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Group 1 — Introduction to Stochastic Processes 2.5 points

Consider a stochastic process {X(t) : t � 0} — with stationary and independent increments

— and assume that X(0) = 0.

(a) Show that the mean function is equal to E[X(t)] = µ t, where µ = E[X(1)]. (1.0)

Hint: The only solution to the functional equation f(t+ s) = f(t) + f(s) is f(t) = c t,

where c = f(1). This result is relevant to solve lines (a) and (b).

• Stochastic process

{X(t) : t � 0} with stationary and independent increments

• Initial condition

X(0) = 0

• A property of the mean function

Let

f(t) = E[X(t)]
X(0)=0
= E[X(t)�X(0)].

Then, by capitalizing on the stationary increments of this process, we get

f(t+ s) = E[X(t+ s)]

= E[X(t+ s)�X(0)]

= E {[X(t+ s)�X(s)] + [X(s)�X(0)]}
= E[X(t+ s)�X(s)] + E[X(s)�X(0)]

stat. inc.

= E[X(t)�X(0)] + E[X(s)�X(0)]

= f(t) + f(s),

for t, s � 0.

• Deriving the mean function

As mentioned in the hint, the only solution to the functional equation f(t + s) =

f(t) + f(s) is

f(t) = µ t,

where µ = f(1) = E[X(1)]. QED
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(b) Prove that the variance function is given by V [X(t)] = �2 t, where �2 = V [X(1)]. (1.5)

• A property of the variance function

Let

g(t) = V [X(t)]
X(0)=0
= V [X(t)�X(0)].

Then, by capitalizing on both the stationary and independent increments of this

process, we obtain

g(t+ s) = V [X(t+ s)]

= V [X(t+ s)�X(0)]

= V {[X(t+ s)�X(s)] + [X(s)�X(0)]}
indep. inc.

= V [X(t+ s)�X(s)] + V [X(s)�X(0)]
stat. inc.

= V [X(t)�X(0)] + V [X(s)�X(0)]

= g(t) + g(s),

for t, s � 0.

• Deriving the variance function

Once again, the only solution to the functional equation g(t+ s) = g(t) + g(s) is

g(t) = �2 t,

where �2 = g(1) = V [X(1)]. QED

Group 2 — Poisson Processes 9.5 points

1. Arrivals of customers at a supermarket are modeled by a Poisson process with a rate of

� = 10 customers per minute.

(a) Let M (resp. N) be the number of customers arriving between 9:00 and 9:10 (resp. 9:30 (1.0)

and 9:35).

What is the distribution of M +N?

• Stochastic process

{N(t) : t � 0} ⇠ PP (� = 10)

N(t) = number of arrivals by time t (time in minutes)

• Relevant facts

N(t) ⇠ Poisson(� t)

{N(t) : t � 0} has stationary and independent increments

• R.v.

M = number of customers arriving between 9:00 and 9:10

N = number of customers arriving between 9:30 and 9:35

• Distributions of M and N

Due to the stationary increments of the process {N(t) : t � 0} and the fact that

N(t) ⇠ Poisson(10 t), we can add that:
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M = N(9⇥ 60 + 10)�N(9⇥ 60)

⇠ N(9⇥ 60 + 10� 9⇥ 60)

⇠ N(10)

⇠ Poisson(10⇥ 10 = 100)

N = N(9⇥ 60 + 35)�N(9⇥ 60 + 30)

⇠ N(9⇥ 60 + 35� 9⇥ 60� 30)

⇠ N(5)

⇠ Poisson(10⇥ 5 = 50).

• Distribution of M +N

SinceM and N refer to the number of arrivals in two non-overlapping time intervals,

we can invoke the fact that the process has independent increments to conclude that

M and N are independent r.v.

Moreover, since the sum of two independent Poisson r.v. with parameters �
i

, i = 1, 2,

has a Poisson distribution with parameter (�1 + �2), we get

M +N ⇠ Poisson(100 + 50 = 150).

(b) Suppose that 300 customers arrived during the first 30 minutes. (1.0)

Obtain an approximate value to the probability that at most 200 customers arrived

during the first 20 minutes?

• R.v.

(N(s) | N(t) = n)
form.⇠ Binomial(n, s/t), 0 < s < t

• Requested probability (approximate value)

Using the normal approximation to the binomial c.d.f., we obtain

P [N(20)  200 | N(30) = 300] = F
Binomial(n=300, s/t=20/30)(200)

' �

2

4

200� 300⇥ 2
3

q

300⇥ 2
3 ⇥

�

1� 2
3

�

3

5

= �(0)

= 0.5.

[According to Mathematica, F
Binomial(n=300, s/t=20/30)(200) = 0.521703.]

