(b) Prove that the variance function is given by V[X ()] = 02 ¢, where o2 = V[X(1)]. (1.5)
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. . Let
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gty = V[X()]
“EXAME DE EPoCA ESPECIAL? 2nd. Semester — 2013/14 X©@=0 VIX(t) — X(0)].
Duration: 3h00m 2014/07/21 — 9AM, Room C01 Then, by capitalizing on both the stationary and independent increments of this

e Please justify all your answers. process, we obtain

. . glt+s) = V[X(t+5)]
e This exam has THREE PAGES and SIX GROUPS. The total of points is 40.0.
= VIX(t+s) — X(0)]
. . ) = V{[X({t+s) - X(s)] +[X(s) - X(0)]}
Group 1 — Introduction to Stochastic Processes 2.5 points indep. ine.
= VIX(t+s)—X(s)]+ V[X(s) — X(0)]

Consider a stochastic process {X (¢) : ¢ > 0} — with stationary and independent increments stat. inc. VIX(t) — X(0)] + V[X(s) — X(0)]
— and assume that X (0) = 0.

= 9t +g(s)
(a) Show that the mean function is equal to E[X (t)] = ut, where p = E[X(1)]. (1.0) for ¢t,s > 0.
Hint: The only solution to the functional equation f(t + s) = f(¢) + f(s) is f(t) = ct, e Deriving the variance function
where ¢ = f(1). This result is relevant to solve lines (a) and (b). Once again, the only solution to the functional equation g(t + s) = g(t) + g(s) is
e Stochastic process g(t) = o2t
{X(¢) : t > 0} with stationary and independent increments ‘
where o2 = g(1) = V[X(1)]. QED
o Initial condition
X(0)=0
e A property of the mean function Group 2 — Poisson Processes 9.5 points
Let
0 - EX(1)] 1. Arrivals of customers at a supermarket are modeled by a Poisson process with a rate of
’ X(0)=0 A = 10 customers per minute.

E[X(t) — X(0)).
Then, by capitalizing on the stationary increments of this process, we get
flt+s) ElX(t+ )]
= EX(t+s)— X(0)]
= E{[X(t+s) = X(s)| + [X(s) - X(0)}}
=  E[X(t+s)—X(s)]+ E[X(s)— X(0)]
N BX (1) = X (0)] + BIX(5) - X(0)]

(a) Let M (resp. N) be the number of customers arriving between 9:00 and 9:10 (resp. 9:30 (1.0)
and 9:35).
What is the distribution of M + N?

e Stochastic process
{N():t>0} ~ PP(\=10)
N(t) = number of arrivals by time ¢ (time in minutes)

e Relevant facts

= ft)+f(s), N(t) ~ Poisson(At)
for ¢,5 > 0. {N(t) : t > 0} has stationary and independent increments
e Deriving the mean function e R.v.
As mentioned in the hint, the only solution to the functional equation f(t + s) = M = number of customers arriving between 9:00 and 9:10
@)+ f(s) is N = number of customers arriving between 9:30 and 9:35
F(t) = ut, e Distributions of M and N
Due to the stationary increments of the process {N(¢) : t > 0} and the fact that
where = f(1) = E[X(1)]. QED N(t) ~ Poisson(10t), we can add that:



M = N(9x60+10) — N(9 x 60)
~ N(9x60+10—9x 60)
~ N(10)
~ Poisson(10 x 10 = 100)
N = N(9x60+35)— N(9 x 60+ 30)
~ N(9 %604 35—9x 60— 30)
~ N(5)
~ Poisson(10 x 5 = 50).
e Distribution of M + N
Since M and N refer to the number of arrivals in two non-overlapping time intervals,
we can invoke the fact that the process has independent increments to conclude that
M and N are independent r.v.

Moreover, since the sum of two independent Poisson r.v. with parameters \;, i = 1,2,
has a Poisson distribution with parameter (A; + Ag), we get

M + N ~ Poisson(100 + 50 = 150).

(b) Suppose that 300 customers arrived during the first 30 minutes. (1.0)
Obtain an approximate value to the probability that at most 200 customers arrived
during the first 20 minutes?

e R.v.
(N(s) | N(t) =n) Ten Binomial(n, s/t), 0 < s <t

e Requested probability (approximate value)
Using the normal approximation to the binomial c.d.f., we obtain

P[N(20) <200 | N(30) = 300] = Fpinomiai(n=300, s/t=20/30)(200)
200 — 300 x 2
300 x 2 x (1—2)
= ®(0)
= 0.5.

