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Discrete Sources

Memoryless assumption is dropped.

Sequence of random variables: discrete-time stochastic process.

Full characterization: for any L ∈ N and any {t1, ..., tL}

fXt1 ,...,XtL
(x1, ..., xL) = P(Xt1 = x1, ...., XtL = xL)

must be known.

Without some structure, essentially impossible in general.
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Stationary Sources

Stationary source: for any L ∈ N and any {t1, ..., tL},

fXt1 ,...,XtL
(x1, ..., xL) = fXt1+s,...,XtL+s(x1, ..., xL),

for any shift s ∈ Z such that all t1 + s ≥ 1, ..., tL + s ≥ 1.

Example, with X = {a, b, c, d}, L = 3,

fX2,X5,X7(b, c, a) = fX32,X35,X37(b, c, a) = fX1,X4,X6(b, c, a)

...in other notation:

P(X2 = b,X5 = c,X7 = a) = P(X32 = b,X35 = c,X37 = a)

= P(X1 = b,X4 = c,X6 = a)
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Memoryless Sources

Memoryless source: for any L ∈ L and any {t1, ..., tL},

fXt1 ,...,XtL
(x1, ..., xL) =

L∏
i=1

fXti
(xi)

...that is, symbols are independent.

Example: fX2,X5,X7(b, c, a) = fX2(b) fX5(c) fX7(a)

Memoryless stationary source:

fXt1 ,...,XtL
(x1, ..., xL)

(memoryless)
=

L∏
i=1

fXti
(xi)

(stationary)
=

L∏
i=1

fX1(xi)

Example: fX2,X5,X7(b, c, a) = fX1(b) fX1(c) fX1(a)
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Markov Sources

Markov (or Markovian) source: for any t ∈ N,

fXt+1|Xt,...,X1
(xt+1|xt, ..., x1) = fXt+1|Xt

(xt+1|xt)

In other notation

P
(
Xt+1 = xt+1|Xt = xt, ..., X1 = x1

)
= P

(
Xt+1 = xt+1|Xt = xt

)
Time-invariant Markov source: for any t and any a, b ∈ X

fXt+1|Xt
(b|a) = fX2|X1

(b|a)

Also required: the initial distribution: fX1(x) = P(X1 = x).
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Markov Sources: Probability Transition Matrix

Time-invariant Markov source: for any t and any a, b ∈ X

fXt+1|Xt
(b|a) = fX2|X1

(b|a) = Pa,b P =

P1,1 · · · P1,N
...

. . .
...

PN,1 · · · PN,N


Stochastic matrix (a.k.a. Markov matrix):

Pa,b ≥ 0, for all a, b ∈ {1, ..., N} and
N∑
b=1

Pa,b = 1.

Non-consecutive conditionals: Chapman-Kolmogorov equations,

fXt+1|Xt−1
(b|a) =

∑
xt

fXt+1|Xt
(b|xt)fXt|Xt−1

(xt|a)

=
∑
xt

Pa,xtPxt,b = (P2)a,b

...generalizing:
fXt+L|Xt

(b, a) = (PL)a,b
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Higher-Order Markov Sources

This slide uses a more compact notation: simply p(·) = fX(·).

Order-n Markov source: for any t ∈ N,

p(xt+1|xt, xt−1, ..., x1︸ ︷︷ ︸
all the past

) = p(xt+1|xt, ..., xt−n+1︸ ︷︷ ︸
n previous

)

Consider p(xt+1, xt, ..., xt−n+2︸ ︷︷ ︸
conditionally

deterministic

|xt, xt−1, ..., xt−n+1).

Lifting: defining zt = (xt, xt−1, ..., xt−n+1) ∈ X n,

p(xt+1, xt, ..., xt−n+2|xt, xt−1, ..., xt−n+1) = p(zt+1|zt)

... the lifted source is order-1 Markov

Probability transition matrix of the lifted source: P ∈ Nn ×Nn
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Higher-Order Markov Sources

Example of order-2 Markov source, with X = {1, 2}, and the
following conditional probabilities

p(xt+1|xt, xt−1) xt+1

(xt, xt−1) 1 2

(1, 1) 0.1 0.9
(1, 2) 0.6 0.4
(2, 1) 0.3 0.7
(2, 2) 1 0

After lifting, zt = (xt, xt−1)

p(zt+1|zt) zt+1 = (xt+1, xt)
zt = (xt, xt−1) (1, 1) (1, 2) (2, 1) (2, 2)

(1, 1) 0.1 0 0.9 0
(1, 2) 0.6 0 0.4 0
(2, 1) 0 0.3 0 0.7
(2, 2) 0 1 0 0

Probability transition matrix of the lifted source: P ∈ 22× 22 = 4× 4.
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Markov Models of English

Uniform distribution over X = {A,B, ..., Z, } (N=27)

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD

QPAAMKBZAACIBZLHJQD

Memoryless model w/ estimated probabilities.

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA

OOBTTVA NAH BRL

Order-1 Markov model.

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D

ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TO BE SEACE

Order-2 Markov model.

IN NO IS LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF

DEMONSTRURES OF THE REPTAGIN IS REGOACTIONA OF CRE
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Markov Sources: Graph Representation

Consider the probability transition matrix

P =

0.4 0.6 0
0.5 0.3 0.2
0.2 0.7 0.1


...its graph representation (node = symbol = state) is

Lecture 2 (Markov Sources) Information and Communication Theory 2023 10 / 20



Markov Sources: Computing Probabilities

The pair (P, fX1) provide a complete characterization of the source.

