
Chapter 5

Modelling eletrial systems

By that time Mordor was deservedly being alled �smithy of the na-

tions,� and it ould trade its manufatured goods for any amounts of

food from Khand and Umbar. Trading aravans went bak and forth

through the Ithilien Crossroads day and night, and more and more

voies in Barad-dúr were saying that the ountry has had enough

tinkering with agriulture, whih was nothing but a net loss anyway,

and the way to go was to develop what nobody else had � namely,

metallurgy and hemistry. Indeed, the industrial revolution was well

underway; steam engines toiled away in mines and fatories, while

the early aeronauti suesses and experiments with eletriity were

the talk of the eduated lasses.

Kirill Yeskov (1956 � . . . ), The Last Ringbearer, I 3 (transl. Yisroel Markov)

This hapter addresses the modelling of eletrial systems.

5.1 Passive omponents

The three simplest elements in an eletrial iruit are:

1. A resistor. This omponent (see Figures 5.1 and 5.2) dissipates energy Resistor

aording to Ohm's law: Ohm's law

R(t) =
U(t)

I(t)
(5.1)

Here R is the resistane, U is the voltage (or tension, or eletri potential

di�erene), and I is the urrent.

2. A apaitor. This omponent stores energy and its most usual model is Capaitor

U(t) =
1

C
Q(t) (5.2)

where Q(t) is the eletrial harge stored, and C is the apaity. Sine

I(t) = dQ(t)
dt ,

U(t) =
1

C

∫ t

0

I(t) dt (5.3)
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Figure 5.1: Di�erent types of resistors. Left: individual resistors for use in

eletronis; entre: many resistors in one enasing; right: wirewound resistors

for high tensions and urrents in a train. (Soure: Wikimedia.) There are still

other types of resistors.

Figure 5.2: Potentiometers (or variable resistors, or rheostats) have a slider or

a srew to move the position of a terminal, and thus the length of the resistor

whih is atually employed; resistane is proportional to this length, and an be

varied in this manner (soure: Wikimedia).
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Di�erentiating, we get

I(t) = C
dU(t)

dt
(5.4)

3. An indutor. This omponent also stores energy and its most usual model Indutor

is

I(t) =
1

L
λ(t) (5.5)

where λ(t) =
∫ t

0 U(t) dt is the �ux linkage, and L is the indutane. Dif-

ferentiating, we get

U(t) = L
dI(t)

dt
(5.6)

The transfer funtions of the resistor, the apaitor, and the indutor, or-

responding to (5.1), (5.4), and (5.6), onsidering always tension U(s) as the

output and urrent I(s) as the input, are

U(s)

I(s)
= R (5.7)

U(s)

I(s)
=

1

Cs
(5.8)

U(s)

I(s)
= Ls (5.9)

Remark 5.1. Notie that Ohm's law (5.1) or (5.7) orresponds to a stati

system.

Remark 5.2. It annot be overstated that relations (5.7)�(5.9) are not followed

by many omponents:

• Many resistanes do not follow a linear relation between U and I suh as

(5.1), and are thus alled non-ohmi resistors. Still, Ohm's law an be a Non-ohmi resistors

good approximation in a limited range of values (see Figure 4.3 again).

• Many apaitors have variable apaity C, depending on the voltage ap-

plied. Others follow di�erential equations of frational order.

• Indutanes always have some resistane, whih is often not negletable.

So their transfer funtion would more aurately be R+ Ls.

• Even when (5.7)�(5.9) are aurately followed, this only happens for a

limited range of values. Inrease U or I too muh, and any eletrial

omponent will ease to funtion (burn, melt. . . ). What is too muh

depends on the partiular omponent: there are omponents that annot

stand 1 V while others work at 104 V and more.
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Table 5.1: E�ort, �ow, aumulators and dissipators in eletrial systems

Eletrial system SI

e�ort e voltage U V

�ow f urrent I A

e�ort aumulator indutor with indution L H

aumulated e�ort ea =
∫
e dt �ux linkage λ =

∫
U dt Wb

relation between aumulated e�ort and �ow ea = ϕ(f) �ux linkage λ = LI
aumulated energy Ee =