[According to Mathematica, Fpinomial(n=300,s/t=20/30)(200) = 0.521703.]

(¢) Admit any customer spends a random time (in minutes) in the supermarket with a (2.0)
Weibull distribution with scale parameter a = 5+/2 (resp. shape parameter § = 2).
Find the probability that there are at least 50 customers still in the supermarket 5
minutes after it opened.
e R.v.

S = time spent in the supermarket by a customer
S ~ Weibull(a = 5/2, 8 = 2)

¢ Non-homogenous Bernoulli splitting

A customer, who arrived at time s (0 < s < t), will be still in the supermarket at
time ¢ with probability
p(s) = P(S>t—ys)

[ s

t—s

[

= 67(%)11.

Furthermore, the number of customers in this supermarket at time ¢, Ny, (t), results

>ﬂ dx

2l

from a non-homogenous Bernoulli splitting of {N(¢) : t > 0}. Consequently,

¢
Noup(t) 7 Poisson <)\ /0 p(s) ds> ,

where

/Otp(s) ds = /Ot 67(%)2 ds

t 1 _ (Pt)z
= \/27T><(1\/§X/78 2x(/V2)? s
/ 0 \/27T><a/\/§

= V21 X a/V2 x {FN(O,(a/ﬂ)Z)(t) - FN(n,(a/ﬁ)2>(0)]

Varxa/Vax @ (ﬁ) *‘I’G/};ﬂ

- VIrxa/VZx [<1><0) -2 <*a/t\/§>}

V21 x 5% [0.5 — ®(—1)]

= V2rx5x[05—1+®(1)]
tables /o % 5 % [0.5 — 1+ 0.8413]
4.277561.

1

Requested probability
Using the normal approximation to the Poisson c.d.f., we obtain

P[Ngyp(t) > 50]

1

1 — Fpoisson(10x4.277561) (50 — 1)
(50 — 1) — 10 x 4.277561

~ 1-0
10 x 4.277561
~ 1—®(0.95)
E 1 0.8289
= 01711

2. Suppose that the emissions of very rare particles are governed by a non-homogeneous Poisson
process with intensity function A\(t) = e~ ¢ > 0.
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(a) Find the probability that no particles were emitted in the first 2 hours and exactly one (1.5)
particle was emitted after those first 2 hours.

e Stochastic process
{N@®#):t>0} ~ NHPP
N(t) = number of particle emissions by time ¢
e Intensity function
At)y=et>0
e Mean value function
m(t) = E[N()]

/Ot A(s)ds

e Relevant facts
N(t) ~ Poisson(m(t))
N(t+s)— N(s) ~ Poisson(m(t + s) —m(s))
{N(t) : t > 0} has independent increments

e Requested probability
Since m(t) =1 —e™* €[0,1], for ¢ > 0, we can devise the distribution of N(+oc0) —
N(2), the total number of particles emitted after the first 2 hours:

N(400) — N(2) ~ Poisson(m(+00) —m(2) = (1 —e™™) — (1 —e™?) =¢7?).
Thus, the requested probability:
P[N(2) = 0,N(c0) = N(2) =1] L™ P[N(2) = 0] x P[N(c0) — N(2) = 1]
e [m(2)]
0!
e~ m+0)=m@)] [ (4-00) — m(2)]*
1!

(b) Obtain E[S; | N(2) = 0, N(cc) — N(2) = 1]. (2.0)
Hint: Recall that E(X) = foﬂo[l — Fx(z)] dz for any non-negative r.v. X.

e R.v.

S; = time of the emission of the first particle
e C.d.f. of [S1|N(2) =0,N(c0) — N(2) =1)

For 0 <t <2,

Fs,|n@)=0,N(s0)-N(2)=1(t) = P[Sy <t|N(2)=0,N(c0) = N(2) =1]
= 0.

