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Source Coding

Discrete source =3 Encoder —>» Error-free ——>»  Decoder —>

channel

Xt, t=1,2, Xt, t=1,2,
X, eX={1,..,N}

@ Lossless encoding: output of the decoder equal to that of the source.

@ Assumption: when encoding X4, its distribution is known:

v For memoryless sources, this is just fx;

v" For Markov sources, thisis fx,|x,_,,...,
o Without loss of generality, we simply write fx.

@ Goal: economy, that is, use the channel as little as possible.
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Variable-Length Coding
C:X—>D* D=C!

Error-free

Discrete source >  Encoder —> channel | —>  Decoder —>
X, t=1,2,... X, t=1,2,...
X, ex={1,.,N}

e Code uses D-ary alphabet D = {0,1,...,D — 1}.

e Typically, binary coding, D =2, D = {0, 1}.

@ Variable-length encoding: D* is the Kleene closure of D:

o0
D* = {all finite strings of symbols of D} = U D"

n=0
e Example: for D = {0, 1},
D* = {e,0,1,00,01, 10, 11,000, 001, 010, 011, 100, 101, 110, 111, 0000, ...}
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Non-Singular and Uniquely Decodable Codes
C:X— D* D=cC!

Discrete source ————>  Encoder ——> Error-free —>  Decoder —>

channel

Xt, t:1,2,... Xt, t:1,2,...
X, eX={1,..,N}

e For C~! to exist: non-singular code (C injective). For any z,y € X,

r#y = Clx)#Cy)
@ To be useful for a sequence of symbols, this is not good enough.
Example: {C(1) =0, C(2) =10, C(3) = 01} is non-singular
Received sequence: 010; is it C'(1)C(2) or C(3)C(1)?
Impossible to know!

@ Codes that do not have this problem are called uniquely decodable.
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Instantaneous Codes

@ Consider a uniquely decodable code:
{C(1)=01,C(2) =11,C(3) =00,C(4) = 110}

@ How to decode the sequence 1100....00117
——

T zeros

v fnis even: C~1(1100....0011) = 23....32
—— ~——

n zeros TL/Q

v fnisodd: C~1(1100....0011) = 43....32
—— ~~

n zeros n—1

@ To decode the first symbol, we many need to wait for many others.

@ A code that does not have this problem is called instantaneous.
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Instantaneous Codes

@ If no codeword is prefix of another, decoding is instantaneous.
Other names: prefix codes, prefix-free codes.

@ Length function: @ Example:
x [ €9 [l
lo(z) = length(C(x)) -E!-
o Expected length 2 14 1002
3 18 110 3
L(C) =Ellc(X)] = Z Ix(x)lo(x) 4 18 11 3
zeX

L(C) = 7/4 bits/symbol
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Instantaneous Codes: Tree Representation

@ Instantaneous code: no codeword is prefix of another.

@ Decoding instantaneous code: path from root to leaf of a tree:

Sl
1 12 0 1
2 174 10 2

3 1/8 110 3

4 1/8 111 3

@ For D-ary codes: D—ary trees.

e L(C) is the sum of the probabilities of the inner nodes.  (show why)
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Instantaneous Codes: Kraft-McMillan Inequality

e If C is a D-ary instantaneous code, it necessarily satisfies
> Dl < (KMI)
reX
@ ...i.e., if some words are short others have to be long!
@ Proof:
Vet lpa = max{lc(1),...,lc(N)} (length of the longest word).
v there are D'ma words of length ..

v for each word C/(z), there are D'max—!c(*) words of length I, that
have C(x) as prefix;

v’ the sets of length-[,,.,. words that have each word as prefix are disjoint.

