
Chapter 2

The Laplae transform

�And, if we transmit through a wormhole, the person is always re-

onstituted at the other end. We an ount on that happening, too.�

There was a pause.

Stern frowned.

�Wait a minute,� he said. �Are you saying that when you transmit,

the person is being reonstituted by another universe?�

�In e�et, yes. I mean, it has to be. We an't very well reonstitute

them, beause we're not there. We're in this universe.�

Mihael Crihton (1942 � †2008), Timeline, Blak rok

The Laplae transform is a very important tool for the resolution of dif- Laplae transform

ferential equations. In this hapter we will study its de�nition, its properties,

its appliation to di�erential equations (whih is the reason we are studying this

subjet), and the related Fourier transform, that we will also need.

2.1 De�nition

De�nition 2.1. Let t ∈ R be a real variable, and f(t) ∈ R a real-valued

funtion. The Laplae transform of funtion f , denoted by L [f(t)] or by F (s),
is a omplex-valued funtion F (s) ∈ C of omplex variable s ∈ C, given by

L [f(t)] =

∫ +∞

0

f(t)e−st dt (2.1)

Remark 2.1. Stritly speaking, operation L is the Laplae transformation,

and the result of applying L to a funtion gives us its Laplae transform. But

it is ommon to all the operation itself Laplae transform as well.

Remark 2.2. In (2.1), funtion f(t) only has to be de�ned for t ≥ 0. This

would not be so if we were using the bilateral Laplae transform, whih is Bilateral Laplae trans-

forman alternative de�nition given by

L [f(t)] =

∫ +∞

−∞
f(t)e−st dt (2.2)
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This bilateral Laplae transform is seldom used; we will use (2.1) instead, as is

ommon. The prie to pay for being able to work with funtions de�ned in R+

only will be addressed below in setion 2.4.

Remark 2.3. The Laplae transform is part of a group of transforms known

as integral transforms, given by

T [f(t)] =

∫ +∞

0

f(t)K(s, t) dt (2.3)

where T is a generi transform and K(s, t) is a funtion alled kernel. In the

ase of the Laplae transform, the kernel is K(s, t) = e−st
.

The Laplae transform of funtion f(t) will only exist if the improper integralExistene of the Laplae

transform in (2.1) onverges. This will happen in one of two ases:

• If f(t) is bounded in its domain R
+
, the integrand f(t)e−st

will obviously

tend to 0 as t → +∞.

• If f(t) tends to in�nity as t → +∞, but does so slower than e−st
tends

to 0, the integrand will still tend to 0. More rigorously, f(t) must be of

exponential order, i.e. there must be positive real onstants M, c ∈ R suh

that

|f(t)| ≤ M ect, 0 ≤ t ≤ ∞. (2.4)

Otherwise, the integrand of (2.1) does not tend to 0 and it is obvious that the

improper integral will be in�nite. For omplete rigour we also have to require

f(t) to be pieewise ontinuous for F (s) to exist; we will not prove here that

this is indeed so.

Remark 2.4. In fat (2.1) may onverge only for some values of s, and thus have
a region of onvergene whih is smaller than C; but then it an be analytially

extended to the rest of the omplex plane. This is a question we will not worry

about.

2.2 Finding Laplae transforms

Example 2.1. Let f(t) be funtionHeaviside funtion

H(t) =

{

1, if t ≥ 0

0, if t < 0
, (2.5)

known as the Heaviside funtion. ThenL [H(t)]

L [H(t)] =

∫ +∞

0

1× e−st dt =

[
e−st

−s

]+∞

0

=
e−∞

−s
− e0

−s
=

1

s
. (2.6)

Example 2.2. Let f(t) be a negative exponential, f(t) = e−at
. ThenL [e−at]

L
[
e−at

]
=

∫ +∞

0

e−ate−st dt

=

[
e−(a+s)t

−a− s

]+∞

0

= − e−∞

s+ a
−
(

− e0

s+ a

)

=
1

s+ a
. (2.7)
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Table 2.1: Table of Laplae transforms

x (t) X (s)

1 δ (t) 1

2 H (t)
1

s

3 t
1

s2

4 t2
2

s3

5 e−at 1

s+ a

6 1− e−at a

s (s+ a)

7 te−at 1

(s+ a)
2

8 tne−at, n ∈ N
n!

(s+ a)
n+1

9 sin (ωt)
ω

s2 + ω2

10 cos (ωt)
s

s2 + ω2

11 e−at sin (ωt)
ω

(s+ a)2 + ω2

12 e−at cos (ωt)
s+ a

(s+ a)
2
+ ω2

13

1

b− a

(
e−at − e−bt

) 1

(s+ a)(s+ b)

14

1

ab

(

1 +
1

a− b

(
b e−at − a e−bt

)
)

1

s(s+ a)(s+ b)

15

ω

Ξ
e−ξωt sin (ωΞt)

ω2

s2 + 2ξωs+ ω2

16 − 1

Ξ
e−ξωt sin (ωΞt− φ)

s

s2 + 2ξωs+ ω2

17 1− 1

Ξ
e−ξωt sin (ωΞt+ φ)

ω2

s (s2 + 2ξωs+ ω2)

In this table: Ξ =
√

1− ξ2; φ = arctan
Ξ

ξ
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While Laplae transforms an be found from de�nition as in the two exam-

ples above, in pratie they are found from tables, suh as the one in Table 2.1.

