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Discrete Sources

X, t=1,2,...

Discrete source Jl_)

X, € X ={1,..,N}

@ Memoryless assumption is dropped.

@ Sequence of random variables: discrete-time stochastic process.

e Full characterization: for any L € N and any {¢1,...,t1}
thl""’XtL (x1,..,zn) =P(Xy, = 21,0, Xy, = 1)

must be known.

@ Without some structure, essentially impossible in general.
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Stationary Sources
X, t=1,2,...

Discrete source

XieX={1,..,N}
e Stationary source: for any L € N and any {¢1,...,t.},
thl,..-,XtL ('xl’ ) 'IL) = th1+s:-~~7XtL+s (3317 ooy xL)?
for any shift s € Z such that all t1 +s>1, ..., tf +s > 1.
e Example, with X = {a,b,¢,d}, L =3,

fX2,X5,X7(b7 Cy a) = fX32,X35,X37 (b7 ) a) = fX17X4,X6 (ba ) a)
...in other notation:
]P(Xg = b,X5 = C, X7 = a) = P(ng = b,X35 =C, X37 = (I)
=P(X1=0,X4=1c¢,X¢=na0)
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Memoryless Sources
X, t=1,2,...
|

Discrete source ]-—>
X, exX={1,.., N}

@ Memoryless source: for any L € L and any {t1,...,t5},

L
thl,...,XtL (wla ceey :L'L) = H thi (wl)
=1

...that is, symbols are independent.

e Example: fx, x; x;(b,c,a) = fx,(b) fx;(c) fx,;(a)

@ Memoryless stationary source:

L L
(memoryless) (staionary)
Py, @1y wr) T i, () =T ] x (@)

i=1 =1

e Example: sz,X5,X7(b> c,a) = Ix (b) Ix (C) Ix (a)

Lecture 2 (Markov Sources) Information and Communication Theory 2023 4/20



Markov Sources

X, t=1,2,..

Discrete source l—>
) X, ex=1{1,..,N}

e Markov (or Markovian) source: for any t € N,
X Xeox (@12, o 1) = fx, ) x, (T 2)
@ In other notation
IP’(XHl =z Xy =2, .., X1 = xl) = IF’(XtH = x| X = a:t)
@ Time-invariant Markov source: for any ¢ and any a,b € X
Ixii1x,(bla) = fx,)x, (bla)

@ Also required: the initial distribution: fx, (z) =P(X; = ).
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Markov Sources: Probability Transition Matrix
@ Time-invariant Markov source: for any t and any a,b € X
Py - Py
Fxex: (0la) = fxyx, (bla) = Poy P=:
Pyi1 -+ PnnN

@ Stochastic matrix (a.k.a. Markov matrix):
N
Pap >0, foralla,be{l,..,N} and Y Pyp=1.

@ Non-consecutive conditionals: Chapman-Kolmogorov equations,

th+1|Xt 1 b’a Zth+1|Xt(b’xt)th\Xt 1(%’15‘@)

Tt
= Z Pa,xtht,b = (Pz)a,b
Tt
...generalizing:
fXH—LlXt (b7 CL) = (PL)a:b
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Higher-Order Markov Sources
@ This slide uses a more compact notation: simply p(:) = fx(-).

@ Order-n Markov source: for any t € N,

P($t+1| Tty Tp—1, m,ml) = P($t+1|$t7 "'7xt—n+1)
——— ————

all the past n previous

o Consider p(Zi11, Tt oy Tt—nt2 [Tt, Tg—15 0 Tt—nt1).
—_———

conditionally

deterministic
o Lifting: defining z; = (x4, x¢—1, ..., Tt—nt+1) € X",
(@41, Tty ooy Temng2|Te, Tio1, ooy Teong1) = P(2e41]21)
... the lifted source is order-1 Markov

@ Probability transition matrix of the lifted source: P € N™ x N"
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Higher-Order Markov Sources

@ Example of order-2 Markov source, with X = {1,2}, and the
following conditional probabilities

p($t+1|$t,$t—1) Tt41
‘ (x4, 4-1) ‘ 1 ‘ 2
1,1) 0109
(1,2) 0.6 | 0.4
(2,1) 0.3 ] 0.7
(2,2) 1] 0
o After lifting, z; = (x4, x4—1)

p(2e+1]21) 241 = (Teg1, 1)

Lz = (1) [ (L) [ (L,2) [ (2,1) | (2,2)
(1,1) 0.1 0 0.9 0
(1,2) 0.6 0 0.4 0
(2,1) 0 0.3 0 0.7
(2,2) 0 1 0 0

o Probability transition matrix of the lifted source: P € 22 x 22 = 4 x 4.
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Markov Models of English

@ Uniform distribution over X = {A, B, ..., Z, _} (N=27)

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD
QPAAMKBZAACIBZLHJQD

@ Memoryless model w/ estimated probabilities.

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA
OOBTTVA NAH BRL

@ Order-1 Markov model.

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D
ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TO BE SEACE

@ Order-2 Markov model.

IN NO IS LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF
DEMONSTRURES OF THE REPTAGIN IS REGOACTIONA OF CRE
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Markov Sources: Graph Representation

@ Consider the probability transition matrix

04 06 O
P=105 03 0.2
0.2 0.7 0.1

@ ...its graph representation (node = symbol = state) is
<::j\\ 07
0.1 0.3
Y
0.2
0.5
0.4
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Markov Sources: Computing Probabilities
@ The pair (P, fx,) provide a complete characterization of the source.

