Department of Mathematics, IST - Probability and Statistics Unit

Introduction to Stochastic Processes

2nd. Test ("Recurso")	2nd. Semester - 2013/14
Duration: 1 h 30 m	$\mathbf{2 0 1 4 / 0 7 / 0 1 - \mathbf { 9 : 4 5 } \text { PM, Room C9 }}$

- Please justify all your answers.
- This test has two pages and three groups. The total of points is 20.0.

Group 1 - Renewal Processes

1.5 points

Customers arrive at a bus depot according to a renewal process with i.i.d. inter-arrival times with mean $\mu<+\infty$. As soon as there are $k(k \in \mathbb{N})$ customers waiting at the depot, a shuttle is immediately dispatched to (instantly) clear all the k customers. Let $X(t)$ denote the number of customers in the depot at time t.
After having identified the regenerative epochs of the stochastic process $\{X(t): t \geq 0\}$, derive the long-run proportion of time the bus depot has $j(j \in\{0,1, \ldots, k-1\})$ customers?

- Renewal process

$\{N(t): t \geq 0\}$
$N(t)=$ number of customers that arrived at the bus depot up to time t

- Inter-renewal times
$X_{i} \stackrel{i . i . d .}{\sim} X, i \in \mathbb{N}$
$E(X)=\mu<+\infty$
- Important

As soon as there are $k(k \in \mathbb{N})$ customers waiting at the depot, a shuttle is immediately dispatched to (instantly) clear all the k customers.

- Regenerative process
$\{X(t): t \geq 0\}$
$X(t)=$ number of customers in the depot at time t
- Regenerative epochs
$S_{n}=$ dispatch time of the $n^{t h}$ shuttle
$S_{1}=\sum_{i=1}^{k} X_{i}, \quad S_{2}=\sum_{i=k+1}^{2 k} X_{i}, \quad \ldots, \quad S_{n}=\sum_{i=(n-1) k+1}^{n k} X_{i}$
- Requested proportion

The long-run proportion of time the bus depot has $j(j \in\{0,1, \ldots, k-1\})$ customers is equal to

$$
\begin{aligned}
P_{j} & =\lim _{t \rightarrow+\infty} P[X(t)=j] \\
& =\frac{E\left(U_{j}\right)}{E\left(S_{1}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
E\left(S_{1}\right) & =\sum_{i=1}^{k} E\left(X_{i}\right) \\
& \begin{aligned}
& X_{i} i . i . i d . X \\
&= k E(X) \\
&=k \mu \\
&=E(\text { time between the arrivals of customers } j \text { and } j+1) \\
&=E\left(X_{j+1}\right) \\
&=E(X) \\
&=\mu . \\
& \text { Consequently, } \\
& P_{j}=\frac{\mu}{k \mu} \\
&=\frac{1}{k} .
\end{aligned}
\end{aligned}
$$

Group 2 - Discrete time Markov chains

9.5 points

1. Dental records included the classification of molar teeth essentially according to the number of dental caries on their 5 surfaces: no caries (state 1); caries in one surface (state 2); caries in more than one surface (state 3); and filling (state 4). These records led to the following TPM governing the transitions of a molar between those 4 states in consecutive semesterly visits to the dentist:

$$
\mathbf{P}=\left[\begin{array}{cccc}
\frac{1}{2} & \frac{3}{10} & \frac{1}{5} & 0 \\
0 & \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\
0 & 0 & \frac{1}{5} & \frac{4}{5} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Consider the DTMC $\left\{X_{n}: n \in \mathbb{N}\right\}$, where X_{n} represents the state of a molar at the beginning of the $n^{\text {th }}$ semesterly visit to the dentist.
(a) Draw the associated transition diagram and classify the states of this DTMC.

- DTMC

$\left\{X_{n}: n \in \mathbb{N}\right\}$
$X_{n}=$ state of a molar at the beginning of the $n^{\text {th }}$ semesterly visit to the dentist

- State space
$\mathcal{S}=\{1,2,3,4\}$
$1=$ no caries
$2=$ caries in one surface
$3=$ caries in more than one surface
$4=$ filling
- TPM

$$
\mathbf{P}=\left[\begin{array}{cccc}
\frac{1}{2} & \frac{3}{10} & \frac{1}{5} & 0 \\
0 & \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\
0 & 0 & \frac{1}{5} & \frac{4}{5} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Transition diagram

- Classification of the states of the DTMC
- States 1,2 and 3 are all transient because we may never return to any of these states.
[\{1\}, $\{2\},\{3\}$ are open and transient (communicating) classes.]
- Since $P_{44}=1$, state 4 is absorbing (hence recurrent) - once we reach this state we never leave it.
[\{4\} is a closed and recurrent (communicating) class.]
(b) Admit the initial state X_{1} is uniformly distributed in the state space and obtain:
(i) the probability that a molar has caries in more than one surface at the beginning of the third visit to the dentist;
(ii) $P\left(X_{3}=3 \mid X_{1}=3\right)$.
- Initial state
$X_{1} \sim \operatorname{Uniform}(\{1,2,3,4\})$
- 1st. requested probability

