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Source Coding

Discrete source Encoder DecoderError-free
channel

Lossless encoding: output of the decoder equal to that of the source.

Assumption: when encoding Xt, its distribution is known:

✓ For memoryless sources, this is just fX ;

✓ For Markov sources, this is fXt|Xt−1,...,

Without loss of generality, we simply write fX .

Goal: economy, that is, use the channel as little as possible.
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Variable-Length Coding

Discrete source Encoder DecoderError-free
channel

Code uses D-ary alphabet D = {0, 1, ..., D − 1}.

Typically, binary coding, D = 2, D = {0, 1}.

Variable-length encoding: D∗ is the Kleene closure of D:

D∗ = {all finite strings of symbols of D} =

∞⋃
n=0

Dn

Example: for D = {0, 1},
D∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, ...}
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Non-Singular and Uniquely Decodable Codes

Discrete source Encoder DecoderError-free
channel

For C−1 to exist: non-singular code (C injective). For any x, y ∈ X ,

x ̸= y ⇒ C(x) ̸= C(y)

To be useful for a sequence of symbols, this is not good enough.

Example: {C(1) = 0, C(2) = 10, C(3) = 01} is non-singular

Received sequence: 010; is it C(1)C(2) or C(3)C(1)?

Impossible to know!

Codes that do not have this problem are called uniquely decodable.
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Instantaneous Codes

Consider a uniquely decodable code:
{C(1) = 01, C(2) = 11, C(3) = 00, C(4) = 110}

How to decode the sequence 1100....00︸ ︷︷ ︸
n zeros

11?

✓ If n is even: C−1(1100....00︸ ︷︷ ︸
n zeros

11) = 2 3....3︸ ︷︷ ︸
n/2

2

✓ If n is odd: C−1(1100....00︸ ︷︷ ︸
n zeros

11) = 4 3....3︸ ︷︷ ︸
n−1
2

2

To decode the first symbol, we many need to wait for many others.

A code that does not have this problem is called instantaneous.
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Instantaneous Codes

If no codeword is prefix of another, decoding is instantaneous.
Other names: prefix codes, prefix-free codes.

Length function:

lC(x) = length(C(x))

Expected length

L(C) = E[lC(X)] =
∑
x∈X

fX(x) lC(x)

Example:

L(C) = 7/4 bits/symbol
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Instantaneous Codes: Tree Representation

Instantaneous code: no codeword is prefix of another.

Decoding instantaneous code: path from root to leaf of a tree:

For D-ary codes: D−ary trees.

L(C) is the sum of the probabilities of the inner nodes. (show why)
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Instantaneous Codes: Kraft-McMillan Inequality

If C is a D-ary instantaneous code, it necessarily satisfies∑
x∈X

D−lC(x) ≤ 1 (KMI)

...i.e., if some words are short others have to be long!

Proof:
✓ let lmax = max{lC(1), ..., lC(N)} (length of the longest word).

✓ there are Dlmax words of length lmax.

✓ for each word C(x), there are Dlmax−lC(x) words of length lmax that
have C(x) as prefix;

✓ the sets of length-lmax words that have each word as prefix are disjoint.∑
x∈X

Dlmax−lC(x) ≤ Dlmax divide by Dlmax

−→
∑
x∈X

D−lC(x) ≤ 1

Important: the KMI is a necessary, not sufficient, condition. (why?)
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Kraft-McMillan Inequality: Graphical Proof
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Source Coding Theorem

Source X ∈ X = {1, ..., N} with probability mass function fX .

For any collection of N positive integers, l1, ..., lN ,

(KMI)
N∑

x∈X
D−lx ≤ 1 ⇒

∑
x∈X

fX(x) lx ≥ H(X).

Proof: let q(x) =
D−lx

A
> 0, where A =

∑
x∈X

D−lx ≤ 1;
∑
x∈X

q(x) = 1

0 ≤ DKL(fX ∥ q) =
∑
x∈X

fX(x) logD
fX(x)

q(x)

=
∑
x∈X

fX(x) logD fX(x)︸ ︷︷ ︸
−HD(X)

+ logD A︸ ︷︷ ︸
≤0

∑
x∈X

fX(x) +
∑
x∈X

fX(x) lx

...equality iff A = 1 and q(x) = fX(x) ⇔ lx = − logD fX(x) (only possible

if integers).
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Source Coding Theorem

Source X ∈ X = {1, ..., N} with probability mass function fX .

