Department of Mathematics, IST - Probability and Statistics Unit
 Introduction to Stochastic Processes

"Exame de Época Especial"	2nd. Semester - 2013/14
Duration: 3 h 00 m	$\mathbf{2 0 1 4 / 0 7 / 2 1 - 9 A M , ~ R o o m ~ C 0 1 ~}$

- Please justify all your answers.
- This exam has three pages and six groups. The total of points is 40.0.

Group 1 - Introduction to Stochastic Processes

Consider a stochastic process $\{X(t): t \geq 0\}$ - with stationary and independent increments - and assume that $X(0)=0$.
(a) Show that the mean function is equal to $E[X(t)]=\mu t$, where $\mu=E[X(1)]$.

Hint: The only solution to the functional equation $f(t+s)=f(t)+f(s)$ is $f(t)=c t$, where $c=f(1)$. This result is relevant to solve lines (a) and (b).

- Stochastic process
$\{X(t): t \geq 0\}$ with stationary and independent increments
- Initial condition
$X(0)=0$
- A property of the mean function

Let

$$
\begin{array}{ll}
f(t) & = \\
& =[X(t)] \\
& (0)=0 \\
= & E[X(t)-X(0)] .
\end{array}
$$

Then, by capitalizing on the stationary increments of this process, we get

$$
\begin{aligned}
f(t+s) & =E[X(t+s)] \\
& =E[X(t+s)-X(0)] \\
& =E\{[X(t+s)-X(s)]+[X(s)-X(0)]\} \\
& =E[X(t+s)-X(s)]+E[X(s)-X(0)] \\
& =E[X(t)-X(0)]+E[X(s)-X(0)] \\
& =f(t)+f(s),
\end{aligned}
$$

for $t, s \geq 0$.

- Deriving the mean function

As mentioned in the hint, the only solution to the functional equation $f(t+s)=$ $f(t)+f(s)$ is

$$
f(t)=\mu t
$$

where $\mu=f(1)=E[X(1)]$.
(b) Prove that the variance function is given by $V[X(t)]=\sigma^{2} t$, where $\sigma^{2}=V[X(1)]$.

- A property of the variance function

Let

$$
\begin{array}{cll}
g(t) & = & V[X(t)] \\
& \stackrel{(0)=0}{=} & V[X(t)-X(0)] .
\end{array}
$$

Then, by capitalizing on both the stationary and independent increments of this process, we obtain

$$
\begin{array}{rll}
g(t+s) & = & V[X(t+s)] \\
& = & V[X(t+s)-X(0)] \\
& = & V\{[X(t+s)-X(s)]+[X(s)-X(0)]\} \\
& \left.\begin{array}{ll}
\text { indep.inc. } & \\
& \text { stat.inc. } \\
& \\
& = \\
\text { for } t, s \geq 0 . & \\
& \\
&
\end{array}\right][X(t)+g(t)-X(0)]+V[X(s)-X(0)]
\end{array}
$$

- Deriving the variance function

Once again, the only solution to the functional equation $g(t+s)=g(t)+g(s)$ is

$$
g(t)=\sigma^{2} t
$$

where $\sigma^{2}=g(1)=V[X(1)]$.

Group 2 - Poisson Processes

9.5 points

1. Arrivals of customers at a supermarket are modeled by a Poisson process with a rate of $\lambda=10$ customers per minute.
(a) Let $M($ resp. $N)$ be the number of customers arriving between 9:00 and 9:10 (resp. 9:30 (1.0) and 9:35).
What is the distribution of $M+N$?

- Stochastic process
$\{N(t): t \geq 0\} \sim P P(\lambda=10)$
$N(t)=$ number of arrivals by time t (time in minutes)

- Relevant facts

$N(t) \sim \operatorname{Poisson}(\lambda t)$
$\{N(t): t \geq 0\}$ has stationary and independent increments

- R.v.
$M=$ number of customers arriving between 9:00 and 9:10
$N=$ number of customers arriving between 9:30 and 9:35
- Distributions of M and N

Due to the stationary increments of the process $\{N(t): t \geq 0\}$ and the fact that $N(t) \sim$ Poisson $(10 t)$, we can add that:
$M=N(9 \times 60+10)-N(9 \times 60)$
$\sim N(9 \times 60+10-9 \times 60)$
$\sim N(10)$
$\sim \operatorname{Poisson}(10 \times 10=100)$
$N=N(9 \times 60+35)-N(9 \times 60+30)$
$\sim N(9 \times 60+35-9 \times 60-30)$
$\sim N(5)$
$\sim \operatorname{Poisson}(10 \times 5=50)$.

- Distribution of $M+N$

Since M and N refer to the number of arrivals in two non-overlapping time intervals, we can invoke the fact that the process has independent increments to conclude that M and N are independent r.v.
Moreover, since the sum of two independent Poisson r.v. with parameters $\lambda_{i}, i=1,2$, has a Poisson distribution with parameter $\left(\lambda_{1}+\lambda_{2}\right)$, we get

$$
M+N \sim \operatorname{Poisson}(100+50=150)
$$

(b) Suppose that 300 customers arrived during the first 30 minutes.

Obtain an approximate value to the probability that at most 200 customers arrived during the first 20 minutes?

- R.v.
$(N(s) \mid N(t)=n) \stackrel{\text { form. }}{\sim} \operatorname{Binomial}(n, s / t), 0<s<t$
- Requested probability (approximate value)

Using the normal approximation to the binomial c.d.f., we obtain

$$
\begin{aligned}
P[N(20) \leq 200 \mid N(30)=300] & =F_{\text {Binomial }(n=300, s / t=20 / 30)}(200) \\
& \simeq \Phi\left[\frac{200-300 \times \frac{2}{3}}{\sqrt{300 \times \frac{2}{3} \times\left(1-\frac{2}{3}\right)}}\right] \\
& =\Phi(0) \\
& =0.5 .
\end{aligned}
$$

[According to Mathematica, $F_{\text {Binomial }(n=300, s / t=20 / 30)}(200)=0.521703$.]
(c) Admit any customer spends a random time (in minutes) in the supermarket with a (2.0) Weibull distribution with scale parameter $\alpha=5 \sqrt{2}$ (resp. shape parameter $\beta=2$).
Find the probability that there are at least 50 customers still in the supermarket 5 minutes after it opened.

