2nd. Semester-2018/2019 2019/07/10-8AM, Room P12

Duration: 90 minutes
Test 1 (Recurso)

- Please justify all your answers.
- This test has two pages and three groups. The total of points is 20.0 .
Group 0-Introduction to Stochastic Processes

Consider a stochastic process $\{X(t): t \in \mathbb{R}\}$ where: $X(t)=U \cos (t)+V \sin (t) ;{ }^{1} U$ and V are i.i.d. r.v. with common p.f. $P(U=-2)=\frac{1}{3}$ and $P(U=1)=\frac{2}{3}$.
(a) Obtain the mean function and the autocovariance function of this stochastic process. Note: $\cos (\alpha \pm \beta)=\cos (\alpha) \cos (\beta) \mp \sin (\alpha) \sin (\beta)$.

- Stochastic process

$\{X(t): t \in \mathbb{R}\}$
$X(t)=U \cos (t)+V \sin (t$
U and V two i.i.d. r.v. with common: p.f. $P(U=-2)=\frac{1}{3}$ and $P(U=1)=\frac{2}{3}$; and mean and variance
$E(U)=-2 \times \frac{1}{3}+1 \times \frac{2}{3}=0$
$V(U)=E\left(U^{2}\right)-E\left(U^{2}\right)=(-2)^{2} \times \frac{1}{3}+1^{2} \times \frac{2}{3}=2$

- Mean function

$$
\begin{array}{rll}
E[X(t)] & = & E[U \cos (t)+V \sin (t)] \\
& = & E(U) \cos (t)+E(V) \sin (t) \\
E(U)=E(V)=0 & 0, t \in \mathbb{R} .
\end{array}
$$

- Autocovariance function

Taking advantage of the properties of the covariance operator (it is symmetric, bilinear, etc.) and of the independence between U and V, we get:
$\operatorname{cov}(X(t), X(t+h))=\operatorname{cov}(U \cos (t)+V \sin (t), U \cos (t+h)+V \sin (t+h))$
$\stackrel{(1)}{\equiv} \quad \cos (t) \cos (t+h) \times V(U)+\sin (t) \sin (t+h) \times V(V)$
$=[\cos (t) \cos (t+h)+\sin (t) \sin (t+h)] \times V(U)$
$=\cos (t-t-h) \times 2$
$=2 \cos (h)$.
(b) Show that $\{X(t): t \in \mathbb{R}\}$ is a second order weakly stationary process but not a strictly stationary process.
Note: All moments of a strictly stationary process $\{Y(t): t \in \mathbb{R}\}$, e.g. $E\left[Y^{n}(t)\right]$, must be independent of time.

- Checking whether the process is (second order weakly) stationary

The mean function $E[X(t)]$ does not depend on t and the autocovariance $\operatorname{cov}(X(t), X(t+h))$ only depends on the time lag h, hence $\{X(t): t \in \mathbb{R}\}$ is a second order weakly stationary process.

[^0]
- Checking whether the process is strictly stationary

Capitalizing on the note and taking $n=3$.

$$
E\left[X^{3}(t)\right]
$$

$E\left\{[U \cos (t)+V \sin (t)]^{3}\right\}$
$E\left(U^{3}\right) \cos ^{3}(t)+3 E\left(U^{2} V\right) \cos ^{2}(t) \sin (t)$
$+3 E\left(U V^{2}\right) \cos (t) \sin ^{2}(t)+E\left(V^{3}\right) \sin ^{3}(t)$
$U \Perp V \quad E\left(U^{3}\right) \cos ^{3}(t)+3 E\left(U^{2}\right) E(V) \cos ^{2}(t) \sin (t)$
$+3 E(U) E\left(V^{2}\right) \cos (t) \sin ^{2}(t)+E\left(V^{3}\right) \sin ^{3}(t)$
$E(U)=\underline{\underline{E}}(V)=0$
$E\left(U^{3}\right) \cos ^{3}(t)+E\left(V^{3}\right) \sin ^{3}(t)$

$$
E\left(U^{3}\right)=E\left(V^{3}\right)=(-2)^{3} \times \frac{1}{3}+1^{3} \times \frac{2}{3}=-2 \quad-2\left[\cos ^{3}(t)+\sin ^{3}(t)\right]
$$

depends on time t, thus $\{X(t): t \in \mathbb{R}\}$ cannot be a strictly stationary process.

