EEMW avenro  Introduction to Stochastic Processes  2nd. Semester -2018/2019
DE MATEMATICA MMA, LMAC 2019/07/10 - 8AM, Room P12
TECNICO LISBOA

Duration: 90 minutes Test 1 (Recurso)

* Please justify all your answers.

¢ This test has TWO PAGES and THREE GROUPS. The total of points is 20.0.

Group 0 — Introduction to Stochastic Processes 2.5 points

Consider a stochastic process {X(): t € R} where: X(£) = Ucos(f) + Vsin(¢);' U and V arei.i.d. r.v. with

common p.f. P(U=-2)= % and P(U=1)= %

(a) Obtain the mean function and the autocovariance function of this stochastic process. 1.5)
Note: cos(a + ) = cos(a) cos(p) Fsin(a) sin(f).
¢ Stochastic process
{X():teR}
X(t) = Ucos(t) + Vsin(t)
U and V two i.i.d. r.v. with common: p.f. P(U = -2) = % and P(U=1) = %; and mean and
variance
EWU)=-2x1+1x2=0
V(U)=E(WU?) -EWU?) =(-2*x 3 +12x 2 =2

¢ Mean function
E[X(0] = E[U cos(t) + Vsin(#)]
= E(U) cos(t) + E(V) sin(t)
E(U)=£(V)=0 0, feR,

Autocovariance function
Taking advantage of the properties of the covariance operator (it is symmetric, bilinear, etc.)
and of the independence between U and V, we get:
cov(X(1), X(t+ h)) = cov(Ucos(t) + Vsin(t), Ucos(t+ h) + Vsin(zt + h))
= cos(t)cos(t+h)x V(U) +sin(f)sin(t+ h) x V(V)
= [cos(t)cos(t+ h) +sin(#)sin(t+ h)] x V(U)
= cos(t—t—h)x2
= 2cos(h).

(b) Show that {X(#) : t € R} is a second order weakly stationary process but not a strictly stationary (1.0)
process.
Note: All moments of a strictly stationary process {Y () : t € R}, e.g. E[Y"(#)], must be independent
of time.

¢ Checking whether the process is (second order weakly) stationary
The mean function E[X(#)] does not depend on ¢ and the autocovariance cov (X (t), X (¢ + h))
only depends on the time lag i, hence {X(¢) : t € R} is a second order weakly stationary
process.

X (1) = Ucos(t) + Vsin(f) = VU2 + V2 x sin[[+arctan(%”, for V # 0 and —% < arctan(%] < %, thus X(¢) could represent for
instance the cash flow of a company (measured as a percentage of total assets).
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¢ Checking whether the process is strictly stationary
Capitalizing on the note and taking n = 3...

ExX3(n) = E{[Ucos(r) + Vsin(0)]*}
= E(U®) cos® (1) + 3E(U?V) cos® (1) sin(1)
+3E(UV?) cos(t) sin®(£) + E(V®) sin® (1)
vz E(U) cos®(#) + 3E(U?)E(V) cos?(#) sin(?)
+3E(U)E(V?) cos(1) sin?(t) + E(V3) sin®(r)

el E(U3) cos(1) + E(V3) sin3 (1)

E(V)=0

E(UY=E(V*)=(-2*x 1 +1°x 2=— Sl
= —c<|[COoS sin’

depends on time ¢, thus {X(#): ¢ € R} cannot be a strictly stationary process.

Group 1 — Poisson Processes 9.0 points

1. Assume that migrants apprehensions at the US-Mexico border occur according to a Poisson process with
rate A =40000 (migrants per month) in 2018.

(a) Admit that unaccompanied children account for about 12% of all border apprehensions in 2018.2  (1.5)
Obtain an approximate value to the probability that more than 28 800 unaccompanied children are
apprehended in the first semester of 2018.

¢ Stochastic process
{N(#):t=0} ~PP(1)
N(#) = number of border apprehensions by time ¢ (time in month)
A =40000
N(t) ~Poisson(A t)

Split process

Nunace(t) = number of border apprehensions of unaccompanied children by time ¢
p = P(apprehension of an unaccompanied children) = 0.12

{Nunace(t) : t =0} ~ PP(Ap = 40000 x 0.12 = 4800)

Nunace(t) ~Poisson(Ap x t = 4800 x 1)

Requested probability
For t = 6, we have

P[Nunacc(6) >28800]

1- FPoisson(4800x6) (28800)
288004800 <6

= 1-0
V4800 x 6

= 1-90)

= 05.

(b) Border agents apprehended 54 000 unaccompanied children in 2018. How many unaccompanied (0.5)
children would you expect to have been apprehended in the first semester of 2018 ?

* Conditional distribution
(Nunace(®) | Nunace(12) = 54000) ~ Binomial (54000, <) (see formulae)

¢ Requested expected value

6
E[Nunacc(6) | Nunacc(12) =54000] = 54000 x P
27000.

2. Latecomers arrive according to a non-homogeneous Poisson process {N(?) : ¢ = 0} with intensity function (2.0)

2Source: Border apprehensions increased in 2018 - especially for migrant families.
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At =(t+1)72,t>0.