To use with pro�t Laplae transform tables, it is neessary to prove �rst the

following result.

Theorem 2.1. The Laplae transform is a linear operator:L is linear

L [k f(t)] = k F (s), k ∈ R (2.8)

L [f(t) + g(t)] = F (s) +G(s) (2.9)

Proof. Both (2.8) and (2.9) are proved from the linearity of the integration

operator:

L [k f(t)] =

∫ +∞

0

k f(t)e−st dt = k

∫ +∞

0

f(t)e−st dt = k F (s) (2.10)

L [f(t) + g(t)] =

∫ +∞

0

(f(t) + g(t)) e−st dt (2.11)

=

∫ +∞

0

f(t)e−st dt+

∫ +∞

0

g(t)e−st dt = F (s) +G(s)

Example 2.3. The Laplae transform of f(t) = 5t is obtained from line 3 of

Table 2.1 together with (2.8):

L [5t] = 5L [t] =
5

s2
(2.12)

Example 2.4. The Laplae transform of f(t) = 1−(1+ t)e−3t
is obtained from

lines 6 and 7 of Table 2.1 together with (2.9):

L [f(t)] = L
[
1− e−3t − te−3t

]
= L

[
1− e−3t

]
− L

[
te−3t

]

=
3

s (s+ 3)
+

1

(s+ 3)
2 =

3s+ 32 + s

(s+ 3)
2 =

4s+ 9

s2 + 6s+ 9
(2.13)

2.3 Finding inverse Laplae transforms

Laplae transform tables an also be used to �nd inverse Laplae transforms,Inverse Laplae transform

i.e. �nding the f(t) orresponding to a given F (s) = L [f(t)]. This operation

is denoted by f(t) = L −1 [F (s)].

Example 2.5. The inverse Laplae transform of F (s) = 10
s+10 is obtained from

line 5 of Table 2.1 together with (2.8):

L
−1

[
10

s+ 10

]

= 10L
−1

[
1

s+ 10

]

= 10 e−10t
(2.14)

Example 2.6. The inverse Laplae transform of F (s) = s+2
s2+13s+30 is obtainedPartial fration expansion

from line 5 of Table 2.1 together with (2.8). But for that it is neessary to develop

F (s) in a partial fration expansion. First we �nd the roots of the polynomial

in the denominator, whih are −3 and −10. So s2 + 13s+ 30 = (s+3)(s+ 10),
and we an write

s+ 2

s2 + 13s+ 30
=

A

s+ 3
+

B

s+ 10
(2.15)
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where A and B still have to determined:

A

s+ 3
+

B

s+ 10
=

As+ 10A+Bs+ 3B

(s+ 3)(s+ 10)
=

s(A+B) + (10A+ 3B)

s2 + 13s+ 30
(2.16)

Obviously we want that

{

A+B = 1

10A+ 3B = 2
⇔
{

B = 1−A

10A+ 3− 3A = 2
⇔
{

B = 8
7

A = − 1
7

(2.17)

So

s+ 2

s2 + 13s+ 30
=

− 1
7

s+ 3
+

8
7

s+ 10
, and �nally

L
−1

[
s+ 2

s2 + 13s+ 30

]

= L
−1

[ − 1
7

s+ 3
+

8
7

s+ 10

]

(2.18)

= L
−1

[ − 1
7

s+ 3

]

+ L
−1

[ 8
7

s+ 10

]

= −1

7
e−3t +

8

7
e−10t

Remark 2.5. Notie that the result in line 13 of Table 2.1 an be obtained

from line 5 also using a partial fration expansion:

1

(s+ a)(s+ b)
=

A

s+ a
+

B

s+ b
=

As+Ab +Bs+ aB

(s+ a)(s+ b)
=

s(A+B) + (Ab+ aB)

(s+ a)(s+ b)
(2.19)

We want

{

A+B = 0

Ab+ aB = 1
⇔
{

B = −A

Ab− aA = 1
⇔
{

B = −1
b−a

A = 1
b−a

(2.20)

and thus

L
−1

[
1

(s+ a)(s+ b)

]

= L
−1

[
1

b−a

s+ a

]

+ L
−1

[ −1
b−a

s+ b

]

(2.21)

=
1

b− a
e−at +

−1

b− a
e−bt =

1

b− a

(
e−at − e−bt

)

Example 2.7. The inverse Laplae transform of F (s) = 4s2+13s−2
(s2+2s+2)(s+4) is ob- Partial fration expansion

with omplex roots

tained from lines 5, 15 and 16 of Table 2.1 together with 2.8 and 2.9. The

transforms in lines 14 and 15 are used beause the roots of 4s2 + 13s − 2 are

omplex and not real (−1± j, to be preise). So we will leave that seond order

term intat and we make

4s2 + 13s− 2

(s2 + 2s+ 2)(s+ 4)
=

As+B

s2 + 2s+ 2
+

C

s+ 4
=

As2 + 4As+Bs+ 4B + Cs2 + 2Cs+ 2C

(s2 + 2s+ 2)(s+ 4)

=
s2(A+ C) + s(4A+B + 2C) + (4B + 2C)

