Information and Communication Theory

Lecture 3

Optimal Coding

Mário A. T. Figueiredo

DEEC, Instituto Superior Técnico, University of Lisbon, Portugal

2023

Source Coding

- Lossless encoding: output of the decoder equal to that of the source.
- Assumption: when encoding X_t , its distribution is known:
 - ✓ For memoryless sources, this is just f_X ;
 - \checkmark For Markov sources, this is $f_{X_t|X_{t-1},...}$
- Without loss of generality, we simply write f_X .
- Goal: economy, that is, use the channel as little as possible.

Variable-Length Coding

- Code uses D-ary alphabet $\mathcal{D} = \{0, 1, ..., D-1\}.$
- Typically, binary coding, D = 2, $\mathcal{D} = \{0, 1\}$.
- Variable-length encoding: \mathcal{D}^* is the Kleene closure of \mathcal{D} :

$$\mathcal{D}^* = \{\text{all finite strings of symbols of } \mathcal{D}\} = \bigcup_{n=0}^{\infty} \mathcal{D}^n$$

 $\begin{array}{l} \bullet \ \ \mathsf{Example:} \ \ \mathsf{for} \ \mathcal{D} = \{0,1\}, \\ \\ \mathcal{D}^* = \{\epsilon,0,1,00,01,10,11,000,001,010,011,100,101,110,111,0000,\ldots\} \end{array}$

Non-Singular and Uniquely Decodable Codes

ullet For C^{-1} to exist: non-singular code (C injective). For any $x,y\in\mathcal{X}$,

$$x \neq y \Rightarrow C(x) \neq C(y)$$

• To be useful for a sequence of symbols, this is not good enough.

Example:
$$\{C(1)=0,\ C(2)=10,\ C(3)=01\}$$
 is non-singular Received sequence: 010 ; is it $C(1)C(2)$ or $C(3)C(1)$? Impossible to know!

Codes that do not have this problem are called uniquely decodable.

Instantaneous Codes

• Consider a uniquely decodable code:

$${C(1) = 01, C(2) = 11, C(3) = 00, C(4) = 110}$$

• How to decode the sequence $11\underline{00...0011?}$

✓ If
$$n$$
 is even: $C^{-1}(11\underbrace{00....00}_{n \, \text{zeros}}11) = 2\underbrace{3....3}_{n/2}2$

$$\checkmark \ \ \text{If} \ n \ \text{is odd:} \ C^{-1}(11\underbrace{00....00}_{n \ \text{zeros}}11) = 4\underbrace{3....3}_{\underbrace{n-1}{2}}2$$

- To decode the first symbol, we many need to wait for many others.
- A code that does not have this problem is called instantaneous.

Instantaneous Codes

If no codeword is prefix of another, decoding is instantaneous.
 Other names: prefix codes, prefix-free codes.

• Length function:

$$l_C(x) = \operatorname{length}(C(x))$$

Expected length

$$L(C) = \mathbb{E}[l_C(X)] = \sum_{x \in \mathcal{X}} f_X(x) \, l_C(x)$$

Example:

х	f _X (x)	C(x)	$l_{\rm C}({\rm x})$	
1	1/2	0	1	
2	1/4	10	2	
3	1/8	110	3	
4	1/8	111	3	

$$L(C) = 7/4$$
 bits/symbol

Instantaneous Codes: Tree Representation

- Instantaneous code: no codeword is prefix of another.
- Decoding instantaneous code: path from root to leaf of a tree:

х	f _X (x)	C(x)	$l_{\rm C}({\rm x})$
1	1/2	0	1
2	1/4	10	2
3	1/8	110	3
4	1/8	111	3

- For D-ary codes: D-ary trees.
- ullet L(C) is the sum of the probabilities of the inner nodes. (show why)

Instantaneous Codes: Kraft-McMillan Inequality

• If C is a D-ary instantaneous code, it necessarily satisfies

$$\sum_{x \in \mathcal{X}} D^{-l_C(x)} \le 1 \qquad \text{(KMI)}$$

- ...i.e., if some words are short others have to be long!
- Proof:
 - ✓ let $l_{\text{max}} = \max\{l_C(1), ..., l_C(N)\}$ (length of the longest word).
 - ✓ there are $D^{l_{\text{max}}}$ words of length l_{max} .
 - ✓ for each word C(x), there are $D^{l_{\max}-l_C(x)}$ words of length l_{\max} that have C(x) as prefix;
 - \checkmark the sets of length- $l_{
 m max}$ words that have each word as prefix are disjoint.

