile solution. Other applications of the 

Moment Method can be found in [10][11]. 

II. PULSE PROPAGATION IN OPTICAL FIBERS 

 Considering the pulse propagation in the linear regime, 

according to [4] we have the equation that describes the pulse 

propagation in the linear regime as 
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 Where A is the envelope of the pulse, t represents time, z is 

the coordinate through which the pulse propagates in the fiber, 

𝛽1 is the inverse of the group velocity,  𝛽2 is the GVD 

coefficient, 𝛽3 is the high order dispersion coefficient and 𝛼 is 

the attenuation coeffient. 

 Taking into account the process to obtain the equation 

which describes the pulse propagation in the non-linear regime 

in [5] we can write the Non-Linear Schrödinger Equation 

(NLS) as 
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as long as fiber losses and high order dispersion effects are not 

taken into account and where u represents the normalized 

amplitude  
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Where   is the normalized distance 
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 and N can be deduced from the expression 
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Where DL  represents the dispersion length, NLL  represents 

the non-linear length, 0T  is the pulse width at the beginning of 

the fiber,   is the non-linearity coefficient and 𝑃𝑜 represents 

the input power. 

 The Moment Method was first used, in 1971, by Vlasov [6]. 

If we consider the NLS in the form 
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Where 
0

exp[ ( ) ]

z

z dz    is non-linear parameter which 

contains both the non-linear effects and the fiber losses. The 
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Moment Method can be used to solve (7) as long as one can 

assume the pulse retains a specific shape during its 

propagation although its amplitude, width and chirp can 

change in a continuous way. There are cases where this is 

valid, for example, a Gaussian pulse retains its shape in a 

linear dispersive medium as well as if the non-linear effects 

are of little significance. On the other hand, a pulse can also 

retain its shape even if the non-linear effects are strong as long 

as the dispersive effects are weak. 

 The concept behind the Moment Method is to address the 

optical pulse like a particle in which its energy 𝐸𝑝, RMS width 

𝜎𝑝 and chirp 𝐶𝑝 are related to 𝑈(𝑧, 𝑇) as 

 
2

pE U dT





    (8) 

 
22 21

p

p

T U dT
E






    (9) 

 
*

*

2
p

p

i U U
C T U U dT

E T T





  
     

   (10) 

 As the pulse propagates inside the fiber, these three 

moments change. To evaluate how they evolve with z we 

differentiate the equations with respect to z and use the NLS. 

After some algebra, detailed in [7], we find  
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 If we consider a Gaussian pulse with chirp, its ansatz may 

be described by 
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Where ap  represents the amplitude of the pulse, 
pC  

represents the chirp of the pulse, 
pT  represents the width of 

the pulse and 
p  represents the phase of the pulse. All the 

four parameters are function of z. However since the phase 

p does not affect the other parameters it can be ignored. ap  

relates with the pulse energy through 
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 Since the energy 
pE  does not change with z it can be 

replaced by its initial value 0 0E T . On the other hand, 

2p pT  . Using (12) and (13), the pulse width 
pT   and its 

chirp 
pC   may be described by the system of coupled 

differential equation, such as 
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  On the other hand, if an hyperbolic secant pulse is to be 

considered, its ansatz takes the form 
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  As with the Gaussian pulse all four parameters are a 

function of z and the phase 
p may be ignored as it does not 

affect the other parameters. As the energy
pE remains the same 

throughout z it can be replaced by its initial value, 
0 0 02E PT . 

Repeating the same process used for the Gaussian pulse, using 

(18) in (12) and (13), the width 
pT and the chirp 

pC of the 

hyperbolic secant pulse are described by the following system 

of coupled differential equations 
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 The bit rate of an optical system may be defined as the 

number of bits that conveyed per unit of time. Bit rate is 

limited by inter symbols interference, which in turn is related 

to pulse broadening caused by dispersion. As such, the study 

of bit rate is of high importance in optical systems [4]. Pulse 

broadening is related to different parameters such as the RMS 

width of the source, the initial width of the pulse, the GVD 

and, sometimes, high order dispersion. 