Moreover, for ¢ > 2,
Fs v@=oneo-ve=1(t) = P[5 <t|N(2)=0,N(c) - N(2) =
= P[N(t) 21| N(2) =0,N(c0) = N(2)

PIN(t) > 1, N(2) = 0, N(00) — N(2) =

PIN(2) = 0, N(00) — N(2) = 1]

mdepine (PIN(2) = 0] x P[N() — N(2) = 1]
x P[N(c0) — N(t) = 0]}
)

+{P[N(2) = 0] x P[N(c0) — N(2) = 1]}
P[N(t) — N(2) = 1] x P[N(c0) — N(t) = 0]

P[N(c0) — N(2) = 1]

e~ m=m [m(t) — m(2))]*
1!
= o la=emH)=(—e7?)] o (e’Q —e)

= e e (e2—e™)

e*[m(+oo)fm(t)] [m(+oo) _ m(t)]o

P[N(c0) = N(t) = 0] = 01
= -]
= Cieit

PN(so)— N(2) = 1] = C0®) [ZHOO)_W(Q)P

= elim(me) 2

Consequently, for ¢ > 2,

Fon@=on(o)-n@)=1(t) =
= 1-—¢*t

e Requested conditional expected value
Since we are dealing with a non-negative r.v.,

)

+o0
E[Si|N(2)=0,N(c0) =N(2)=1] = /O [1 = Fs,n@)=0.N(c0)-N(2)=1 ()] dt

2 +o00
= / dt+/ e tdt
0 2
+

- 24 (_62—L)
= 241
= 3.

2

a conditional Poisson process with random rate A (claims per month).

Obtain the autocovariance function of this stochastic process.

3. Suppose the number of claims generated by a portfolio of insurance policies is governed by

(2.0)



e Relevant stochastic process
{N(t) : t > 0} ~ Conditional PP(A)

N (t) = number of claims up to month ¢

E{N(s) x [N(t) = N(s)]} = E(E{N(s) x[N(t) = N(s)] [ A})
= E[A*s(t - s)]
Important = E(AY)s(t—s)

{N(¢) : t > 0} has stationary increments.
{(N@®#) | A =X):t>0} ~PP(\) and therefore, conditionally on {A = A}, we deal
with stationary and independent increments. Furthermore,
(N@t)|A=N) Poisson(At) Finally, for 0 <s <,
E[N(t) | A= )] At
VIN@) A=A = At

E[N(s) x N(t)] = E(A%)s(t—s)+ E(A?) s
= E(A?)st.

2

cou(N(s), N(t)) = E[N(s) x N(t)] - E[N(s)] x E[N(1)]
= E(A%)st— E*(A)st

e Mean value function = V(A)st.
EIN@®)] = E{E[N@®)| A=}
— E(AD)
= E(A) xt Group 3 — Renewal Processes 8.0 points

. . 1. Airplanes land at a small airport according to a Poisson process with rate A\ (airplanes per
Variance function

VIN@] = VAE[N(@) [A= A} + E{VN({) [ A=A}
= V(At)+ E(AY)
= V(A xt*+E(A) xt

hour).

(a) Derive the renewal function m(t) of the renewal process consisting of counting just EVEN (2.5)

landings (i.e., the 2nd., 4th., 6th., etc. landings).

A A

Hint: Capitalize on the fact that - HZ/\) =3~ xSy

e Autocovariance function e Original stochastic process
Please note that, for 0 < s < ¢, {N*(t) : £ > 0} ~ PP())
N*(t) = number of landings until time ¢
EIN(Gs) x N(] = B{N(s) x [N(t) = N(s) + N(s)]} e '
— B{N(s) x [N(®) = N(s)}} + EIN*(s) " Origln iner-renewal times
= BING) x V0O - NI} + BV X+ - Exponential()
= E(E{N(s) x [N(t) = N(s)] | A}) + E[N"(s)],
e Renewal process
where {N(@):t>0}
E[N?(s)] = VIN(s)] + E*[N(s)] N(t) = number of EVEN landings until time ¢
= V(A)s*+[E(A)s]? e Inter-renewal times
= E(A?)s X; "% X, ieN

X ~ Gamma(2, \) (convolution of two indep. exponentially distibuted r.v.)
and the r.v. E{N(s) x [N(t) — N(s)] | A} takes value

e Deriving the renewal function

E{N(s) x [N(t) = N(s)] | A = A} ot ine E[N(s) | A=A x E[N(t) = N(s) | A = A] Since the X ~ Gamma(2, \), its LST is given by
cond. stat.inc EN(s) | A=A X E[N({t—s) | A=) Fls) = /+oo e dF ()
= AsXA(t—s) -
= A2s(t—s), = Mx(—s) )
with associated p.(d.)f. fa(\). Therefore fo <)\ _),'\_ S) :