@ Probability of a sequence of consecutive symbols starting at t = 1:
IxiXo,x (1, @2, n) = fxy (01) Poy oy Proas Py v 00
Example: P(Xl = 4,X2 = 1,X3 = 8,X4 = 5) = P(Xl = 4)P471P1’8P875.
@ For non-consecutive symbols, just marginalize. Example:

fX27X57X7(8 3, 9 E le,X2,X3,X4,X5,X6,X7(55178 x3, T4, 3, x679)
X1,23,T4,T6

Z fX1 (xl)Pafl,8P8,$3P1'3,$4Px4,3P3,:EGP:L‘6,9

Z1,23,4,T6
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Markov Sources: Symbol/State Distribution

@ Distribution at time ¢t + 1:

th+1 (xt-i-l) = Z th+1,Xt(xt+1axt) (marginalization)
rtEX
= > Fxeix @l fx (@) (Bayes)
T EX e
T4l

@ In matrix notation (recall that (Av); = > A;,v;)

th+1(1) Pl,l PN,l th(l)
fXt+1 = = . : = P/th

th+1(N) Pl,N PN,N th(N)

e Generalizing: fx,,, = PP ... P fyx, = (P)fx, = (P") fx,

t times
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Markov Sources: Stationary Distribution

@ Consider P from slide 10 and three different initial distributions

! fx, = (0,0,1) L fx, =(353) " fx, = (1,0,0)

fx.(2)

08

fx.(2)

o Clearly, the distribution fx, converges to the same limit

e Stationary distribution: fixed point of its evolution (fx,,, = fx,)
fx,,,=P'fx,=fx, & fx, is eigenvector of P’ with eigenvalue 1

o Notation: u, where u =P’

o Example: for the matrix P in slide 10, p = [49, 54, 12]7/115.
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Irreducible and Aperiodic Sources
@ lIrreducible Markov process: for any x,y € X,
there exists L € N such that (P%),, > 0,

...l.e., it is possible to go from any state to any state, in a finite
number of steps, with non-zero probability.

e Aperiodic Markov process: if, for any z, gcd{L : (PL),, >0} = 1.

@ Examples: a non-irreducible and a non-aperiodic source:

0.2

9
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Perron-Frobenius Theorem

o If a Markov process is irreducible and aperiodic, then

v matrix P’ has a simple eigenvalue 1.
v~ for any initial distribution fx,,

lim fy, = lim (P')'fx, = u, where p =P’
t—o0 t—o0

@ An irreducible and aperiodic source is stationary if and only if fx, = p
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Entropy Rate

e Random source/process X = (X1, Xo, ..., X, ...)

@ The entropy rate is (if the limit exists)

H(X) — lim H(X17X27"'7Xt)

t—o00 t

@ Particular case: stationary memoryless source:

H(X) = lim H(X,Xo,..., Xy) ~ lim t H(X1)

t—00 t t—00

= H(Xy)
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Conditional Entropy Rate

@ The conditional entropy rate is (if the limit exists)
H'(X) = lim H(X/|X;_1, ..., X1)
t—o00

e Particular case: memoryless (a) and stationary (b) source:

(a)

) b
H'(X) = Jim (X011, X0) 5

lim H(X,) = H(X,)

t—o00

e Time-invariant (b), irreducible, aperiodic Markov (a) source:
H’(X) = lim H(X,|X, 1, X1) @ Jim H (XX, 1)

ZH Xo| X, = ) fx, (x ZH Xo| X1 = 2) e

= —ZZMsz,yIOng,y
Ty
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Entropy Rates of Stationary Processes
o If X is stationary, H'(X) exists:
H(Xy| X1y, X0, X1) < H(Xy| X1, ooy Xo) = H(X—1| Xi—2, ..., X7)

ie, H(X¢X¢-1,...,X1) is a decreasing non-negative sequence, thus
it converges.

n
‘ . 1
@ Cesaro mean theorem: lim ¢; = a = lim — g ar = a
t—00 n—oo N

t=1
e If X is stationary, H(X) = H'(X):
H(X) — hm ( 1 2y ) t)
t—o0 t
1
:tli)r&zle(Xn|X”_1""’X1) (chain rule)
= tlim H(X,|Xn-1,..-,X1) (Cesdro mean)
—00
= H'(X)
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Markov Models of English: Entropy Rates

e Uniform distribution over X = {4, B, ..., Z, -} (N=27):
H(X) =logy 27 ~ 4.75 bits/symbol

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD
QPAAMKBZAACIBZLHJQD

@ Memoryless model w/ estimated prob.: H(X) ~ 4.07 bits/symbol

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EElI ALHENHTTPA
OOBTTVA NAH BRL

@ Order-1 Markov model: H(X) ~ 3.36 bits/symbol

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D
ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TO BE SEACE

@ Order-2 Markov model: H(X) ~ 2.77 bits/symbol

IN NO IS LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF
DEMONSTRURES OF THE REPTAGIN IS REGOACTIONA OF CRE
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Recommended Reading

o T. Cover and J. Thomas, “Elements of Information Theory”, John
Wiley & Sons, 2006 (Chapter 4).
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