Information and Communication Theory

Lecture 2

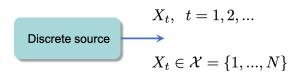
Markov Sources

Mário A. T. Figueiredo

DEEC, Instituto Superior Técnico, University of Lisbon, Portugal

2023

Discrete Sources



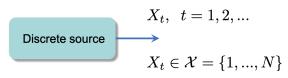
- Memoryless assumption is dropped.
- Sequence of random variables: discrete-time stochastic process.
- Full characterization: for any $L \in \mathbb{N}$ and any $\{t_1,...,t_L\}$

$$f_{X_{t_1},...,X_{t_L}}(x_1,...,x_L) = \mathbb{P}(X_{t_1} = x_1,...,X_{t_L} = x_L)$$

must be known.

Without some structure, essentially impossible in general.

Stationary Sources



• Stationary source: for any $L \in \mathbb{N}$ and any $\{t_1, ..., t_L\}$,

$$f_{X_{t_1},...,X_{t_L}}(x_1,...,x_L) = f_{X_{t_1+s},...,X_{t_L+s}}(x_1,...,x_L),$$

for any shift $s \in \mathbb{Z}$ such that all $t_1 + s \ge 1$, ..., $t_L + s \ge 1$.

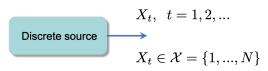
• Example, with $\mathcal{X} = \{a, b, c, d\}$, L = 3,

$$f_{X_2,X_5,X_7}(b,c,a) = f_{X_{32},X_{35},X_{37}}(b,c,a) = f_{X_1,X_4,X_6}(b,c,a)$$

...in other notation:

$$\mathbb{P}(X_2 = b, X_5 = c, X_7 = a) = \mathbb{P}(X_{32} = b, X_{35} = c, X_{37} = a)$$
$$= \mathbb{P}(X_1 = b, X_4 = c, X_6 = a)$$

Memoryless Sources



• Memoryless source: for any $L \in \mathbb{L}$ and any $\{t_1, ..., t_L\}$,

$$f_{X_{t_1},...,X_{t_L}}(x_1,...,x_L) = \prod_{i=1}^L f_{X_{t_i}}(x_i)$$

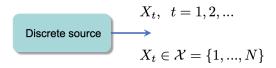
...that is, symbols are independent.

- Example: $f_{X_2,X_5,X_7}(b,c,a) = f_{X_2}(b) f_{X_5}(c) f_{X_7}(a)$
- Memoryless stationary source:

$$f_{X_{t_1},...,X_{t_L}}(x_1,...,x_L) \stackrel{\text{(memoryless)}}{=} \prod_{i=1}^L f_{X_{t_i}}(x_i) \stackrel{\text{(stationary)}}{=} \prod_{i=1}^L f_{X_1}(x_i)$$

• Example: $f_{X_2,X_5,X_7}(b,c,a) = f_{X_1}(b) f_{X_1}(c) f_{X_1}(a)$

Markov Sources



• Markov (or Markovian) source: for any $t \in \mathbb{N}$,

$$f_{X_{t+1}|X_t,...,X_1}(x_{t+1}|x_t,...,x_1) = f_{X_{t+1}|X_t}(x_{t+1}|x_t)$$

In other notation

$$\mathbb{P}(X_{t+1} = x_{t+1} | X_t = x_t, ..., X_1 = x_1) = \mathbb{P}(X_{t+1} = x_{t+1} | X_t = x_t)$$

ullet Time-invariant Markov source: for any t and any $a,b\in\mathcal{X}$

$$f_{X_{t+1}|X_t}(b|a) = f_{X_2|X_1}(b|a)$$

• Also required: the initial distribution: $f_{X_1}(x) = \mathbb{P}(X_1 = x)$.