(s2 + 2s+ 2)(s+ 4)
(2.22)

Hene







A+ C = 4

4A+ B + 2C = 13

4B + 2C = −2

⇔







C = 4−A

4A+B + 8− 2A = 13

4A− 3B = 15

⇔







C = 4−A

2A+B = 5

4A− 3B = 15

⇔







C = 1

A = 3

B = −1

(2.23)
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Finally,

L
−1

[
4s2 + 13s− 2

(s2 + 2s+ 2)(s+ 4)

]

= L
−1

[
3s− 1

s2 + 2s+ 2
+

1

s+ 4

]

(2.24)

= 3L −1

[
s

s2 + 2s+ 2

]

− 1

2
L

−1

[
2

s2 + 2s+ 2

]

+ L
−1

[
1

s+ 4

]

and sine for the �rst two terms we have

ω =
√
2 (2.25)

ξω = 1 (2.26)

ξ =
1√
2

(2.27)

Ξ =

√

1− 1

2
=

1√
2

(2.28)

ωΞ = 1 (2.29)

ϕ = arctan

1√
2
1√
2

=
π

4
(2.30)

we arrive at

L
−1

[
4s2 + 13s− 2

(s2 + 2s+ 2)(s+ 4)

]

= −3
√
2e−t sin

(

t− π

4

)

− 1

2
2e−t sin(t) + e−4t

= e−4t + e−t
[

−3
√
2
(

sin t cos
π

4
− cos t sin

π

4

)

− sin t
]

= e−4t + e−t

[

−3
√
2

(

sin t
1√
2
− cos t

1√
2

)

− sin t

]

= e−4t + e−t (−4 sin t+ 3 cos t) (2.31)

Remark 2.6. If in the example above we had deided to expand the seond

order term and use only line 5 of Table 2.1, we would have arrived at the very

same result, albeit with more lengthy and tedious alulations involving omplex

numbers. We would have to separate

3s−1
s2+2s+2 in two as follows:

3s− 1

s2 + 2s+ 2
=

A+Bj

s+ 1 + j
+

C +Dj

s+ 1− j
(2.32)

=
As+A−Aj +Bjs+Bj +B + Cs+ C + Cj +Djs+Dj −D

s2 + s− js+ s+ 1− j + js+ j + 1

=
s(A+ C) + js(B +D) + (A+B + C −D) + j(−A+B + C +D)

s2 + 2s+ 2

Then







A+ C = 3

B +D = 0

A+B + C −D = −1

−A+B + C +D = 0

⇔







C = 3−A

D = −B

A+B + 3−A+B = −1

−A+B + 3−A−B = 0

⇔







C = 3
2

D = 2

B = −2

A = 3
2

(2.33)
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Consequently

L
−1

[
4s2 + 13s− 2

(s2 + 2s+ 2)(s+ 4)

]

= L
−1

[ 3
2 − 2j

s+ 1 + j
+

3
2 + 2j

s+ 1− j
+

1

s+ 4

]

=

(
3

2
− 2j

)

L
−1

[
1

s+ 1 + j

]

+

(
3

2
+ 2j

)

L
−1

[
1

s+ 1− j

]

+ L
−1

[
1

s+ 4

]

=

(
3

2
− 2j

)

e−(1+j)t +

(
3

2
+ 2j

)

e−(1−j)t + e−4t

= e−4t +

(
3

2
− 2j

)

e−t (cos(−t) + j sin(−t)) +

(
3

2
+ 2j

)

e−t (cos t+ j sin t)

= e−4t + e−t

(
3

2
cos t− 3

2
j sin t− 2j cos t− 2 sin t+

+
3

2
cos t+

3

2
j sin t+ 2j cos t− 2 sin t

)

= e−4t + e−t(3 cos t− 4 sin t) (2.34)

Notie how all the omplex terms appear in omplex onjugates, so that the

imaginary parts anel out. This has to be the ase, sine f(t) is a real-valued

funtion.

Example 2.8. The inverse Laplae transform of F (s) = s2+22s+119
(s+10)3 is obtained Partial fration expansion

with multiple roots

from lines 5, 7 and 8 of Table 2.1 together with (2.8) and (2.9):

s2 + 22s+ 119

(s+ 10)3
=

A

s+ 10
+

B

(s+ 10)2
+

C

(s+ 10)3

=
As2 + 20As+ 100A+Bs+ 10B + C

(s+ 10)3
(2.35)

Hene







A = 1

20A+B = 22

100A+ 10B + C = 119

⇔







A = 1

B = 2

C = −1

(2.36)

Finally,

L
−1

[
s2 + 22s+ 119

(s+ 10)3

]

= L
−1

[
1

s+ 10
+

2

(s+ 10)2
+

−1

(s+ 10)3

]

(2.37)

= L
−1

[
1

s+ 10

]

+ 2L −1

[
2

(s+ 10)2

]

− 1

2
L

−1

[
2

(s+ 10)3

]

= e−10t + 2t e−10t − 1

2
t2 e−10t = e−10t

(

1 + 2t− 1

2
t2
)

Example 2.9. The inverse Laplae transform of F (s) = 2s+145
s+70 is obtained Division of polynomials

from lines 1 and 5 of Table 2.1, but for that it is neessary to begin by dividing

the numerator of F (s) by the denominator. Beause the denominator is of �rst

order, in this ase polynomial division an be arried out with Ru�ni's rule
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(otherwise a long division would be neessary):