(c) Admit any customer spends a random time (in minutes) in the supermarket with a (2.0)

Weibull distribution with scale parameter ↵ = 5
p
2 (resp. shape parameter � = 2).

Find the probability that there are at least 50 customers still in the supermarket 5

minutes after it opened.

• R.v.

S = time spent in the supermarket by a customer

S ⇠ Weibull(↵ = 5
p
2, � = 2)
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• Non-homogenous Bernoulli splitting

A customer, who arrived at time s (0 < s < t), will be still in the supermarket at

time t with probability

p(s) = P (S > t� s)

=

Z +1

t�s

f
S

(u) du

=

Z +1

t�s

�

↵

⇣x

↵

⌘

��1

e�(
x

↵

)
�

dx

= �e�(
x

↵

)
�

�

�

�

+1

t�s

= e�(
t�s

↵

)
�

.

Furthermore, the number of customers in this supermarket at time t, N
sup

(t), results

from a non-homogenous Bernoulli splitting of {N(t) : t � 0}. Consequently,

N
sup

(t)
form.⇠ Poisson

✓

�

Z

t

0

p(s) ds

◆

,

where
Z

t

0

p(s) ds
�=2
=

Z

t

0

e�(
t�s

↵

)
2

ds

=
p
2⇡ ⇥ ↵/

p
2⇥

Z

t

0

1p
2⇡ ⇥ ↵/

p
2
e
� (s�t)2

2⇥(↵/

p
2)2 ds

=
p
2⇡ ⇥ ↵/

p
2⇥

h

F
N(0,(↵/

p
2)2)(t)� F

N(0,(↵/
p
2)2)(0)

i

=
p
2⇡ ⇥ ↵/

p
2⇥



�

✓

t� t

↵/
p
2

◆

� �

✓

0� t

↵/
p
2

◆�

=
p
2⇡ ⇥ ↵/

p
2⇥



�(0)� �

✓

� t

↵/
p
2

◆�

↵=5
p
2, t=5
=

p
2⇡ ⇥ 5⇥ [0.5� �(�1)]

=
p
2⇡ ⇥ 5⇥ [0.5� 1 + �(1)]

tables

=
p
2⇡ ⇥ 5⇥ [0.5� 1 + 0.8413]

' 4.277561.

• Requested probability

Using the normal approximation to the Poisson c.d.f., we obtain

P [N
sup

(t) � 50] ' 1� F
Poisson(10⇥4.277561)(50� 1)

' 1� �



(50� 1)� 10⇥ 4.277561p
10⇥ 4.277561

�

' 1� �(0.95)
tables

= 1� 0.8289

= 0.1711.

2. Suppose that the emissions of very rare particles are governed by a non-homogeneous Poisson

process with intensity function �(t) = e�t, t � 0.
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(a) Find the probability that no particles were emitted in the first 2 hours and exactly one (1.5)

particle was emitted after those first 2 hours.

• Stochastic process

{N(t) : t � 0} ⇠ NHPP

N(t) = number of particle emissions by time t

• Intensity function

�(t) = e�t, t � 0

• Mean value function

m(t) = E[N(t)]

=

Z

t

0

�(s) ds

=

Z

t

0

e�s ds

= �e�s

�

�

t

0

= 1� e�t, t � 0

• Relevant facts

N(t) ⇠ Poisson(m(t))

N(t+ s)�N(s) ⇠ Poisson(m(t+ s)�m(s))

{N(t) : t � 0} has independent increments

• Requested probability

Since m(t) = 1� e�t 2 [0, 1], for t � 0, we can devise the distribution of N(+1)�
N(2), the total number of particles emitted after the first 2 hours:

N(+1)�N(2) ⇠ Poisson(m(+1)�m(2) = (1� e�1)� (1� e�2) = e�2).

Thus, the requested probability:

P [N(2) = 0, N(1)�N(2) = 1]
indep. inc.

= P [N(2) = 0]⇥ P [N(1)�N(2) = 1]

=
e�m(2) [m(2)]0

0!

⇥e�[m(+1)�m(2)] [m(+1)�m(2)]1

1!
= e�(1�e

�2) ⇥ e�e

�2
e�2

= e�3.

(b) Obtain E[S1 | N(2) = 0, N(1)�N(2) = 1]. (2.0)

Hint: Recall that E(X) =
R +1
0 [1� F

X

(x)] dx for any non-negative r.v. X.

• R.v.