 The RMS width of the pulse is given by [8] 
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 The broadening factor is defined in [18] as 
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 Considering 
BT  the period of a bit slot, the bit rate is 

1

B

B
T

 . In order to avoid inter symbol interference the 

following rule must be uphold 
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 Taking into consideration (22) and ignoring the high order 

dispersion it can be written 
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 The optimum value of 0  to minimize pulse broadening 

can be calculated as 
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Substituting (25) in (24) we get 
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Applying (26) in rule (23), the maximum value of the bit rate 

is defined as 
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 However, analyzing equation (26) it can be concluded that 

for a given value of C, 
0  . This may be observed in the 

following picture. 

 
Fig. 1  Evolution of   and 0   with chirp 

 Using equations (25) and (26) it’s easy to conclude the 

intersection point happens at 
1

3
C  . From that point on, 

0

takes higher values than  . As such, rule (23) should be 

rewritten as 

 0
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 It is also interesting to analyse how the bit rate evolves in 

function of C, that behavior can be seen in the following 

picture 

 
Fig. 2  Bit rate evolution with chirp 

 The maximum bit rate happens at 
1

3
C  , the intersection 

point between 
0 and  . The bit rate is maximum at that 

point because that is where the minimum of  occurs. From 

that point on rule (28) should be considered instead of rule 

(21). As such, 
0  will take values higher than the minimum of 

 and the bit rate will decrease. 

III. LINEAR REGIME SIMULATIONS USING THE MOMENT 

METHOD 

 The first part of this chapter will consider the Gaussian and 

hyperbolic secant pulses in constant dispersion fibers, 

analyzing the evolution of the pulse parameters in the linear 

regime. 

 Considering the linear regime, 0  . As such, equations 

(16) and (17), which describe the evolution of the pulse width 

and chirp for the Gaussian pulse, can be rewritten as 
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 If the pulse propagates in the anomalous region  2 0 

and that there is no chirp in the beginning of the fiber 

 0 0C  the evolution of the pulse chirp, 
pC , and the 

broadening factor, 
0

pT

T
  , can be observed in the following 

pictures 

 
Fig. 3  Chirp evolution for the Gaussian pulse in the linear regime 
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Fig. 4  Broadening factor evolution for the Gaussian pulse in the linear regime 

 It can be seen the pulse broadens fast and develops 

considerable chirp with a linear evolution. This happens 

because considering 0  only the first term of the right side 

of equation (17) is taken into account, resulting in equation 

(30). As such, seeing the anomalous region is being 

considered and the terms in equation (15) would have opposite 

signals, there is no term contributing with the non-linear 

effects to even out the fast development evolution of the chirp 

into negative values. This will influence the pulse broadening 

because considering the chirp develops negative values and 

considering 2 0  , then 
2 0pC  . So, considering (29), it is 

easy to conclude the pulse will broaden fast and proportionally 

to the development of the chirp.   

 Considering now the hyperbolic secant pulse and the linear 

regime, equations (17) and (18) can be rewritten as  
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 The evolution of the parameters for the hyperbolic secant 

pulse can be found in the next pictures. 

 
Fig. 5  Chirp evolution for the ‘sech’ pulse in the linear regime 

 
Fig. 6  Broadening factor evolution for the ‘sech' pulse  in the linear regime 

 Relatively to Fig. 5 we can see the pulse acquires a negative 

chirp. However, unlike the Gaussian pulse the evolution is not 

linear. In Fig. 6 there is a pulse broadening, consequence of 

the chirp acquired by the pulse. However, since the chirp 

values are smaller than in the Gaussian pulse also the pulse 

broadening is smaller than the one seen in Fig. 4. 

 The second part of this chapter will address fibers with 

variable dispersion. This means fibers with different segments, 

each one with different characteristics. These are the so called 

dispersion maps and are a powerful tool to overcome 

dispersion in optical fibers. 