- R.v.
$S=$ time spent in the supermarket by a customer $S \sim \operatorname{Weibull}(\alpha=5 \sqrt{2}, \beta=2)$
- Non-homogenous Bernoulli splitting

A customer, who arrived at time $s(0<s<t)$, will be still in the supermarket at time t with probability
$p(s)=P(S>t-s)$

$$
\begin{aligned}
& =\int_{t-s}^{+\infty} f_{S}(u) d u \\
& =\int_{t-s}^{+\infty} \frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x}{\alpha}\right)^{\beta}} d x \\
& =-\left.e^{-\left(\frac{x}{\alpha}\right)^{\beta}}\right|_{t-s} ^{+\infty} \\
& =e^{-\left(\frac{t-s}{\alpha}\right)^{\beta}}
\end{aligned}
$$

Furthermore, the number of customers in this supermarket at time $t, N_{\text {sup }}(t)$, results from a non-homogenous Bernoulli splitting of $\{N(t): t \geq 0\}$. Consequently,

$$
\begin{aligned}
& N_{\text {sup }}(t) \stackrel{\text { form. }}{\sim} \text { Poisson }\left(\lambda \int_{0}^{t} p(s) d s\right), \\
& \text { where } \\
& \int_{0}^{t} p(s) d s \quad \stackrel{\beta=2}{=} \quad \int_{0}^{t} e^{-\left(\frac{t-s}{\alpha}\right)^{2}} d s \\
& =\quad \sqrt{2 \pi} \times \alpha / \sqrt{2} \times \int_{0}^{t} \frac{1}{\sqrt{2 \pi} \times \alpha / \sqrt{2}} e^{-\frac{(s-t)^{2}}{2 \times(\alpha / \sqrt{2})^{2}}} d s \\
& =\quad \sqrt{2 \pi} \times \alpha / \sqrt{2} \times\left[F_{N\left(0,(\alpha / \sqrt{2})^{2}\right)}(t)-F_{N\left(0,(\alpha / \sqrt{2})^{2}\right)}(0)\right] \\
& =\sqrt{2 \pi} \times \alpha / \sqrt{2} \times\left[\Phi\left(\frac{t-t}{\alpha / \sqrt{2}}\right)-\Phi\left(\frac{0-t}{\alpha / \sqrt{2}}\right)\right] \\
& =\sqrt{2 \pi} \times \alpha / \sqrt{2} \times\left[\Phi(0)-\Phi\left(-\frac{t}{\alpha / \sqrt{2}}\right)\right] \\
& \alpha=5 \stackrel{\sqrt{2}, t=5}{=} \sqrt{2 \pi} \times 5 \times[0.5-\Phi(-1)] \\
& =\quad \sqrt{2 \pi} \times 5 \times[0.5-1+\Phi(1)] \\
& \stackrel{\text { tables }}{=} \quad \sqrt{2 \pi} \times 5 \times[0.5-1+0.8413] \\
& \simeq \quad 4.277561 \text {. }
\end{aligned}
$$

- Requested probability

Using the normal approximation to the Poisson c.d.f., we obtain

$$
P\left[N_{\text {sup }}(t) \geq 50\right] \simeq 1-F_{\text {Poisson }(10 \times 4.277561)}(50-1)
$$

$$
\begin{aligned}
& \simeq 1-\Phi\left[\frac{(50-1)-10 \times 4.277561}{\sqrt{10 \times 4.277561}}\right] \\
& \simeq 1-\Phi(0.95) \\
& \simeq \text { tables } \\
& =1-0.8289 \\
& =0.1711 .
\end{aligned}
$$

2. Suppose that the emissions of very rare particles are governed by a non-homogeneous Poisson process with intensity function $\lambda(t)=e^{-t}, t \geq 0$.
(a) Find the probability that no particles were emitted in the first 2 hours and exactly one (1.5) particle was emitted after those first 2 hours.

- Stochastic process
$\{N(t): t \geq 0\} \sim N H P P$
$N(t)=$ number of particle emissions by time t

- Intensity function

$\lambda(t)=e^{-t}, t \geq 0$

- Mean value function
$m(t)=E[N(t)]$
$=\int_{0}^{t} \lambda(s) d s$
$=\int_{0}^{t} e^{-s} d s$
$=-\left.e^{-s}\right|_{0} ^{t}$
$=1-e^{-t}, t \geq 0$
- Relevant facts
$N(t) \sim \operatorname{Poisson}(m(t))$
$N(t+s)-N(s) \sim \operatorname{Poisson}(m(t+s)-m(s))$
$\{N(t): t \geq 0\}$ has independent increments
- Requested probability

Since $m(t)=1-e^{-t} \in[0,1]$, for $t \geq 0$, we can devise the distribution of $N(+\infty)-$
$N(2)$, the total number of particles emitted after the first 2 hours:

$$
N(+\infty)-N(2) \sim \operatorname{Poisson}\left(m(+\infty)-m(2)=\left(1-e^{-\infty}\right)-\left(1-e^{-2}\right)=e^{-2}\right)
$$

Thus, the requested probability:

$$
\begin{aligned}
P[N(2)=0, N(\infty)-N(2)=1] & \stackrel{\text { indep. inc. }}{=} \quad \begin{array}{l}
P[N(2)=0] \times P[N(\infty)-N(2)=1] \\
=
\end{array} \frac{e^{-m(2)}[m(2)]^{0}}{0!} \\
& \times \frac{e^{-[m(+\infty)-m(2)]}[m(+\infty)-m(2)]^{1}}{1!} \\
= & e^{-\left(1-e^{-2}\right)} \times e^{-e^{-2}} e^{-2} \\
= & e^{-3} .
\end{aligned}
$$

(b) Obtain $E\left[S_{1} \mid N(2)=0, N(\infty)-N(2)=1\right]$.

- R.v.
$S_{1}=$ time of the emission of the first particle
- C.d.f. of $\left[S_{1} \mid N(2)=0, N(\infty)-N(2)=1\right)$

For $0<t<2$,

$$
F_{S_{1} \mid N(2)=0, N(\infty)-N(2)=1}(t)=P\left[S_{1} \leq t \mid N(2)=0, N(\infty)-N(2)=1\right]
$$

$$
=0
$$

Moreover, for $t \geq 2$,
$F_{S_{1} \mid N(2)=0, N(\infty)-N(2)=1}(t) \quad=\quad P\left[S_{1} \leq t \mid N(2)=0, N(\infty)-N(2)=1\right]$

$$
=\quad P[N(t) \geq 1 \mid N(2)=0, N(\infty)-N(2)=1]
$$

$$
=\quad \frac{P[N(t) \geq 1, N(2)=0, N(\infty)-N(2)=1]}{P[N(2)=0, N(\infty)-N(2)=1]}
$$

$$
\stackrel{\text { indep. inc. }}{=} \quad\{P[N(2)=0] \times P[N(t)-N(2)=1]
$$

$$
\times P[N(\infty)-N(t)=0]\}
$$

$$
\div\{P[N(2)=0] \times P[N(\infty)-N(2)=1]\}
$$

$$
=\quad \frac{P[N(t)-N(2)=1] \times P[N(\infty)-N(t)=0]}{P[N(\infty)-N(2)=1]}
$$