S1 = time of the emission of the first particle

• C.d.f. of [S1 | N(2) = 0, N(1)�N(2) = 1)

For 0 < t < 2,

F
S1|N(2)=0,N(1)�N(2)=1(t) = P [S1  t | N(2) = 0, N(1)�N(2) = 1]

= 0.
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Moreover, for t � 2,

F
S1|N(2)=0,N(1)�N(2)=1(t) = P [S1  t | N(2) = 0, N(1)�N(2) = 1]

= P [N(t) � 1 | N(2) = 0, N(1)�N(2) = 1]

=
P [N(t) � 1, N(2) = 0, N(1)�N(2) = 1]

P [N(2) = 0, N(1)�N(2) = 1]
indep. inc.

= {P [N(2) = 0]⇥ P [N(t)�N(2) = 1]

⇥P [N(1)�N(t) = 0]}
÷{P [N(2) = 0]⇥ P [N(1)�N(2) = 1]}

=
P [N(t)�N(2) = 1]⇥ P [N(1)�N(t) = 0]

P [N(1)�N(2) = 1]
,

where

P [N(t)�N(2) = 1] =
e�[m(t)�m(2)] [m(t)�m(2))]1

1!
= e�[(1�e

�t)�(1�e

�2)] ⇥ (e�2 � e�t)

= e�(e�2�e

�t) ⇥ (e�2 � e�t)

P [N(1)�N(t) = 0] =
e�[m(+1)�m(t)] [m(+1)�m(t)]0

0!
= e�[1�(1�e

�t)]

= e�e

�t

P [N(1)�N(2) = 1] =
e�[m(+1)�m(2)] [m(+1)�m(2)]1

1!
= e�[1�(1�e

�2)] e�2

= e�2�e

�2
.

Consequently, for t � 2,

F
S1|N(2)=0,N(1)�N(2)=1(t) =

e�(e�2�e

�t) (e�2 � e�t)⇥ e�e

�t

e�2�e

�2

= 1� e2�t.

• Requested conditional expected value

Since we are dealing with a non-negative r.v.,

E[S1 | N(2) = 0, N(1)�N(2) = 1] =

Z +1

0

[1� F
S1|N(2)=0,N(1)�N(2)=1(t)] dt

=

Z 2

0

dt+

Z +1

2

e2�t dt

= 2 +
�

�e2�t

�

�

�

+1
2

= 2 + 1

= 3.

3. Suppose the number of claims generated by a portfolio of insurance policies is governed by

a conditional Poisson process with random rate ⇤ (claims per month).

Obtain the autocovariance function of this stochastic process. (2.0)
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• Relevant stochastic process

{N(t) : t � 0} ⇠ ConditionalPP (⇤)

N(t) = number of claims up to month t

• Important

{N(t) : t � 0} has stationary increments.

{(N(t) | ⇤ = �) : t � 0} ⇠ PP (�) and therefore, conditionally on {⇤ = �}, we deal

with stationary and independent increments. Furthermore,

(N(t) | ⇤ = �) ⇠ Poisson(� t)

E [N(t) | ⇤ = �] = � t

V [N(t) | ⇤ = �] = � t.

• Mean value function

E[N(t)] = E {E [N(t) | ⇤ = �]}
= E(⇤ t)

= E(⇤)⇥ t

• Variance function

V [N(t)] = V {E [N(t) | ⇤ = �]}+ E {V [N(t) | ⇤ = �]}
= V (⇤ t) + E(⇤ t)

= V (⇤)⇥ t2 + E(⇤)⇥ t

• Autocovariance function

Please note that, for 0  s < t,

E[N(s)⇥N(t)] = E{N(s)⇥ [N(t)�N(s) +N(s)]}
= E{N(s)⇥ [N(t)�N(s)]}+ E[N2(s)]

= E{N(s)⇥ [N(t)�N(s)]}+ E[N2(s)]

= E (E{N(s)⇥ [N(t)�N(s)] | ⇤}) + E[N2(s)],

where

E[N2(s)] = V [N(s)] + E2[N(s)]

= V (⇤) s2 + [E(⇤) s]2

= E(⇤2) s2

and the r.v. E{N(s)⇥ [N(t)�N(s)] | ⇤} takes value

E{N(s)⇥ [N(t)�N(s)] | ⇤ = �} cond. indep. inc

= E[N(s) | ⇤ = �]⇥ E[N(t)�N(s) | ⇤ = �]
cond. stat. inc

= E[N(s) | ⇤ = �]⇥ E[N(t� s) | ⇤ = �]

= � s⇥ � (t� s)

= �2 s(t� s),

with associated p.(d.)f. f⇤(�). Therefore
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E{N(s)⇥ [N(t)�N(s)]} = E (E{N(s)⇥ [N(t)�N(s)] | ⇤})
= E[⇤2 s(t� s)]

= E(⇤2) s(t� s)

E[N(s)⇥N(t)] = E(⇤2) s(t� s) + E(⇤2) s2

= E(⇤2) s t.