Group 1-Poisson Processes

1. Assume that migrants apprehensions at the US-Mexico border occur according to a Poisson process with rate $\lambda=40000$ (migrants per month) in 2018.
(a) Admit that unaccompanied children account for about 12% of all border apprehensions in $2018{ }^{2}$

Obtain an approximate value to the probability that more than 28800 unaccompanied children are apprehended in the first semester of 2018

- Stochastic process
$\{N(t): t \geq 0\} \sim P P(\lambda)$
$N(t)=$ number of border apprehensions by time t (time in month)
$\lambda=40000$
$N(t) \sim \operatorname{Poisson}(\lambda t)$
- Split process
$N_{\text {unacc }}(t)=$ number of border apprehensions of unaccompanied children by time t
$p=P($ apprehension of an unaccompanied children $)=0.12$
$\left\{N_{\text {unacc }}(t): t \geq 0\right\} \sim P P(\lambda p=40000 \times 0.12=4800)$
$N_{\text {unacc }}(t) \sim \operatorname{Poisson}(\lambda p \times t=4800 \times t)$

- Requested probability

For $t=6$, we have
$P\left[N_{\text {unacc }}(6)>28800\right]=1-F_{\text {Poisson }(4800 \times 6)}(28800)$

$$
\begin{aligned}
& \simeq 1-\Phi\left(\frac{28800-4800 \times 6}{\sqrt{4800 \times 6}}\right) \\
& =1-\Phi(0) \\
& =0.5 .
\end{aligned}
$$

(b) Border agents apprehended 54000 unaccompanied children in 2018. How many unaccompanied children would you expect to have been apprehended in the first semester of 2018?

- Conditional distribution

$\left(N_{\text {unacc }}(6) \mid N_{\text {unacc }}(12)=54000\right) \sim \operatorname{Binomial}\left(54000, \frac{6}{12}\right)$ (see formulae)

- Requested expected value

$$
\begin{aligned}
E\left[N_{\text {unacc }}(6) \mid N_{\text {unacc }}(12)=54000\right] & =54000 \times \frac{6}{12} \\
& =27000 .
\end{aligned}
$$

2. Latecomers arrive according to a non-homogeneous Poisson process $\{N(t): t \geq 0\}$ with intensity function
$\lambda(t)=(t+1)^{-2}, t>0$.
Suppose that exactly one latecomer arrived in the first hour. Obtain the expected value of his/her arrival time.

- Stochastic process
$\{N(t): t \geq 0\} \sim N H P P$
$N(t)=$ number of latecomer by time t (in hours)

- Intensity function

$\lambda(t)=(t+1)^{-2}, t \geq 0$

- Mean value function

$$
\begin{aligned}
m(t) & =\int_{0}^{t} \lambda(z) d z \\
& =\int_{0}^{t}(z+1)^{-2} d z \\
& =-\left.\frac{1}{z+1}\right|_{0} ^{t} \\
& =\frac{t}{t+1}, \quad t \geq 0
\end{aligned}
$$

- Relevant fact
$\left(S_{1}, \ldots, S_{n} \mid N(t)=n\right) \sim\left(Y_{(1)}, \ldots, Y_{(n)}\right), \quad$ where $Y_{i} \stackrel{i . i . d .}{\sim} Y$ with $P(Y \leq u)=\frac{m(u)}{m(t)}, 0 \leq u \leq t$.
- Requested expected value