where

$$
\begin{aligned}
P[N(t)-N(2)=1] & =\frac{\left.e^{-[m(t)-m(2)]}[m(t)-m(2))\right]^{1}}{1!} \\
& =e^{-\left[\left(1-e^{-t}\right)-\left(1-e^{-2}\right)\right]} \times\left(e^{-2}-e^{-t}\right) \\
& =e^{-\left(e^{-2}-e^{-t}\right)} \times\left(e^{-2}-e^{-t}\right) \\
P[N(\infty)-N(t)=0] & =\frac{e^{-[m(+\infty)-m(t)]}[m(+\infty)-m(t)]^{0}}{0!} \\
& =e^{-\left[1-\left(1-e^{-t}\right)\right]} \\
& =e^{-e^{-t}} \\
P[N(\infty)-N(2)=1] & =\frac{e^{-[m(+\infty)-m(2)]}[m(+\infty)-m(2)]^{1}}{1!} \\
& =e^{-\left[1-\left(1-e^{-2}\right)\right]} e^{-2} \\
& =e^{-2-e^{-2}} .
\end{aligned}
$$

Consequently, for $t \geq 2$,

$$
F_{S_{1} \mid N(2)=0, N(\infty)-N(2)=1}(t)=\frac{e^{-\left(e^{-2}-e^{-t}\right)}\left(e^{-2}-e^{-t}\right) \times e^{-e^{-t}}}{e^{-2-e^{-2}}}
$$

$$
=1-e^{2-t}
$$

- Requested conditional expected value

Since we are dealing with a non-negative r.v.,
$E\left[S_{1} \mid N(2)=0, N(\infty)-N(2)=1\right]=\int_{0}^{+\infty}\left[1-F_{S_{1} \mid N(2)=0, N(\infty)-N(2)=1}(t)\right] d t$
$=\int_{0}^{2} d t+\int_{2}^{+\infty} e^{2-t} d t$
$=2+\left.\left(-e^{2-t}\right)\right|_{2} ^{+\infty}$
$=2+1$
$=3$.
3. Suppose the number of claims generated by a portfolio of insurance policies is governed by a conditional Poisson process with random rate Λ (claims per month).
Obtain the autocovariance function of this stochastic process.

- Relevant stochastic process
$\{N(t): t \geq 0\} \sim$ Conditional PP (Λ)
$N(t)=$ number of claims up to month t

- Important

$\{N(t): t \geq 0\}$ has stationary increments.
$\{(N(t) \mid \Lambda=\lambda): t \geq 0\} \sim P P(\lambda)$ and therefore, conditionally on $\{\Lambda=\lambda\}$, we deal with stationary and independent increments. Furthermore,

$$
\begin{aligned}
(N(t) \mid \Lambda=\lambda) & \sim \operatorname{Poisson}(\lambda t) \\
E[N(t) \mid \Lambda=\lambda] & =\lambda t \\
V[N(t) \mid \Lambda=\lambda] & =\lambda t
\end{aligned}
$$

- Mean value function

$$
\begin{aligned}
E[N(t)] & =E\{E[N(t) \mid \Lambda=\lambda]\} \\
& =E(\Lambda t)
\end{aligned}
$$

$$
=E(\Lambda) \times t
$$

- Variance function

$$
\begin{aligned}
V[N(t)] & =V\{E[N(t) \mid \Lambda=\lambda]\}+E\{V[N(t) \mid \Lambda=\lambda]\} \\
& =V(\Lambda t)+E(\Lambda t) \\
& =V(\Lambda) \times t^{2}+E(\Lambda) \times t
\end{aligned}
$$

- Autocovariance function

Please note that, for $0 \leq s<t$

$$
\begin{aligned}
E[N(s) \times N(t)] & =E\{N(s) \times[N(t)-N(s)+N(s)]\} \\
& =E\{N(s) \times[N(t)-N(s)]\}+E\left[N^{2}(s)\right] \\
& =E\{N(s) \times[N(t)-N(s)]\}+E\left[N^{2}(s)\right] \\
& =E(E\{N(s) \times[N(t)-N(s)] \mid \Lambda\})+E\left[N^{2}(s)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
E\left[N^{2}(s)\right] & =V[N(s)]+E^{2}[N(s)] \\
& =V(\Lambda) s^{2}+[E(\Lambda) s]^{2}
\end{aligned}
$$

$$
=E\left(\Lambda^{2}\right) s^{2}
$$

and the r.v. $E\{N(s) \times[N(t)-N(s)] \mid \Lambda\}$ takes value
with associated p.(d.)f. $f_{\Lambda}(\lambda)$. Therefore

$$
\begin{aligned}
& E\{N(s) \times[N(t)-N(s)] \mid \Lambda=\lambda\} \quad \stackrel{\text { cond.indep.inc }}{=} E[N(s) \mid \Lambda=\lambda] \times E[N(t)-N(s) \mid \Lambda=\lambda] \\
& \text { cond.stat.inc } E[N(s) \mid \Lambda=\lambda] \times E[N(t-s) \mid \Lambda=\lambda] \\
& =\quad \lambda s \times \lambda(t-s) \\
& =\quad \lambda^{2} s(t-s),
\end{aligned}
$$

$$
\begin{aligned}
E\{N(s) \times[N(t)-N(s)]\} & =E(E\{N(s) \times[N(t)-N(s)] \mid \Lambda\}) \\
& =E\left[\Lambda^{2} s(t-s)\right] \\
& =E\left(\Lambda^{2}\right) s(t-s) \\
E[N(s) \times N(t)] & =E\left(\Lambda^{2}\right) s(t-s)+E\left(\Lambda^{2}\right) s^{2} \\
& =E\left(\Lambda^{2}\right) s t .
\end{aligned}
$$

Finally, for $0 \leq s<t$,

$$
\begin{aligned}
\operatorname{cov}(N(s), N(t)) & =E[N(s) \times N(t)]-E[N(s)] \times E[N(t)] \\
& =E\left(\Lambda^{2}\right) s t-E^{2}(\Lambda) s t \\
& =V(\Lambda) s t
\end{aligned}
$$

Group 3 - Renewal Processes

8.0 points

1. Airplanes land at a small airport according to a Poisson process with rate λ (airplanes per hour).
(a) Derive the renewal function $m(t)$ of the renewal process consisting of counting just EVEN (2.5) landings (i.e., the 2nd., 4th., 6th., etc. landings).
Hint: Capitalize on the fact that $\frac{\lambda^{2}}{s(s+2 \lambda)}=\frac{\lambda}{2 s}-\frac{\lambda}{2(s+2 \lambda)}$.