Markov Sources: Probability Transition Matrix

• Time-invariant Markov source: for any t and any $a,b \in \mathcal{X}$

$$f_{X_{t+1}|X_t}(b|a) = f_{X_2|X_1}(b|a) = P_{a,b}$$
 $\mathbf{P} = \begin{bmatrix} P_{1,1} & \cdots & P_{1,N} \\ \vdots & \ddots & \vdots \\ P_{N,1} & \cdots & P_{N,N} \end{bmatrix}$

• Stochastic matrix (a.k.a. Markov matrix):

$$P_{a,b} \geq 0, \ \ \text{for all} \ \ a,b \in \{1,...,N\} \quad \text{and} \quad \sum_{b=1}^{N} P_{a,b} = 1.$$

Non-consecutive conditionals: Chapman-Kolmogorov equations,

$$f_{X_{t+1}|X_{t-1}}(b|a) = \sum_{x_t} f_{X_{t+1}|X_t}(b|x_t) f_{X_t|X_{t-1}}(x_t|a)$$
$$= \sum_{x_t} P_{a,x_t} P_{x_t,b} = (\mathbf{P}^2)_{a,b}$$

...generalizing:

$$f_{X_{t+L}|X_t}(b,a) = (\mathbf{P}^L)_{a,b}$$

Higher-Order Markov Sources

- This slide uses a more compact notation: simply $p(\cdot) = f_X(\cdot)$.
- Order-n Markov source: for any $t \in \mathbb{N}$,

$$p(x_{t+1}|\underbrace{x_t, x_{t-1}, ..., x_1}_{\text{all the past}}) = p(x_{t+1}|\underbrace{x_t, ..., x_{t-n+1}}_{n \text{ previous}})$$

• Lifting: defining $z_t = (x_t, x_{t-1}, ..., x_{t-n+1}) \in \mathcal{X}^n$,

$$p(x_{t+1}, x_t, ..., x_{t-n+2} | x_t, x_{t-1}, ..., x_{t-n+1}) = p(z_{t+1} | z_t)$$

... the lifted source is order-1 Markov

ullet Probability transition matrix of the lifted source: ${f P} \in N^n imes N^n$

Higher-Order Markov Sources

 \bullet Example of order-2 Markov source, with $\mathcal{X}=\{1,2\},$ and the following conditional probabilities

$p(x_{t+1} x_t, x_{t-1})$	x_{t+1}		
(x_t, x_{t-1})	1	2	
(1,1)	0.1	0.9	
(1,2)	0.6	0.4	
(2,1)	0.3	0.7	
(2, 2)	1	0	

• After lifting, $z_t = (x_t, x_{t-1})$

$p(z_{t+1} z_t)$	$z_{t+1} = (x_{t+1}, \boldsymbol{x_t})$			
$z_t = (x_t, x_{t-1})$	(1,1)	(1, 2)	(2,1)	(2, 2)
(1,1)	0.1	0	0.9	0
(1, 2)	0.6	0	0.4	0
(2,1)	0	0.3	0	0.7
(2,2)	0	1	0	0

 \bullet Probability transition matrix of the lifted source: $\mathbf{P} \in 2^2 \times 2^2 = 4 \times 4.$

Markov Models of English

- Uniform distribution over $\mathcal{X} = \{A, B, ..., Z, _\}$ (N=27) XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZLHJQD
- Memoryless model w/ estimated probabilities.

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRI

Order-1 Markov model.

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TO BE SEACE

Order-2 Markov model.

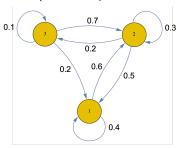
IN NO IS LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTRURES OF THE REPTAGIN IS REGOACTIONA OF CRE

Markov Sources: Graph Representation

Consider the probability transition matrix

$$\mathbf{P} = \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0.5 & 0.3 & 0.2 \\ 0.2 & 0.7 & 0.1 \end{bmatrix}$$

• ...its graph representation (node = symbol = state) is



Markov Sources: Computing Probabilities

- The pair (P, f_{X_1}) provide a complete characterization of the source.
- Probability of a sequence of consecutive symbols starting at t = 1:

$$f_{X_1,X_2,...,X_L}(x_1,x_2,...,x_L) = f_{X_1}(x_1)P_{x_1,x_2}P_{x_2,x_3}\cdots P_{x_{L-1},x_L}$$
 Example: $\mathbb{P}(X_1=4,X_2=1,X_3=8,X_4=5) = \mathbb{P}(X_1=4)P_{4,1}P_{1,8}P_{8,5}$.