Finally, for 0  s < t,

cov(N(s), N(t)) = E[N(s)⇥N(t)]� E[N(s)]⇥ E[N(t)]

= E(⇤2) s t� E2(⇤) s t

= V (⇤) s t.

Group 3 — Renewal Processes 8.0 points

1. Airplanes land at a small airport according to a Poisson process with rate � (airplanes per

hour).

(a) Derive the renewal function m(t) of the renewal process consisting of counting just even (2.5)

landings (i.e., the 2nd., 4th., 6th., etc. landings).

Hint: Capitalize on the fact that �

2

s (s+2�) =
�

2s �
�

2(s+2�) .

• Original stochastic process

{N?(t) : t � 0} ⇠ PP (�)

N?(t) = number of landings until time t

• Original inter-renewal times

X?

i

i.i.d.⇠ X?, i 2 N
X? ⇠ Exponential(�)

• Renewal process

{N(t) : t � 0}
N(t) = number of even landings until time t

• Inter-renewal times

X
i

i.i.d.⇠ X, i 2 N
X ⇠ Gamma(2,�) (convolution of two indep. exponentially distibuted r.v.)

• Deriving the renewal function

Since the X ⇠ Gamma(2,�), its LST is given by

F̃ (s) =

Z +1

0�
e�sx dF (x)

= M
X

(�s)

form.

=

✓

�

�+ s

◆2

.
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Moreover, the LST of the renewal function can be obtained in terms of F̃ :

m̃(s)
form.

=
F̃ (s)

1� F̃ (s)

=

�

�

�+s

�2

1�
�

�

�+s

�2

=
�2

s (s+ 2�)

=
�

2s
� �

2(s+ 2�)
.

Taking advantage of the LT in the formulae, we obtain
dm(t)

dt
= LT�1 [m̃(s), t]

= LT�1



�

2s
� �

2(s+ 2�)
, t

�

=
�

2
⇥ LT�1



1

s
, t

�

+
�

2
⇥ LT�1



1

(s+ 2�)1
, t

�

=
�

2
⇥ 1 +

�

2
⇥ t1�1 e�2� t

(1� 1)!

=
�

2
+

� e�2� t

2

m(t) =

Z

t

0

✓

�

2
+

� e�2�x

2

◆

dx

=

✓

� x

2
� e�2�x

4

◆

�

�

�

�

t

0

=
� t

2
� 1� e�2� t

4
, t � 0.

(b) Show that the renewal function obtained in (a) verifies the elementary renewal theorem. (1.0)

• Verification of the elementary renewal theorem (ERT)

Let µ = E(X) = E[Gamma(2,�)] = 2
�

. Then

lim
t!+1

m(t)

t
= lim

t!+1

 

� t

2 � 1�e

�2� t

4

t

!

=
�

2
� 1

+1

=
1

µ
,

hence the ERT is verified.

(c) Obtain an approximate value to the probability that the number of even landings (1.5)

exceeds 10 in the first day, when � = 1.

• Inter-renewal times

X
i

i.i.d.⇠ X, i 2 N
X ⇠ Gamma(2,� = 1)

µ = E(X)
form.

= 2

9

�2 = V (X)
form.

= 2

• Requested approximate probability

P [N(t) > n] = 1� P [N(t) < n+ 1]

form

' 1� �

"

(n+ 1)� t/µ
p

t�2/µ3

#

t=24h, n=10
= 1� �

"

(10 + 1)� 24/2
p

24⇥ 2/23

#

' 1� �(�0.29)

= �(0.29)
tables

= 0.6141.

• Obs. — This a rough approximation of the exact value of the requested probability:

1� P [N(t)  9] = 1� P [N?(t)  2⇥ 9 + 1]
table

= 1� 0.1803 = 0.8197.

2. The time (in minutes) Clotilde takes to get to the top of a sky piste is a r.v. with c.d.f. F (3.0)

and expected value µ
F

, whereas the duration of the descent (also in minutes) is uniformly

distributed in the interval (0,7). Admit she decides to rent a new pair of skis for c monetary

units whenever the descent lasts more than ⌧ minutes.

Find the value of ⌧ that minimizes the money spent in ski rentals per time unit in the

long-run. Comment this result.

• Renewal process

{N(t) : t � 0}
N(t) = number of completed cycles of ascent/descent by time t

• R.v.