Corollary of the result in previous slide:

C is instantaneous ⇒ KMI ⇒
∑
x∈X

fX(x) lC(x)︸ ︷︷ ︸
expected

code-length L(C)

≥ HD(X)

...with equality if and only if lC(x) = − log fX(x).

Equality is only possible if − logD fX(x) are integers.

Shannon-Fano code (SFC): just take lSFC (x) = ⌈− logD fX(x)⌉

Clearly, the SFC satisfies the KMI (⌈u⌉ ≥ u, for any u ∈ R)∑
x∈X

D−lSFC (x) ≤
∑
x∈X

DlogD fX(x) =
∑
x∈X

fX(x) = 1
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Optimal Code

Source X ∈ X = {1, ..., N} with probability mass function fX .

Optimal code lengths:(
loptimal
1 , ..., loptimal

N

)
=arg min

(l1,...,lN )

∑
x∈X

fX(x) lx

subject to l1, ..., lN ∈ N∑
x∈X

D−lx ≤ 1

Optimal code: Coptimal is any instantaneous code with

l
Coptimal(x) = loptimal

x , for x ∈ X

Because it satisfies the KMI, L(Coptimal) ≥ H(X).

Because it is optimal, L(Coptimal) ≤ L(CSF)
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Bounds on Optimal Code-length

Because it is optimal, L(Coptimal) ≤ L(CSF)

Because ⌈u⌉ < u+ 1, for any u ∈ R,

L(Coptimal) ≤ L(CSF) =
∑
x∈X

fX(x)⌈− logD fX(x)⌉

<
∑
x∈X

fX(x)(− logD fX(x) + 1) = H(X) + 1

In summary: H(X) ≤ L(Coptimal) < H(X) + 1

Code efficiency: ρC =
H(X)

L(C)
.

Ideal code: ρC = 1. Important: ideal
⇒
̸⇐ optimal
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Coding With a Wrong Distribution

Source X ∈ X = {1, ..., N} with probability mass function fX .

Build Shannon-Fano code assuming gX : lC(x) = ⌈− log gX(x)⌉

Lower bound:

L(C) =
∑
x∈X

⌈− log gX(x)⌉fX(x)

≥−
∑
x∈X

fX(x) log gX(x)

=
∑
x∈X

fX(x) log
fX(x)

gX(x) fX(x)

= −
∑
x∈X

fX(x) log fX(x)︸ ︷︷ ︸
H(X)

+
∑
x∈X

fX(x) log
fX(x)

gX(x)︸ ︷︷ ︸
DKL(fX∥gX)
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Coding With a Wrong Distribution

Source X ∈ X = {1, ..., N} with probability mass function fX .

Build Shannon-Fano code assuming gX : lC(x) = ⌈− log gX(x)⌉

Upper bound:

L(C) =
∑
x∈X

⌈− log gX(x)⌉fX(x)

<
∑
x∈X

fX(x)(− log gX(x) + 1)

= H(X) +DKL(fX ∥ gX) + 1

Summarizing: if C is built from gX and the true distribution is fX

H(X)+DKL(fX ∥ gX) ≤ L(C) < H(X)+DKL(fX ∥ gX) + 1
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Approaching the Bound: Source Extension

Discrete stationary source Xt ∈ X = {1, ..., N}

Extension: group n consecutive symbols: (X1, ..., Xn) ∈ {1, ..., N}n.

The optimal code for the extended symbols (X1, ..., Xn) satisfies

H(X1, ..., Xn) ≤ L
(
Coptimal
n

)︸ ︷︷ ︸
bits/(n symbols)

< H(X1, ..., Xn) + 1

Memoryless source: H(X1, ..., Xn) = nH(X1), thus

L
(
Coptimal
n

)
≤ nH(X1) + 1 ⇒

L
(
Coptimal
n

)
n︸ ︷︷ ︸

bits/symbol

< H(X1) +
1

n

...via extension, expected code-length can arbitrarily approach the entropy.

Non-memoryless source: H(X1, ..., Xn) < nH(X1) and the result is
even stronger.
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Huffman Codes

Huffman (1952) algorithm to obtain optimal codes.

Builds a D−ary tree, starting from the leaves, which are the symbols.

Algorithm (for D = 2; the generalizing to D > 2 requires some care).