2 145
−70 −140

2 5
(2.38)

So

2s+ 145

s+ 70
= 2 +

5

s+ 70
, and �nally

L
−1

[
2s+ 145

s+ 70

]

= 2L −1 [1] + 5L −1

[
1

s+ 70

]

= 2δ(t) + e−70t
(2.39)

All polynomial operations mentioned in this setions an be performed with

Matlab using the following ommands:

• roots �nds the roots of a polynomial, represented by a vetor with its

oe�ients (in dereasing order of the exponent);

• onv multiplies two polynomials, represented by two vetors as above;

• residue performs polynomial division and partial fration expansion, as

needed, for a rational funtion, given the numerator and denominator

polynomials represented by two vetors as above.

Example 2.10. The roots of s2 + 3s+ 2 are −2 and −1:Matlab's ommand

roots

>> roots([1 3 2℄)

ans =

-2

-1

Example 2.11. The roots of 4s3+3s2+2s+1 are −0.6058, −0.0721+0.6383j
and −0.0721− 0.6383j:

>> roots([4 3 2 1℄)

ans =

-0.6058 + 0.0000i

-0.0721 + 0.6383i

-0.0721 - 0.6383i

Example 2.12. The produt of s2 + 2s + 3 and 4s3 + 5s2 + 6s + 7 is 4s5 +
13s4 + 28s3 + 34s2 + 32s+ 21:Matlab's ommand onv

>> onv([1 2 3℄,[4 5 6 7℄)

ans =

4 13 28 34 32 21

Example 2.13. The partial fration expansion (2.18) from Example 2.6 isMatlab's ommand

residue obtained as
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>> [r,p,k℄ = residue([1 2℄,[1 13 30℄)

r =

1.1429

-0.1429

p =

-10

-3

k =

[℄

Vetor r ontains the residues or numerators of the frations in the partial Residues

fration expansion. Vetor p ontains the poles or roots of the denominator Poles

of the original expression. Vetor k ontains (the oe�ients of the polynomial

whih is) the integer part of the polynomial division, whih in this ase is 0
beause the order of the denominator is higher than the order of the numerator.

The polynomials of the original rational funtion an be reovered feeding

this funtion bak vetors r, p and k:

>> [num,den℄ = residue(r,p,k)

num =

1 2

den =

1 13 30

Example 2.14. The partial fration expansion (2.34) from Example 2.7 and

Remark 2.6 is obtained as

>> [r,p,k℄ = residue([4 13 -2℄,onv([1 2 2℄,[1 4℄))

r =

1.0000 + 0.0000i

1.5000 + 2.0000i

1.5000 - 2.0000i

p =

-4.0000 + 0.0000i

-1.0000 + 1.0000i

-1.0000 - 1.0000i

k =

[℄

Example 2.15. The partial fration expansion from Example 2.9 is obtained

as

>> [r,p,k℄ = residue([2 145℄,[1 70℄)

r =

5

p =

-70

k =

2
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Notie how this time there is an integer part of the polynomial division, sine

the order of the numerator is not lower than the order of the denominator.

Example 2.16. From

>> [r,p,k℄ = residue([1 2 3 4 5 6℄,[7 8 9 10℄)

r =

0.1451 + 0.0000i

-0.0276 - 0.2064i

-0.0276 + 0.2064i

p =

-1.1269 + 0.0000i

-0.0080 + 1.1259i

-0.0080 - 1.1259i

k =

0.1429 0.1224 0.1050

we learn that

s5 + 2s4 + 3s3 + 4s2 + 5s+ 6

7s3 + 8s2 + 9s+ 10
(2.40)

= 0.1429s2 + 0.1224s+ 0.1050 +
0.1451

s+ 1.1269
+

−0.0276− 0.2064j

s+ 0.0080− 1.1259j
+

−0.0276+ 0.2064j

s+ 0.0080 + 1.1259j

2.4 Important properties: derivatives and inte-

grals

Now that we know how to �nd Laplae transforms, it is time to wonder why

we are studying them. To answer this, we have to �rst establish some very

important results.

Theorem 2.2. If L [f(t)] = F (s), thenL of the derivative

L [f ′(t)] = s F (s)− f(0) (2.41)

Proof. Apply integration by parts

∫
uv′ = uv −

∫
u′v to de�nition (2.1):

L [f(t)] =

∫ +∞

0

u
︷︸︸︷

f(t)

v′

︷︸︸︷

e−st dt

=

[

f(t)
e−st

−s

]+∞

0

−
∫ +∞

0

f ′(t)
e−st

−s
dt

= lim
t→+∞

(

f(t)
e−st

−s

)

− f(0)
e0

−s
+

1

s

∫ +∞

0

f ′(t)e−st dt (2.42)

The limit has to be 0, otherwise F (s) would not exist. The integral is, by

de�nition, L [f ′(t)]. From here (2.41) is obtained rearranging terms.

Corollary 2.1. If L [f(t)] = F (s), then

L [f ′′(t)] = s2 F (s)− s f(0)− f ′(0) (2.43)
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Proof. Apply (2.41) to itself:

L [f ′′(t)] = sL [f ′(t)] − f ′(0) = s (s F (s)− f(0))− f ′(0) (2.44)

Then rearrange terms.