Suppose that exactly one latecomer arrived in the first hour. Obtain the expected value of his/her arrival

¢ Stochastic process
{N(t):t=0} ~NHPP
N(t) = number of latecomer by time ¢ (in hours)

 Intensity function
A =(+1)72t20

¢ Mean value function

t
m(t) = f]t(z)dz
0

t
= f (z+1)72dz
0

¢ Relevant fact

o SuI N = 1) ~ (Y., Vo), where ¥; "5 Y with P(Y <u) =

¢ Requested expected value
Forn=1and t=1,weget(S;|N(1)=1) ~Y and

EGIND=1) = E®)

= +00
Y20 f P(Y > u)du

[1-
fi

- Ll
[/t

< L[5

= Rhn@+)-ul
= 2In@)-1
= 0.386294.

m(u)
m[l)

u+]
1+1

u+1)

3. Let N(#) represent the number of initiated data transmissions up to time ¢ (¢ = 0) . Admit that {N(¢):
t = 0} forms a conditional Poisson process with a random rate A taking valuesin {r,r+1,...} (r €eN) and
with a negative binomial distribution with parameters r €N and p € (0,1).

(a) Obtain the probability that at least one data transmission was initiated in a time unit. 1.5)

¢ Stochastic process
{N(t):t =0} ~ Conditional PP(A)
N(t) = number of initiated data transmissions up to time ¢
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¢ Random arrival rate
A ~ NegativeBin(r, p),

PA=N=(Npra-p

¢ Requested probability
Since

P[N(t+5)—N(s) =

reN, pe(0,1)
AT A=rr+1,...

+00 p—At n
. fo=rmf e "(Ar) dG),
0

n!

where G represents the c.d.f. of A, we get

P[N(1) =1] =

(b) Calculate P[A=r]|N(1)=0].

¢ Requested probability
Since

PIN®)=n|A=A]
P(A=Q)
P[N(t) =n]

we obtain

P[A=r|N@)=0]

4. Orders arrive in batches at a depot

1-PIN(1) = 0]
+00
= f e dG(n)
0
1-E(e™)

1- MNegariveBin(r,p)(_ D]

1 r
pe
1-|—=1 .
[1,(1,]0)6-1]

An"
e’“%, neN

= (/: l)p 1- p))L ToA=rr+1,...
+00 p,—At n

= f ﬂdcw,
o n!

T.Bayes P[N(1)=0|A=r]xP(A=r)

P[N(1)=0]
w e x()pra-prr
= T
[1—(1—p]e"]
e xp’

pe! T
[1—(1—p)e*1]

= [1-a-pel].

. Successive batch sizes are i.i.d. r.v. Y;, i € N. The batches themselves

arrive according to a non-homogeneous Poisson process {N(f): t = 0} with mean value function

m(t), t>0.

Derive the moment generating function and the expected value of the total number of orders that arrived

up to time .

* Auxiliary stochastic processes

{N(#) : t = 0} ~ NHPP with mean value function m(t), t>0

N(#) = number of batches of orders arrived up to time ¢

N(t) ~ Poisson(m(t))
(Yi:ieN} 1. d

Y; = number of orders in batch i

{N(O):t=0} 1 {Y;:ieN}
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(1.5)

(2.0)



Relevant stochastic process PIN(t)y=n] = P(Sp<1)

{x@=5Mvi:e=0} = Fs, (0.
X (1) = total number of orders that arrived up to time ¢ * Requested p.f.
P[N(t) =n] = P[N(t)=n]-P[N(t)=n+1]
¢ Requested m.g.f. - R ()-Fs. ()
Note that B % e
= FGamma(Zn,/l) (- FGamma(Z(rHl),A)(t)
Mx@n(s) = E[esX(l)] form.
syNOy, = [1=Fpoissonary@n—1D1 = [1 = Fpoissonrn (2(n+1) = 1)]
= E{E[e =Y N},
= Fpoissonan(2n+1) = Fpojsson(an (2n—1)
STy V% 2n+1 10!
where the r.v. E[e 1 |N[t)] takes the value _ 5 e'M( *|) . neNo.
v . " i=2n
B[ TN Ny =] ML g
W'S'Y E [es T K] (b) Admit that A =5 and an officer inspected the hospital on February 1. Obtain an approximation to (2.0)
n the probability that the last hospital admission before this inspection occurred at most 6 hours ago.
- Y
= Hl E(e) ¢ C.d.f. of the inter-renewal times
i=
B X ~Gamma(2, 1)
= [My (s)]" form. .5 _—Ax
T c " fGammaen® " ="Axe**, x20
woitih [pRel i ity JAINY(E) < o, Clomsegramily FGummu(Z,)L) x)=1- FPoisson(/lx](l) =1- e—/lx —-Ax e—/lx' x=0
Mxp(s) = E{My(s)"?} EX)=%
= Ppoissonm(n) [My (5)] (p.g.f. of a Poisson r.v.)  Recurrence time
™I IMy(9-1] A1) A Sn(n = time until the last arrival before the inspection at time ¢
d dval ¢ Requested probability (approximate value)
EEOUCSICCEXPECIECE L We can once again invoke that ¢ = 24 x 31 = 744 hours is sufficiently large and provide the
EIX(D)] dMx s ($) following approximate value
ds 5= PIA(D) < ] = lim P[A(z) < x]
d e DX My (s)-1] 2—-+00
= a4 . form. Jol-Fw}du
§= = =
E(X)
d My (s) My (5)—
= m(n— e x MO , fri-[—e - Aue M} du
s= =
= m(t) x E(Y). %
_ S5 (e M+ A2ue M) du
B 2
1 _
‘ Group 2 — Renewal Processes 8.5 points = > x [1 =gy Feamma(2,2) (x)]