∫
ea df indutive energy Ee =

1
2LI

2
J

�ow aumulator apaitor with apaity C F

aumulated �ow fa =
∫
f dt harge Q =

∫
I dt C

relation between aumulated �ow and e�ort fa = ϕ(e) harge Q = CU

aumulated energy Ef =
∫
fa de apaitative energy Ef = 1

2CV̇ 2
J

dissipator resistane R Ω
relation between e�ort and �ow e = ϕ(f) U = RI

dissipated energy Ed =
∫
f de Ed = 1

2RI2 J

5.2 Energy, e�ort and �ow

Beause Ė(t) = U(t)I(t) and E(t) =
∫ t

0 U(t)I(t) dt, e�ort and �ow variables

are U and I. While either an one more play eah of the roles, by universal

onvention,

• U is the e�ort variable,

• I is the �ow variable, and thus

• the indutor is the e�ort aumulator,

• the apaitor is the �ux aumulator,

• the resistor is the dissipator.

Table 5.1 sums up the passing information and relations.

Remark 5.3. Transfer funtions (5.7)�(5.9) have the �ux as input and the

e�ort and output. They onsequently give the impedane of the orrespondingEletrial impedane

omponents.

To model eletri systems with these omponents, (5.7)�(5.9) are ombined

with Kirho�'s laws:Kirho�'s laws

• The urrent law states that the sum of the urrents at a iruit's node isKirho�'s urrent law

zero.

• The voltage law states that the sum of the voltages around a iruit'sKirho�'s voltage law

losed loop is zero.

Example 5.1. Consider the system in Figure 5.3 known as voltage divider.Voltage divider

The input is Vi(t) and the output is Vo(t). Applying the urrent law at point

B, we see that the urrent �owing from A to B must be the same that �ows
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Figure 5.3: Left: voltage divider. Right: RC iruit.

from B to C. Applying Ohm's law (5.1) to the two resistanes, we see that

R1 =
VB(t)− VA

I(t)
=

Vo(t)− Vi(t)

I(t)
⇒ I =

Vo − Vi

R1
(5.10)

R2 =
VC(t)− VB(t)

I(t)
=

0− Vo(t)

I(t)
⇒ I =

−Vo

R2
(5.11)

In the last equalities above, we dropped the dependene on t to alleviate the

notation. Consequently,

(Vo − Vi)R2 = −VoR1 ⇔ Vo(R1 +R2) = ViR2 ⇔ Vo

Vi

=
R2

R1 +R2
(5.12)

Notie that this system is stati, and from

Vo(t)
Vi(t)

= R2

R1+R2
we get

Vo(s)
Vi(s)

= R2

R1+R2
.

Remark 5.4. Remember that, similarly to what happens with the positive

diretion of displaements in mehanial systems, it is irrelevant if a higher

tension is presumed to exist to the left or to the right of a omponent. Current

is always assumed to �ow from higher to lower tensions; as long as equations are

oherently written, if in end urrent turns out to be negative, this only means

that it will �ow the other way round.

Example 5.2. The transfer funtion of the system in Figure 5.3 known as RC

iruit an be found in almost the same manner, thanks to impedanes: RC iruit

R =
VB(s)− VA(s)

I(s)
=

Vo(s)− Vi(s)

I(s)
⇒ I =

Vo − Vi

R
(5.13)

1

Cs
=

VC(s)− VB(s)

I(s)
=

0− Vo(s)

I(s)
⇒ I = −VoCs (5.14)

In the last equalities above, we dropped the dependene on s to alleviate the

notation. Consequently,

Vo − Vi = −VoRCs ⇔ Vo(1 +RCs) = Vi ⇔
Vo

Vi

=
1

1 +RCs
(5.15)
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Figure 5.4: Left: generi eletrial system with two impedanes, of whih the

voltage divider (Figure 5.3), the RC iruit (Figure 5.3) and the CR iruit (to

the right) are partiular ases. Right: CR iruit.

Notie that this system is dynami, and from Vo(s)(1 + RCs) = Vi(s) we get

Vo(t) +RC dVo(t)
dt = Vi(t).