Corollary 2.2. If L [f(t)] = F (s), then

L

[
dn

dtn
f(t)

]

= sn F (s)− sn−1 f(0)− sn−2 f ′(0)− . . .− dn−1f(t)

dt

∣
∣
∣
∣
t=0

= sn F (s)−
n∑

k=1

sn−k dk−1f(t)

dtk−1

∣
∣
∣
∣
t=0

(2.45)

Proof. This is proved by mathematial indution. The �rst ase is (2.41). The

indutive step is proved applying (2.41) to (2.45) as follows:

L

[
dn+1

dtn+1
f(t)

]

= sL

[
dn

dtn
f(t)

]

− dnf(t)

dtn

∣
∣
∣
∣
t=0

(2.46)

= s

(

sn F (s)−
n∑

k=1

sn−k dk−1f(t)

dtk−1

∣
∣
∣
∣
t=0

)

− dnf(t)

dtn

∣
∣
∣
∣
t=0

= sn+1 F (s)−
(

n∑

k=1

sn−k+1 dk−1f(t)

dtk−1

∣
∣
∣
∣
t=0

)

− dnf(t)

dtn

∣
∣
∣
∣
t=0

= sn+1 F (s)−
(

n∑

k=1

sn+1−k dk−1f(t)

dtk−1

∣
∣
∣
∣
t=0

)

−
∑

k=n+1

sn+1−k dk−1f(t)

dtk−1

∣
∣
∣
∣
t=0

Theorem 2.3. If L [f(t)] = F (s), then L of the integral

L

[∫ t

0

f(t)

]

=
1

s
F (s) (2.47)

Proof. In (2.42), make

f(t) =

∫ t

0

g(t) dt, (2.48)

whene f ′(t) = g(t). Then

L

[∫ t

0

g(t) dt

]

= −
∫ 0

0

g(t) dt
1

−s
+

1

s

∫ +∞

0

g(t)e−st dt (2.49)

The �rst integral is 0, the seond is L [g(t)].

Remark 2.7. Notie that the Laplae transform of a derivative (2.41) involves

f(0), the value of the funtion itself at t = 0. This is beause we are using

the Laplae transform as de�ned by (2.1), rather than the bilateral Laplae

transform (2.2).
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2.5 What do we need this for?

We are now in position of answering the question above: we need Laplae trans- Use L to solve di�erential

equationsforms as a very useful tool to solve di�erential equations.

Example 2.17. Solve the following di�erential equation, assuming that y(0) =
0:

y′(t) + y(t) = e−t
(2.50)

Apply the Laplae transform to obtain

L [y′(t) + y(t)] = L
[
e−t
]
⇔ sY (s) + Y (s) =

1

s+ 1
⇔ Y (s) =

1

(s+ 1)2
⇔

⇔ L
−1 [Y (s)] = L

−1

[
1

(s+ 1)2

]

⇔ y(t) = t e−t
(2.51)

It is easy to verify that this is indeed the solution: y′(t) = e−t − t e−t
, and thus

y′(t) + y(t) = e−t ⇔ e−t − t e−t + t e−t = e−t, (2.52)

as desired.

Notie how the Laplae transform turned the di�erential equation in t into
an algebrai equation in s, whih is trivial to solve. All that is left is to apply

the inverse Laplae transform to turn the solution in s into a solution in t.
Initial onditions must be taken into aount if they are not zero.Take are of non-null ini-

tial onditions

Example 2.18. Solve the following di�erential equation, assuming that y(0) =
1
3 and y′(0) = 0:

y′′(t) + 4y′(t) + 3y(t) = 4et (2.53)

Using the Laplae transform, we get

s2Y (s)− 1

3
s− 0 + 4

(

sY (s)− 1

3

)

+ 3Y (s) =
4

s− 1
⇔

⇔ Y (s)
(
s2 + 4s+ 3

)
− s

3
− 4

3
=

4

s− 1
(2.54)

Beause s2 + 4s+ 3 = (s+ 1)(s+ 3), we get

Y (s) =
4

(s− 1)(s+ 1)(s+ 3)
+

1

3

s+ 4

(s+ 1)(s+ 3)
(2.55)

We now need two partial fration expansions:

4

(s− 1)(s+ 1)(s+ 3)
+

1

3

s+ 4

(s+ 1)(s+ 3)
=

A

s− 1
+

B

s+ 1
+

C

s+ 3
+

1

3

(
D

s+ 1
+

E

s+ 3

)

=
A(s2 + 4s+ 3) +B(s2 + 2x− 3) + C(s2 − 1)

(s− 1)(s+ 1)(s+ 3)
+

1

3

(
Ds+ 3D + Es+ E

(s+ 1)(s+ 3)

)

=
s2(A+B + C) + s(4A+ 2B) + (3A− 3B − C)

(s− 1)(s+ 1)(s+ 3)
+

1

3

(
s(D + E) + (3D + E)

(s+ 1)(s+ 3)

)

