2 Associative Memory

- Content-Addressable Memory
- Associative Memory
- Lernmatrix
- Association
- Heteroassociation
- Learning
- Retrieval
- Reliability of the answer
- Storage Analysis
- Sparse Coding
- Implementation on a Computer
- Applications
- Hardware

Content-Addressable Memory

- Content-Addressable Memories (CAMs) work differently from traditional memory: stored items are retrieved using their content as a key, rather than using an arbitrary address
- Examples are a phonebook, a search engine or even the router table in an Internet router

Associative Memory

- Human memory is based on associations with the memories it contains
- ... Just a snatch of well-known tune is enough to bring the whole thing back to mind
- ... A forgotten joke is suddenly completely remembered when the next-door neighbor starts to tell it again
- This type of memory has previously been termed content-addressable, which means that one small part of the particular memory is linked - associated -with the rest.

Associative Memory

- The ability to correct faults if false information is given
- To complete information if some parts are missing
- To interpolate information, that means if a pattern is not stored the most similar stored pattern is determined
- The cerebral cortex is a huge associative memory
- or rather a large network of associatively connected topographical areas
- Associations between patterns are formed by Hebbian learning

Lernmatrix

- The Lernmatrix, also simply called associative memory was developed by Steinbuch in 1958 as a biologically inspired model from the effort to explain psychological phenomenon of conditioning
- Later this model was studied under the biological and mathematical aspects by G. Palm
- It was shown that Donald Hebb's hypothesis of cell assemblies as a biological model of internal representation of of events and situations in the cerebral cortex corresponds to the formal associative memory model

- The associative memory is composed of a cluster of units which represent a simple model of a real biological neuron

- The patterns are represented by binary vectors
- The presence of a feature is indicated by a one component of the vector, its absence through a zero component of the vector
- Always two pairs of these vectors are associated
- This process of the association is called learning
- The first of the two vectors is called the question vector and the second the answer vector
- After the learning the question vector is presented to the associative memory and the answer vector is determined
- This process is called:
- association provided that the answer vector represents the reconstruction of the disturbed question vector
- heteroassocation if both vectors are different

- In the initialization phase of the associative memory no information is stored;
- because the information is represented in the \boldsymbol{w} weights they are all set to zero

Learning

- In the learning phase, binary vector pairs are associated
- Let \boldsymbol{x} be the question vector and \boldsymbol{y} the answer vector, so that the learning rule
- is: $\quad w_{i j}^{\text {new }}=1 \quad$ if $y_{i} \cdot x_{j}=1$

$$
w_{i j}^{\text {new }}=w_{i j}^{\text {old }} \text { otherwise }
$$

- This rule is called the binary Hebb rule

■ In the one-step retrieval phase of the associative memory

- a fault tolerant answering mechanism recalls the appropriate answer vector for a question vector \boldsymbol{x}
- To the presented question vector \boldsymbol{x} the most similar learned \boldsymbol{x}^{\prime} question vector regarding the Hamming distance is determined
- Hamming distance indicates how many positions of two binary vectors are different
- The appropriate answer vector \boldsymbol{y} is identified

Retrieval

$y_{i}=\left\{\begin{array}{l}1 \sum_{j=1}^{n} w_{i j} x_{j} \geq T\end{array}\right.$ 0 otherwise.

- T is the threshold of the unit
- In the hard threshold strategy, the threshold T is set to the number of "one" components in the question vector
- If one uses this strategy it is quite possible that no answer vector is determined
- In soft threshold strategy, the threshold is set to the maximum sum

$$
\sum_{j=1}^{n} \delta\left(w_{i j} x_{j}\right)
$$

Soft threshold strategy

$$
\begin{aligned}
& \delta(x)=\left\{\begin{array}{l}
1 \text { if } x>0 \\
0 \text { if } x=0
\end{array}\right. \\
& T:==_{\max } \sum_{j=1}^{n} \delta\left(w_{i j} x_{j}\right)
\end{aligned}
$$

Backward projection

- In this case, \boldsymbol{y} is the question vector, and the answer vector
- which should be determined is \boldsymbol{x}^{\prime}

$$
x_{j}^{l}=\left\{\begin{array}{l}
1 \sum_{i=1}^{m} w_{i j} y_{i} \geq T^{*} \\
0 \text { otherwise }
\end{array}\right.
$$