- Original stochastic process
$\left\{N^{\star}(t): t \geq 0\right\} \sim P P(\lambda)$
$N^{\star}(t)=$ number of landings until time t
- Original inter-renewal times
$X_{i}^{\star} \stackrel{i . i . d .}{\sim} X^{\star}, i \in \mathbb{N}$
$X^{\star} \sim \operatorname{Exponential}(\lambda)$
- Renewal process
$\{N(t): t \geq 0\}$
$N(t)=$ number of EVEN landings until time t
- Inter-renewal times
$X_{i} \stackrel{i . i . d .}{\sim} X, i \in \mathbb{N}$
$X \sim \operatorname{Gamma}(2, \lambda)$ (convolution of two indep. exponentially distibuted r.v.)

- Deriving the renewal function

Since the $X \sim \operatorname{Gamma}(2, \lambda)$, its LST is given by

$$
\begin{aligned}
\tilde{F}(s) & =\int_{0^{-}}^{+\infty} e^{-s x} d F(x) \\
& =M_{X}(-s) \\
& \stackrel{\text { form. }}{=}\left(\frac{\lambda}{\lambda+s}\right)^{2} .
\end{aligned}
$$

Moreover, the LST of the renewal function can be obtained in terms of \tilde{F} :

$$
\begin{aligned}
\tilde{m}(s) & \stackrel{f o r m .}{=} \frac{\tilde{F}(s)}{1-\tilde{F}(s)} \\
& =\frac{\left(\frac{\lambda}{\lambda+s}\right)^{2}}{1-\left(\frac{\lambda}{\lambda+s}\right)^{2}} \\
& =\frac{\lambda^{2}}{s(s+2 \lambda)} \\
& =\frac{\lambda}{2 s}-\frac{\lambda}{2(s+2 \lambda)} .
\end{aligned}
$$

Taking advantage of the LT in the formulae, we obtain

$$
\begin{aligned}
\frac{d m(t)}{d t} & =L T^{-1}[\tilde{m}(s), t] \\
& =L T^{-1}\left[\frac{\lambda}{2 s}-\frac{\lambda}{2(s+2 \lambda)}, t\right] \\
& =\frac{\lambda}{2} \times L T^{-1}\left[\frac{1}{s}, t\right]+\frac{\lambda}{2} \times L T^{-1}\left[\frac{1}{(s+2 \lambda)^{1}}, t\right] \\
& =\frac{\lambda}{2} \times 1+\frac{\lambda}{2} \times \frac{t^{1-1} e^{-2 \lambda t}}{(1-1)!} \\
& =\frac{\lambda}{2}+\frac{\lambda e^{-2 \lambda t}}{2} \\
m(t) & =\int_{0}^{t}\left(\frac{\lambda}{2}+\frac{\lambda e^{-2 \lambda x}}{2}\right) d x \\
& =\left.\left(\frac{\lambda x}{2}-\frac{e^{-2 \lambda x}}{4}\right)\right|_{0} ^{t} \\
& =\frac{\lambda t}{2}-\frac{1-e^{-2 \lambda t}}{4}, t \geq 0 .
\end{aligned}
$$

(b) Show that the renewal function obtained in (a) verifies the elementary renewal theorem. (1.0)

- Verification of the elementary renewal theorem (ERT)

Let $\mu=E(X)=E[\operatorname{Gamma}(2, \lambda)]=\frac{2}{\lambda}$. Then

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \frac{m(t)}{t} & =\lim _{t \rightarrow+\infty}\left(\frac{\frac{\lambda t}{2}-\frac{1-e^{-2 \lambda t}}{4}}{t}\right) \\
& =\frac{\lambda}{2}-\frac{1}{+\infty} \\
& =\frac{1}{\mu}
\end{aligned}
$$

hence the ERT is verified.
(c) Obtain an approximate value to the probability that the number of EvEN landings (1.5) exceeds 10 in the first day, when $\lambda=1$.

- Inter-renewal times
$X_{i} \stackrel{i . i . d .}{\sim} X, i \in \mathbb{N}$
$X \sim \operatorname{Gamma}(2, \lambda=1)$
$\mu=E(X) \stackrel{\text { form. }}{=} 2$

$$
\sigma^{2}=V(X) \stackrel{\text { form. }}{=} 2
$$

- Requested approximate probability

$$
\begin{array}{rcl}
P[N(t)>n] & = & 1-P[N(t)<n+1] \\
& \stackrel{\text { form }}{\simeq} & 1-\Phi\left[\frac{(n+1)-t / \mu}{\sqrt{t \sigma^{2} / \mu^{3}}}\right] \\
& \stackrel{t=24 h, n=10}{=} & 1-\Phi\left[\frac{(10+1)-24 / 2}{\sqrt{24 \times 2 / 2^{3}}}\right] \\
& \simeq & 1-\Phi(-0.29) \\
& = & \Phi(0.29) \\
& \stackrel{\text { tables }}{=} & 0.6141 .
\end{array}
$$

- Obs. - This a rough approximation of the exact value of the requested probability $1-P[N(t) \leq 9]=1-P\left[N^{\star}(t) \leq 2 \times 9+1\right] \stackrel{\text { table }}{=} 1-0.1803=0.8197$.

2. The time (in minutes) Clotilde takes to get to the top of a sky piste is a r.v. with c.d.f. F (3.0) and expected value μ_{F}, whereas the duration of the descent (also in minutes) is uniformly distributed in the interval $(0,7)$. Admit she decides to rent a new pair of skis for c monetary units whenever the descent lasts more than τ minutes.

Find the value of τ that minimizes the money spent in ski rentals per time unit in the long-run. Comment this result.