For $n=1$ and $t=1$, we get $\left(S_{1} \mid N(1)=1\right) \sim Y$ and
$E\left(S_{1} \mid N(1)=1\right)=E(Y)$
$Y \geqq 0 \quad \int_{0}^{+\infty} P(Y>u) d u$
$=\int_{0}^{1}\left(1-\frac{m(u)}{m(1)}\right) d u$
$=\int_{0}^{1}\left[1-\frac{\frac{u}{u}}{I+1}\right] d x$
$=\int_{0}^{1}\left(1-\frac{2 u}{u+1}\right) d u$
$=\int_{0}^{1} \frac{1-u}{u+1} d u$
$=\int_{0}^{1}\left(\frac{2}{u+1}-1\right) d u$
$=\quad[2 \ln (u+1)-u]_{0}^{1}$
$=2 \ln (2)-1$
$\simeq 0.386294$
3. Let $N(t)$ represent the number of initiated data transmissions up to time $t(t \geq 0)$. Admit that $\{N(t)$: $t \geq 0\}$ forms a conditional Poisson process with a random rate Λ taking values in $\{r, r+1, \ldots\}(r \in \mathbb{N})$ and with a negative binomial distribution with parameters $r \in \mathbb{N}$ and $p \in(0,1)$.
(a) Obtain the probability that at least one data transmission was initiated in a time unit.

Stochastic proces

$\{N(t): t \geq 0\} \sim$ ConditionalPP(Λ)
$N(t)=$ number of initiated data transmissions up to time t

- Random arrival rate

$\Lambda \sim \operatorname{NegativeBin}(r, p), \quad r \in \mathbb{N}, \quad p \in(0,1)$
$P(\Lambda=\lambda)=\binom{\lambda-1}{r-1} p^{r}(1-p)^{\lambda-r}, \quad \lambda=r, r+1, \ldots$

- Requested probability

Since

$$
P[N(t+s)-N(s)=n] \stackrel{\text { form }}{=} \int_{0}^{+\infty} \frac{e^{-\lambda t}(\lambda t)^{n}}{n!} d G(\lambda),
$$

where G represents the c.d.f. of Λ, we get
$P[N(1) \geq 1]=1-P[N(1)=0]$
$=1-\int_{0}^{+\infty} e^{-\lambda} d G(\lambda)$
$=1-E\left(e^{-\Lambda}\right)$
$\left.=1-M_{\text {NegativeBin(}(, p)(}(-1)\right]$
$\stackrel{\text { form. }}{=} 1-\left[\frac{p e^{-1}}{1-(1-p) e^{-1}}\right]^{r}$
(b) Calculate $P[\Lambda=r \mid N(1)=0]$.

- Requested probability

Since

$$
P[N(t)=n \mid \Lambda=\lambda]=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}, \quad n \in \mathbb{N}_{0}
$$

$$
P(\Lambda=\lambda)=\binom{\lambda-1}{r-1} p^{r}(1-p)^{\lambda-r}, \quad \lambda=r, r+1, \ldots
$$

$$
P[N(t)=n]=\int_{0}^{+\infty} \frac{e^{-\lambda t}(\lambda t)^{n}}{n!} d G(\lambda),
$$

we obtain
$P[\Lambda=r \mid N(1)=0] \stackrel{T . B \text { Bayes }}{=} \quad \frac{P[N(1)=0 \mid \Lambda=r] \times P(\Lambda=r)}{P[N(1)=0]}$
4. Orders arrive in batches at a depot. Successive batch sizes are i.i.d. r.v. $Y_{i}, i \in \mathbb{N}$. The batches themselves (2.0) arrive according to a non-homogeneous Poisson process $\{N(t): t \geq 0\}$ with mean value function $m(t), t>0$.
Derive the moment generating function and the expected value of the total number of orders that arrived up to time t.

- Auxiliary stochastic processes

$N(t): t \geq 0\} \sim N H P P$ with mean value function $m(t), t>0$
$N(t)=$ number of batches of orders arrived up to time t
$N(t) \sim$ Poisson $(m(t)$
$\left\{Y_{i}: i \in \mathbb{N}\right\} \stackrel{i . i . d .}{\sim} Y$
$Y_{i}=$ number of orders in batch i
$\{N(t): t \geq 0\} \quad \Perp \quad\left\{Y_{i}: i \in \mathbb{N}\right\}$

$$
\begin{aligned}
& \stackrel{(a)}{=} \frac{e^{-r} \times\binom{ r-1}{r-1} p^{r}(1-p)^{r-r}}{\left[\frac{p e^{-1}}{1-(1-p) e^{-1}}\right]^{r}} \\
& =\frac{e^{-r} \times p^{r}}{\left[\frac{p e^{-1}}{1-(1-p) e^{-1}}\right]^{r}} \\
& =\quad\left[1-(1-p) e^{-1}\right]^{r} \text {. }
\end{aligned}
$$

Relevant stochastic process

$\left\{X(t)=\sum_{i=1}^{N(t)} Y_{i}: t \geq 0\right\}$

$X(t)=$ total number of orders that arrived up to time t

- Requested m.g.f.