$$\sum_{x \in \mathcal{X}} D^{l_{\max} - l_C(x)} \leq D^{l_{\max}} \overset{\text{divide}}{\longrightarrow} \overset{\text{by } D^{l_{\max}}}{\longrightarrow} \sum_{x \in \mathcal{X}} D^{-l_C(x)} \leq 1$$

• Important: the KMI is a necessary, not sufficient, condition. (why?)

Kraft-McMillan Inequality: Graphical Proof

Source Coding Theorem

- Source $X \in \mathcal{X} = \{1, ..., N\}$ with probability mass function f_X .
- For any collection of N positive integers, $l_1,...,l_N$,

$$(\mathsf{KMI}) \ \sum_{x \in \mathcal{X}}^{N} D^{-l_x} \le 1 \ \Rightarrow \ \sum_{x \in \mathcal{X}} f_X(x) \, l_x \ge H(X).$$

 $\bullet \ \, \text{Proof: let } q(x) = \frac{D^{-l_x}}{A} > 0 \text{, where } A = \sum_{x \in \mathcal{X}} D^{-l_x} \leq 1; \, \sum_{x \in \mathcal{X}} q(x) = 1$

$$0 \le D_{\mathsf{KL}}(f_X \parallel q) = \sum_{x \in \mathcal{X}} f_X(x) \log_D \frac{f_X(x)}{q(x)}$$
$$= \underbrace{\sum_{x \in \mathcal{X}} f_X(x) \log_D f_X(x)}_{-H_D(X)} + \underbrace{\log_D A}_{x \in \mathcal{X}} \sum_{x \in \mathcal{X}} f_X(x) + \sum_{x \in \mathcal{X}} f_X(x) l_x$$

...equality iff A=1 and $q(x)=f_X(x)\Leftrightarrow l_x=-\log_D f_X(x)$ (only possible if integers).

Source Coding Theorem

- Source $X \in \mathcal{X} = \{1, ..., N\}$ with probability mass function f_X .
- Corollary of the result in previous slide:

$$C$$
 is instantaneous \Rightarrow KMI \Rightarrow $\sum_{x \in \mathcal{X}} f_X(x) \, l_C(x) \geq H_D(X)$ expected code-length $L(C)$

- ...with equality if and only if $l_C(x) = -\log f_X(x)$.
- Equality is only possible if $-\log_D f_X(x)$ are integers.
- ullet Shannon-Fano code (SFC): just take $l_C^{\rm SF}(x) = \lceil -\log_D f_X(x)
 ceil$
- Clearly, the SFC satisfies the KMI $(\lceil u \rceil \geq u$, for any $u \in \mathbb{R})$

$$\sum_{x \in \mathcal{X}} D^{-l_C^{\mathsf{SF}}(x)} \le \sum_{x \in \mathcal{X}} D^{\log_D f_X(x)} = \sum_{x \in \mathcal{X}} f_X(x) = 1$$

Optimal Code

- Source $X \in \mathcal{X} = \{1, ..., N\}$ with probability mass function f_X .
- Optimal code lengths:

$$\begin{split} \left(l_1^{\mathsf{optimal}},...,l_N^{\mathsf{optimal}}\right) &= \arg\min_{(l_1,...,l_N)} \sum_{x \in \mathcal{X}} f_X(x) \; l_x \\ & \mathsf{subject to} \;\; l_1,...,l_N \in \mathbb{N} \\ & \sum_{x \in \mathcal{X}} D^{-l_x} \leq 1 \end{split}$$

ullet Optimal code: C^{optimal} is any instantaneous code with

$$l_{C^{\mathsf{optimal}}}(x) = l_x^{\mathsf{optimal}}, \text{ for } x \in \mathcal{X}$$