 To start with we will consider different dispersion maps for 

the Gaussian pulse. For that analysis it is important to consider 

the relationship between the dispersion coefficient and the 

GVD given by 
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 For a dispersion map with two segments and an average 

GVD of zero  2 0  which mean there is total compensation 

of the dispersion we consider 

 
Fig. 7  Dispersion map for the Gaussian pulse with 2 segments 
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 The first segment of the map is characterized by 
1 50L km ; 

1 16 ( . )D ps km nm  while the second segment is defined by 

2 10L km ; 
2 80 ( . )D ps km nm  . Looking at Fig. 7 it easy 

to conclude this map obeys to the expression 
1 1 2 2 0D L D L  . 

As such, there is total compensation of dispersion which can 

be seen by the fact that after the 60km the pulse goes through 

it regains its initial width. 

For the hyperbolic secant pulse and considering a dispersion 

map of 3 segments instead of 2 we can observe 

 
Fig. 8  Dispersion map for the ‘sech’ pulse with 3 segments 

 The first and third segments are characterized by 

1,3 15L km ; 
1,3 16 ( . )D ps km nm  while the second segment 

is carachterized by 
2 30L km ; 

2 32 ( . )D ps km nm  .  

IV. NON-LINEAR REGIME: GAUSSIAN PULSE 

 This chapter will evaluate the Gaussian pulse propagation 

as well as its parameters in the non-linear regime. It will 

consider the propagation of the Gaussian pulse for different 

values of 2 D

NL

L
N

L
 , where 

0

1
NLL

P
 . The results obtained 

with the Moment Method will then be assessed against the 

SSFM to evaluate the Moment Method precision. Considering 

propagation in the anomalous zone  2 0  , an unchirped 

pulse at the beginning of the fiber  0 0C  and equations (14) 

and (15) the evolution of the pulse width 
pT  and the chirp 

pC  

for different values of 
2N  can be seen in the following 

pictures. It should be noted the pulse width is evaluated 

considering the broadening factor, 
0

pT

T
  . 

 
Fig. 9  Chirp evolution for the Gaussian pulse in the non-linear regime 

 

 
Fig. 10  Pulse broadening evolution for the Gaussian pulse in the non-linear 

regime 

 It can be seen that as 
2N  increases (which mean the non-

linear effects are stronger) the pulse broadens less and less, 

eventually compressing for
2 1.5N  . This is a consequence of 

the fact that for higher values of 
2N  the pulse gains less chirp, 

going as far as to acquire positive chirp for
2 1.5N  . This 

behavior would be expected by analyzing equations (14) and 

(15). In the non-linear regime the Self-Phase Modulation 

(SPM) should be considered. In equation (15) the SPM effects 

(represented by the second term of the equation’s right side) 

will compensate the dispersive effects in chirp evolution. This 

means that the bigger the non-linear component the bigger will 

the SPM is and as such the pulse will broaden less. Continuing 

analyzing equations (14) and (15) it can be inferred that for 
2 1N   it is expected that at some point in the fiber the 

contributions of SPM and dispersion will null each other with 

the chirp taking on positive values, which will result in a pulse 

compression. That can be observed in Fig. 10 where for 
2 1N  , in 8  the chirp takes positive values which results in 

a pulse compression. 
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 Rebuilding the ansatz for the Gaussian pulse described in 

(12) for 
2 1N  , using the Moment Method and using the 

SSFM it can be obtained 

 
Fig. 11  Gaussian pulse - Moment Method, 

2 1N    

 

 
Fig. 12  Gaussian pulse - SSFM, 

2 1N   

 Comparing both figures it can be concluded that for 
2 1N   

the Moment Method is a valid technique to study the 

propagation of a Gaussian pulse. The pulse shape is similar in 

both techniques and the amplitude value at the end of the fiber 

is of 0.8433pa  for the Moment Method and 0.8894pa  for 

the SSFM which is a good indicator of the validity of the 

Moment Method. Comparing this situation with the linear case 

there is less broadening of the pulse thanks to the non-linear 

present in the fiber. 