- Renewal process
$\{N(t): t \geq 0\}$
$N(t)=$ number of completed cycles of ascent/descent by time t
- R.v.
$A_{n}=$ duration of the $n^{t h}$ ascent to the top of the piste
$A_{n} \stackrel{i . i . d .}{\sim} A \sim F, n \in \mathbb{N}$
$D_{n}=$ duration of the $n^{\text {th }}$ descent from the top of the piste
$D_{n} \stackrel{i . i . d .}{\sim} D \sim \operatorname{Uniform}(0,7), n \in \mathbb{N}$
- Inter-renewal times
$X_{n} \stackrel{i . i . d .}{\sim} X, n \in \mathbb{N}$
$X=A+D$

- Reward renewal process

$\left\{R(t)=\sum_{n=1}^{N(t)} R_{n}: t \geq 0\right\}$
$R(t)=$ total spent in ski rentals until time t
$R_{n}= \begin{cases}c, & \text { if } D_{n}>\tau \text { (i.e., if the } n^{\text {th }} \text { descent lasted more than } \tau \text { minutes) } \\ 0, & \end{cases}$
$\left(X_{n}, R_{n}\right) \stackrel{i . i . d .}{\sim}(X, R), n \in \mathbb{N}$

- Expected inter-renewal time
$E(X)=E(A)+E(D) \stackrel{\text { form. }}{=} \mu_{F}+\frac{0+7}{2}=\mu_{F}+\frac{7}{2}$
- Expected amount spent (per completed cycle of ascent/descent)

For $0<\tau \leq 7$, we have

$$
\begin{aligned}
E(R) & =c \times P(D>\tau)+0 \times P(D \leq \tau) \\
& =c \times \int_{\tau}^{+\infty} f_{D}(u) d u \\
& =c \times \int_{\tau}^{7} \frac{1}{7} d u \\
& =c \times \frac{7-\tau}{7}
\end{aligned}
$$

- Amount spent (per completed cycle of ascent/descent) per time unit in the long-run
Since $E(X), E(R)<+\infty$, we can add that

$$
\frac{R(t)}{t} \stackrel{w . p .1}{\rightarrow} \frac{E(R)}{E(X)}
$$

where

$$
\begin{aligned}
\frac{E(R)}{E(X)} & =h(\tau) \\
& =\frac{\frac{c(7-\tau)}{7}}{\mu_{F}+\frac{7}{2}} \\
& =\frac{2 c(7-\tau)}{14 \mu_{F}+49}, 0<\tau \leq 7
\end{aligned}
$$

- Minimizing the amount spent per time unit in the long-run

Since $h(\tau), 0<\tau \leq 7$, is a decreasing function of τ in the interval (0,7], the value of τ that minimizes $h(\tau)$ is equal to $\tau^{\star}=7$.

- Comment

Not only τ^{\star} does not depend on the ski rental (c) or on μ_{F}, but also its value means that Clotilde should never replace her skis if she is willing to minimize the amount spent per time unit in the long-run in ski rentals.

Group 4 - Renewal Processes (cont'd)

1.5 points

The number of inspections by a supervisor to an industrial plant is governed by a delayed renewal process such that:

- the first inspection time (in years) follows an exponential distribution with unit mean;
- the subsequent inter-inspection times follow an exponential distribution with expected value equal to 0.5 .

Derive the c.d.f. of S_{2}, the time of the second inspection

- Delayed renewal process
$\left\{N_{D}(t): t \geq 0\right\}$
$N_{D}(t)=$ number of inspections done by time t
- Inter-renewal times
X_{i} independent r.v., $i \in \mathbb{N}$
$X_{1} \sim \operatorname{Exponential}(1)$
$X_{i} \stackrel{i . i . d .}{\sim} \operatorname{Exponential}\left(0.5^{-1}=2\right)$

- Important

$G(x)=P\left(X_{1} \leq x\right)=1-e^{-x}$, for $x \geq 0$ (0, otherwise)

$$
F(x)=P\left(X_{i} \leq x\right)=1-e^{-2 x}, \text { for } x \geq 0 \text { and } i \in \mathbb{N} \backslash\{1\} \text { (} 0, \text { otherwise) }
$$

- R.v.
$S_{2}=$ time of the second inspection
- C.d.f. of S_{2}

$$
\begin{aligned}
P\left(S_{n} \leq t\right) & \stackrel{\text { form. }}{=}\left(G \star F_{n-1}\right)(t) \\
& \stackrel{n=2}{=} \int_{0}^{t} G(t-x) d F(x) \\
& =\int_{0}^{t}\left[1-e^{-(t-x)}\right] \times 2 e^{-2 x} d x \\
& =\int_{0}^{t} 2 e^{-2 x} d x-2 e^{-t} \int_{0}^{t} e^{-x} d x \\
& =-\left.e^{-2 x}\right|_{0} ^{t}+2 e^{-t} \times\left.\left(-e^{-x}\right)\right|_{0} ^{t} \\
& =\left(1-e^{-2 t}\right)+2 e^{-t}\left(e^{-t}-1\right) \\
& =1+e^{-2 t}-2 e^{-t}
\end{aligned}
$$

Group 5 - Discrete time Markov chains

9.5 points

1. A study of occupational mobility of families across generations was conducted after WWII. Three occupation levels were identified:

- upper level (executive, managerial, high administrative, professional) - state 1 ;
- middle level (high grade supervisor, non-manual, skilled manual) - state 2;
- lower level (semi-skilled or unskilled) — state 3.

Transition probabilities from generation to generation were estimated to be

$$
\mathbf{P}=\left[\begin{array}{lll}
0.45 & 0.48 & 0.07 \\
0.05 & 0.70 & 0.25 \\
0.01 & 0.50 & 0.49
\end{array}\right]
$$

(a) Determine $f_{i j}^{n}=P\left(X_{n}=j, X_{n-1} \neq j, \ldots, X_{1} \neq j \mid X_{0}=i\right)$, for $i, n=1,2,3$ and $j=1$.

- DTMC

$\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$
$X_{n}=$ level of the family at the $n^{\text {th }}$ generation

- State space
$\mathcal{S}=\{1,2,3\}$
$1=$ upper level
$2=$ middle level
$3=$ lower level
- TPM

$$
\mathbf{P}=\left[\begin{array}{lll}
0.45 & 0.48 & 0.07 \\
0.05 & 0.70 & 0.25 \\
0.01 & 0.50 & 0.49
\end{array}\right]
$$

- Requested probabilities

Let:
(i) $f_{i j}^{n}=P\left(X_{n}=j, X_{n-1} \neq j, \ldots, X_{1} \neq j \mid X_{0}=i\right)$ be the probability of reaching state j for the first time starting from state i, for $i, j \in \mathcal{S}$ and $n \in \mathbb{N}$;
(ii) $\underline{f}_{j}^{n}=\left[f_{i j}^{n}\right]_{i \in \mathcal{S}}$ be the associated vector for fixed $j \in \mathcal{S}$ and $n \in \mathbb{N}$.