- This means that the synaptic matrix used is a transpose of the matrix \boldsymbol{W} which is used for the forward projection
- T^{*} is the threshold of the unit

Reliability of the answer

- Let \boldsymbol{x} be the question vector and \boldsymbol{y} the answer vector that was determined by the associative memory
- First, the vector \boldsymbol{x}^{\prime} which belongs to the vector \boldsymbol{y} is determined by a backward projection of the vector \boldsymbol{y}
- The greater the similarity of the vector \boldsymbol{x}^{\prime} to the vector \boldsymbol{x}, the more reliable the answer vector \boldsymbol{y}

Association learning

$$
P^{(1)}=11110000
$$

Association learning

$$
\begin{aligned}
& \mathbf{P}^{(1)}=1111110000 \\
& \mathbf{P}^{(2)}=001111100
\end{aligned}
$$

Retrieving

Learned patterns:

$$
\begin{aligned}
& \mathbf{P}^{(1)}=111110000 \\
& \mathbf{P}^{(2)}=0011111100
\end{aligned}
$$

Address pattern:

$$
\mathbf{P}^{\mathrm{X}}=01100000
$$

Retrieving

Learned patterns:

$$
\begin{aligned}
& \mathbf{P}^{(1)}=111110000 \\
& \mathbf{P}^{(2)}=001111100
\end{aligned}
$$

Address pattern:

$$
\mathbf{P}^{\mathbf{X}}=01100000
$$

Retrieving

Learned patterns:

$$
\begin{aligned}
& \mathbf{P}^{(1)}=111110000 \\
& \mathbf{P}^{(2)}=001111100
\end{aligned}
$$

Address pattern:

$$
\mathbf{P}^{\mathrm{X}}=01100000
$$

Storage Analysis

- For an estimation of the asymptotic number L of vector pairs ($\boldsymbol{x}, \boldsymbol{y}$) which can be stored in an associative memory before it begins to make mistakes in retrieval phase.
- It is assumed that both vectors have the same dimension \boldsymbol{n}
- It is also assumed that both vectors are composed of $\boldsymbol{M} 1 \mathrm{~s}$, which are likely to be in any coordinate of the vector
- There are $C(n, M)=\frac{n}{(n-M)!M!}$ different binary vectors of the dimension \boldsymbol{n} with \boldsymbol{M} ones
- 101
- 011
- 110

$$
C(3,2)=\frac{3}{(1)!2}=\frac{6}{2}=3
$$

Information Content

- We can determine for each vector the probability of its presence
- The presence of vector has the same probability
- $p_{C(n, M)}=1 / C(n, M)$
$I=\log _{2}\left(u_{C(n, M)}\right)=\log _{2}\left(1 / p_{C(n, M)}\right)=-\log _{2}\left(p_{C(n, M)}\right)$

Entropy in Information since

- Entropy measured in bits

$$
I=H(F)=-\sum_{i} p_{i} \log _{2} p_{i}
$$

- Entropy of L vectors

$$
I=H(F)=-L \cdot p_{C(n, M)} \cdot \log _{2} p_{C(n, M)}
$$

$$
I=H(F)=L \cdot \frac{1}{C(n, M)} \cdot \log _{2} C(n, M)
$$

- Maximize information in correspondence to the size of the associative memory
- Fraction of realized information storage capacity to available information storage capacity

Maximize $\rightarrow \frac{l}{n^{2}}$

$$
\begin{aligned}
& I:=I^{\prime}=L \cdot \log _{2} C(n, M) \\
& I:=L \cdot \log _{2} \frac{n}{(n-M)!M!} \\
& \text { Maximize } \frac{1}{n^{2}}
\end{aligned}
$$