Moreover, the LST of the renewal function can be obtained in terms of F:
orm. F <
(s) (s)

1—F(s)
2
(/\-)%\—s)
2
1= ()
)\2
T os(s+2))
A A
25 2(s+2\)°
Taking advantage of the LT in the formulae, we obtain
dm(t
% LT [(s), {]
A A
= LT t
{25 2(s+2\)’ }
A A 1
= SxLT V=t +5sxLT! t
i [ 3 [
A Hm1 g2
= Zx1
2 My AT
A dem P
-2t

(b) Show that the renewal function obtained in (a) verifies the elementary renewal theorem. (1.0)

e Verification of the elementary renewal theorem (ERT)
Let p = E(X) = E[Gamma(2,\)] = 2. Then

by
¢ A 1M

lim m(t) = lim <24
t—+oo t—+00 t

IR

T2 4o

_ 1

=

hence the ERT is verified.

(c) Obtain an approximate value to the probability that the number of EVEN landings (1.5)

exceeds 10 in the first day, when A = 1.

e Inter-renewal times
X, "% X, ieN
X ~ Gamma(2, A = 1)

p=EX) 2

o2 =V(X) =" 2
e Requested approximate probability
P[N(t) > n] = 1—P[N({t) <n+1]

fgm 1—® (Tl“rl)*t//.l,
Vito?/ud
t=24h,n=10

= 1-9

(10+1)—24/2
/24 % 2/23 ]
~ 1—(-0.29)
= $(0.29)
e 0.6141.
e Obs. — This a rough approximation of the exact value of the requested probability:
1-P[N(@) <9 =1—-P[N*(t) <2x9+1] fable ) 0.1803 = 0.8197.

2. The time (in minutes) Clotilde takes to get to the top of a sky piste is a r.v. with c.d.f. F (3.0)
and expected value pp, whereas the duration of the descent (also in minutes) is uniformly
distributed in the interval (0,7). Admit she decides to rent a new pair of skis for ¢ monetary
units whenever the descent lasts more than 7 minutes.

Find the value of 7 that minimizes the money spent in ski rentals per time unit in the
long-run. Comment this result.

o Renewal process
(N@) >0}
N(t) = number of completed cycles of ascent/descent by time ¢

e R.v.

A,, = duration of the n'* ascent to the top of the piste
A, A~nF neN
D,, = duration of the n

D, i p o~ Uniform(0,7), n € N

th descent from the top of the piste

e Inter-renewal times
X, i X,neN
X=A+D

e Reward renewal process

{Rt)="O R, 1 >0}

n=1
R(t) = total spent in ski rentals until time ¢
R, = ¢, if D, > 7 (i.e., if the n'" descent lasted more than 7 minutes)
"] 0, otherwise

(Xna Rn) l}"/d (X R), neN
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o Expected inter-renewal time e Delayed renewal process
B(X) = B(A) + E(D) "= pp + %7 = jup + {Np(t) : 1 > 0}

Np(t) = number of inspections done by time ¢

e Expected amount spent (per completed cycle of ascent/descent)
For 0 < 7 <7, we have o Inter-renewal times
ER) = ¢xP(D>7)+0xP(D<7) X, independent r.v., i € N
oo X, ~E tial(1
= cx / fo(u)du 1“(1 xponential(1)
- X, "<" Exponential(0.57! = 2)
7
1
= cX / 7 du e Important
T—T G(x)=P(X; <z)=1-—¢e7, for x >0 (0, otherwise)
= ¢X
7 F(z)=P(X; <x)=1-¢2 for x>0 and i € N\{1} (0, otherwise)

e Amount spent (per completed cycle of ascent/descent) per time unit in the R
e R.v.
long-run

Sy =ti f the s d inspecti
Since E(X), E(R) < +0o, we can add that 2 = HINE OF The second mispection

R() s B(R) e C.d.f. of Sy
i E(X)’ P(S, <t) "= (Gx Fo)(t)
t
where =2 / G(t —z)dF(z)
B® g
E(X) = / [1—e ] x2e7> da
o(7-1) 0
- 7 t t
MFJF% = / Qe’QIdIerft/ e "dr
2¢(7— 1) 0 0
= — 7 <7 e - -
14up+4970<7*7 = —e B +2e7 x (—e)];

e Minimizing the amount spent per time unit in the long-run
Since h(7), 0 < 7 < 7, is a decreasing function of 7 in the interval (0, 7], the value of 7
that minimizes h(7) is equal to 7% = 7.