For non-consecutive symbols, just marginalize. Example:

$$f_{X_2,X_5,X_7}(8,3,9) = \sum_{x_1,x_3,x_4,x_6} f_{X_1,X_2,X_3,X_4,X_5,X_6,X_7}(x_1,8,x_3,x_4,3,x_6,9)$$
$$= \sum_{x_1,x_3,x_4,x_6} f_{X_1}(x_1) P_{x_1,8} P_{8,x_3} P_{x_3,x_4} P_{x_4,3} P_{3,x_6} P_{x_6,9}$$

Markov Sources: Symbol/State Distribution

• Distribution at time t+1:

$$f_{X_{t+1}}(x_{t+1}) = \sum_{x_t \in \mathcal{X}} f_{X_{t+1}, X_t}(x_{t+1}, x_t)$$
 (marginalization)
$$= \sum_{x_t \in \mathcal{X}} \underbrace{f_{X_{t+1}|X_t}(x_{t+1}|x_t)}_{P_{x_t, x_{t+1}}} f_{X_t}(x_t)$$
 (Bayes)

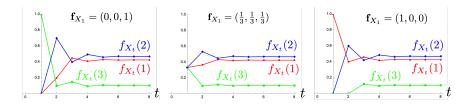
• In matrix notation (recall that $(\mathbf{A}\,\mathbf{v})_j = \sum_i A_{j,i} v_i$)

$$\mathbf{f}_{X_{t+1}} = \begin{bmatrix} f_{X_{t+1}}(1) \\ \vdots \\ f_{X_{t+1}}(N) \end{bmatrix} = \begin{bmatrix} P_{1,1} & \cdots & P_{N,1} \\ \vdots & \ddots & \vdots \\ P_{1,N} & \cdots & P_{N,N} \end{bmatrix} \begin{bmatrix} f_{X_t}(1) \\ \vdots \\ f_{X_t}(N) \end{bmatrix} = \mathbf{P}' \mathbf{f}_{X_t}$$

 $\bullet \text{ Generalizing: } \mathbf{f}_{X_{t+1}} = \underbrace{\mathbf{P'P'\cdots P'}}_{t \text{ times}} \mathbf{f}_{X_1} = (\mathbf{P'})^t \, \mathbf{f}_{X_1} = (\mathbf{P}^t)' \, \mathbf{f}_{X_1}$

Markov Sources: Stationary Distribution

• Consider P from slide 10 and three different initial distributions



- ullet Clearly, the distribution f_{X_t} converges to the same limit
- ullet Stationary distribution: fixed point of its evolution $(\mathbf{f}_{X_{t+1}} = \mathbf{f}_{X_t})$

$$\mathbf{f}_{X_{t+1}} = \mathbf{P}' \mathbf{f}_{X_t} = \mathbf{f}_{X_t} \iff \mathbf{f}_{X_t} \text{ is eigenvector of } \mathbf{P}' \text{ with eigenvalue } 1$$

- ullet Notation: μ , where $\mu=\mathbf{P}'\mu$
- Example: for the matrix P in slide 10, $\mu = [49, 54, 12]^T/115$.

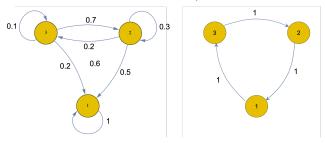
Irreducible and Aperiodic Sources

• Irreducible Markov process: for any $x,y \in \mathcal{X}$,

there exists
$$L \in \mathbb{N}$$
 such that $(\mathbf{P}^L)_{x,y} > 0$,

...i.e., it is possible to go from any state to any state, in a finite number of steps, with non-zero probability.