Example 5.3. Both systems above are partiular ases of the generi systemTwo generi impedanes

in Figure 5.4 with two impedanes:

Z1(s) =
VB(s)− VA(s)

I(s)
=

Vo(s)− Vi(s)

I(s)
⇒ I =

Vo − Vi

Z1
(5.16)

Z2(s) =
VC(s)− VB(s)

I(s)
=

0− Vo(s)

I(s)
⇒ I =

−Vo

Z2
(5.17)

Consequently,

(Vo − Vi)Z2 = −VoZ1 ⇔ Vo

Vi

=
Z2

Z1 + Z2
(5.18)

Replaing Z1(s) = R1 and Z2(s) = R2 in (5.18), we obtain (5.12).

Replaing Z1(s) = R and Z2(s) =
1
Cs

in (5.18), we obtain (5.15).

We an also obtain the transfer funtion of the ase where the resistor and

the apaitor are swithed as also shown in Figure 5.4: when Z1(s) =
1
Cs

and

Z2(s) = R, we have Vo(s)
Vi(s)

= R
R+ 1

Cs

= RCs
1+RCs

. This is known as a CR iruit.CR iruit

Example 5.4. Consider the system in Figure 5.5 known as RLC iruit. TheRLC iruit

input is Vi(t) and the output is Vo(t). Applying the urrent law, we see that

the urrent �owing from A to B must be the same that �ows from B to C and

the same that �ows from C to D. Then







R = VB(t)−VA

I(t) = VB(t)−Vi(t)
I(t) ⇒ VB = RI + Vi

Ls = VC(t)−VB(t)
I(t) = Vo(t)−VB(s)

I(t) ⇒ ILs = Vo − VB

1
Cs

= VD(s)−VC(s)
I(s) = 0−Vo(s)

I(s) ⇒ I = −VoCs

(5.19)
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Figure 5.5: RLC iruit.

We now replae the �rst equation in the seond, and use it together with the

third to get

ILs = Vo −RI − Vi ⇔ I(R + Ls) = Vo − Vi (5.20)

⇒ Vo − Vi

R+ Ls
= −VoCs ⇔ Vo + VoCRs+ VoCLs2 = Vi ⇔

Vo

Vi

=
1

CLs2 + CRs+ 1
(5.21)

From Vo(s) + Vo(s)CRs+ Vo(s)CLs2 = Vi(s) we get

Vo(t) + CR
dVo(t)

dt
+ CL

d2Vo(t)

dt2
= Vi(t) (5.22)

Remark 5.5. We ould have established (5.22) �rst, without using impedanes:







R = VB(t)−VA(t)
I(t) ⇒ I(t) = 1

R
VB(t)− 1

R
Vi(t)

VC(t)− VB(t) = LdI(t)
dt ⇒ Vo(t)− VB(t) =

L
R

dVB(t)
dt − L

R

dVi(t)
dt

VD(t)− VC(t) =
1
C

∫
I(t) dt ⇒ −dVo(t)

dt = frac1CI(t)

(5.23)

Replaing the �rst equation in the third, and then the result in the seond,

−dVo(t)

dt
=

1

RC
VB(t)−

1

RC
Vi(t) ⇒ VB(t) = Vi(t)−RC

dVo(t)

dt
(5.24)

Vo(t)− Vi(t) +RC
dVo(t)

dt
=

L

R

(
dVi(t)

dt
−RC

d2Vo(t)

dt2

)

− L

R

dVi(t)

dt
(5.25)

Rearranging terms in the last equality gives (5.22). Applying the Laplae trans-

form, we then obtained transfer funtion (5.20). The results are of ourse the

same. Notie that in both ases zero initial onditions were impliitly assumed

(i.e. integrals were assumed to be zero at t = 0; in the ase of the Laplae

transform, this means that there is no f(0) term in (2.41). We will address this

further in Chapter 9.

Remark 5.6. Transfer funtion (5.20) is similar to transfer funtions (4.9) and

(4.10). As you know, this is one ase of a so-alled eletrial equivalent of a

mehanial system, or of a mehanial equivalent of an eletrial system. The
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Figure 5.6: Left: an integrated iruit with a 741 OpAmp, one of the most usual

types of OpAmps (soure: Wikimedia). Other OpAmp types are manufatured

in integrated iruits that have several OpAmps eah, sharing the same power

supply. Right: the symbol of the OpAmp (soure: Wikimedia). Power supply

tensions are often omitted in diagrams for simpliity, but never forget that an

ative omponent without power supply does not work.

notions of e�ort and �ux make lear why this parallel between models exists:

both onsist of an e�ort aumulator, a �ux aumulator, and a dissipator.