¢ Comment

Group 5 — Discrete time Markov chains 9.5 points
Not only 7* does not depend on the ski rental (¢) or on pp, but also its value means
that Clotilde should never replace her skis if she is willing to minimize the amount 1. A study of occupational mobility of families across generations was conducted after WWII.
spent per time unit in the long-run in ski rentals. Three occupation levels were identified:

e upper level (executive, managerial, high administrative, professional) — state 1;

e middle level (high grade supervisor, non-manual, skilled manual) — state 2;
Group 4 — Renewal Processes (cont’d) 1.5 points
o Jower level (semi-skilled or unskilled) — state 3.

The number of inspections by a supervisor to an industrial plant is governed by a delayed (1.5)

renewal process such that: Transition probabilities from generation to generation were estimated to be
e the first inspection time (in years) follows an exponential distribution with unit mean; 0.45 0.48 0.07
e the subsequent inter-inspection times follow an exponential distribution with expected P=005 070 0.25
value equal to 0.5. 0.01 0.50 0.49
Derive the c.d.f. of Sy, the time of the second inspection. (a) Determine = PXn=5Xn1#7,...,X1#7| Xo=1),fori,n=1,23and j = 1.
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e DTMC = WP xf

{X,:neNg} 0 048 0.07 0.0247
X,, = level of the family at the n'* generation = 0 0.70 0.25 | x | 0.0375
e State space 0 0.50 0.49 0.0299
S§={1,2,3} 0.020093
1 = upper level = 0.033725
2 = middle level 0.033401
3 = lower level
e TPM (b) What is the long-run percentage of generations that a family spends in state 37! (2.0)

e Important
0.45 0.48 0.07

P= 005 070 0.25
0.01 0.50 0.49

We are dealing with an irreducible DTMC with finite state space. Hence, all states
are positive recurrent|, by Prop. 3.55]. Furthermore, the DTMC seems aperiodic.

e Stationary distribution

e Requested probabilities Since the DTMC is irreducible positive recurrent and aperiodic we can add that
Let:
- . lim Pl=m;>0,ij€S,
(i) fif = P(Xn = j, X1 # 4., X1 # j | Xo =) be the probability of reaching n—+oo
state j for the first time starting from state i, for 4, j € S and n € N; where {m; : j € 8} is the unique stationary distribution and satisfies the following
(ii) i;' = [filies be the associated vector for fixed j € S and n € N. system of equations:
According to the formulae, .
e . T = Lies il J €S
m ﬁ = [Pylics, n=1 ZJ'ES m=1
L= ; - n—1 X . . - .
- UP x I L= [OP]" x ijly n=23,..., Equivalently [(see Prop. 3.68)], the row vector denoting the stationary distribution,

T = [mj]jes, is given by
where WP is obtained by setting all the entries of the j** column of P equal to 0.

When j = 1, we successively get r=1x(I-P+ONE),
[0 048 0.07
WP = |0 070 025 where:
0 050 049 1=[1 --- 1] arow vector with #S ones;
- I = identity matrix with rank #S;
fi = [Pales P = [P,]ies is the TPM;
0.45 ONE is the #S x #8 matrix all of whose entries are equal to 1.
- 0.05 By capitalizing on the inverse in the footnote, we obtain
| 001 7 = 1x(I-P+ONE)™"!
fi = WPxf 100 0.45 0.48 0.07 11 1]\
[0 048 0.07 0.45 = 1x 01 0]|—-]1005 07 025 |+]1 11
= 0 0.70 0.25 | x | 0.05 001 0.01 0.50 0.49 111
| 0 050 049 0.01 155 052 093]
[0.0247 = 1x |09 13 075
= | 00375 099 05 151
| 0.0299

—0.513963 1.054516  —0.207219 |.