Note that

$$
\begin{aligned}
M_{X(t)}(s) & =E\left[e^{s X(t)}\right] \\
& =E\left\{E\left[e^{s \sum_{i=1}^{N(t)} Y_{i}} \mid N(t)\right]\right\},
\end{aligned}
$$

where the r.v. $E\left[e^{s \sum_{i=1}^{N(t)} Y_{i}} \mid N(t)\right]$ takes the value

$$
\left.\begin{array}{rll}
E\left[e^{s \sum_{i=1}^{N(t)} Y_{i}} \mid N(t)=n\right] & \stackrel{N(t) \Perp Y_{i}}{=} & E\left[e^{s \sum_{i=1}^{n} Y_{i}}\right] \\
& Y_{i}^{i, i d d} \cdot
\end{array}\right)=\left[e^{s \sum_{i=1}^{n} Y_{i}}\right] .
$$

with probability $P[N(t)=n]$. Consequently,
$\left.M_{X(t)}(s)=E\left\{M_{Y}(s)\right]^{N(t)}\right\}$
$=P_{\text {Poisson(m(t)) }}\left[M_{Y}(s)\right] \quad$ (p.g.f. of a Poisson r.v.)
$=e^{m(t) \times\left[M_{Y}(s)-1\right]}$

- Requested expected value

$E[X(t)]=\left.\frac{d M_{X(t)}(s)}{d s}\right|_{s=0}$
$=\left.\frac{d e^{m(t) \times\left[M_{Y}(s)-1\right]}}{d s}\right|_{s=0}$
$=m(t) \frac{d M_{Y}(s)}{d s} \times\left. e^{m(t) \times\left[M_{Y}(s)-1\right]}\right|_{s=0}$
$=m(t) \times E(Y)$

Group 2-Renewal Processe

1. Let $\{N(t): t \geq 0\}$ be a renewal process with i.i.d. inter-renewal times (in hours) with common p.d.f. Let $\{N(t): t \geq 0\}$ be a renewal process with i.i.d. inter-renewal times (in hours) with common
$f(t)=\lambda^{2} t e^{-\lambda t}, t \geq 0$. Assume $N(t)$ represents the number of hospital admissions up to time t.
(a) Compute $P[N(t)=n], n \in \mathbb{N}_{0}$.

- Renewal process

$\{N(t): t \geq 0\}$
$N(t)=$ number of hospital admissions until t

- Inter-renewal times
$X_{i} \stackrel{i . i . d}{\sim} X, i \in \mathbb{N}$
$X \sim \operatorname{Gamma}(2, \lambda) \quad$ because $\quad f(t)=\lambda^{2} t e^{-\lambda t} \equiv f_{\operatorname{Gamma}(2, \lambda)}(t), t \geq 0$

- Relevant facts

$S_{n}=$ time of the $n^{t h}$ event
$\sim \operatorname{Gamma}(2 n, \lambda), \quad n \in \mathbb{N}$

$P[N(t) \geq n]=P\left(S_{n} \leq t\right)$

$=F_{S_{n}}(t)$.

- Requested p.f.