But notie that the parallel is not omplete: (4.9) has a �ux as input and

an aumulated e�ort as output; both the input and the output of (5.20) are

e�orts.

5.3 The operational ampli�er (OpAmp), an a-

tive omponent

The resistor, the apaitor and the indutor are alled passive omponents be-Passive omponents

ause they do not need a soure of energy to funtion. Components that need

a soure of energy to funtion are alled ative omponents. Among them areAtive omponents

diodes and transistors, together with sensors that we will study in Chapter 12.

A omponent we will study right away beause of its importane is the opera-

tional ampli�er, or in short the OpAmp.

An OpAmp is an eletroni omponent that presents itself as an integrated

iruit (see Figure 5.6) and ampli�es the di�erene between its two inputs V −

and V +
:

V out = K
(
V + − V −)

(5.26)

The output V out

is limited to the power supply tensions:

V S+ ≤ V out ≤ V S−
(5.27)

As an be expeted from the fat that the OpAmp is an ative omponent, if

no power is supplied, i.e. if the orresponding pins of the integrated iruit areNo output if no power sup-

ply disonneted and thus V S+ = V S− = 0 V, then V out = 0 V, i.e. there is no

output. The gain of the OpAmp K should ideally be in�nite; in pratie it is

very large, e.g. 105 or 106. See Figure 5.7.
The other important harateristi of the OpAmp is that the impedane

between its two inputs V −
and V +

is very large. Ideally it should be ini�nite;

in pratie it is 2 MΩ or more.
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VS+

VS−

0

VS−/K   0   VS+/K

Figure 5.7: The output of an OpAmp.

Example 5.5. The OpAmp an be used to ompare two tensions, onneted Comparator

to the two inputs V −
and V +

. Beause K is very large, if V + > V −
, even if

only by a very small margin, the output will saturate at tension V S+
. Likewise,

if V + < V −
, even if only by a very small margin, the output will saturate at

tension V S−
.

Only if V +
and V −

are equal, and equal to a great preision, will the output

be 0 V. Consider the ase of a 741 OpAmp, typially supplied with V S± =
±15 V. Suppose that K = 105. Then the output V out

will not saturate at

either +15 V or −15 V only if |V + − V −| < 15× 10−5
V.

Example 5.6. OpAmps are very usually employed in the on�guration shown

in Figure 5.8, known as inverting OpAmp or inverter. In this ase, beause Inverting OpAmp or in-

verterthe OpAmp's input impedane is very large, the urrent I will �ow from input

Vi to output Vo, as shown in Figure 5.8. Consequently,







Vo = K(V + − V −) ⇔ V − = −Vo

K

Z2 = Vo−V −

I
⇔ I = Vo−V −

Z2

Z1 = V −−Vi

I
⇔ I = V −−Vi

Z1

(5.28)

Eliminating I and V −
, we get

Vo +
Vo

K

Z2
=

−Vo

K
− Vi

Z1
⇔ VoZ1 + Vo

Z1

K
+ Vo

Z1

K
= −ViZ2 ⇔ Vo

Vi

= − Z2K

Z1K + Z1 + Z2

(5.29)

Beause K is large, (5.29) redues to

Vo

Vi

= −Z2

Z1
(5.30)
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Figure 5.8: Inverting OpAmp with two generi impedanes.

Remark 5.7. Notie how (5.30) shows that we an assume

V + = V −
(5.31)

(and so in this ase V − = 0). This is beause of the high input impedane.