- Aperiodic Markov process: if, for any x, $gcd\{L: (\mathbf{P}^L)_{x,x} > 0\} = 1$.
- Examples: a non-irreducible and a non-aperiodic source:



Perron-Frobenius Theorem

- If a Markov process is irreducible and aperiodic, then
 - \checkmark matrix P' has a simple eigenvalue 1.
 - \checkmark for any initial distribution \mathbf{f}_{X_1} ,

$$\lim_{t o \infty} \mathbf{f}_{X_t} = \lim_{t o \infty} (\mathbf{P}')^t \mathbf{f}_{X_1} = m{\mu}, ext{ where } m{\mu} = \mathbf{P}' m{\mu}$$

ullet An irreducible and aperiodic source is stationary if and only if ${f f}_{X_1}=oldsymbol{\mu}$

Entropy Rate

- Random source/process $X = (X_1, X_2, ..., X_t, ...)$
- The entropy rate is (if the limit exists)

$$H(X) = \lim_{t \to \infty} \frac{H(X_1, X_2, ..., X_t)}{t}$$

Particular case: stationary memoryless source:

$$H(X) = \lim_{t \to \infty} \frac{H(X_1, X_2, ..., X_t)}{t} = \lim_{t \to \infty} \frac{t H(X_1)}{t} = H(X_1)$$

Conditional Entropy Rate

• The conditional entropy rate is (if the limit exists)

$$H'(X) = \lim_{t \to \infty} H(X_t | X_{t-1}, ..., X_1)$$

• Particular case: memoryless (a) and stationary (b) source:

$$H'(X) = \lim_{t \to \infty} H(X_t | X_{t-1}, ..., X_1) \stackrel{(a)}{=} \lim_{t \to \infty} H(X_t) \stackrel{(b)}{=} H(X_1)$$

• Time-invariant (b), irreducible, aperiodic Markov (a) source:

$$H'(X) = \lim_{t \to \infty} H(X_t | X_{t-1}, ..., X_1) \stackrel{(a)}{=} \lim_{t \to \infty} H(X_t | X_{t-1})$$

$$\stackrel{(b)}{=} \lim_{t \to \infty} \sum_x H(X_2 | X_1 = x) f_{X_t}(x) = \sum_x H(X_2 | X_1 = x) \mu_x$$

$$= -\sum_x \sum_y \mu_x P_{x,y} \log P_{x,y}$$

Entropy Rates of Stationary Processes

• If X is stationary, H'(X) exists:

$$H(X_t|X_{t-1},...,X_2,X_1) \leq H(X_t|X_{t-1},...,X_2) = H(X_{t-1}|X_{t-2},...,X_1)$$
 i.e., $H(X_t|X_{t-1},...,X_1)$ is a decreasing non-negative sequence, thus it converges.

- Cesáro mean theorem: $\lim_{t\to\infty}a_t=a \Rightarrow \lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^na_t=a$
- If X is stationary, H(X) = H'(X):

$$\begin{split} H(X) &= \lim_{t \to \infty} \frac{H(X_1, X_2, ..., X_t)}{t} \\ &= \lim_{t \to \infty} \frac{1}{t} \sum_{n=1}^t H(X_n | X_{n-1}, ..., X_1) \\ &= \lim_{t \to \infty} H(X_n | X_{n-1}, ..., X_1) \\ &= H'(X) \end{split} \tag{Cesáro mean}$$

Markov Models of English: Entropy Rates

- Uniform distribution over $\mathcal{X}=\{A,B,...,Z,_\}$ (N=27): $H(X)=\log_2 27 \simeq 4.75$ bits/symbol XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZLHJQD
- \bullet Memoryless model w/ estimated prob.: $H(X) \simeq 4.07$ bits/symbol OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL
- \bullet Order-1 Markov model: $H(X)\simeq 3.36$ bits/symbol ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TO BE SEACE
- ullet Order-2 Markov model: $H(X)\simeq 2.77$ bits/symbol IN NO IS LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTRURES OF THE REPTAGIN IS REGOACTIONA OF CRE

Recommended Reading

 T. Cover and J. Thomas, "Elements of Information Theory", John Wiley & Sons, 2006 (Chapter 4).