- Depending on the size of n, we have to find optimal values for M and L
- We have to find two equations
- Probability p of after storing L such binary vectors in the associative memory, that a weight $w_{i j}$ at a certain position (ij) is one
- Probability $1-p$ after storing L such binary vectors in the associative memory, that a weight $w_{i j}$ at a certain position (ij) is zero
- For all L pairs of the vectors $x_{i} y_{j}=0$
- For one pair, the probability that a weight is zero corresponds to $(n-M) / n^{*}(n-M) / n$
- For one pair, the probability that a weight is zero corresponds to ($n-M$)/n* $(n-M) / n$
- For L pairs, since the probability of an independent sequence of events occurring is the product of events' individual $\left.\underset{(1-p)}{\text { probabilitie } \mathscr{A}^{2}-M^{2}} \frac{n^{2}}{n^{2}}\right]^{L}$

$$
p=1-\left[1-\frac{M^{2}}{n^{2}}\right]^{L}
$$

- We try to determine the probability of obtaining an extra 1 during recall of y_{k}
- We know that the vector x_{k} has M ones and the probability of a weight being 1 is p
- The probability of getting a spurious/wrong output in p^{M}, because our input vector x_{k} has M ones
- Let us demand that the number of spurious/wrong 1 s on each y_{k} vector recall be 1
- The product of $(n-M)$, the number of 0 in y_{k} and the probability of each 0 being wrongly set to 1 will be set to one

$$
(n-M) \cdot p^{M}=1
$$

Maximize $\rightarrow \frac{1}{n^{2}}$

i) $\quad I=L \cdot \log _{2} \frac{n}{(n-M)!M!}$
ii) $\quad p=1-\left[1-\frac{M^{2}}{n^{2}}\right]^{L}$
iii) $\quad(n-M) \cdot p^{M}=1$

Lets put i) and ii) together to get L

$$
\begin{aligned}
& (n-M)\left[1-\left[1-\frac{M^{2}}{n^{2}}\right]^{L}\right]^{M}=1 \\
& 1-\left[1-\frac{M^{2}}{n^{2}}\right]^{L}=(n-M)^{-\frac{1}{M}} \\
& {\left[1-\frac{M^{2}}{n^{2}}\right]^{L}=1-(n-M)^{-\frac{1}{M}}} \\
& L \cdot \log \left[1-\frac{M^{2}}{n^{2}}\right]=\log \left(1-(n-M)^{-\frac{1}{M}}\right) \\
& L=\frac{\log \left(1-(n-M)^{-\frac{1}{M}}\right)}{\log \left[1-\frac{M^{2}}{n^{2}}\right]}
\end{aligned}
$$

- How can we express $C(n, M)$?
- Logarithmic version of Sterling`s formula is

$$
\log (n)=\frac{n+1}{2} \log (n)-n+\frac{1}{2} \log (2 \cdot \pi)
$$

$\log _{2}(n)=\frac{n+1}{2} \log _{2}(n) \cdot \log (2)-n+\frac{1}{2} \log _{2}(2 \cdot \pi) \cdot(\log (Q)$
$\log _{2}(n)=\frac{n+1}{2} \log _{2}(n) \cdot \log (2)-n+0.92$

$$
\begin{aligned}
& \left.I=L \cdot\left(\log _{2} n-\log _{2}(n-M)!M!\right)\right) \\
& I=L \cdot\left(\log _{2} n!-\log _{2}(n-M)!+\log _{2}(M!)\right)
\end{aligned}
$$

- Using the Sterling`s formula and replacing L we get

$$
I=\frac{1}{\log (2)}\left(\frac{\log \left(1-\left((n-M)^{-\frac{1}{M}}\right)\right.}{\log \left(1-M^{2} / n^{2}\right)}\right)\binom{(n+1 / 2)(\log n-\log (n-M))+}{+M \cdot \log (n-M)-(M+1 / 2) \log M-0.92}
$$

$I=\frac{1}{\log (2)}\left(\frac{\log \left(1-\left((n-M)^{-\frac{1}{M}}\right)\right.}{\log \left(1-M^{2} / n^{2}\right)}\right)\binom{(n+1 / 2)(\log n-\log (n-M))+}{+M \cdot \log (n-M)-(M+1 / 2) \log M-0.92}$
Maximize $\rightarrow \frac{1}{n^{2}}$

- Using computer algorithm we find the corresponding values M that maximizes I depending on n, $n=10^{2}, 10^{3}, . ., 10^{100}$

Storage Analysis

- The optimum value for M is approximately

$$
M \doteq \log _{2}(n / 4)
$$

- L vector pairs can be stored in the associative memory

$$
L \doteq(\ln 2)\left(n^{2} / M^{2}\right)
$$

- This value is much greater then n if the optimal value for \boldsymbol{M} is used