(2.56)
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whene







A+B + C = 0

4A+ B = 0

3A− 3B − C = 4

⇔







4A− 2B = 4

4A+B = 0

C = 3A− 3B − 4

⇔







8A = 4

B = −2A

C = 3A− 3B − 4

⇔







A = 1
2

B = −1

C = 1
2

(2.57)

and

{

D + E = 1

3D + E = 4
⇔
{

E = 1−D

2D = 3
⇔
{

E = − 1
2

D = 3
2

(2.58)

Thus

y(t) = L
−1

[ 1
2

s− 1
− 1

s+ 1
+

1
2

s+ 3
+

1

3

( 3
2

s+ 1
−

1
2

s+ 3

)]

(2.59)

=
1

2
et − e−t +

1

2
e−3t +

1

3

(
3

2
e−t − 1

2
e−3t

)

=
1

2
et − 1

2
e−t +

1

3
e−3t

It is easy to verify that this is indeed the solution: on the one hand,

y′(t) =
1

2
et +

1

2
e−t − e−3t

(2.60)

y′′(t) =
1

2
et − 1

2
e−t + 3e−3t

(2.61)

and thus

y′′(t) + 4y′(t) + 3y(t) =
1

2
et − 1

2
e−t + 3e−3t + 2et + 2e−t − 4e−3t +

3

2
et − 3

2
e−t + e−3t

= 4et (2.62)

as desired; on the other hand,

y(0) =
1

2
− 1

2
+

1

3
=

1

3
(2.63)

y′(t) =
1

2
+

1

2
− 1 = 0 (2.64)

as required.

Remark 2.8. Notie what would have happened if we had forgot to inlude

initial onditions. It would have been as if initial onditions were null, and we

would have got

s2Y (s) + 4sY (s) + 3Y (s) =
4

s− 1
⇔ Y (s)

(
s2 + 4s+ 3

)
=

4

s− 1
(2.65)

and then

y(t) = L
−1

[ 1
2

s− 1
− 1

s+ 1
+

1
2

s+ 3

]

=
1

2
et − e−t +

1

2
e−3t

(2.66)

15



In this ase,

y′(t) =
1

2
et + e−t − 3

2
e−3t

(2.67)

y′′(t) =
1

2
et − e−t +

9

2
e−3t

(2.68)

and so it remains true that

y′′(t) + 4y′(t) + 3y(t) =
1

2
et − e−t +

9

2
e−3t + 2et + 4e−t − 12

2
e−3t +

3

2
et − 3e−t +

3

2
e−3t

= 4et (2.69)

but the initial onditions are indeed

y(0) =
1

2
− 1 +

1

2
= 0 (2.70)

y′(t) =
1

2
+ 1− 3

2
= 0 (2.71)

To onlude: if in fat initial onditions were as in Example 2.18, and if we had

written (2.65) instead of (2.54), we would get a wrong result.

2.6 More important properties: initial and �nal

values, onvolution

Before we are done with Laplae transforms, we must establish some additional

important properties that will often be needed.

Theorem 2.4. If f(t) and f ′(t) have Laplae transforms,Final value theorem

lim
t→+∞

f(t) = lim
s→0

s F (s) (2.72)

provided that limt→+∞ f(t) ∈ R.

Proof. Apply a limit to (2.41) to get

lim
s→0

L [f ′(t)] = lim
s→0

(s F (s)− f(0))

⇔ f(0) + lim
s→0

∫ +∞

0

f ′(t)e−st dt = lim
s→0

s F (s)

⇔ f(0) +

∫ +∞

0

lim
s→0

(
f ′(t)e−st

)
dt = lim

s→0
s F (s)

⇔ f(0) +

∫ +∞

0

f ′(t) dt = lim
s→0

s F (s)

⇔ f(0) + lim
t→+∞

f(t)− f(0) = lim
s→0

s F (s) (2.73)

Example 2.19. Let f(t) = e−at, a > 0. We know that limt→+∞ f(t) = 0. We

have F (s) = 1
s+a

. And lims→0 s F (s) = lims→0
s

s+a
= 0.

Notie that, when a < 0, it is still true that F (s) = 1
s+a

and that lims→0 s F (s) =
lims→0

s
s+a

= 0. But now limt→+∞ f(t) = +∞, whih is not real.
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Example 2.20. Let F (s) = 1
s(s+a) , a > 0. We have lims→0 s F (s) = lims→0

1
s+a

=
1
a
. At the same time, f(t) = 1

a
(1− e−at), and limt→+∞ f(t) = 1

a
.

When a < 0, we are in a situation similar to that of the former example: we

still have lims→0 s F (s) = 1
a
, but limt→+∞ f(t) = +∞.

Theorem 2.5. If f(t) and f ′(t) have Laplae transforms, Initial value theorem

lim
t→0+

f(t) = lim
s→+∞

s F (s) (2.74)

provided that lims→+∞ s F (s) ∈ R.

Proof. Apply a limit to (2.41) to get

lim
s→+∞

L [f ′(t)] = lim
s→+∞

(s F (s)− f(0))

⇔ f(0) + lim
s→+∞

∫ +∞

0

f ′(t)e−st dt = lim
s→+∞

s F (s) (2.75)

In the integrand, e−st
goes to zero as s → +∞. If f ′(t) has a Laplae trans-

form, it must be of exponential order, and thus e−st
goes to zero faster enough

to ensure that lims→+∞
∫ +∞
0 f ′(t)e−st dt = 0. Beause we are assuming the uni-

lateral Laplae transform de�nition, f(0) is in reality limt→0+ f(t), as whatever
may happen for t < 0 is not taken into aount.