1 =2 =
1. Let {N(#) : t = 0} be a renewal process with i.i.d. inter-renewal times (in hours) with common p.d.f. = 7% [l—e Tl-e "(1+/1x)]

f(H=A%te "}, t=0. Assume N(1) represents the number of hospital admissions up to time ¢. e Ax o Ax
= 1-e M=
2
(a) Compute P[N(f) =n], neNy. (2.0 B
A=5,x=6/24 _5x025_ 5x0:25¢75%0%

¢ Renewal process = l-e - 2
{N(2):t=0} =~ 0.534430.
N(t) = number of hospital admissions until ¢

° Intlgly-drenewal times 2. Consider a renewal process {N(t): t = 0} with i.i.d. inter-renewal times with common hypo-exponential (2.5)
Xi =" X, ieN distribution with parameters A and g (A # ).

X ~Gamma(2,A) because f(f)=A2te M =fg 1), t=0.
Eoi) f Feammatz (1) Derive the renewal function m(f) by using the Laplace-Stieltjes transform method and capitalizing on

* Relevant facts the table of important Laplace transforms in the formulae.
S, = time of the n'” event

~ Gamma(2n,A), neN
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¢ Renewal process

{N(?): t =0}

N(t) = number of events until time ¢

¢ Inter-renewal times

id.d. g
X; "X, ie

X ~ Hypo-exp.(A, p), with A # u is a sum of two independent exponentially distributed r.v. with

N

means A~! and g~

¢ Deriving the renewal function

The LST of the inter-renewal d.f. of X is given by

F(s)

Moreover, the LST of the renewal function can be obtained in terms of the one of F:

m(s)

Taking advantage of the LT in the formulae, we successively get:

dm(t)
dt

m(t)

form.

+o00

f e **dF(x)

b
E(e—s)()
Mx(-s)
MExp)(=$) x MExp ) (—$)

A LM

A+s p+s

E(s)
1-E(s)

A B
T+s < pts

_ A *
1 A+sxy+s

A
A+8)(u+9)—Au
Ap
(s+0)[s+ A+l

LT [m(s), 1]

=1l

Ap t]
(s+0)[s+(A+w]’
e 0%t _ e*().ﬂ.t)xt

A
K v m—o
1— e-A+mxt
A -
o A+u
Ap [t —A+p)xt
m[g [l—e ]dx
1 1— e~ A+pxt
A 2ze T
A+pu A+pu
Apt Ap[1-e ] =0
Atu A+ p)? oo

3. A computer runs continuously as long as two critical parts are working. The two parts have mutually
independent exponential durations with means equal to 10 and 20 weeks, for parts 1 and 2 (resp.). When
a part fails, the computer is shut down, the failed part is replaced. The times to replace parts 1 and 2 have
mean of 1 and 2.5 weeks (resp.).
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What is the long-run proportion of time that the computer is working ?

e State variable

X = { 0, ifatleast of the two critical parts is not working

1, ifboth critical parts are working

¢ Alternating renewal process
{X(2): t=0}

Up time
U = time system is UP/ON

O; = operating time of critical part i, i =1,2

0; %P Exponential(A;), i = 1,2

_1 _1
M=1 Aa=g

U = min{O, O,} ~ Exponential(1; + A, = 2%)

—_1_ _20
EU =m5 =3

¢ Down time

D = time spent replacing the failed critical part

R; = time spent replacing critical part i, i = 1,2

E(R)) =1, E(R) =25

if critical part 1 fails before critical part 2

1,
ED) =
2.5, otherwise with prob. %

E(D)=1x5+25%x3=15

¢ Long-run proportion of time system is working

lim Px(n=1 om0
t—+00

EU)

E(U) +E(D)
%

2415
0.816327.
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with prob.

A

A +Ay

I
T

1
10
+

€T
20

2
3

(2.0)