$P[N(t)=n] \quad=\quad P[N(t) \geq n]-P[N(t) \geq n+1]$
$=\quad F_{S_{n}}(t)-F_{S_{n+1}}(t)$
$=F_{G a m m a(2 n, \lambda)}(t)-F_{G a m m a(2(n+1), \lambda)}(t)$
$\stackrel{\text { form. }}{=}\left[1-F_{\text {Poisson }(\lambda t)}(2 n-1)\right]-\left[1-F_{\text {Poisson (} \lambda t)}(2(n+1)-1)\right]$
$=F_{\text {Poisson }(\lambda t)}(2 n+1)-F_{\text {Poisson }(\lambda t)}(2 n-1)$
$=\sum_{i=2 n}^{2 n+1} e^{-\lambda t} \frac{(\lambda t)^{i}}{i!}, \quad n \in \mathbb{N}_{0}$.
(b) Admit that $\lambda=5$ and an officer inspected the hospital on February 1. Obtain an approximation to (2.0) the probability that the last hospital admission before this inspection occurred at most 6 hours ago.
$X \sim \operatorname{Gamma}(2, \lambda)$
$f_{\text {Gamma }(2, \lambda)}(x) \stackrel{\text { form. }}{=} \lambda^{2} x e^{-\lambda x}, \quad x \geq 0$
$F_{\text {Gamma }(2, \lambda)}(x)=1-F_{\text {Poisson }(\lambda x)}(1)=1-e^{-\lambda x}-\lambda x e^{-\lambda x}, \quad x \geq 0$
$E(X)=\frac{2}{\lambda}$

- Recurrence time

$A(t) \stackrel{\text { form }}{=} t-S_{N(t)}=$ time until the last arrival before the inspection at time t

- Requested probability (approximate value)

We can once again invoke that $t=24 \times 31=744$ hours is sufficiently large and provide the following approximate value

$$
P[A(t) \leq x]
$$

$$
\begin{array}{rlrl}
\simeq & & \lim _{z \rightarrow+\infty} P[A(z) \leq x] \\
\stackrel{\text { form. }}{=} & & \frac{\int_{0}^{x}\{1-F(u)\} d u}{E(X)} \\
= & \frac{\int_{0}^{x}\left\{1-\left[1-e^{-\lambda u}-\lambda u e^{-\lambda u}\right]\right\} d u}{\frac{\lambda}{2}} \\
= & \frac{\int_{0}^{x}\left(\lambda e^{-\lambda u}+\lambda^{2} u e^{-\lambda u}\right) d u}{2} \\
= & \frac{1}{2} \times\left[1-e^{-\lambda x}+F_{\text {Gamma }(2, \lambda)}(x)\right] \\
= & \frac{1}{2} \times\left[1-e^{-\lambda x}+1-e^{-\lambda x}(1+\lambda x)\right] \\
& =1-e^{-\lambda x}-\frac{\lambda x e^{-\lambda x}}{2} \\
& =1-e^{-5 \times 0.25}-\frac{5 \times 0.25 e^{-5 \times 0.25}}{2} \\
& =1 \\
\simeq & 0.534430 .
\end{array}
$$

2. Consider a renewal process $\{N(t): t \geq 0\}$ with i.i.d. inter-renewal times with common hypo-exponential (2.5) distribution with parameters λ and $\mu(\lambda \neq \mu)$
Derive the renewal function $m(t)$ by using the Laplace-Stieltjes transform method and capitalizing on the table of important Laplace transforms in the formulae

- Renewal process

$\{N(t): t \geq 0\}$
$N(t)=$ number of events until time t

- Inter-renewal times

$X_{i}{ }_{i}^{i . i . d .} X, i \in \mathbb{N}$
$X \sim \operatorname{Hypo-exp} .(\lambda, \mu)$, with $\lambda \neq \mu$ is a sum of two independent exponentially distributed r.v. with means λ^{-1} and μ^{-1}.

- Deriving the renewal function

The LST of the inter-renewal d.f. of X is given by

$$
\begin{aligned}
\tilde{F}(s) & =\int_{0^{-}}^{+\infty} e^{-s x} d F(x) \\
& =E\left(e^{-s X}\right) \\
& =M_{X}(-s) \\
& =M_{E x p(\lambda)}(-s) \times M_{E x p(\mu)}(-s) \\
& \stackrel{\text { form. }}{=}
\end{aligned} \frac{\lambda}{\lambda+s} \times \frac{\mu}{\mu+s} .
$$