1.55 0.52 0.93
IThe following result may be useful: 095 13 0.75 ~
—0.603090 —0.193256 1.129679

1.179441 —0.237819 —0.608289
0.99 0.5 1.51
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1.179441 —0.237819 —0.608289 . 1 0.51 0.25
[B(T | Xo= Z)]ieT = x1
0.3 x 0.51 — (—=0.25) x (—=0.5) | 0.5 0.3

m ~ [1 1 1]x | —0.513963 1.054516 —0.207219
—0.603090 —0.193256  1.129679 1 0.76
= [0.062389 0.623440 0.314171]. = 0.0 { 0.8 }
Thus, the long-run percentage of generations that a family spends in state 3 is equal
to [the sum of the entries of the 3rd. column of (I — P + ONE)~!]: I }
28.571429
m3 ~ 0.314171. Thus, the requested expected value equals

. N . . E(7 | Xo=3) =28.571429.
(c) Determine the expected number of generations it takes a family to reach state 1, starting (2.0)

from state 3.
. 2. The following model can be used to describe the number of women (mothers and daughters)
e Initial/present state

X — in a given area. The number of mothers is a r.v. X ~ Poisson(A). Independently of the
0=

others, every mother gives birth to a Poisson(p)—distributed number of daughters.
e Important

Let W be the total ber of thers and daughters) in the area. Show that:
To obtain the expected number of generations until a family to reaches state 1, ¢  the total number of women (mothers and daughters) in the area ow tha

.. CA[l_se—r (-9,
given X, = i, we have to consider another DTMC where state 1 is absorbing. The (a) the p.g.f. of W is given by e[ L (2.5)

associated TPM is e Auxiliary r.v.
X = number of mothers

1 0 0 .
P'=10.05 070 0.25 X ~ Poisson()
Z; = number of daughters from mother [
0.0l 0.50 0.49 L &
7~ Z, 1eN
e Requested expected value e Important r.v.
Let W=X+Y %
070 0.25 = total number of women (mothers and daughters)
Q= [ 0.50 0.49 :| e Requested p.g.f.
Pw(s) = F (SW)

be the substochastic matrix governing the transitions between the states in 7" =

X
{2, 3}, the class of transient states of this new DTMC, and = K (5X+E’:‘ Z‘)

= BlE(sha X)),

where the r.v. B (s)“Z/X:l 2| X> takes value

T=inf{n e Ny: X,, € T}

be the number of generations until a family to reaches state 1. Then, by capitalizing

on the fact that E (5X+DX:1 Z | X = 35) XLZ4 = p (SEL Zl)
-1
ab ] 1 [a - HES e B ()
c d Tad—bc| —c a |’ v
= [sPz(9)",
we obtain with probability P(X = z). Consequently,
(B | Xo=iler = 1-Q) 7' x1 Pw(s) = E{[s PZ(S)]X}
-1
10 0.70 0.25 Jorm. —A[1—s Py(s)]
= - x 1 ¢
01 050 0.49 = form. A1-ses9)
—1
_ 0.3 —0.25 1 QED
—-0.5 0.51
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(b) E(Z) = X1+ p). (1.0) — state ¢ to state i + 1 (i € Ng) — if a passenger arrives before the next train

e Requested expected value departs.
BEw) o dPw (s) ¢ Rate diagram
ds |y Recall that the rate diagram of a CTMC is a directed graph — with no loops — in
_ deAimse ) which each state is represented by a node and there is an arc going from node i to
ds — node j (if ¢;; > 0) with g;; written on it.
_ geH1-s)
_ 7(1)\[1 se M ] % ei}\[lfsefu(lﬂ-)] - B
ds 1 s=1 /\\ \
ls —u(1—s) . .
- ,\xi”ed x 1 \\X/f
s 1 5
= A [eH079) 4g g9 I /7\\
) NSO\
QED
o Infinitesimal generator
This matrix has entries
Group 6 — Continuous time Markov chains 9.0 points . oy
- ij s i s
1. Passengers arrive at (resp. trains depart from) a train station according to a Poisson process Y —Vi == ZMES Gim, ] =1
with rate equal to 20 passengers per minute (resp. 12 trains per hour). Let X(¢) be the and in this case it is equal to
number of passengers at the station at time ¢ waiting for the next train to depart.
R = [Tij]i,jes
(a) Draw the rate diagram and derive the infinitesimal generator R of the CTMC {X(¢) : (1.5) -A A 0 0 0 0
t > 0}. po —(A+p) A 0 0 0
Hint: Even though {X(¢) : t > 0} is not a birth-death process, it might be useful to = H 0 —(A+p) A 0 0
interpret an arrival of a passenger as a birth and note that a departure of a train implies K 0 0 -(A+p) A0

the “death” of all passengers at the train station.
e CTMC
{X(#):t>0}
X (t) = no. of passengers at the train station at time ¢ waiting for the next train to