- Because it satisfies the KMI, $L(C^{\text{optimal}}) \ge H(X)$.
- Because it is optimal, $L(C^{\text{optimal}}) \leq L(C^{\text{SF}})$

Bounds on Optimal Code-length

- $\bullet \ \, \text{Because it is optimal, } L(C^{\text{optimal}}) \leq L(C^{\text{SF}})$
- Because $\lceil u \rceil < u+1$, for any $u \in \mathbb{R}$,

$$L(C^{\text{optimal}}) \le L(C^{\text{SF}}) = \sum_{x \in \mathcal{X}} f_X(x) \lceil -\log_D f_X(x) \rceil$$

$$< \sum_{x \in \mathcal{X}} f_X(x) (-\log_D f_X(x) + 1) = H(X) + 1$$

- In summary: $H(X) \le L(C^{\text{optimal}}) < H(X) + 1$
- Code efficiency: $\rho_C = \frac{H(X)}{L(C)}$.
- Ideal code: $\rho_C=1$. Important: ideal $\stackrel{\Rightarrow}{\not=}$ optimal

Coding With a Wrong Distribution

- Source $X \in \mathcal{X} = \{1, ..., N\}$ with probability mass function f_X .
- Build Shannon-Fano code assuming g_X : $l_C(x) = \lceil -\log g_X(x) \rceil$
- Lower bound:

$$L(C) = \sum_{x \in \mathcal{X}} \lceil -\log g_X(x) \rceil f_X(x)$$

$$\geq -\sum_{x \in \mathcal{X}} f_X(x) \log g_X(x)$$

$$= \sum_{x \in \mathcal{X}} f_X(x) \log \frac{f_X(x)}{g_X(x) f_X(x)}$$

$$= -\sum_{x \in \mathcal{X}} f_X(x) \log f_X(x) + \sum_{x \in \mathcal{X}} f_X(x) \log \frac{f_X(x)}{g_X(x)}$$

$$\xrightarrow{H(X)} \xrightarrow{D_{KL}(f_X || g_X)}$$

Coding With a Wrong Distribution

- Source $X \in \mathcal{X} = \{1, ..., N\}$ with probability mass function f_X .
- Build Shannon-Fano code assuming g_X : $l_C(x) = \lceil -\log g_X(x) \rceil$
- Upper bound:

$$L(C) = \sum_{x \in \mathcal{X}} \lceil -\log g_X(x) \rceil f_X(x)$$

$$< \sum_{x \in \mathcal{X}} f_X(x) (-\log g_X(x) + 1)$$

$$= H(X) + D_{\mathsf{KL}}(f_X \parallel g_X) + 1$$

ullet Summarizing: if C is built from g_X and the true distribution is f_X

$$H(X) + D_{\mathsf{KL}}(f_X \parallel g_X) \le L(C) < H(X) + D_{\mathsf{KL}}(f_X \parallel g_X) + 1$$

Approaching the Bound: Source Extension

- Discrete stationary source $X_t \in \mathcal{X} = \{1,...,N\}$
- Extension: group n consecutive symbols: $(X_1,...,X_n) \in \{1,...,N\}^n$.
- ullet The optimal code for the extended symbols $(X_1,...,X_n)$ satisfies

$$H(X_1, ..., X_n) \le \underbrace{L(C_n^{\mathsf{optimal}})}_{\mathsf{bits/}(n \; \mathsf{symbols})} < H(X_1, ..., X_n) + 1$$

• Memoryless source: $H(X_1,...,X_n) = n H(X_1)$, thus

$$L\left(C_n^{\mathsf{optimal}}\right) \leq n\,H(X_1) + 1 \quad \Rightarrow \quad \underbrace{\frac{L\left(C_n^{\mathsf{optimal}}\right)}{n}}_{\mathsf{bits/symbol}} < H(X_1) + \frac{1}{n}$$

...via extension, expected code-length can arbitrarily approach the entropy.

• Non-memoryless source: $H(X_1,...,X_n) < nH(X_1)$ and the result is even stronger.

