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Content-Addressable 
Memory

n Content-Addressable Memories (CAMs) work differently from traditional 
memory: stored items are retrieved using their content as a key, rather than 
using an arbitrary address

n Examples are a phonebook, a search engine or even the router table in an 
Internet router
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Associative Memory
n Human memory is based on associations with 

the memories it contains
n ... Just a snatch of well-known tune is enough to 

bring the whole thing back to mind
n ... A forgotten joke is suddenly completely 

remembered when the next-door neighbor starts to 
tell it again

n This type of memory has previously been 
termed content-addressable, which means that 
one small part of the particular memory is linked 
- associated -with the rest.





Associative Memory
n The ability to correct faults if false 

information is given
n To complete information if some parts are 

missing
n To interpolate information, that means if a 

pattern is not stored the most similar 
stored pattern is determined



n The cerebral cortex is a huge associative 
memory

n or rather a large network of associatively 
connected topographical areas

n Associations between patterns are formed 
by Hebbian learning



Lernmatrix
n The Lernmatrix, also simply called 

associative memory was developed by 
Steinbuch in 1958 as a biologically 
inspired model from the effort to explain 
psychological phenomenon of 
conditioning 



n Later this model was studied under the 
biological and mathematical aspects by 
G. Palm 

n It was shown that Donald Hebb's 
hypothesis of cell assemblies as a 
biological model of internal representation 
of of events and situations in the cerebral 
cortex corresponds to the formal 
associative memory model



n The associative memory is composed of a 
cluster of units which represent a simple model 
of a real biological neuron





n The patterns are represented by binary vectors
n The presence of a feature is indicated by a one 

component of the vector, its absence through a 
zero component of the vector

n Always two pairs of these vectors are 
associated

n This process of the association is called 
learning



n The first of the two vectors is called the 
question vector and the second the 
answer vector

n After the learning the question vector is 
presented to the associative memory and 
the answer vector is determined



n This process is called:

n association provided that the answer vector 
represents the reconstruction of the disturbed 
question vector

n heteroassocation if both vectors are 
different





n In the initialization phase of the 
associative memory no information is 
stored; 

n because the information is represented in 
the w weights they are all set to zero



Learning
n In the learning phase, binary vector pairs 

are associated
n Let x be the question vector and y the 

answer vector, so that the learning rule 
n is:

n This rule is called the binary  Hebb rule



n In the one-step retrieval phase of the 
associative memory

n a fault tolerant answering mechanism 
recalls the appropriate answer vector for a 
question vector x



n To the presented question vector x the most 
similar learned xl question vector regarding the 
Hamming distance is determined

n Hamming distance indicates how many positions of 
two binary vectors are different 

n The appropriate answer vector y is identified



Retrieval

n T is the threshold of the unit
n In the hard threshold strategy, the threshold T is set 

to the number of “one” components in the question 
vector

• If one uses this strategy it is quite possible that no answer 
vector is determined

n In soft threshold strategy, the threshold is set to the 
maximum sum



Soft threshold strategy



Backward projection
n In this case, y is the question vector, and the 

answer vector 
n which should be determined is xl

n This means that the synaptic matrix used is a 
transpose of the matrix W which is used for the 
forward projection

• T* is the threshold of the unit 



Reliability of the answer
n Let x be the question vector and y the  answer 

vector that was determined by the associative 
memory

n First, the vector xl which belongs to the vector y
is determined by a backward projection of the 
vector y

n The greater the similarity of the vector xl to the 
vector x, the more reliable the answer vector y



Association learning

P(1) =  1 1 1 1 0 0 0 0

k i            
j

P(1) 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

i

j



Association learning

P(1) =  1 1 1 1 0 0 0 0
P(2) =  0 0 1 1 1 1 0 0

k i            
j

P(1) 1 1 1 1 0 0 0
P(2) 0 0 1 1 1 1 0

1 0 1 1 1 1 0 0 0
1 0 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0
0 1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0

i

j



Retrieving

Learned patterns:
P(1) = 1 1 1 1 0 0 0 0
P(2)   = 0 0 1 1 1 1 0 0

Address pattern:
PX =  0 1 1 0 0 0 0 0

PX A

0 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0



Retrieving

Learned patterns:
P(1) = 1 1 1 1 0 0 0 0
P(2)   = 0 0 1 1 1 1 0 0

Address pattern:
PX =  0 1 1 0 0 0 0 0

PX A

0 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0

x 2 2 2 2 1 1 0



Retrieving

Learned patterns:
P(1) = 1 1 1 1 0 0 0 0
P(2)   = 0 0 1 1 1 1 0 0

Address pattern:
PX =  0 1 1 0 0 0 0 0

PX A

0 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0

x 2 2 2 2 1 1 0

PR (T=2) 1 1 1 1 0 0 0



Storage Analysis
n For an estimation of the asymptotic number L of 

vector pairs (x, y) which can be stored in an 
associative memory before it begins to make 
mistakes in retrieval phase.