(b) Write the Kolmogorov’s forward differential equations in terms of Pp;(t) = P[X(t) =j | (1.0)
X(0) =0], for j € N.

e Kolmogorov’s forward differential equations

depart
- These can be written in matrix form:
e Auxiliary r.v. dP(t) dP;(t)
B = time (in minutes) until the arrival of the next passenger dt = dt ies
1,J€

B ~ Exponential(\ = 20)
D = time (in minutes) until the departure of the next train
D ~ Exponential(y = 12/60 = 0.2)

T p(t) x R.

Since i = 0, we are only interested in the first row of the previous matrix

e State space {7(1 POj(t)} = [Po;(t)];es x R.
S=N, dt - jes !
o Possible transitions (embedded DTMC) Hence the following Kolmogorov’sforward differential equations:
. . . . . d Pt <
If we interpret an arrival of a passenger as a birth and note that a departure of a 30( ) = APyt +p Z Pom(t)
train implies the “death” of all passengers at the train station, the embedded DTMC t m=1
transitions from: = —AP(t) + p [l — Poo(t)]
— state ¢ to state 0 (¢ € N) — if a train departs before the next passenger arrives; = —(A+u) Polt)+p
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d Py (t) = APo(t) — (A + 1) P (t) e Birth-death queueing system

det(t) M/M/1 with A = 80 (jobs per hour)
02
a = APu(t) — (A +p) Poo(t) e Traffic intensity/ergodicity condition

_A_ 80
P=u u<1

d Poj(t)
dt

NPos 1(8) — (A ) Poy(t), j € N e Performance measure (in the long-run)
oI R ’ Wy = turnaround time (in hours)

B(W,) 'z 1

(c) Show that the equilibrium probabilities P; = limy_, 4 Po;(t) = (1/101) x (100/101)7, (2.5) u(i=p)
7 € Ny. ¢ Requested service rate
Hint: Recall that P x R = 0 and Z = 1, where P = [P}]en, is the row vector of We have to deal with g > 80 and
the equilibrium probabilities. TR E(VV.) < % (i.e., 10 minutes)
e Equilibrium probabilities P; = lim,_,  Py;(t) 1
Let P = [Pj]jen, be the row vector of the equilibrium probabilities. Then these ( A)
probabilities can be obtained by solving H .
PxR =0, L=\ <5
subjected to ;;’8 P; = 1. For instance, the first set of equations (corresponding to o> 6 A

i =0) lead to

APy +p Y P, =0
APb—(A+p)PL=0
/\Pl—(AJru)PZ:O

11> 86 (jobs per hour).

(b) find the average number of jobs found in the system, when the service rate is equal to (1.0)
/= 1.5 jobs per minute;

e Traffic intensity/ergodicity condition
/\P71*(>\+#) j=0,j€N A 80 ,§/<1
9

P == 15x60

AP+ p(l-FR)=0 e Performance measure (in the long-run)

_
h = pen By L; = number of customers in the drive-in banking service
P,=-2Pp
) 2T Mt ¢ Requested expected value

. B(L) "2
P= 2P jeN. =
_ 9

B=xG Co1-8
P = A K —— ’

pus =
2#

ES>
-

(c) calculate the probability that the turnaround time exceeds 10 minutes, considering the (1.5)
same service rate as in (b).

) A “) A e Performance measure (in the long-run)
Equlvalently, W, = turnaround time (in hours)
A=20, u=0. i
P 20,4=0.2 (1/101) x (100/101), j € Ny. W, ~ Exponential(u(1 — p))

¢ Requested probability
P(W,>t) = e ri-at

—10 40
=5g. cte- £—90(1-8/9)¢

2. An average of 80 jobs are submitted to a university computer center per hour. Assuming
that the computer service is modeled as an M/M/1 queueing system:

(a) what should be the service rate if the average turnaround time (period from the (1.5)
submission a job until getting this job done) is to be smaller than 10 minutes?
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