Example 5.7. If in Figure 5.8 we make Z1 = R1 and Z2 = R2, we obtain the

iruit in Figure 5.9, known as inverting ampli�er, for whihInverting ampli�er

Vo

Vi

= −R2

R1
(5.32)

Notie that, beause R1, R2 > 0 (there are no negative resistanes!), in this

iruit the signs of Vi and Vo are always opposite. In spite of the iruit's name,

it an

• amplify the input (i.e. |Vo| > |Vi|, if R2 > R1), orAmpli�ation

• attenuate the input (i.e. |Vo| < |Vi|, if R1 > R2).Attenuation

Example 5.8. Consider the iruit in Figure 5.10, whih is another variation

of the negative feedbak OpAmp. From (5.31) and the Kirho� law of nodes,

impliit in the urrents shown in Figure 5.10, we get







Z1 = V1−0
I1

⇔ I1 = V1

Z1

Z2 = V2−0
I2

⇔ I2 = V2

Z2

Z3 = 0−Vo

I1+I2
⇔ V1

Z1
+ V2

Z2
= −Vo

Z3
⇔ Vo = −Z3

Z1
V1 − Z3

Z2
V2

(5.33)

Consider what happens when all the impedanes are resistors:

• If Z1 = Z2 = Z3 = R this iruit is alled inverting summer or invert-Inverting summer or in-

verting summing iruit ing summing iruit. The output Vo is the sum of the two inputs V1

and V2, but with the sign inverted.

76



Figure 5.9: Inverter ampli�er.

• If Z1 = Z2 = R and Z3 = R3 this will be an inverting amplifyingInverting amplifying sum-

mer or inverting summing

ampli�er

summer or inverting summing ampli�er. The amplifying ratio is

−R3

R
(and an orrespond to ampli�ation or attenuation).

• If all the resistanes are di�erent, we will have an inverting weightedInverting weighted sum-

mer summer. If

R3

R1
+ R3

R2
= 1 there is no ampli�ation or attenuation; other-

wise there is.

Remark 5.8. Notie that the iruit in Figure 5.10 is a MISO system.

Example 5.9. If in Figure 5.8 we have Z1 = R and Z2 onsists in a resistor R
and a apaitor C in parallel, we obtain the iruit in Figure 5.11, with

Z2 =
1

1
R
+ 1

1
Cs

=
R

1 +RCs
(5.34)

Vo

Vi

= − 1

1 +RCs
(5.35)

and similar to the RC iruit from Example 5.2 with transfer funtion (5.15).

If in Figure 5.8 we have Z2 = R and Z1 onsists in a resistor R and a

apaitor C in series, we obtain the iruit in Figure 5.12, with

Z1 = R+
1

Cs
=

1 +RCs

Cs
(5.36)

Vo

Vi

= − RCs

1 +RCs
(5.37)

and similar to the CR iruit from Example 5.3.

Example 5.10. Other than the inverter on�guration in Figure 5.8, the most

usual on�guration with whih OpAmps are used is the on in Figure 5.13, known

as the non-inverting OpAmp or non-inverter. Beause of the very large Non-inverting OpAmp or

non-inverter

77



Figure 5.10: Inverting summer or summing iruit.

Figure 5.11: Inverting RC iruit with an OpAmp.
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Figure 5.12: Inverting CR iruit with an OpAmp.

Figure 5.13: Non-inverting OpAmp with two generi impedanes.

input impedane, urrent �ows as shown, and







Vo = K(Vi − V −) ⇔ V − = Vi − Vo

K

Z2 = Vo−V −

I
⇔ I = Vo−V −

Z2

Z1 = V −−0
I

⇔ I = V −

Z1

(5.38)

Eliminating I and V −
, we get

Vo − Vi +
Vo

K

Z2
=

Vi − Vo

K

Z1
⇔ VoZ1 − ViZ1 + Vo

Z1

K
= ViZ2 − Vo

Z2

K
⇔ Vo

Vi

=
Z1 + Z2

Z1 +
Z1

K
+ Z2

K

(5.39)

Beause K is large, (5.39) redues to

Vo

Vi

=
Z1 + Z2

Z1
(5.40)

Remark 5.9. (5.40) shows one again that we an assume (5.31). We would

have arrived sooner at the same result.
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Figure 5.14: Non-inverting ampli�er.

Figure 5.15: Two inverting ampli�ers, that amplify the input 4 times.

Example 5.11. If in Figure 5.13 we make Z1 = R1 and Z2 = R2, we obtain

the iruit in Figure 5.14, known as non-inverting ampli�er, for whihNon-inverting ampli�er

Vo

Vi

=
R1 +R2

R1
(5.41)

Notie that, beause R1, R2 > 0, not only in this iruit the signs of Vi and

Vo are always the same, as the input is always ampli�ed (i.e. |Vo| > |Vi|): it is
impossible to attenuate the input.