 For
2 0,5N  , the Moment Method is also a valid technique 

to study the Gaussian pulse. The amplitude values at the end 

of the fiber are quite similar for both techniques and the pulse 

shape throughout the fiber is identical as it can be seen in the 

following pictures. 

 
Fig. 13  Gaussian pulse- Moment Method, 

2 0.5N   

 
Fig. 14  Gaussian pulse - SSFM, 

2 0.5N   

 Finally, for 
2 1.5N   the confrontation between the Moment 

Method and the SSFM can be found in the below pictures 

 
Fig. 15  Gaussian pulse - Moment Method, 

2 1.5N   
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Fig. 16  Gaussian pulse - SSFM, 

2 1.5N   

 In this situation the Moment Method proves even more 

reliable than in the previous situations with final value of 

amplitude being very similar between both techniques, with 

0.1044pa  for the Moment Method and 0.1091pa  for the 

SSFM. 

 The different situations can be organized in the following 

table 

 

Amplitude, 
pa ,  at the end of the fiber (𝜁 = 2) 

 

Moment Method SSFM 

𝑁 = 0 0,6686 0,6684 

𝑁2 = 0.5 0,7361 0,7554 

𝑁 = 1 0,8433 0,8894 

𝑁2 = 1.5 1,044 1,091 
Table. 1  Moment Method and SSFM comparison for the Gaussian pulse 

 From the above table it can be concluded that the Moment 

Method is a valid technique for realistic situations where the 

non-linear effects are not that intense but it starts to lose 

validity when they become more significant. This is because 

the Moment Method assumes the pulse shape doesn’t change 

during the pulse propagation, something the non-linear effects 

cause to happen. As such, the Moment Method does not 

realistically represent a pulse in those conditions because it 

acts like a straitjacket for the pulse. 

V. NON-LINEAR REGIME: HYPERBOLIC SECANT PULSE 

 This chapter will evaluate the Gaussian pulse propagation 

as well as its parameters in the non-linear regime, considering 

different values of 
2N  and assessing the results of the 

Moment Method against those of the SSFM. Considering 

propagation in the anomalous zone  2 0  , an unchirped 

pulse at the beginning of the fiber  0 0C  and equations (17) 

and (18) the evolution of the pulse width 
pT  and the chirp 

pC  

can be seen in the following pictures. It should be noted the 

pulse width is evaluated considering the broadening factor. 

 
Fig. 17  Chirp evolution for the 'sech' pulse in the non-linear regime 

 
Fig. 18  Pulse broadening evolution for the ‘sech’ pulse in the non-linear 

regime 

 For 
2 0N  and 

2 0.5N  the chirp and broadening factor 

evolution is similar to the one observed for the Gaussian pulse 

although the chirp takes smaller values which result in less 

broadening of the pulse. However for 
2 1N   bigger changes 

are seen in the pulse behavior when compared to the Gaussian 

pulse. 

 For 
2 1N   the chirp remains 0 throughout the fiber. Since 

there is no chirp variation there is also no variation in the 

pulse width and as such the broadening factor remains 1. This 

behavior is similar to the behavior of the fundamental soliton 

[5]. 

 For 
2 1.5N  the chirp and broadening factor behavior is 

similar to the one in the Gaussian pulse, however with some 

changes. The hyperbolic secant pulse develops a higher 

positive chirp value than the Gaussian pulse which will result 

in a bigger pulse compression. This behavior is relevant 

because it is opposed to what is perceived for 
2 1N   where 

the chirp values and broadening factors are smaller than in the 

Gaussian pulse. The explanation for this is in the comparison 

between equations (15) and (18). When the coefficients of 

both equations are taken into account there is a bigger 
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discrepancy between the SPM and the GVD contributions in 