Z Dlmax—lc(ﬂf) < Dlmax divideby—’;lmax Z D_lc(af) <1
rzeX reX

@ Important: the KMl is a necessary, not sufficient, condition. (why?)
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Kraft-McMillan Inequality: Graphical Proof

1
1
1
1
1
1
1

Dlmax

Remove subtree

lmax ~

Lecture 4 (Optimal Coding)

Information and Communication Theory



Source Coding Theorem

@ Source X € X = {1,..., N} with probability mass function fx.
@ For any collection of N positive integers, Iy, ..., Iy,

(KMI) ZDlz<1 = > fx(@)l > H(X).

reX reX

—lg

@ Proof: let ¢(x) = >0, where A = Z D7l <1; 3 g(z) =1

ZEX reX
Ix(z)
x) 1
0 < DyL(fx |l ) ;{fx 8D =0
=) fx(x)logp fx(x)+logp A > fx(z)+) [fx(z)l
—Hp(X) )

...equality iff A =1 and ¢(x) = fx(x) & 1, = —logp fx(x) (only possible
if integers).
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Source Coding Theorem
@ Source X € X = {1,..., N} with probability mass function fx.

@ Corollary of the result in previous slide:

C'is instantaneous = KMI = fo(x) lo(x) > Hp(X)
rzeX

expected

code-length L(C)
e ...with equality if and only if lo(z) = —log fx (z).
e Equality is only possible if —logp fx(x) are integers.
o Shannon-Fano code (SFC): just take 127 (z) = [—logp fx (z)]
o Clearly, the SFC satisfies the KMI ([u| > u, for any u € R)

3y pliF@ < > DlEr @ = Ny (a) =1

TeEX reX reX
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Optimal Code

@ Source X € X = {1,..., N} with probability mass function fx.

@ Optimal code lengths:

(l?ptimﬂ’ . l?\?tima') =arg min ) Z fx(x) 1y
ex

(l17“'7lN x

subject to [y,...,Iy € N

ZD—lac <1

reX
e Optimal code: C°Ptmal is any instantaneous code with

lcoptimal(x) - lgptimal) forx e X

o Because it satisfies the KMI, L(CoPtmal) > [7(X).
o Because it is optimal, L(C°Ptimal) < [(CSF)
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Bounds on Optimal Code-length
o Because it is optimal, L(CPtimal) < [,(CSF)
@ Because [u] < u+1, for any u € R,

(Coptlmal <L CSF Z fX logD fX(‘T)-l

reX

<> fx(@)(=logp fx(x) + 1) = H(X) + 1
TEX

o Insummary: H(X) < L(CoPtmaly < [7(X) +1

o Code efficiency: po = %

o ldeal code: pc = 1. Important: ideal optimal

£
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Coding With a Wrong Distribution

@ Source X € X ={1,..., N} with probability mass function fy.
@ Build Shannon-Fano code assuming gx: lo(z) = [—loggx(z)]

@ Lower bound:

L(0) = 3~ log gx ()] fx ()

rzeX
> fx(x)loggx ()
reX
fx(z)
— z)log —
x; Fellos s o) i@
=— ) fx(@)log fx(z)+ > fx(x Eg
rzeX xEX
H(X) DKL(fogx)
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Coding With a Wrong Distribution

@ Source X € X = {1,..., N} with probability mass function fx.
@ Build Shannon-Fano code assuming gx: lc(z) = [—log gx(x)]

@ Upper bound:

L(C) =) [-loggx(2)]fx(x)

reX

<> fx(@)(~loggx (w) + 1)
reX

= H(X)+ Du(fx [l 9x) +1

@ Summarizing: if C' is built from gx and the true distribution is fx

H(X)+Dk(fx |l gx) < L(C) < H(X)+DkL(fx || 9x) +1
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Approaching the Bound: Source Extension

o Discrete stationary source X; € X = {1,..., N}
e Extension: group n consecutive symbols: (X7,...,X,,) € {1,..., N}".

@ The optimal code for the extended symbols (X7, ..., X,,) satisfies
H(X1,...X,) < L(CP"™) < H(Xy, ..., X,) +1
—_——
bits/(n symbols)

e Memoryless source: H(X1,...,X,) =n H(Xy), thus

L(Cgptimal)

n
N———

bits/symbol

. 1
L(Czptlmzﬂ) <nH(X)+1 = < H(Xy)+ —
n

...via extension, expected code-length can arbitrarily approach the entropy.

@ Non-memoryless source: H(X1,...,X,) < nH(X;) and the result is
even stronger.
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Huffman Codes

e Huffman (1952) algorithm to obtain optimal codes.

@ Builds a D—ary tree, starting from the leaves, which are the symbols.