According to the formulae,

$$
\underline{f}_{j}^{n}= \begin{cases}\underline{f}_{j}^{1}=\left[P_{i j}\right]_{i \in \mathcal{S}}, & n=1 \\ { }^{(j)} \mathbf{P} \times \underline{f}_{j}^{n-1}=\left[{ }^{(j)} \mathbf{P}\right]^{n-1} \times \underline{f}_{j}^{1}, & n=2,3, \ldots,\end{cases}
$$

where ${ }^{(j)} \mathbf{P}$ is obtained by setting all the entries of the $j^{\text {th }}$ column of \mathbf{P} equal to 0 When $j=1$, we successively get

$$
\begin{aligned}
{ }^{(1)} \mathbf{P} & =\left[\begin{array}{lll}
0 & 0.48 & 0.07 \\
0 & 0.70 & 0.25 \\
0 & 0.50 & 0.49
\end{array}\right] \\
\underline{f}_{1}^{1} & =\left[P_{i 1}\right]_{i \in \mathcal{S}} \\
& =\left[\begin{array}{l}
0.45 \\
0.05 \\
0.01
\end{array}\right] \\
\underline{f}_{1}^{2} & ={ }^{(1)} \mathbf{P} \times \underline{f}_{1}^{1} \\
& =\left[\begin{array}{lll}
0 & 0.48 & 0.07 \\
0 & 0.70 & 0.25 \\
0 & 0.50 & 0.49
\end{array}\right] \times\left[\begin{array}{l}
0.45 \\
0.05 \\
0.01
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.0247 \\
0.0375 \\
0.0299
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\underline{f}_{1}^{3} & ={ }^{(1)} \mathbf{P} \times \underline{f}_{1}^{2} \\
& =\left[\begin{array}{lll}
0 & 0.48 & 0.07 \\
0 & 0.70 & 0.25 \\
0 & 0.50 & 0.49
\end{array}\right] \times\left[\begin{array}{l}
0.0247 \\
0.0375 \\
0.0299
\end{array}\right] \\
& =\left[\begin{array}{l}
0.020093 \\
0.033725 \\
0.033401
\end{array}\right] .
\end{aligned}
$$

(b) What is the long-run percentage of generations that a family spends in state 3?

- Important

We are dealing with an irreducible DTMC with finite state space. Hence, all states are positive recurrent[, by Prop. 3.55]. Furthermore, the DTMC seems aperiodic.

- Stationary distribution

Since the DTMC is irreducible positive recurrent and aperiodic we can add that

$$
\lim _{n \rightarrow+\infty} P_{i j}^{n}=\pi_{j}>0, i, j \in \mathcal{S},
$$

where $\left\{\pi_{j}: j \in \mathcal{S}\right\}$ is the unique stationary distribution and satisfies the following system of equations:

$$
\left\{\begin{array}{l}
\pi_{j}=\sum_{i \in \mathcal{S}} \pi_{i} P_{i j}, j \in \mathcal{S} \\
\sum_{j \in \mathcal{S}} \pi_{j}=1 .
\end{array}\right.
$$

Equivalently [(see Prop. 3.68)], the row vector denoting the stationary distribution, $\underline{\pi}=\left[\pi_{j}\right]_{j \in \mathcal{S}}$, is given by

$$
\underline{\pi}=\underline{1} \times(\mathbf{I}-\mathbf{P}+\mathbf{O N E})^{-1}
$$

where:
$\underline{1}=\left[\begin{array}{lll}1 & \cdots & 1\end{array}\right]$ a row vector with $\# \mathcal{S}$ ones;
$\mathrm{I}=$ identity matrix with rank $\# \mathcal{S}$;
$\mathbf{P}=\left[P_{i j}\right]_{i, j \in \mathcal{S}}$ is the TPM;
ONE is the $\# \mathcal{S} \times \# \mathcal{S}$ matrix all of whose entries are equal to 1 .
By capitalizing on the inverse in the footnote, we obtain

$$
\underline{\pi}=\underline{1} \times(\mathbf{I}-\mathbf{P}+\mathbf{O N E})^{-1}
$$

$$
=\underline{1} \times\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{lll}
0.45 & 0.48 & 0.07 \\
0.05 & 0.70 & 0.25 \\
0.01 & 0.50 & 0.49
\end{array}\right]+\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\right)^{-1}
$$

$$
=\underline{1} \times\left[\begin{array}{rrr}
1.55 & 0.52 & 0.93 \\
0.95 & 1.3 & 0.75 \\
0.99 & 0.5 & 1.51
\end{array}\right]^{-1}
$$

${ }^{1}$ The following result may be useful: $\left[\begin{array}{rrr}1.55 & 0.52 & 0.93 \\ 0.95 & 1.3 & 0.75 \\ 0.99 & 0.5 & 1.51\end{array}\right]^{-1} \simeq\left[\begin{array}{rrr}1.179441 & -0.237819 & -0.608289 \\ -0.513363 & 1.054516 & -0.207219 \\ -0.603090 & -0.193256 & 1.129679\end{array}\right]$.

$$
\underline{\pi} \simeq\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \times\left|\begin{array}{rrr}
1.179441 & -0.237819 & -0.608289 \\
-0.513963 & 1.054516 & -0.207219 \\
-0.603090 & -0.193256 & 1.129679
\end{array}\right|
$$

$$
=\left[\begin{array}{lll}
0.062389 & 0.623440 & 0.314171
\end{array}\right] .
$$

Thus, the long-run percentage of generations that a family spends in state 3 is equal to [the sum of the entries of the 3rd. column of $(\mathbf{I}-\mathbf{P}+\mathbf{O N E})^{-1}$]:

$$
\pi_{3} \simeq 0.314171
$$

(c) Determine the expected number of generations it takes a family to reach state 1 , starting (2.0) from state 3.

- Initial/present state
$X_{0}=i$
- Important

To obtain the expected number of generations until a family to reaches state 1 , given $X_{0}=i$, we have to consider another DTMC where state 1 is absorbing. The associated TPM is

$$
\mathbf{P}^{\prime}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.05 & 0.70 & 0.25 \\
0.01 & 0.50 & 0.49
\end{array}\right]
$$

- Requested expected value

Let

$$
\mathbf{Q}=\left[\begin{array}{ll}
0.70 & 0.25 \\
0.50 & 0.49
\end{array}\right]
$$

be the substochastic matrix governing the transitions between the states in $T=$ $\{2,3\}$, the class of transient states of this new DTMC, and

$$
\tau=\inf \left\{n \in \mathbb{N}_{0}: X_{n} \notin T\right\}
$$

be the number of generations until a family to reaches state 1 . Then, by capitalizing on the fact that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

we obtain

$$
\begin{aligned}
{\left[E\left(\tau \mid X_{0}=i\right)\right]_{i \in T} } & =(\mathbf{I}-\mathbf{Q})^{-1} \times \underline{1} \\
& =\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
0.70 & 0.25 \\
0.50 & 0.49
\end{array}\right]\right)^{-1} \times \underline{1} \\
& =\left[\begin{array}{rr}
0.3 & -0.25 \\
-0.5 & 0.51
\end{array}\right]^{-1} \times \underline{1}
\end{aligned}
$$

$$
\begin{aligned}
{\left[E\left(\tau \mid X_{0}=i\right)\right]_{i \in T} } & =\frac{1}{0.3 \times 0.51-(-0.25) \times(-0.5)}\left[\begin{array}{cc}
0.51 & 0.25 \\
0.5 & 0.3
\end{array}\right] \times \underline{1} \\
& =\frac{1}{0.028}\left[\begin{array}{c}
0.76 \\
0.8
\end{array}\right] \\
& =\left[\begin{array}{c}
27.142857 \\
28.571429
\end{array}\right]
\end{aligned}
$$