A
n

= duration of the nth ascent to the top of the piste

A
n

i.i.d.⇠ A ⇠ F, n 2 N
D

n

= duration of the nth descent from the top of the piste

D
n

i.i.d.⇠ D ⇠ Uniform(0, 7), n 2 N

• Inter-renewal times

X
n

i.i.d.⇠ X, n 2 N
X = A+D

• Reward renewal process

{R(t) =
P

N(t)
n=1 Rn

: t � 0}
R(t) = total spent in ski rentals until time t

R
n

=

(

c, if D
n

> ⌧ (i.e., if the nth descent lasted more than ⌧ minutes)

0, otherwise

(X
n

, R
n

)
i.i.d.⇠ (X,R), n 2 N
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• Expected inter-renewal time

E(X) = E(A) + E(D)
form.

= µ
F

+ 0+7
2 = µ

F

+ 7
2

• Expected amount spent (per completed cycle of ascent/descent)

For 0 < ⌧  7, we have

E(R) = c⇥ P (D > ⌧) + 0⇥ P (D  ⌧)

= c⇥
Z +1

⌧

f
D

(u) du

= c⇥
Z 7

⌧

1

7
du

= c⇥ 7� ⌧

7

• Amount spent (per completed cycle of ascent/descent) per time unit in the

long-run

Since E(X), E(R) < +1, we can add that

R(t)

t

w.p.1! E(R)

E(X)
,

where

E(R)

E(X)
= h(⌧)

=
c(7�⌧)

7

µ
F

+ 7
2

=
2c(7� ⌧)

14µ
F

+ 49
, 0 < ⌧  7.

• Minimizing the amount spent per time unit in the long-run

Since h(⌧), 0 < ⌧  7, is a decreasing function of ⌧ in the interval (0, 7], the value of ⌧

that minimizes h(⌧) is equal to ⌧ ? = 7.

• Comment

Not only ⌧ ? does not depend on the ski rental (c) or on µ
F

, but also its value means

that Clotilde should never replace her skis if she is willing to minimize the amount

spent per time unit in the long-run in ski rentals.

Group 4 — Renewal Processes (cont’d) 1.5 points

The number of inspections by a supervisor to an industrial plant is governed by a delayed (1.5)

renewal process such that:

• the first inspection time (in years) follows an exponential distribution with unit mean;

• the subsequent inter-inspection times follow an exponential distribution with expected

value equal to 0.5.

Derive the c.d.f. of S2, the time of the second inspection.

11

• Delayed renewal process

{N
D

(t) : t � 0}
N

D

(t) = number of inspections done by time t

• Inter-renewal times

X
i

independent r.v., i 2 N
X1 ⇠ Exponential(1)

X
i

i.i.d.⇠ Exponential(0.5�1 = 2)

• Important

G(x) = P (X1  x) = 1� e�x, for x � 0 (0, otherwise)

F (x) = P (X
i

 x) = 1� e�2x, for x � 0 and i 2 N\{1} (0, otherwise)

• R.v.

S2 = time of the second inspection

• C.d.f. of S2

P (S
n

 t)
form.

= (G ? F
n�1)(t)

n=2
=

Z

t

0

G(t� x) dF (x)

=

Z

t

0

⇥

1� e�(t�x)
⇤

⇥ 2 e�2x dx

=

Z

t

0

2 e�2x dx� 2 e�t

Z

t

0

e�x dx

= �e�2x
�

�

t

0
+ 2 e�t ⇥

�

�e�x

�

�

�

t

0

= (1� e�2t) + 2 e�t (e�t � 1)

= 1 + e�2t � 2 e�t.

Group 5 — Discrete time Markov chains 9.5 points

1. A study of occupational mobility of families across generations was conducted after WWII.

Three occupation levels were identified:

• upper level (executive, managerial, high administrative, professional) — state 1;

• middle level (high grade supervisor, non-manual, skilled manual) — state 2;

• lower level (semi-skilled or unskilled) — state 3.

Transition probabilities from generation to generation were estimated to be

P =

2

6

4

0.45 0.48 0.07

0.05 0.70 0.25

0.01 0.50 0.49

3

7

5

.

(a) Determine fn

ij

= P (X
n

= j,X
n�1 6= j, . . . , X1 6= j | X0 = i), for i, n = 1, 2, 3 and j = 1. (2.0)

12



• DTMC

{X
n

: n 2 N0}
X

n

= level of the family at the nth generation

• State space

S = {1, 2, 3}
1 = upper level

2 = middle level

3 = lower level

• TPM

P =

2

6

4

0.45 0.48 0.07

0.05 0.70 0.25

0.01 0.50 0.49

3

7

5

• Requested probabilities

Let:

(i) fn

ij

= P (X
n

= j,X
n�1 6= j, . . . , X1 6= j | X0 = i) be the probability of reaching

state j for the first time starting from state i, for i, j 2 S and n 2 N;
(ii) fn

j

= [fn

ij

]
i2S be the associated vector for fixed j 2 S and n 2 N.