the Gaussian pulse than in the hyperbolic secant pulse where 

the contributions of both phenomenon are equal as it can be 

seen by the pulse behavior for
2 1N  . For the Gaussian pulse 

the term which translates the GVD has more significant 

contribution than the one which translates the SPM. This 

results in a bigger broadening of the pulse for 
2 1N   and a 

smaller compression of the pulses for 
2 1N   as it can be seen 

when comparing Fig. 10 and 18. This way, for the ‘sech’ pulse 

the GVD will not influence the impulse in such an expressive 

way as in the Gaussian pulse, as such the pulse will develop 

less chirp and the pulse will broaden less. On the other hand, 

for 
2 1N   the opposite happens. As GVD as a smaller 

contribution it won’t compensate the influence of the SPM, 

resulting of the non-linear effects which in turn will result in 

higher chirp values and bigger pulse compression. Physically, 

this behavior is in agreement with the expected behavior of the 

‘sech’ pulse which for higher values of non-linearity it will 

approach solitons of higher order. 

 Next, similar to chapter IV an assessment of the Moment 

Method against the SSFM will be made for the hyperbolic 

secant pulses in different non-linear situations. 

Starting with
2 1N  , 

 
Fig. 19  Sech pulse - Moment Method, 

2 1N   

 
Fig. 20  Sech pulse - SSFM, 

2 1N   

 For this situation the Moment Method is a perfect solution 

as it completely replicates the pulse as it is obtained using the 

SSFM. The pulse behaves as a fundamental soliton, keeping 

its amplitude, shape and width throughout the fiber. 

For 
2 0.5N   

 
Fig. 20  Sech pulse - Moment Method, 

2 0.5N   

 
Fig. 21  Sech pulse - SSFM, 

2 0.5N   

 It can be seen that for this case the Moment Method also 

provides a valid solution as the pulse evolution is quite similar 

when using both the Moment Method and the SSFM. 

Finally, for 
2 1.5N  it is to be expected to observe a pulse 

compression as well as a periodic behavior as per Fig. 17. As 

such, in order to observe the periodic behavior the propagation 

distance of the simulation will be longer than the one used in 

the previous situations. 
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Fig. 22  Sech pulse - Moment Method, 

2 1.5N   

 
Fig. 23  Sech pulse - SSFM, 

2 1.5N   

 Analysing Fig. 22 the periodic behavior observed in Fig. 17 

can be confirmed, with the peaks of Fig. 22, where the is a 

pulse compression correspond to the minimums of Fig. 17. 

This behavior is also starting to approach that of the second 

order soliton. It is to be noted that the propagation distance in 

both simulations is different. This happens because using a 

propagation distance of 16   with the SSFM is not realistic 

as it takes too much time to run. Even with 8   the 

computation time was too high and unpractical. This situation 

is a practical example where the Moment Method provides 

advantages against the SSFM as it takes less computing effort. 

However some discrepancies between the two methods start to 

show as even though the peaks of the pulse occur in the same 

places of the fiber, their amplitude values are somewhat 

different. 

 In order to better explore the discrepancies that are starting 

to show between the Moment Method and the SSFM 

simulations using both methods for 
2 4N  were run, in order 

to simulate a second order soliton. 

 
Fig. 24  Sech pulse - Moment Method, 

2 4N   

 
Fig. 25  Sech pulse - SSFM, 

2 4N   

 Although the hyperbolic secant pulse evolution using the 

Moment Method has a similar behavior to that of a second 

order soliton the fact is both the period and peak amplitude of 

both pulses are quite different. This agrees with the conclusion 

of chapter IV that for high values of non-linearity the Moment 

Method does not hold true, losing precision as the non-

linearity increases. 

 The comparison between the Moment Method and the 

SSFM is best illustrated in the below table 

 

Amplitude, 
pa ,  at the end of the fiber (𝜁 = 2) 

 

Moment Method SSFM 

𝑁 = 0 0,7175 0,7855 

𝑁2 = 0.5 0,8668 0,8243 

𝑁 = 1 1 1 

𝑁2 = 1.5 1,265 1,278 
Table. 2  Moment Method and SSFM comparison for the ‘sech’ pulse 
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 Analysing the table it can be verified that the Moment 

Method, in general, agrees with the SSFM. An interesting 

inference is to observe that when the non-linear effects are less 

significant the agreement between both techniques is smaller, 

increasing as the non-linear effects increase. As such, for 

values close to 1N   the Moment Method is a very valid 

solution, however for 2N   the Moment Method loses its 

validity as the non-linear effects are too intense. Comparing 

with Table. 1 it can be concluded that when the non-linear 

effects are weaker and the pulse is propagating near the linear 

regime the Gaussian ansatz provides more accurate solutions. 