Example 5.12. Suppose that we want to amplify a tension 4 times. We an

use the non-inverting ampli�er of Figure 5.14 with R2 = 3R1. As an alternative,

we an use two inverting ampli�ers as in Figure 5.15.

Remark 5.10. When we want to attenuate a tension without inverting its

signal, a non-inverting ampli�er annot be used, sine it must be always true

that

Vo

Vi
> 1; two inverting ampli�ers in series must be used instead, as in the

previous example.

Example 5.13. Consider the iruit in Figure 5.16. Beause of (5.31), we have

V + = V − = Vi, and Vo = V −
; hene

Vo = Vi (5.42)

While at �rst sight this may seem a good andidate for the prize of the most

useless iruit, it is in reality a most useful one. We an be sure that Vo = Vi

and that whatever omponents are onneted to Vo will not a�et Vi, beause
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Figure 5.16: Voltage bu�er.

Figure 5.17: Subtrator.

there is no urrent �owing between Vi and Vo. (The soure of energy is the

OpAmp's power supply.) If it were not for the OpAmp, anything onneted to

Vo would modify the value of Vi. This iruit is known as tension bu�er. Tension bu�er

Example 5.14. The MISO system in Figure 5.17 is know as subtrator, be- Subtrator

ause







R = V2−V ±

I2

R = V ±−Vo

I2

R = V1−V ±

I1

R = V ±−0
I1

(5.43)

From the last two equations, we get 2V ± = V1. From the �rst two equations,

and replaing this last result,

V2 = 2V ± − Vo ⇔ Vo = V1 − V2 (5.44)

5.4 Other omponents

Among the several other omponents that may be found in mehanial systems,

we will study the model of the transformer, shown in Figure 5.18: Transformer

VP

VS

=
NP

NS

(5.45)
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Figure 5.18: Transformer (soure: Wikimedia ommons).

Here VP and VS are the tensions in the two windings, and NP and NS are

the orresponding numbers of turns in eah winding. This is an ideal model; in

pratie, there are losses, but we will not need to use a more aurate expression.

Glossary

Et le professeur Lidenbrok devait bien s'y onnaître, ar il passait

pour être un véritable polyglotte. Non pas qu'il parlât ouramment

les deux mille langues et les quatre mille idiomes employés à la sur-

fae du globe, mais en�n il en savait sa bonne part.

Jules Verne (1828 � †1905), Voyage au entre de la Terre, 2

ative omponent omponente ativo

ampli�ation ampli�ação

attenuation atenuação

apaitane apaidade elétria, apaitânia (bras.)

apaitor ondensador, apaitor (bras.)

urrent orrente, intensidade (de orrente elétria)

eletri potential di�erene voltagem, tensão, diferença de potenial elétrio

�ux linkage �uxo magnétio total

impedane impedânia

indutane indutânia
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indutor bobina, indutor

inverting ampli�er ampli�ador inversor

inverter inversor

inverting amplifying summer somador ampli�ador inversor

inverting OpAmp AmpOp inversor

inverting summer somador inversor

inverting summing ampli�er ampli�ador somador inversor

inverting summing iruit iruito somador inversor

inverting weighted summer somador inversor ponderado

non-inverter não-inversor

non-inverting OpAmp AmpOp não-inversor

OpAmp AmpOp

operational ampli�er ampli�ador operaional

passive omponent omponente passivo

potentiometer poteniómetro, resistênia variável, reóstato

resistane resistênia

resistor resistênia, resistor (bras.)

rheostat poteniómetro, resistênia variável, reóstato

subtrator subtrator

tension voltagem, tensão, diferença de potenial elétrio

tension bu�er AmpOp seguidor de tensão, bu�er de tensão

variable resistor poteniómetro, resistênia variável, reóstato

voltage voltagem, tensão, diferença de potenial elétrio

Exerises

1. Find the equations desribing the dynamis of the systems in Figure 5.19,

and apply the Laplae transform to the equations to �nd the orresponding

transfer funtion.