1 Input: a list of symbol probabilities (p1, ..., pN ).

2 Output: a binary tree with each symbol as a leaf.

3 Assign each symbol to a leaf of the tree.

4 Find the 2 smallest probabilities: pi and pj .

5 Create the parent node for nodes i and j with probability pi + pj .

6 Remove pi and pj from the list and insert pi + pj .

7 If the list of symbols has more than 2 probabilities, go back to step 4.

As seen before, a binary tree corresponds to an instantaneous code.
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Huffman Codes

Illustration: probabilities (0.4, 0.1, 0.05, 0.25, 0.2)
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Huffman Codes

Illustration: probabilities (0.4, 0.1, 0.05, 0.25, 0.2)

Lecture 4 (Optimal Coding) Information and Communication Theory 2023 19 / 29



Huffman Codes

Illustration: probabilities (0.4, 0.1, 0.05, 0.25, 0.2)
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Huffman Codes

Illustration: probabilities (0.4, 0.1, 0.05, 0.25, 0.2)
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Huffman Codes

Illustration: probabilities (0.4, 0.1, 0.05, 0.25, 0.2)
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Huffman Codes

Label the edges (arbitrarily) to obtain the code words
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Huffman Codes

Expected code-length: sum of the inner node probabilities:
L(C) = 1 + 0.6 + 0.35 + 0.15 = 2.1 bits/symbol
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Huffman Codes

Huffman codes are optimal; see proof in recommended reading.

Converse is not true

Huffman code
⇒
̸⇐ optimal code

In the case of ties, break them arbitrarily.

For D-ary codes, merge D symbols to build a D-ary tree.

For D-ary codes, optimality requires N = k(D− 1) + 1, where k ∈ N.
...if not satisfied, just append zero-probability symbols.
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Elias Codes for Natural Numbers

Standard number representation is not uniquely decodable.

Binary representation of natural numbers is not uniquely decodable.
Example: C(3) = 11, C(21) = 10101, but decoding 1110101 is
impossible; it could be C(14)C(5) or C(58)C(1).

Length of binary representation for x ∈ N is ⌊log2 x⌋+ 1.
Example: C(13) = 1101 has length 4; ⌊log2 13⌋+1 = ⌊3.70⌋+1 = 4.

Elias coding:

✓ instantaneous code for arbitrary natural numbers;

✓ length not much worse than ⌊log2 x⌋+ 1.

Useful not only for N, but also for large alphabets X = {1, ..., N}
with large and unknown N .
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Elias Gamma Code

Length of binary representation for x ∈ N is ⌊log2 x⌋+ 1.

Let C2 denote the standard binary representation.

Elias gamma code: Cγ(x) = 0...0︸︷︷︸
⌊log2 x⌋zeros

C2(x)

x Cγ(x)

1 1
2 010
4 00100
5 00101
7 00111
9 0001001
10 0001010
...

...
19 000010011
...

...
147 000000010010011

Obviously instantaneous.

Length:
lCγ (x) = 2⌊log2 x⌋+ 1.

Twice as long as C2.
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Elias Delta Code

Elias delta code: Cδ(x) = Cγ(⌊log2 x⌋+ 1) C̃2(x)

C̃2 is C2 without the leading 1 (e.g. C2(9) = 1001, C̃2(10) = 001)

Length: lCδ
(x) = lCγ (⌊log2 x⌋+ 1) + ⌊log2 x⌋

= 2 ⌊log2(⌊log2 x⌋+ 1)⌋+ ⌊log2 x⌋+ 1

x Cδ(x)

1 1
2 0100
3 0101
4 01100
7 01111
8 00100000
10 00100010
...

...
19 001010011
...

...
147 00010000010011

Obviously instantaneous.

For x > 32, lCδ
(x) < lCγ (x)

Approaches C2 for large x:

lim
x→∞

lCδ
(x)

C2(x)
= 1

Lecture 4 (Optimal Coding) Information and Communication Theory 2023 28 / 29



Recommended Reading

T. Cover and J. Thomas, “Elements of Information Theory”, John
Wiley & Sons, 2006 (Chapter 5).

M. Figueiredo, “Elias Coding for Arbitrary Natural Numbers”,
available at the course webpage in Fenix.

Lecture 4 (Optimal Coding) Information and Communication Theory 2023 29 / 29