Example 2.21. Let f(t) = e−at
. We know that limt→0+ f(t) = 1. We have

F (s) = 1
s+a

. And lims→+∞ s F (s) = lims→0
s

s+a
= 1.

Notie that, unlike what happened when we applied the �nal value theorem

in Example 2.19, there is now no need to restrit a > 0.

Example 2.22. Let F (s) = 1
s(s+a) . We have lims→+∞ s F (s) = lims→+∞

1
s+a

=

0. At the same time, f(t) = 1
a
(1− e−at), and limt→+∞ f(t) = 0. There is again

no need now to make a > 0.

De�nition 2.2. Given two funtions f(t) and g(t) de�ned for t ∈ R+
, their Convolution

onvolution, denoted by ∗, is a funtion of t given by

f(t) ∗ g(t) =
∫ t

0

f(t− τ)g(τ) dτ (2.76)

Theorem 2.6. Convolution is ommutative.

Proof. Use the hange of variables t = t − τ , for whih dτ = −dt. With this

hange of variables, when τ = 0 we have t = t, and when τ = t we have t = 0.
Apply this to (2.76) to get

f(t) ∗ g(t) =
∫ t

0

f(t− τ)g(τ) dτ

= −
∫ 0

t

f(t)g(t− t) dt

=

∫ t

0

f(τ)g(t− τ) dτ = g(t) ∗ f(t) (2.77)
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Theorem 2.7. If these Laplae transforms exist,

L [f(t) ∗ g(t)] = F (s)G(s) (2.78)

Proof.

L [f(t) ∗ g(t)] =
∫ +∞

0

(∫ t

0

f(t− τ)g(τ) dτ

)

e−st dt (2.79)

We an hange the limits of integration of the inner integral by inluding a

Heaviside funtion H(t− τ):

L [f(t) ∗ g(t)] =
∫ +∞

0

(∫ +∞

0

f(t− τ)H(t− τ)g(τ) dτ

)

e−st dt (2.80)

H(t − τ) = 1 if t − τ ≥ 0 ⇔ τ ≤ t, whih is the range of values in (2.79). But

H(t − τ) = 0 if t − τ < 0 ⇔ τ > t, the additional range of values added in

(2.79), whih thus does not hange the result. We an now hange the order of

integration:

L [f(t) ∗ g(t)] =
∫ +∞

0

(∫ +∞

0

f(t− τ)H(t− τ)g(τ) dτ

)

e−st dt

=

∫ +∞

0

∫ +∞

0

f(t− τ)H(t− τ)g(τ)e−st dt dτ

=

∫ +∞

0

g(τ)

∫ +∞

0

f(t− τ)H(t − τ)e−st dt dτ (2.81)

We now apply to the inner integral the hange of variables t = t− τ , for whih
dt = dt. With this hange of variables, when t = 0 we have t = −τ , and when

t → +∞ we have t → +∞ too.

L [f(t) ∗ g(t)] =
∫ +∞

0

g(τ)

∫ +∞

−τ

f(t)H(t)e−s(τ+t) dt dτ (2.82)

We have H(t) = 1 if t ≥ 0 and H(t) = 0 if t < 0, so the integration limits an

be hanged aordingly:

L [f(t) ∗ g(t)] =
∫ +∞

0

g(τ)

∫ +∞

0

f(t)e−sτe−st dt dτ (2.83)

All that is left is taking outside integrals terms that do not depend on the

orresponding variables:

L [f(t) ∗ g(t)] =
∫ +∞

0

g(τ)e−sτ

(∫ +∞

0

f(t)e−st dt

)

dτ

=

∫ +∞

0

f(t)e−st dt

∫ +∞

0

g(τ)e−sτ dτ (2.84)

and these integrals are the de�nitions of F (s) and G(s).

Example 2.23. From L −1
[
1
s

]
= H(t) we get

L
−1

[
1

s2

]

= L
−1

[
1

s

1

s

]

=

∫ t

0

H(t− τ)H(τ) dτ =

∫ t

0

1 dτ = t (2.85)
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ℜ[s]

ℑ[s]

jω, ω ∈ R+

jω, ω ∈ R−

jω, ω = 0

Figure 2.1: The imaginary axis in the omplex plane.

Remark 2.9. The funtion obtained is known as the unit slope ramp:Unit slope ramp

f(t) =

{

t, if t ≥ 0

0, if t < 0
(2.86)

Table 2.2 gives a list of important properties of the Laplae transform.

2.7 The Fourier transform

De�nition 2.3. If F (s) is the Laplae transform of f(t), then the Fourier Fourier transform

transform of f(t), denoted by F [f(t)], is the restrition of F (s) to purely

imaginary values of s, i.e. to the imaginary axis of the omplex plane, and

F [f(t)] = L [f(t)]|s=jω = F (jω), ω ∈ R (2.87)

See Figure 2.1.