Storage Analysis

- L is much greater then n if the optimal value for M is used
- Storage of data and fault tolerant answering mechanism!
- Sparse coding: Very small number of 1 s is equally distributed over the coordinates of the vectors
- For example, in the vector of the dimension $n=1000000 \mathrm{M}=18$, ones should be used to code a pattern
- The real storage capacity value is lower when patterns are used which are not sparse

$$
\begin{aligned}
& L \doteq(\ln 2)\left(n^{2} / M^{2}\right) \\
& L:=n \\
& n=(\ln 2)\left(n^{2} / M^{2}\right) \\
& M^{2}=(\ln 2) n \\
& M=\sqrt{(\ln 2) n}
\end{aligned}
$$

- So if $M<0.8 \cdot \sqrt{n}$ then more then n patterns can be stored

- The weight matrix after learning of 20000 test patterns, in which ten ones were randomly set in a 2000 dimensional vector represents a high loaded matrix with equally distributed weights

Implementation on a Computer

- On a serial computer a pointer representation can save memory space if the weight matrix is not overloaded
- In the pointer format only the positions of the vector components unequal to zero are represented. This is done, because most synaptic weights are zero. For example, the binary vector [0100110] is represented as the pointer vector (256), which represents the positions of "ones"
- For a matrix each row is represented as a vector

Implementation in C++

- http://www.informatik.uni-ulm.de/ni/staff/AWichert.html
- [S2] Wichert A.: Associative Class Library and its Applications, University of Ulm, 1998

Applications

- Words are represented as sequences of context-sensitive letter units
- Each letter in a word is represented as a triple, which consists of the letter itself, its predecessor, and its successor
- For example, the word desert is encoded by six context-sensitive letters, namely: $_d e$, des, ese, ser, ert, rt
- The character ' \underline{I}^{\prime} " marks the word beginning and ending
- Because the alphabet is composed of 26+1 characters, 27^{3} different context-sensitive letters exist
- In the 27^{3} dimensional binary vector each position corresponds to a possible contextsensitive letter, and a word is represented by indication of the actually present contextsensitive letters

Coding of answer vector

- 1 of n coding
- Position of the object
- We can use k of n coding!! ($k>n$)
- 1000, 0100, 00100...
(1 of n)
- 1110, 1101, 11001, ..., 101100,..
(3 of n)
- If sparse coding
- Then $\mathbf{L}>\mathbf{n}$!!!!
- A context-sensitive letter does not need to be a triple
- In general, a context-sensitive letter can consist of any number of letters, but only the numbers two, three (Wickelfeature) and four letters seem useful
- Speech system
- Recognition of visual features and speech features with an artificial neuronal network (Quasiphones)
- Coding of quasiphones by Wickelfeatures
- Recognition of words by associative memory

Hardware

Ulrich Rückert

Heinz Nixdorf Institute
System and Circuit Technology
University of Paderborn
Fuerstenallee 11
33102 Paderborn

Phone: +49 (0) 52 51/60 6346
Fax: \quad +49 (0) 52 51/60 6351
Email: rueckert@hni.upb.de http://wwwhni.upb.de/sct/

130 nm CMOS

Purkinje cell of cerebellar cortex

Adressdekoder
Memory \& Leseverstārker
Control Prioritätsenkoder Neurone

AMS $0.6 \mu \mathrm{~m}$ CMOS, 3 M 64 Neurone, $8820 \mu \mathrm{~m}^{2} /$ Neuron 65536 Synapsen $10 \mathrm{MHz}, 2 \mathrm{~mW}\left(2 \mathrm{~V} \mathrm{U}_{\mathrm{DD}}\right)$ 426MCPS
Chipfläche $18 \mathrm{~mm}^{2}$

These are pictures of nanowires taken with an atomic force microscope. The nanowires are in a suspension, and initially oriented randomly. To form them into a grid, first the suspension flows over a substrate to align the nanowires (the white lines in these pictures) in one direction, as shown in figure A. After the suspension is dried, the solution flows perpendicular to create a grid (figure B). The black scale bar at the bottom of the figures represents 500 nanometers (0.5 micron). (Huang et al, Science, v. 291, p.630)