According to the formulae,

fn

j

=

(

f 1
j

= [P
ij

]
i2S , n = 1

(j)P⇥ fn�1
j

=
⇥

(j)P
⇤

n�1 ⇥ f 1
j

, n = 2, 3, . . . ,

where (j)P is obtained by setting all the entries of the jth column of P equal to 0.

When j = 1, we successively get

(1)P =

2

6

4

0 0.48 0.07

0 0.70 0.25

0 0.50 0.49

3

7

5

f 1
1

= [P
i 1]i2S

=

2

6

4

0.45

0.05

0.01

3

7

5

f 2
1

= (1)P⇥ f 1
1

=

2

6

4

0 0.48 0.07

0 0.70 0.25

0 0.50 0.49

3

7

5

⇥

2

6

4

0.45

0.05

0.01

3

7

5

=

2

6

4

0.0247

0.0375

0.0299

3

7

5

13

f 3
1

= (1)P⇥ f 2
1

=

2

6

4

0 0.48 0.07

0 0.70 0.25

0 0.50 0.49

3

7

5

⇥

2

6

4

0.0247

0.0375

0.0299

3

7

5

=

2

6

4

0.020093

0.033725

0.033401

3

7

5

.

(b) What is the long-run percentage of generations that a family spends in state 3?1 (2.0)

• Important

We are dealing with an irreducible DTMC with finite state space. Hence, all states

are positive recurrent[, by Prop. 3.55]. Furthermore, the DTMC seems aperiodic.

• Stationary distribution

Since the DTMC is irreducible positive recurrent and aperiodic we can add that

lim
n!+1

P n

ij

= ⇡
j

> 0, i, j 2 S,

where {⇡
j

: j 2 S} is the unique stationary distribution and satisfies the following

system of equations:
(

⇡
j

=
P

i2S ⇡i

P
ij

, j 2 S
P

j2S ⇡j

= 1.

Equivalently [(see Prop. 3.68)], the row vector denoting the stationary distribution,

⇡ = [⇡
j

]
j2S , is given by

⇡ = 1⇥ (I�P+ONE)�1,

where:

1 = [1 · · · 1] a row vector with #S ones;

I = identity matrix with rank #S;
P = [P

ij

]
i,j2S is the TPM;

ONE is the #S ⇥#S matrix all of whose entries are equal to 1.

By capitalizing on the inverse in the footnote, we obtain

⇡ = 1⇥ (I�P+ONE)�1

= 1⇥

0

B

@

2

6

4

1 0 0

0 1 0

0 0 1

3

7

5

�

2

6

4

0.45 0.48 0.07

0.05 0.70 0.25

0.01 0.50 0.49

3

7

5

+

2

6

4

1 1 1

1 1 1

1 1 1

3

7

5

1

C

A

�1

= 1⇥

2

6

4

1.55 0.52 0.93

0.95 1.3 0.75

0.99 0.5 1.51

3

7

5

�1

1
The following result may be useful:

2

64
1.55 0.52 0.93

0.95 1.3 0.75

0.99 0.5 1.51

3

75

�1

'

2

64
1.179441 �0.237819 �0.608289

�0.513963 1.054516 �0.207219

�0.603090 �0.193256 1.129679

3

75.
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⇡ ' [1 1 1]⇥

2

6

4

1.179441 �0.237819 �0.608289

�0.513963 1.054516 �0.207219

�0.603090 �0.193256 1.129679

3

7

5

= [0.062389 0.623440 0.314171] .

Thus, the long-run percentage of generations that a family spends in state 3 is equal

to [the sum of the entries of the 3rd. column of (I�P+ONE)�1]:

⇡3 ' 0.314171.

(c) Determine the expected number of generations it takes a family to reach state 1, starting (2.0)

from state 3.

• Initial/present state

X0 = i

• Important

To obtain the expected number of generations until a family to reaches state 1,

given X0 = i, we have to consider another DTMC where state 1 is absorbing. The

associated TPM is

P0 =

2

6

4

1 0 0

0.05 0.70 0.25

0.01 0.50 0.49

3

7

5

.

• Requested expected value

Let

Q =

"

0.70 0.25

0.50 0.49

#

be the substochastic matrix governing the transitions between the states in T =

{2, 3}, the class of transient states of this new DTMC, and

⌧ = inf{n 2 N0 : Xn

62 T}

be the number of generations until a family to reaches state 1. Then, by capitalizing

on the fact that
"

a b

c d

#�1

=
1

ad� bc

"

d �b

�c a

#

,

we obtain

[E(⌧ | X0 = i)]
i2T = (I�Q)�1 ⇥ 1

=

 "

1 0

0 1

#

�
"

0.70 0.25

0.50 0.49

#!�1

⇥ 1

=

"

0.3 �0.25

�0.5 0.51

#�1

⇥ 1

15

[E(⌧ | X0 = i)]
i2T =

1

0.3⇥ 0.51� (�0.25)⇥ (�0.5)

"

0.51 0.25

0.5 0.3

#

⇥ 1

=
1

0.028

"

0.76

0.8

#

=

"

27.142857

28.571429

#

.