Thus, the requested expected value equals

$$
E\left(\tau \mid X_{0}=3\right)=28.571429 .
$$

2. The following model can be used to describe the number of women (mothers and daughters) in a given area. The number of mothers is a r.v. $X \sim \operatorname{Poisson}(\lambda)$. Independently of the others, every mother gives birth to a Poisson (μ)-distributed number of daughters.
Let W be the total number of women (mothers and daughters) in the area. Show that:
(a) the p.g.f. of W is given by $e^{-\lambda\left[1-s e^{-\mu(1-s)}\right]}$;

- Auxiliary r.v.
$X=$ number of mothers
$X \sim \operatorname{Poisson}(\lambda)$
$Z_{l}=$ number of daughters from mother l
$Z_{l} \stackrel{i . i . d .}{\sim} Z, l \in \mathbb{N}$

- Important r.v.

$W=X+\sum_{l=1}^{X} Z_{l}$
$=$ total number of women (mothers and daughters)

- Requested p.g.f.

$$
\begin{aligned}
P_{W}(s) & =E\left(s^{W}\right) \\
& =E\left(s^{X+\sum_{l=1}^{X} z_{l}}\right) \\
& =E\left[E\left(s^{X+\sum_{l=1}^{X} Z_{l}} \mid X\right)\right]
\end{aligned}
$$

$$
\text { where the r.v. } E\left(s^{X+\sum_{l=1}^{X} z_{l}} \mid X\right) \text { takes value }
$$

$$
\begin{array}{rll}
E\left(s^{X+\sum_{l=1}^{X} Z_{l}} \mid X=x\right) & \stackrel{X}{\Perp} s^{x} E\left(s^{\sum_{l=1}^{x} Z_{l}}\right) \\
& \stackrel{Z_{l}^{i . i . d .}}{=} Z & s^{x}\left[E\left(s^{Z}\right)\right]^{x} \\
& = & {\left[s P_{Z}(s)\right]^{x},}
\end{array}
$$

with probability $P(X=x)$. Consequently,

$$
\begin{array}{rll}
P_{W}(s) & = & E\left\{\left[s P_{Z}(s)\right]^{X}\right\} \\
& \stackrel{\text { form. }}{=} & e^{-\lambda\left[1-s P_{Z}(s)\right]} \\
& \stackrel{\text { form. }}{=} & e^{-\lambda\left[1-s e^{-\mu(1-s)}\right] .}
\end{array}
$$

(b) $E(Z)=\lambda(1+\mu)$.

- Requested expected value

$$
\begin{aligned}
E(W) & \left.\stackrel{f o r m .}{=} \frac{d P_{W}(s)}{d s}\right|_{s=1} \\
& =\left.\frac{d e^{-\lambda\left(1-s e e^{-\mu(1-s)}\right)}}{d s}\right|_{s=1} \\
& =-\left.\frac{d \lambda\left[1-s e^{-\mu(1-s)}\right.}{d s}\right|_{s=1} \times\left. e^{-\lambda\left[1-s e^{-\mu(1-s)}\right)}\right|_{s=1} \\
& =\lambda \times\left.\frac{d s e^{-\mu(1-s)}}{d s}\right|_{s=1} \times 1 \\
& =\lambda \times\left.\left[e^{-\mu(1-s)}+s \mu e^{-\mu(1-s)}\right]\right|_{s=1} \\
& =\lambda(1+\mu) .
\end{aligned}
$$

Group 6 - Continuous time Markov chains

9.0 points

1. Passengers arrive at (resp. trains depart from) a train station according to a Poisson process with rate equal to 20 passengers per minute (resp. 12 trains per hour). Let $X(t)$ be the number of passengers at the station at time t waiting for the next train to depart.
(a) Draw the rate diagram and derive the infinitesimal generator \mathbf{R} of the $\operatorname{CTMC}\{X(t): \quad$ (1.5) $t \geq 0\}$.
Hint: Even though $\{X(t): t \geq 0\}$ is not a birth-death process, it might be useful to interpret an arrival of a passenger as a birth and note that a departure of a train implies the "death" of all passengers at the train station.

- CTMC
$\{X(t): t \geq 0\}$
$X(t)=$ no. of passengers at the train station at time t waiting for the next train to depart
- Auxiliary r.v.
$B=$ time (in minutes) until the arrival of the next passenger
$B \sim \operatorname{Exponential}(\lambda=20)$
$D=$ time (in minutes) until the departure of the next train
$D \sim \operatorname{Exponential}(\mu=12 / 60=0.2)$
- State space
$\mathcal{S}=\mathbb{N}_{0}$
- Possible transitions (embedded DTMC)

If we interpret an arrival of a passenger as a birth and note that a departure of a train implies the "death" of all passengers at the train station, the embedded DTMC transitions from:

- state i to state $0(i \in \mathbb{N})$ - if a train departs before the next passenger arrives;
- state i to state $i+1\left(i \in \mathbb{N}_{0}\right)$ - if a passenger arrives before the next train departs.

- Rate diagram

Recall that the rate diagram of a CTMC is a directed graph — with no loops - in which each state is represented by a node and there is an arc going from node i to node j (if $q_{i j}>0$) with $q_{i j}$ written on it.

- Infinitesimal generator

This matrix has entries

$$
r_{i j}= \begin{cases}q_{i j}, & i \neq j \\ -\nu_{i}=-\sum_{m \in \mathcal{S}} q_{i m}, & j=i\end{cases}
$$

and in this case it is equal to

$$
\mathbf{R}=\left[r_{i j}\right]_{i, j \in \mathcal{S}}
$$

$$
=\left[\begin{array}{ccccccc}
-\lambda & \lambda & 0 & 0 & 0 & 0 & \cdots \\
\mu & -(\lambda+\mu) & \lambda & 0 & 0 & 0 & \cdots \\
\mu & 0 & -(\lambda+\mu) & \lambda & 0 & 0 & \cdots \\
\mu & 0 & 0 & -(\lambda+\mu) & \lambda & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots
\end{array}\right]
$$

(b) Write the Kolmogorov's forward differential equations in terms of $P_{0 j}(t)=P[X(t)=j \mid$ $X(0)=0]$, for $j \in \mathbb{N}_{0}$.