However, when transitioning to the non-linear regime the 

ansatz of the hyperbolic secant pulse becomes more accurate 

than the Gaussian one. This phenomenon is related to the 

appearance of solitons in optical fibers which are better 

described by an hyperbolic secant shaped pulse. 

VI. CONCLUSION 

 The main goal of this paper was to study pulse propagation 

in optical fibers using the Moment Method, addressing both its 

advantages and disadvantages, comparing it with analytical 

and numerical solution, like the Split-Step Fourier Method. 

 The main conclusion drawn from this paper is that the main 

advantage of the Moment Method against a numerical solution 

is that we can observe which specific parameter is affecting 

the pulse behavior. As it was pointed out throughout the paper 

a pulse is described by different parameters. While some have 

no influence on the way the pulse propagates some may be 

responsible for the pulse broadening or compression, for its 

change in amplitude or even its period. Using the Moment 

Method there is the possibility to only manipulate one of those 

parameters at a time and analyse what effect it has on the 

pulse. If we think of the pulse as being controlled by a control 

panel with different buttons, each parameter would be a 

button. Switching different buttons, different aspects of the 

pulse may be controlled which provides a profound qualitative 

analysis of the pulse, achieving a better physical perception of 

the pulse as opposed to the brute force method of a numerical 

solution. Besides, it was possible to conclude that a numerical 

method is vastly more demanding in regards to computing 

time, taking significantly more time to run than the Moment 

Method, while producing similar outputs. So, even though the 

SSFM is more precise there are situations where its use is not 

justified as the Moment Method provides accurate and faster 

solutions. 

 It can also be concluded that the GVD and the non-linear 

effects have a big influence on pulse behavior. If in the linear 

regime the GVD influence is absolute SPM does not exist as 

the non-linear effects raise their significance there starts to 

exist a balance between the SPM and the GVD. As such, while 

the GVD causes the pulses to broaden the SPM challenges this 

effect causing pulse compression. This dynamic is intimately 

connected with the development of chirp and its analysis and 

maintenance is of high importance in optical communication 

systems. 

 After extensive analysis of the Gaussian and hyperbolic 

secant pulse it can be concluded both pulses translate a fair 

representation of a pulse propagating in an optical fiber, 

however each pulse shape better represents this in different 

propagation conditions. While in the linear regime the 

Gaussian pulse translates a pulse in an optical fiber in a fairly 

accurate fashion when the non-linear effects start to appear 

and become more significant, accumulating over distance the 

Gaussian pulse evolves towards an hyperbolic secant shape, a 

behavior linked with the appearance of solitons. As such, in 

non-linear propagation conditions, the hyperbolic secant pulse 

better translates an optical pulse. These statements are 

supported by the comparison between the Moment Method 

and the SSFM as when considering the Gaussian pulse there is 

a bigger agreement between the Moment Method and the 

SSFM in the linear regime while when considering the 

hyperbolic secant pulse the biggest agreement appears for 

1N  . 

 Finally, it can be conclude that for very high non-linear 

effects the Moment Method loses precision. This happens 

because when using the Moment Method a pulse shape has to 

be assumed and that pulse shape does not change during 

propagation. However the non-linear effects cause changes in 

the pulse shape that when the non-linear effects are very high 

cause the Moment Method to lose validity. This means the 

Moment Method is a good solution when the non-linear 

effects do not dominate the pulse propagation in an optical 

fiber. However this is not exactly a disadvantage as in real 

propagation conditions the non-linear effects are never that 

significant nor do they surpass the limits in which the Moment 

Method is valid, making it a valid and versatile solution in 

most cases. 
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