n It is assumed that both vectors have the same 
dimension n

n It is also assumed that both vectors are 
composed of M 1s, which are likely to be in any 
coordinate of the vector



n There are                                 different binary 

vectors of the dimension n with M ones

n 101
n 011
n 110



Information Content
n We can determine for each vector the 

probability of its presence
n The presence of vector has the same 

probability
n pC(n,M)=1/C(n,M)



Entropy in Information since
n Entropy measured in bits

n Entropy of L vectors



• Maximize information in correspondence to the 
size of the associative memory

• Fraction of realized information storage capacity 
to available information storage capacity



n Depending on the size of n, we have to find 
optimal values for M and L
n We have to find two equations



n Probability p of after storing L such binary 
vectors in the associative memory, that a weight 
wij at a certain position (ij) is one

n Probability 1-p after storing L such binary vectors in 
the associative memory, that a weight wij at a certain 
position (ij) is zero

n For all L pairs of the vectors xiyj=0
n For one pair, the probability that a weight is zero  

corresponds to (n-M)/n* (n-M)/n



n For one pair, the probability that a weight is 
zero  corresponds to (n-M)/n* (n-M)/n

n For L pairs, since the probability of an 
independent sequence of events occurring is 
the product of events´ individual 
probabilities:



n We try to determine the probability of 
obtaining an extra 1 during recall of yk

n We know that the vector xk has M ones 
and the probability of a weight being 1 is p

n The probability of getting a 
spurious/wrong output in pM, because our 
input vector xk has M ones



n Let us demand that the number of 
spurious/wrong 1s on each yk vector 
recall be 1

n The product of (n-M), the number of 0 in 
yk and the probability of each 0 being 
wrongly set to 1 will be set to one





Lets put i) and ii) together to get L



n How can we express C(n,M)?
n Logarithmic version of Sterling`s formula is



n Using the Sterling`s formula and replacing 
L we get



n Using computer algorithm we find the corresponding 
values M that maximizes I depending on n, 
n=102,103,..,10100



Storage Analysis
n The optimum value for M is approximately

n L vector pairs can be stored in the associative 
memory

n This value is much greater then n if the optimal 
value for M is used  



Storage Analysis
n L is much greater then n if the optimal value for 
M is used

n Storage of data and fault tolerant answering 
mechanism!
n Sparse coding: Very small number of 1s is equally 

distributed over the coordinates of the vectors 
n For example, in the vector of the dimension 

n=1000000 M=18, ones should be used to code a 
pattern

n The real storage capacity value is lower when 
patterns are used which are not sparse



n So if                     then more then n
patterns can be stored



n The weight matrix after learning of 20000 test 
patterns, in which ten ones were randomly set 
in a 2000 dimensional vector represents a high 
loaded matrix with equally distributed weights



Implementation on a Computer
n On a serial computer a pointer representation 

can save memory space if the weight matrix is 
not overloaded 

n In the pointer format only the positions of the 
vector components unequal to zero are 
represented. This is done, because most 
synaptic weights are zero. For example, the 
binary vector [0 1 0 0 1 1 0] is represented as 
the pointer vector (2 5 6), which represents the 
positions of “ones”
n For a matrix each row is represented as a vector





Implementation in C++
n http://www.informatik.uni-ulm.de/ni/staff/AWichert.html
n [S2] Wichert A.: Associative Class Library and its 

Applications, University of Ulm, 1998

http://www.informatik.uni-ulm.de/ni/staff/AWichert.html
ftp://neuro.informatik.uni-ulm.de/ni/wichert/asso_kit.tar.gz


Applications



n Words are represented as sequences of 
context-sensitive letter units

n Each letter in a word is represented as a triple, 
which consists of the letter itself, its 
predecessor, and its successor
n For example, the word desert is encoded by six 

context-sensitive letters, namely: \_de, des, ese, ser, 
ert, rt\_

• The character ``\_'' marks the word beginning and ending



n Because the alphabet is composed of 26+1
characters, 273 different context-sensitive 
letters exist

n In the 273 dimensional binary vector each 
position corresponds to a possible context-
sensitive letter, and a word is represented by 
indication of the actually present context-
sensitive letters





Coding of answer vector
n 1 of n coding

n Position of the object

n We can use k of n coding!! (k > n)
• 1000, 0100, 00100... (1 of n)
• 1110, 1101, 11001, ..., 101100,.. (3 of n)

n If sparse coding
n Then L > n !!!!



n A context-sensitive letter does not need to  
be a triple

n In general, a context-sensitive letter can 
consist of any number of letters, but only 
the numbers two, three (Wickelfeature) 
and four letters seem useful



n Speech system

n Recognition of visual 
features and speech 
features with an 
artificial neuronal 
network 
(Quasiphones)

n Coding of 
quasiphones by 
Wickelfeatures

n Recognition of words 
by associative 
memory



Hardware