Remark 2.10. Notie that:

• f(t) is a real-valued funtion that depends on a real variable: f(t) ∈ R,

and t ∈ R;

• the Laplae transform of f(t), whih is F (s) = L [f(t)], is a omplex-

valued funtion that depends on a omplex variable: F (s) ∈ C, and s ∈ C;

• the Fourier transform of f(t), whih is F (jω) = F [f(t)], is a omplex-

valued funtion that depends on a real variable, that is the oordinate

along the imaginary axis: F (jω) ∈ C, and ω ∈ R.
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Table 2.2: Laplae transform properties

x (t) X (s)

1 Ax1 (t) +Bx2 (t) AX1 (s) +BX2 (s)

2 ax (at) X
( s

a

)

3 eatx (t) X (s− a)

4

{
x (t− a) t > a
0 t < a

e−asX (s)

5

dx (t)

dt
sX (s)− x(0)

6

d2x (t)

dt2
s2X (s)− sx(0)− x′(0)

7

dnx (t)

dtn
snX (s)− sn−1x(0)− . . .− x(n−1)(0)

8 −tx (t)
dX (s)

ds

9 t2x (t)
d2X (s)

ds2

10 (−1)ntnx (t)
dnX (s)

dsn

11

t∫

0

x (u) du
1

s
X (s)

12

t∫

0

· · ·
t∫

0

x (u) du =

t∫

0

(t− u)(n−1)

(n− 1)!
x (u) du

1

sn
X (s)

13 x1 (t) ∗ x2 (t) =
∫ t

0
x1 (u)x2 (t− u) du X1 (s)X2 (s)

14

1

t
x (t)

∞∫

s

X (u) du

15 x (t) = x (t+ T )
1

1− e−sT

T∫

0

e−suX (u)du

16 x (0) lim
s→∞

sX (s)

17 x (∞) = lim
t→∞

x (t) lim
s→0

sX (s)
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Example 2.24. Let f(t) = e−t − e−10t
. Then

F (s) =
9

(s+ 1)(s+ 10)
(2.88)

F (jω) =
9

(jω + 1)(jω + 10)

=
9

(10− ω2) + j11ω

=
9
(
(10− ω2)− j11ω

)

((10− ω2) + j11ω) ((10− ω2)− j11ω)

=
9
(
10− ω2

)
− j99ω

(10− ω2)
2
+ 121ω2

=
90− 9ω2

ω4 + 101ω2 + 100
+ j

−99ω

ω4 + 101ω2 + 100
(2.89)

Example 2.25. Let F (jω) = ω0

ω2
0
−ω2 , where ω0 is a real onstant. The funtion Inverse Fourier transform

f(t) of whih F (jω) is the Fourier transform is the inverse Fourier transform

of F (jω), and is given by

f(t) = F
−1 [F (jω)] = F

−1

[
ω0

ω2
0 − ω2

]

= F
−1

[
ω0

ω2
0 + (jω)2

]

= L
−1

[
ω0

ω2
0 + s2

]

= sin (ω0t) (2.90)

While it should now be lear what we need Laplae transforms for, we will

only see what we need Fourier transforms for in hapter 10.

Glossary

I said it in Hebrew � I said it in Duth �

I said it in German and Greek:

But I wholly forgot (and it vexes me muh)

That English is what you speak!

Lewis Carroll (1832 � †1898), The hunting of the Snark, 4

bilateral Laplae transform transformada de Laplae bilateral

onvolution onvolução

di�erential equation equação diferenial

exponential order funtion função de ordem exponenial

Fourier transform transformada de Fourier

integral transform transformada integral

Laplae transform transformada de Laplae

Laplae transformation transformação de Laplae

partial fration expansion expansão em frações pariais

pole polo

polynomial division divisão de polinómios

residue resíduo
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Exerises

1. Find the Laplae transforms of the following funtions:

(a) f(t) = 80e−0.9t

(b) f(t) = 1000− e−6t

() f(t) = 97.5× 10−3 sin(0.2785t) + 546.9× 10−3e0.9575t cos(0.9649t)

(d) f(t) = sin
(
5t+ π

6

)
Hint: remember that sin(a + b) = sin a cos b +

cos a sin b.

2. Find the inverse Laplae transforms of the following funtions:

(a) F (s) = 1
3s2+15s+18

(b) F (s) = 1
5s2+6s+5

() F (s) = 8s2+34s−2
s3+3s2−4s

(d) F (s) = s2+2s+8
2s+4

(e) F (s) = −s2+5s−2
s3−2s2−4s+8

3. Solve the following di�erential equations:

(a) y′′(t) + y(t) = t e−t, y(0) = 0, y′(0) = 0

(b) y′′(t) + y(t) = t e−t, y(0) = 1
2 , y′(0) = − 1

2

() y′′(t) + y(t) = 10t− 20, y(0) = 0, y′(0) = 0

(d) 3y′′(t) + 7y′(t) + 2y(t) = 0, y(0) = −5, y′(0) = 10

4. Use the �nal value and initial value theorems to �nd the initial and �nal

values of the inverse Laplae transforms of the funtions of exerise 2.

5. Find the Fourier transforms of the funtions of exerises 1 and 2, putting

them in the form F (jω) = ℜ [F (jω)] + jℑ [F (jω)].

6. Prove the result in line 7 of Table 2.1. Hint: use (2.78) together with the

result in line 5.

7. Prove the result in line 8 of Table 2.1. Hint: use mathematial indution.
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