@ Algorithm (for D = 2; the generalizing to D > 2 requires some care).

@ Input: a list of symbol probabilities (p1, ..., pn).

@ Output: a binary tree with each symbol as a leaf.

© Assign each symbol to a leaf of the tree.

@ Find the 2 smallest probabilities: p; and p;.

© Create the parent node for nodes ¢ and j with probability p; + p;.

© Remove p; and p; from the list and insert p; + p;.

@ If the list of symbols has more than 2 probabilities, go back to step 4.

@ As seen before, a binary tree corresponds to an instantaneous code.
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Huffman Codes

o lllustration: probabilities (0.4,0.1,0.05,0.25,0.2)

@00 e e
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Huffman Codes

o lllustration: probabilities (0.4,0.1,0.05,0.25,0.2)

o)

®®6 e ®
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Huffman Codes

o lllustration: probabilities (0.4,0.1,0.05,0.25,0.2)

00

®E®E ®6

e
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Huffman Codes

o lllustration: probabilities (0.4,0.1,0.05,0.25,0.2)

©
@®

-
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Huffman Codes

o lllustration: probabilities (0.4,0.1,0.05,0.25,0.2)
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Huffman Codes

o Label the edges (arbitrarily) to obtain the code words

1
1
0111 1
019 0
0110 0 \

00 0.25 0 0.6
! 1
o @B
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Huffman Codes

@ Expected code-length: sum of the inner node probabilities:
L(C)=1+40.640.35+0.15 = 2.1 bits/symbol
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Huffman Codes

@ Huffman codes are optimal; see proof in recommended reading.

@ Converse is not true

Huffman code - optimal code

<+

@ In the case of ties, break them arbitrarily.
@ For D-ary codes, merge D symbols to build a D-ary tree.

e For D-ary codes, optimality requires N = k(D — 1) + 1, where k € N.
...if not satisfied, just append zero-probability symbols.
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Elias Codes for Natural Numbers

@ Standard number representation is not uniquely decodable.

@ Binary representation of natural numbers is not uniquely decodable.
Example: C(3) =11, C'(21) = 10101, but decoding 1110101 is
impossible; it could be C(14)C(5) or C(58)C(1).

@ Length of binary representation for x € N is |log, z| 4 1.
Example: C(13) = 1101 has length 4; [log, 13| +1 = [3.70] + 1 = 4.

o Elias coding:
v’ instantaneous code for arbitrary natural numbers;

v length not much worse than |log, z| + 1.

@ Useful not only for N, but also for large alphabets X = {1,..., N}
with large and unknown N.
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Elias Gamma Code

@ Length of binary representation for x € N is |logy ] + 1.

@ Let (5 denote the standard binary representation.

e Elias gamma code: Cy(x) = 0..0C5(x)
|_10g2 :L’J zeros
N G (@) |

1 1

2 010

4 00100 . .

5 00101 @ Obviously instantaneous.
7 00111

9 0001001 .

10 0001010 ® Length:

. lo, (z) = 2|logy ] + 1.
19 000010011 )

@ Twice as long as (.

147 | 000000010010011
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Elias Delta Code
o Elias delta code: Cs(z) = Cy(|logy 2| + 1) Co(x)
o Cy is Cy without the leading 1 (e.g. Ca(9) = 1001, Co(10) = 001)

o Length: I () =lc, ([logyz| + 1) + |logy x|
= 2 [logy([logy z] + 1)] + [logy ] + 1

Lz | Cs(z) ]

1 1 . .

5 0100 @ Obviously instantaneous.

3 0101

4 01100

7 01111 e For x> 32, lgs(z) < lc, ()
8 00100000

10 00100010

. , @ Approaches (5 for large z:
19 001010011

ey (z)

. : hm = 1

: . T—00 Cg(l')
147 | 00010000010011

Lecture 4 (Optimal Coding) Information and Communication Theory 2023 28/29



Recommended Reading

o T. Cover and J. Thomas, “Elements of Information Theory”, John
Wiley & Sons, 2006 (Chapter 5).

o M. Figueiredo, “Elias Coding for Arbitrary Natural Numbers”,
available at the course webpage in Fenix.
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