Thus, the requested expected value equals

E(⌧ | X0 = 3) = 28.571429.

2. The following model can be used to describe the number of women (mothers and daughters)

in a given area. The number of mothers is a r.v. X ⇠ Poisson(�). Independently of the

others, every mother gives birth to a Poisson(µ)�distributed number of daughters.

Let W be the total number of women (mothers and daughters) in the area. Show that:

(a) the p.g.f. of W is given by e�� [1�s e

�µ (1�s)]; (2.5)

• Auxiliary r.v.

X = number of mothers

X ⇠ Poisson(�)

Z
l

= number of daughters from mother l

Z
l

i.i.d.⇠ Z, l 2 N

• Important r.v.

W = X +
P

X

l=1 Zl

= total number of women (mothers and daughters)

• Requested p.g.f.

P
W

(s) = E
�

sW
�

= E
⇣

sX+
P

X

l=1 Zl

⌘

= E
h

E
⇣

sX+
P

X

l=1 Zl | X
⌘i

,

where the r.v. E
⇣

sX+
P

X

l=1 Zl | X
⌘

takes value

E
⇣

sX+
P

X

l=1 Zl | X = x
⌘

X??Z

l= sx E
⇣

s
P

x

l=1 Zl

⌘

Z

l

i.i.d.⇠ Z

= sx
⇥

E
�

sZ
�⇤

x

= [s P
Z

(s)]x ,

with probability P (X = x). Consequently,

P
W

(s) = E
n

[s P
Z

(s)]X
o

form.

= e��[1�s P

Z

(s)]

form.

= e��[1�s e

�µ(1�s)].

QED
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(b) E(Z) = �(1 + µ). (1.0)

• Requested expected value

E(W )
form.

=
dP

W

(s)

ds

�

�

�

�

s=1

=
d e��[1�s e

�µ(1�s)]

ds

�

�

�

�

�

s=1

= �d�[1� s e�µ(1�s)]

ds

�

�

�

�

s=1

⇥ e��[1�s e

�µ(1�s)]
�

�

�

s=1

= �⇥ d s e�µ(1�s)

ds

�

�

�

�

s=1

⇥ 1

= �⇥
⇥

e�µ(1�s) + s µ e�µ(1�s)
⇤

�

�

s=1

= �(1 + µ).

QED

Group 6 — Continuous time Markov chains 9.0 points

1. Passengers arrive at (resp. trains depart from) a train station according to a Poisson process

with rate equal to 20 passengers per minute (resp. 12 trains per hour). Let X(t) be the

number of passengers at the station at time t waiting for the next train to depart.

(a) Draw the rate diagram and derive the infinitesimal generator R of the CTMC {X(t) : (1.5)

t � 0}.
Hint: Even though {X(t) : t � 0} is not a birth-death process, it might be useful to

interpret an arrival of a passenger as a birth and note that a departure of a train implies

the “death” of all passengers at the train station.

• CTMC

{X(t) : t � 0}
X(t) = no. of passengers at the train station at time twaiting for the next train to

depart

• Auxiliary r.v.

B = time (in minutes) until the arrival of the next passenger

B ⇠ Exponential(� = 20)

D = time (in minutes) until the departure of the next train

D ⇠ Exponential(µ = 12/60 = 0.2)

• State space

S = N0

• Possible transitions (embedded DTMC)

If we interpret an arrival of a passenger as a birth and note that a departure of a

train implies the “death” of all passengers at the train station, the embedded DTMC

transitions from:

– state i to state 0 (i 2 N) — if a train departs before the next passenger arrives;

17

– state i to state i + 1 (i 2 N0) — if a passenger arrives before the next train

departs.

• Rate diagram

Recall that the rate diagram of a CTMC is a directed graph — with no loops — in

which each state is represented by a node and there is an arc going from node i to

node j (if q
ij

> 0) with q
ij

written on it.

l

l

m

l

m

l

m

l

m

l

m

l

m

l

m

m

0

1

2

3

4 5

6

7

8

...