- Kolmogorov's forward differential equations

These can be written in matrix form:

$$
\begin{aligned}
& \frac{d \mathbf{P}(t)}{d t}=\left[\frac{d P_{i j}(t)}{d t}\right]_{i, j \in \mathcal{S}} \\
& \stackrel{\text { form. }}{=} \\
& \mathbf{P}(t) \times \mathbf{R} .
\end{aligned}
$$

Since $i=0$, we are only interested in the first row of the previous matrix

$$
\left[\frac{d P_{0 j}(t)}{d t}\right]_{j \in \mathcal{S}}=\left[P_{0 j}(t)\right]_{j \in \mathcal{S}} \times \mathbf{R}
$$

Hence the following Kolmogorov's forward differential equations:

$$
\begin{aligned}
\frac{d P_{00}(t)}{d t} & =-\lambda P_{00}(t)+\mu \sum_{m=1}^{+\infty} P_{0 m}(t) \\
& =-\lambda P_{00}(t)+\mu\left[1-P_{00}(t)\right] \\
& =-(\lambda+\mu) P_{00}(t)+\mu
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d P_{01}(t)}{d t}=\lambda P_{00}(t)-(\lambda+\mu) P_{01}(t) \\
& \frac{d P_{02}(t)}{d t}=\lambda P_{01}(t)-(\lambda+\mu) P_{02}(t)
\end{aligned}
$$

$$
\frac{d P_{0 j}(t)}{d t}=\lambda P_{0 j-1}(t)-(\lambda+\mu) P_{0 j}(t), j \in \mathbb{N}
$$

(c) Show that the equilibrium probabilities $P_{j}=\lim _{t \rightarrow+\infty} P_{0 j}(t)=(1 / 101) \times(100 / 101)^{j}$, (2.5) $j \in \mathbb{N}_{0}$.
Hint: Recall that $\underline{P} \times \mathbf{R}=\underline{0}$ and $\sum_{j=0}^{+\infty} P_{j}=1$, where $\underline{P}=\left[P_{j}\right]_{j \in \mathbb{N}_{0}}$ is the row vector of the equilibrium probabilities.

- Equilibrium probabilities $P_{j}=\lim _{t \rightarrow+\infty} P_{0 j}(t)$

Let $\underline{P}=\left[P_{j}\right]_{j \in \mathbb{N}_{0}}$ be the row vector of the equilibrium probabilities. Then these probabilities can be obtained by solving

$$
\underline{P} \times \mathbf{R}=\underline{0}
$$

subjected to $\sum_{j=0}^{+\infty} P_{j}=1$. For instance, the first set of equations (corresponding to $i=0$) lead to

$$
\left\{\begin{array}{l}
-\lambda P_{0}+\mu \sum_{m=1}^{+\infty} P_{m}=0 \\
\lambda P_{0}-(\lambda+\mu) P_{1}=0 \\
\lambda P_{1}-(\lambda+\mu) P_{2}=0 \\
\vdots \\
\lambda P_{j-1}-(\lambda+\mu) P_{j}=0, j \in \mathbb{N}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
-\lambda P_{0}+\mu\left(1-P_{0}\right)=0 \\
P_{1}=\frac{\lambda}{\lambda+\mu} P_{0} \\
P_{2}=\frac{\lambda}{\lambda+\mu} P_{1} \\
\vdots \\
P_{j}=\frac{\lambda}{\lambda+\mu} P_{j-1}, j \in \mathbb{N}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
P_{0}=\frac{\mu}{\lambda+\mu} \\
P_{1}=\frac{\lambda}{\lambda+\mu} \times \frac{\mu}{\lambda+\mu} \\
P_{2}=\left(\frac{\lambda}{\lambda+\mu}\right)^{2} \times \frac{\mu}{\lambda+\mu} \\
\vdots \\
P_{j}=\left(\frac{\lambda}{\lambda+\mu}\right)^{j} \times \frac{\mu}{\lambda+\mu}, j \in \mathbb{N}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Equivalently, } \\
& \qquad P_{j} \stackrel{\lambda=20, \mu=0.2}{\underline{=}}(1 / 101) \times(100 / 101)^{j}, j \in \mathbb{N}_{0} .
\end{aligned}
$$

2. An average of 80 jobs are submitted to a university computer center per hour. Assuming that the computer service is modeled as an $M / M / 1$ queueing system:
(a) what should be the service rate if the average turnaround time (period from the (1.5) submission a job until getting this job done) is to be smaller than 10 minutes?

- Birth-death queueing system
$M / M / 1$ with $\lambda=80$ (jobs per hour)
- Traffic intensity/ergodicity condition
$\rho=\frac{\lambda}{\mu}=\frac{80}{\mu}<1$
- Performance measure (in the long-run)
$W_{s}=$ turnaround time (in hours)
$E\left(W_{s}\right) \stackrel{\text { form }}{=} \frac{1}{\mu(1-\rho)}$
- Requested service rate

We have to deal with $\mu>80$ and

$$
\begin{aligned}
\mu: & E\left(W_{s}\right)<\frac{10}{60} \text { (i.e., } 10 \text { minutes) } \\
& \frac{1}{\mu\left(1-\frac{\lambda}{\mu}\right)}<\frac{1}{6} \\
& \frac{1}{\mu-\lambda}<\frac{1}{6} \\
& \mu>\frac{6}{1}+\lambda \\
& \mu>86 \text { (jobs per hour). }
\end{aligned}
$$

(b) find the average number of jobs found in the system, when the service rate is equal to (1.0) $\mu=1.5$ jobs per minute;

- Traffic intensity/ergodicity condition
$\rho=\frac{\lambda}{\mu}=\frac{80}{1.5 \times 60}=\frac{8}{9}<1$
- Performance measure (in the long-run)
$L_{s}=$ number of customers in the drive-in banking service
- Requested expected value

$$
\begin{aligned}
E\left(L_{s}\right) & \stackrel{\text { form. }}{=} \frac{\rho}{1-\rho} \\
& =\frac{\frac{8}{9}}{1-\frac{8}{9}} \\
& =8 .
\end{aligned}
$$

(c) calculate the probability that the turnaround time exceeds 10 minutes, considering the (1.5) same service rate as in (b).

- Performance measure (in the long-run)
$W_{s}=$ turnaround time (in hours)
$W_{s} \sim \operatorname{Exponential}(\mu(1-\rho))$
- Requested probability

$$
\begin{array}{rll}
P\left(W_{s}>t\right) & = & e^{-\mu(1-\rho) t} \\
& \stackrel{t=10}{\underline{60},}, \text { etc. } & e^{-90(1-8 / 9) t} \\
& =e^{-\frac{5}{3}} .
\end{array}
$$