Moreover, the LST of the renewal function can be obtained in terms of the one of F :

$$
\begin{aligned}
\tilde{m}(s) & \stackrel{\text { form. }}{=} \\
& =\frac{\tilde{F}(s)}{1-\tilde{F}(s)} \\
& \frac{\frac{\lambda}{\lambda+s} \times \frac{\mu}{\mu+s}}{1-\frac{\lambda}{\lambda+s} \times \frac{\mu}{\mu+s}} \\
& =\frac{\lambda \mu}{(\lambda+s)(\mu+s)-\lambda \mu} \\
& =\frac{\lambda \mu}{(s+0)[s+(\lambda+\mu)]} .
\end{aligned}
$$

Taking advantage of the LT in the formulae, we successively get:

$$
\frac{d m(t)}{d t}
$$

$=L T^{-1}[\tilde{m}(s), t$
$=L T^{-1}\left[\frac{\lambda \mu}{(s+0)[s+(\lambda+\mu)]}, t\right.$
$=\lambda \mu \times \frac{e^{-0 \times t}-e^{-(\lambda+\mu) \times t}}{(\lambda+\mu)-0}$
$=\lambda \mu \times \frac{1-e^{-(\lambda+\mu) \times t}}{\lambda+\mu}$
$m(t)=\frac{\lambda \mu}{\lambda+\mu} \int_{0}^{t}\left[1-e^{-(\lambda+\mu) \times t}\right] d x$
$=\frac{\lambda \mu}{\lambda+\mu}\left[t-\frac{1-e^{-(\lambda+\mu) \times t}}{\lambda+\mu}\right]$
$=\frac{\lambda \mu t}{\lambda+\mu}-\frac{\lambda \mu\left[1-e^{-(\lambda+\mu) \times t}\right]}{(\lambda+\mu)^{2}}, \quad t \geq 0$
3. A computer runs continuously as long as two critical parts are working. The two parts have mutually independent exponential durations with means equal to 10 and 20 weeks, for parts 1 and 2 (resp.). When a part fails, the computer is shut down, the failed part is replaced. The times to replace parts 1 and 2 have mean of 1 and 2.5 weeks (resp.).

- State variable

$X(t)= \begin{cases}0, & \text { if at least of the two critical parts is not working } \\ 1, & \text { if both critical parts are }\end{cases}$

- Alternating renewal process
$\{X(t): t \geq 0\}$
- Up time
$U=$ time system is UP/ON
$O_{i}=$ operating time of critical part $i, i=1,2$
$O_{i} \stackrel{\text { indep }}{\sim}$ Exponential $\left(\lambda_{i}\right), i=1,2$
$\lambda_{1}=\frac{1}{10}, \quad \lambda_{2}=\frac{1}{20}$
$U=\min \left\{O_{1}, O_{2}\right\} \sim \operatorname{Exponential}\left(\lambda_{1}+\lambda_{2}=\frac{3}{20}\right)$
$E(U)=\frac{1}{\lambda_{1}+\lambda_{2}}=\frac{20}{3}$

- Down time

$D=$ time spent replacing the failed critical part
$R_{i}=$ time spent replacing critical part $i, i=1,2$
$E\left(R_{1}\right)=1, \quad E\left(R_{2}\right)=2.5$
$E(D)= \begin{cases}1, & \text { if critical part } 1 \text { fails before critical part } 2 \text { with prob. } \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}=\frac{\frac{1}{10}}{10} \frac{1}{20}=\frac{2}{3} \\ 25, & \end{cases}$
2.5, otherwise with prob. $\frac{1}{3}$.
$E(D)=1 \times \frac{2}{3}+2.5 \times \frac{1}{3}=1.5$

- Long-run proportion of time system is working
$\lim _{r \rightarrow+\infty} P[X(t)=1] \stackrel{[P r o p .2 .106]}{=} \frac{E(U)}{E(U)+E(D)}$
$=\frac{\frac{20}{3}}{\frac{20}{3}+1.5}$
$\simeq \quad 0.816327$.

[^0]: ${ }^{1} X(t)=U \cos (t)+V \sin (t)=\sqrt{U^{2}+V^{2}} \times \sin \left[t+\arctan \left(\frac{U}{V}\right)\right]$, for $V \neq 0$ and $-\frac{\pi}{2}<\arctan \left(\frac{U}{V}\right)<\frac{\pi}{2}$, thus $X(t)$ could represent for instance the cash flow of a company (measured as a percentage of total assets).