• Infinitesimal generator

This matrix has entries

r
ij

=

(

q
ij

, i 6= j

�⌫
i

= �
P

m2S qim, j = i

and in this case it is equal to

R = [r
ij

]
i,j2S

=

2

6

6

6

6

6

6

4

�� � 0 0 0 0 · · ·
µ �(�+ µ) � 0 0 0 · · ·
µ 0 �(�+ µ) � 0 0 · · ·
µ 0 0 �(�+ µ) � 0 · · ·
...

...
...

. . . . . . . . . . . .

3

7

7

7

7

7

7

5

.

(b) Write the Kolmogorov’s forward di↵erential equations in terms of P0 j(t) = P [X(t) = j | (1.0)

X(0) = 0], for j 2 N0.

• Kolmogorov’s forward di↵erential equations

These can be written in matrix form:
dP(t)

dt
=



dP
ij

(t)

dt

�

i,j2S
form.

= P(t)⇥R.

Since i = 0, we are only interested in the first row of the previous matrix


dP0j(t)

dt

�

j2S
= [P0j(t)]

j2S ⇥R.

Hence the following Kolmogorov’s forward di↵erential equations:

dP00(t)

dt
= ��P00(t) + µ

+1
X

m=1

P0m(t)

= ��P00(t) + µ [1� P00(t)]

= �(�+ µ)P00(t) + µ

18



dP01(t)

dt
= �P00(t)� (�+ µ)P01(t)

dP02(t)

dt
= �P01(t)� (�+ µ)P02(t)

...
dP0j(t)

dt
= �P0 j�1(t)� (�+ µ)P0j(t), j 2 N.

(c) Show that the equilibrium probabilities P
j

= lim
t!+1 P0j(t) = (1/101) ⇥ (100/101)j, (2.5)

j 2 N0.

Hint: Recall that P ⇥R = 0 and
P+1

j=0 Pj

= 1, where P = [P
j

]
j2N0 is the row vector of

the equilibrium probabilities.

• Equilibrium probabilities P
j

= lim
t!+1 P0j(t)

Let P = [P
j

]
j2N0 be the row vector of the equilibrium probabilities. Then these

probabilities can be obtained by solving

P ⇥R = 0,

subjected to
P+1

j=0 Pj

= 1. For instance, the first set of equations (corresponding to

i = 0) lead to
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

��P0 + µ
P+1

m=1 Pm

= 0

�P0 � (�+ µ)P1 = 0

�P1 � (�+ µ)P2 = 0
...

�P
j�1 � (�+ µ)P

j

= 0, j 2 N
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

��P0 + µ (1� P0) = 0

P1 =
�

�+µ

P0

P2 =
�

�+µ

P1

...

P
j

= �

�+µ

P
j�1, j 2 N.

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

P0 =
µ

�+µ

P1 =
�

�+µ

⇥ µ

�+µ

P2 =
⇣

�

�+µ

⌘2

⇥ µ

�+µ

...

P
j

=
⇣

�

�+µ

⌘

j

⇥ µ

�+µ

, j 2 N.
Equivalently,

P
j

�=20, µ=0.2
= (1/101)⇥ (100/101)j, j 2 N0.

2. An average of 80 jobs are submitted to a university computer center per hour. Assuming

that the computer service is modeled as an M/M/1 queueing system:

(a) what should be the service rate if the average turnaround time (period from the (1.5)

submission a job until getting this job done) is to be smaller than 10 minutes?

19

• Birth-death queueing system

M/M/1 with � = 80 (jobs per hour)

• Tra�c intensity/ergodicity condition

⇢ = �

µ

= 80
µ

< 1

• Performance measure (in the long-run)

W
s

= turnaround time (in hours)

E(W
s

)
form

= 1
µ(1�⇢)

• Requested service rate

We have to deal with µ > 80 and

µ : E(W
s

) <
10

60
(i.e., 10 minutes)

1

µ
⇣

1� �

µ

⌘ <
1

6

1

µ� �
<

1

6

µ >
6

1
+ �

µ > 86 (jobs per hour).

(b) find the average number of jobs found in the system, when the service rate is equal to (1.0)

µ = 1.5 jobs per minute;

• Tra�c intensity/ergodicity condition

⇢ = �

µ

= 80
1.5⇥60 = 8

9 < 1

• Performance measure (in the long-run)

L
s

= number of customers in the drive-in banking service

• Requested expected value

E(L
s

)
form.

=
⇢

1� ⇢

=
8
9

1� 8
9

= 8.

(c) calculate the probability that the turnaround time exceeds 10 minutes, considering the (1.5)

same service rate as in (b).

• Performance measure (in the long-run)

W
s

= turnaround time (in hours)

W
s

⇠ Exponential(µ(1� ⇢))

• Requested probability

P (W
s

> t) = e�µ(1�⇢) t

t= 10
60 , etc.= e�90 (1�8/9) t

= e�
5
3 .
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