- Huffman (1952) algorithm to obtain optimal codes.
- ullet Builds a D-ary tree, starting from the leaves, which are the symbols.
- Algorithm (for D=2; the generalizing to D>2 requires some care).
 - **1 Input**: a list of symbol probabilities $(p_1, ..., p_N)$.
 - Output: a binary tree with each symbol as a leaf.
 - Assign each symbol to a leaf of the tree.
 - Find the 2 smallest probabilities: p_i and p_j .
 - **5** Create the parent node for nodes i and j with probability $p_i + p_j$.
 - **1** Remove p_i and p_j from the list and insert $p_i + p_j$.
 - If the list of symbols has more than 2 probabilities, go back to step 4.
- As seen before, a binary tree corresponds to an instantaneous code.

• Label the edges (arbitrarily) to obtain the code words

• Expected code-length: sum of the inner node probabilities: $L(C)=1+0.6+0.35+0.15=2.1 \ {\rm bits/symbol}$

- Huffman codes are optimal; see proof in recommended reading.
- Converse is not true

Huffman code
$$\stackrel{\Rightarrow}{\not=}$$
 optimal code

- In the case of ties, break them arbitrarily.
- For *D*-ary codes, merge *D* symbols to build a *D*-ary tree.
- For D-ary codes, optimality requires N=k(D-1)+1, where $k\in\mathbb{N}$if not satisfied, just append zero-probability symbols.

Elias Codes for Natural Numbers

- Standard number representation is not uniquely decodable.
- Binary representation of natural numbers is not uniquely decodable. Example: C(3) = 11, C(21) = 10101, but decoding 1110101 is impossible; it could be C(14)C(5) or C(58)C(1).
- Length of binary representation for $x \in \mathbb{N}$ is $\lfloor \log_2 x \rfloor + 1$. Example: C(13) = 1101 has length 4; $\lfloor \log_2 13 \rfloor + 1 = \lfloor 3.70 \rfloor + 1 = 4$.
- Elias coding:
 - √ instantaneous code for arbitrary natural numbers;
 - ✓ length not much worse than $\lfloor \log_2 x \rfloor + 1$.
- Useful not only for $\mathbb N$, but also for large alphabets $\mathcal X=\{1,...,N\}$ with large and unknown N.

Elias Gamma Code

- Length of binary representation for $x \in \mathbb{N}$ is $\lfloor \log_2 x \rfloor + 1$.
- Let C_2 denote the standard binary representation.
- Elias gamma code:

x	$C_{\gamma}(x)$
1	1
2	010
4	00100
5	00101
7	00111
9	0001001
10	0001010
:	:
19	000010011
:	i i
147	000000010010011

$$C_{\gamma}(x) = \underbrace{0...0}_{|\log_2 x|_{\mathsf{zeros}}} C_2(x)$$

- Obviously instantaneous.
- Length: $l_{C_{\gamma}}(x) = 2\lfloor \log_2 x \rfloor + 1.$
- Twice as long as C_2 .

Elias Delta Code

- ullet Elias delta code: $C_\delta(x) = C_\gamma(\lfloor \log_2 x \rfloor + 1) \ ilde{C}_2(x)$
- ullet $ilde{C}_2$ is C_2 without the leading 1 (e.g. $C_2(9)=1001,\ ilde{C}_2(10)=001$)
- Length: $l_{C_\delta}(x) = l_{C_\gamma}(\lfloor \log_2 x \rfloor + 1) + \lfloor \log_2 x \rfloor$ $= 2 \lceil \log_2(\lceil \log_2 x \rceil + 1) \rceil + \lceil \log_2 x \rceil + 1$

x	$C_{\delta}(x)$
1	1
2	0100
3	0101
4	01100
7	01111
8	00100000
10	00100 <mark>010</mark>
:	:
19	00101 <mark>0011</mark>
:	i l
147	0001000 <mark>0010011</mark>

- Obviously instantaneous.
- For x > 32, $l_{C_{\delta}}(x) < l_{C_{\gamma}}(x)$
- Approaches C_2 for large x:

$$\lim_{x \to \infty} \frac{l_{C_{\delta}}(x)}{C_2(x)} = 1$$

Recommended Reading

- T. Cover and J. Thomas, "Elements of Information Theory", John Wiley & Sons, 2006 (Chapter 5).
- M. Figueiredo, "Elias Coding for Arbitrary Natural Numbers", available at the course webpage in Fenix.