2. Again for the systems in Figure 5.19, �nd the transfer funtion diretly

from the impedanes of the omponents, and apply the inverse Laplae

transform to the transfer funtions to �nd the orresponding equations.

3. Show that the di�erential equations modelling the iruit in Figure 5.20

are similar to those of the mehanial system of Exerise 1 in Chapter 4.

Explain why, using the onepts of e�ort and �ow.

4. Find the mehanial systems equivalent to the iruits in Figure 5.21.

5. Find the transfer funtion of the iruit in Figure 5.8 from the impedane

of the omponents for the following ases:

(a) Impedane Z1 is a resistor, impedane Z2 is a apaitor.

(b) Impedane Z1 is a apaitor, impedane Z2 is a resistor.

() Impedane Z1 is a resistor, impedane Z2 is an indutor.

(d) Impedane Z1 is an indutor, impedane Z2 is a resistor.

(e) Both impedanes Z1 and Z2 are apaitors.

(f) Both impedanes Z1 and Z2 are indutors.
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(a) (b)

() (d)

(e) (f)

(g) (h)

Figure 5.19: Systems of Exerises 1 and 2.

Figure 5.20: Ciruit of exerise 3.
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(a) (b)

Figure 5.21: Systems of Exerise 4.

(g) Impedane Z1 onsists in a resistor and a apaitor in series, impedane

Z2 is a resistor.

(h) Impedane Z1 onsists in a resistor and a apaitor in parallel, impedane

Z2 is a resistor.

(i) Impedane Z1 is a resistor, impedane Z2 onsists in a resistor and

a apaitor in series.

(j) Impedane Z1 is a resistor, impedane Z2 onsists in a resistor and

a apaitor in parallel.

(k) Both impedanes Z1 and Z2 onsist in a resistor and a apaitor in

series.

(l) Both impedanes Z1 and Z2 onsist in a resistor and a apaitor in

parallel.

(m) Impedane Z1 onsists in a resistor and a apaitor in series, impedane

Z2 onsists in a resistor and a apaitor in parallel.

(n) Impedane Z1 onsists in a resistor and a apaitor in parallel, impedane

Z2 onsists in a resistor and a apaitor in series.

(o) Impedane Z1 onsists in a resistor and an indutor in series, impedane

Z2 is a resistor.

(p) Impedane Z1 onsists in a resistor and an indutor in parallel,

impedane Z2 is a resistor.

(q) Impedane Z1 is a resistor, impedane Z2 onsists in a resistor and

an indutor in series.

(r) Impedane Z1 is a resistor, impedane Z2 onsists in a resistor and

an indutor in parallel.

(s) Both impedanes Z1 and Z2 onsist in a resistor and an indutor in

series.

(t) Both impedanes Z1 and Z2 onsist in a resistor and an indutor in

parallel.

(u) Impedane Z1 onsists in a resistor and an indutor in series, impedane

Z2 onsists in a resistor and an indutor in parallel.

(v) Impedane Z1 onsists in a resistor and an indutor in parallel,

impedane Z2 onsists in a resistor and an indutor in series.

6. Find the transfer funtion of the iruit in Figure 5.22. Assume that all

resistors are equal.
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Figure 5.22: Ciruit of exerise 6.

7. How ould you perform operation Vo = V1 − V2 using two OpAmps and

without resorting to the subtrator in Figure 5.17?

8. Design a iruit to perform the operation Vo = V1 + V2 − V3 + 2V4 − 3V5.

Use only one OpAmp.

9. Design a iruit to perform the operation Vo = 10(V1 + V2 +
1
2V3). Use

two OpAmps.

10. Modify the subtrator in Figure 5.17 so as to give:

(a) Vo = V1 − 1
3V2

(b) Vo = 5(V1 − V2)

11. Suppose you are using an OpAmp with power supply V S± = ±20 V as

omparator. UseMatlab to plot the expeted output Vo for 0 s≤ t ≤ 10 s
and the following inputs:

(a) V + = sin(tπ) V and V − = 5 V

(b) V + = 5 V and V − = sin(tπ) V

() V + = 10 sin(tπ) V and V − = 5 V

(d) V + = 5 V and V − = 10 sin(tπ) V
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