Probability of a sequence of consecutive symbols starting at t = 1:

fX1,X2,...,XL
(x1, x2, ..., xL) = fX1(x1)Px1,x2Px2,x3 · · ·PxL−1,xL

Example: P(X1 = 4, X2 = 1, X3 = 8, X4 = 5) = P(X1 = 4)P4,1P1,8P8,5.

For non-consecutive symbols, just marginalize. Example:

fX2,X5,X7(8, 3, 9) =
∑

x1,x3,x4,x6

fX1,X2,X3,X4,X5,X6,X7(x1, 8, x3, x4, 3, x6, 9)

=
∑

x1,x3,x4,x6

fX1(x1)Px1,8P8,x3Px3,x4Px4,3P3,x6Px6,9
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Markov Sources: Symbol/State Distribution

Distribution at time t+ 1:

fXt+1(xt+1) =
∑
xt∈X

fXt+1,Xt(xt+1, xt) (marginalization)

=
∑
xt∈X

fXt+1|Xt
(xt+1|xt)︸ ︷︷ ︸

Pxt,xt+1

fXt(xt) (Bayes)

In matrix notation (recall that (Av)j =
∑

iAj,ivi)

fXt+1
=

 fXt+1(1)
...

fXt+1
(N)

 =

P1,1 · · · PN,1

...
. . .

...
P1,N · · · PN,N


 fXt(1)

...
fXt

(N)

 = P′fXt

Generalizing: fXt+1 = P′P′ · · ·P′︸ ︷︷ ︸
t times

fX1 = (P′)t fX1 = (Pt)′ fX1
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Markov Sources: Stationary Distribution

Consider P from slide 10 and three different initial distributions

Clearly, the distribution fXt converges to the same limit

Stationary distribution: fixed point of its evolution (fXt+1 = fXt)

fXt+1 = P′fXt = fXt ⇔ fXt is eigenvector of P
′ with eigenvalue 1

Notation: µ, where µ = P′µ

Example: for the matrix P in slide 10, µ = [49, 54, 12]T /115.
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Irreducible and Aperiodic Sources

Irreducible Markov process: for any x, y ∈ X ,

there exists L ∈ N such that (PL)x,y > 0,

...i.e., it is possible to go from any state to any state, in a finite
number of steps, with non-zero probability.

Aperiodic Markov process: if, for any x, gcd{L : (PL)x,x > 0} = 1.

Examples: a non-irreducible and a non-aperiodic source:
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Perron-Frobenius Theorem

If a Markov process is irreducible and aperiodic, then

✓ matrix P′ has a simple eigenvalue 1.

✓ for any initial distribution fX1 ,

lim
t→∞

fXt = lim
t→∞

(P′)tfX1 = µ, where µ = P′µ

An irreducible and aperiodic source is stationary if and only if fX1 = µ
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Entropy Rate

Random source/process X = (X1, X2, ..., Xt, ...)

The entropy rate is (if the limit exists)

H(X) = lim
t→∞

H(X1, X2, ..., Xt)

t

Particular case: stationary memoryless source:

H(X) = lim
t→∞

H(X1, X2, ..., Xt)

t
= lim

t→∞

tH(X1)

t
= H(X1)
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Conditional Entropy Rate

The conditional entropy rate is (if the limit exists)

H ′(X) = lim
t→∞

H(Xt|Xt−1, ..., X1)

Particular case: memoryless (a) and stationary (b) source:

H ′(X) = lim
t→∞

H(Xt|Xt−1, ..., X1)
(a)
= lim

t→∞
H(Xt)

(b)
= H(X1)

Time-invariant (b), irreducible, aperiodic Markov (a) source:

H ′(X) = lim
t→∞

H(Xt|Xt−1, ..., X1)
(a)
= lim

t→∞
H(Xt|Xt−1)

(b)
= lim

t→∞

∑
x

H(X2|X1 = x)fXt(x) =
∑
x

H(X2|X1 = x)µx

= −
∑
x

∑
y

µxPx,y logPx,y

Lecture 2 (Markov Sources) Information and Communication Theory 2023 17 / 20



Entropy Rates of Stationary Processes

If X is stationary, H ′(X) exists:

H(Xt|Xt−1, ..., X2, X1) ≤ H(Xt|Xt−1, ..., X2) = H(Xt−1|Xt−2, ..., X1)

i.e., H(Xt|Xt−1, ..., X1) is a decreasing non-negative sequence, thus
it converges.

Cesáro mean theorem: lim
t→∞

at = a ⇒ lim
n→∞

1

n

n∑
t=1

at = a

If X is stationary, H(X) = H ′(X):

H(X) = lim
t→∞

H(X1, X2, ..., Xt)

t

= lim
t→∞

1

t

t∑
n=1

H(Xn|Xn−1, ..., X1) (chain rule)

= lim
t→∞

H(Xn|Xn−1, ..., X1) (Cesáro mean)

= H ′(X)
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Markov Models of English: Entropy Rates

Uniform distribution over X = {A,B, ..., Z, } (N=27):
H(X) = log2 27 ≃ 4.75 bits/symbol

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD

QPAAMKBZAACIBZLHJQD

Memoryless model w/ estimated prob.: H(X) ≃ 4.07 bits/symbol

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA

OOBTTVA NAH BRL

Order-1 Markov model: H(X) ≃ 3.36 bits/symbol

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D

ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TO BE SEACE

Order-2 Markov model: H(X) ≃ 2.77 bits/symbol

IN NO IS LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF

DEMONSTRURES OF THE REPTAGIN IS REGOACTIONA OF CRE
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Recommended Reading

T. Cover and J. Thomas, “Elements of Information Theory”, John
Wiley & Sons, 2006 (Chapter 4).
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