A. Probabilidade condicionada

[Alternativa a 2.53. Adaptado de Moss (2013, pp. 29-31). ${ }^{1}$]
For any one building the electricity needed can be either 5 or 10 units (E_{5} or E_{10}), and the water needed can be either 1 or 2 units (W_{1} or W_{2}). The owner ascribes the following probabilities (expert consensus) based on previous experience with similar type of buildings: $P\left(E_{5} \cap W_{1}\right)=0.1 ; P\left(E_{10} \cap W_{1}\right)=0.1 ; P\left(E_{5} \cap W_{2}\right)=0.2 ; P\left(E_{10} \cap W_{2}\right)=0.6$.
(a) What is the probability that a building needs 10 units of electricity?
(b) What is the probability that a building require 2 units of water, given that it needs 10 units of electricity?

- Quadro de acontecimentos e probabilidades

Acontecimento	Probabilidade
$E_{i}=$ building needs i units of electricity $(i=5,10)$	$P\left(E_{i}\right)=?$
$W_{j}=$ building needs of j units of water $(j=1,2)$	$P\left(W_{j}\right)=?$
	$P\left(E_{5} \cap W_{1}\right)=0.1$
	$P\left(E_{10} \cap W_{1}\right)=$
	$P\left(E_{5} \cap W_{2}\right)=$
	$P\left(E_{10} \cap W_{2}\right)=$

- Probabilidades pedidas

$$
\begin{aligned}
P\left(E_{10}\right) & = \\
& = \\
& =0.7 \\
P\left(W_{2} \mid E_{10}\right) & = \\
& = \\
& =\frac{6}{7} \\
& \simeq 0.8571 .
\end{aligned}
$$

B. Lei da probabilidade composta

The foundation of a tall building may fail due to inadequate bearing capacity (B) or excessive settlement (S). The following probabilities are known for this type of building and failure situation: $P(B)=0.001 ; P(S)=0.008$; $P(B \mid S)=0.10$.

What is the probability the building will experience excessive settlement but not bearing capacity failure ?

- Quadro de eventos e probabilidades

Evento	Probabilidade
$B=$ building with inadequate bearing capacity	$P(B)=0.001$
$S=$ building with excessive settlement	$P(S)=$
	$P(B \mid S)=$

[^0]- Probabilidade pedida

$$
\begin{array}{rlr}
P(S \cap \bar{B}) & \text { lei prob. composta } & P(\bar{B} \mid S) \times P(S) \\
& = \\
& = & \\
& = & 0.0072 .
\end{array}
$$

C. Lei da probabilidade total

Hurricanes are categorized by increasing wind speed, Category 1 through Category 5. Based on historical hurricane data along the Louisiana Coast the annualized probability of each category is: $P\left(C_{1}\right)=0.55, P\left(C_{2}\right)=0.25$, $P\left(C_{3}\right)=0.14, P\left(C_{4}\right)=0.05, P\left(C_{5}\right)=0.01 .{ }^{2}$

In this problem we are interested in the probability of structural damage due to hurricane winds. Reconnaissance of previous hurricane disasters has shown that structural damage can be approximated by the following conditional probabilities: $P\left(D \mid C_{1}\right)=0.05, P\left(D \mid C_{2}\right)=0.10, P\left(D \mid C_{3}\right)=0.25, P\left(D \mid C_{4}\right)=0.60, P\left(D \mid C_{5}\right)=1.00$.

What is the annual probability of structural damage?

- Quadro de eventos e probabilidades

Evento	Probabilidade
$C_{1}=$ hurricane of category 1	$P\left(C_{1}\right)=0.55$
$C_{2}=$ hurricane of category 2	$P\left(C_{2}\right)=$
$C_{3}=$ hurricane of category 3	$P\left(C_{3}\right)=$
$C_{4}=$ hurricane of category 4	$P\left(C_{4}\right)=$
$C_{5}=$ hurricane of category 5	$P\left(C_{1}\right)=$
$D=$ structural damage due to hurricane wind	$P(D)=?$
	$P\left(D \mid C_{1}\right)=0.05$
	$P\left(D \mid C_{2}\right)=$
	$P\left(D \mid C_{3}\right)=$
	$P\left(D \mid C_{4}\right)=$
	$P\left(D \mid C_{5}\right)=$

- Prob. pedida
$P(D) \stackrel{\text { lei prob. total }}{=}$

$$
\begin{aligned}
& = \\
& =\quad 0.1275 .
\end{aligned}
$$

D. Lei da probabilidade total e teorema de Bayes

[Alternativa a 2.74. Adaptado de Moss (2013, p. 38).]
There is aggregate being delivered to a construction site from two sources, A and B. Trucks from sources A deliver 600 loads a day of which 3% is bad (meaning it does not meet the project specifications). Trucks from source B deliver 400 loads a day of which 1% is bad.
(a) What is the probability of bad aggregate?

[^1]- Quadro de eventos e probabilidades

Evento	Probabilidade
$A=$ aggregate from source A	$P(A)=\frac{600}{600+400}=0.6$
$B=$ aggregate from source B	$P(B)=$
$B a d=$ bad aggregate	$P(B a d)=?$
	$P(B a d \mid A)=0.03$
	$P(B a d \mid B)=$

- Prob. pedida

$$
\begin{aligned}
P(\text { Bad }) & \stackrel{\text { lei prob. total }}{=} \\
& = \\
& = \\
& 0.022 .
\end{aligned}
$$

(b) Given that the aggregate is bad, what is the probability it was from source A?

- Prob. pedida

$$
\begin{aligned}
P(A \mid \text { Bad }) \quad & \stackrel{\text { teo. Bayes }}{=} \\
& = \\
& \simeq \quad 0.8182 .
\end{aligned}
$$

E. Eventos independentes

Resume Problem A. Are the events E_{10} and W_{1} independent?

- Averiguação de independência

$$
\begin{aligned}
P\left(E_{10} \cap W_{1}\right) & \stackrel{A .}{=} \\
P\left(E_{10}\right) \times P\left(W_{1}\right) & \stackrel{A .}{=} P\left(E_{10}\right) \times\left[P\left(E_{5} \cap W_{1}\right)+P\left(E_{10} \cap W_{1}\right)\right] \\
& \stackrel{A .}{=} \\
& \stackrel{A .}{=} 0.14 .
\end{aligned}
$$

Logo, podemos afirmar que E_{10} and W_{1} são eventos

[^0]: ${ }^{1}$ Moss, R.E.S. (2013). Applied Civil Engineering Risk Analysis. Shedwick Publishing.

[^1]: ${ }^{2}$ The probabilities in Moss (2013, p. 37) do not sum one.