Since the initial state of this DTMC is X_{1} (instead of X_{0}) we have to adapt the results in the list of formulae:

$$
\begin{aligned}
\underline{\alpha} & =\left[P\left(X_{1}=i\right)\right]_{i \in \mathcal{S}} \\
& =\left[\begin{array}{lll}
1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4
\end{array}\right] \\
\underline{\alpha}^{n} & =\left[P\left(X_{n+1}=i\right)\right]_{i \in \mathcal{S}} \\
& \stackrel{\text { form. }}{=} \\
& \underline{\alpha} \times \mathbf{P}^{n} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\underline{\alpha}^{2} & =\left[P\left(X_{2+1}=i\right)\right]_{i \in \mathcal{S}} \\
& =\underline{\alpha} \times \mathbf{P}^{2} \\
P\left(X_{2+1}=3\right) & =\underline{\alpha} \times \mathbf{P} \times 3 \text { rd. column of } \mathbf{P} \\
& =\underline{\alpha} \times\left[\begin{array}{cccc}
\frac{1}{2} & \frac{3}{10} & \frac{1}{5} & 0 \\
0 & \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\
0 & 0 & \frac{1}{5} & \frac{4}{5} \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{c}
\frac{1}{5} \\
\frac{2}{5} \\
\frac{1}{5} \\
0
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right] \times\left[\begin{array}{c}
\frac{13}{50} \\
\frac{4}{25} \\
\frac{1}{25} \\
0
\end{array}\right] \\
& =\frac{23}{200}
\end{aligned}
$$

- 2nd. requested probability

$$
P\left(X_{3}=3 \mid X_{1}=3\right)=P_{33}^{2}
$$

$$
[=3 \text { rd. row of } \mathbf{P} \times 3 \text { rd. column of } \mathbf{P}
$$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
0 & 0 & 1 / 5 & 4 / 5
\end{array}\right] \times\left[\begin{array}{c}
\frac{1}{5} \\
\frac{2}{5} \\
\frac{1}{5} \\
0
\end{array}\right] \\
& =\frac{1}{25} \text { (from the previous calculations). }
\end{aligned}
$$

(c) Given that $X_{1}=1$, calculate the expected number of months until the molar is classified (2.0) in state $4 .{ }^{1}$

- Important

Let

$$
\mathbf{Q}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{3}{10} & \frac{1}{5} \\
0 & \frac{1}{5} & \frac{2}{5} \\
0 & 0 & \frac{1}{5}
\end{array}\right]
$$

be the substochastic matrix governing the transitions between the transient states ($T=\{1,2,3\}$), and

$$
\tau=\inf \left\{n \in \mathbb{N}: X_{n} \notin T\right\}
$$

be the number of semesterly visits until the molar is classified in state 4 .
Then [(see Prop. 3.116)] the result in the footnote yields
$\left[E\left(\tau \mid X_{1}=i\right)\right]_{i \in T} \stackrel{\text { form. }}{=}(\mathbf{I}-\mathbf{Q})^{-1} \times \underline{1}$

$$
\begin{aligned}
& =\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
\frac{1}{2} & \frac{3}{10} & \frac{1}{5} \\
0 & \frac{1}{5} & \frac{2}{5} \\
0 & 0 & \frac{1}{5}
\end{array}\right]\right)^{-1} \times \underline{1} \\
& =\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{3}{10} & -\frac{1}{5} \\
0 & \frac{4}{5} & -\frac{2}{5} \\
0 & 0 & \frac{4}{5}
\end{array}\right]^{-1} \times \underline{1} \\
& =\left[\begin{array}{lll}
2 & \frac{3}{4} & \frac{7}{8} \\
0 & \frac{5}{4} & \frac{5}{8} \\
0 & 0 & \frac{5}{4}
\end{array}\right] \times\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{29}{8} \\
\frac{15}{8} \\
\frac{5}{4}
\end{array}\right]
\end{aligned}
$$

Finally, since we are dealing with semesterly visits (i.e., visits every six months), the expected number of months until the molar is classified in state 4 , given that the molar has initially no caries, equals

$$
\begin{aligned}
E\left(\tau \mid X_{1}=1\right) \times 6 & =\frac{29}{8} \times 6 \\
& =\frac{87}{4} \\
& =21.75
\end{aligned}
$$

(d) What is the probability that the molar reaches state 4 before state 3 , given $X_{1}=2$?

Note: You may have to consider state 3 absorbing, identify substochastic matrices \mathbf{Q} and \mathbf{R} and calculate $(\mathbf{I}-\mathbf{Q})^{-1} \times \mathbf{R}$.

- Important

To calculate the requested probability, we have to consider another DTMC, whose states 3 (caries in more than one surface) and 4 (filling) are absorbing and whose associated TPM is

$$
\mathbf{P}^{\star}=\left[\begin{array}{cccc}
\frac{1}{2} & \frac{3}{10} & \frac{1}{5} & 0 \\
0 & \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The substochastic matrices governing the transitions between the transient states ($T=\{1,2\}$) of this DTMC and the transitions from the transient to the absorbing states $(\bar{T}=\{3,4\})$ are

$$
\begin{aligned}
& \mathbf{Q}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{3}{10} \\
0 & \frac{1}{5}
\end{array}\right] \\
& \mathbf{R}=\left[\begin{array}{cc}
\frac{1}{5} & 0 \\
\frac{2}{5} & \frac{2}{5}
\end{array}\right],
\end{aligned}
$$

respectively.

- Requested probability

Keeping in mind that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

we get
$\mathbf{U}=\left[u_{i k}\right]_{i \in T, k \in \bar{T}}$
$=\left[P\left(\text { reach absorbing state } k \mid X_{1}=i\right)\right]_{i \in T, k \in \bar{T}}$
$\stackrel{\text { form }}{=}(\mathbf{I}-\mathbf{Q})^{-1} \times \mathbf{R}$
$=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{cc}\frac{1}{2} & \frac{3}{10} \\ 0 & \frac{1}{5}\end{array}\right]\right)^{-1} \times \mathbf{R}$
$=\left[\begin{array}{cc}\frac{1}{2} & -\frac{3}{10} \\ 0 & \frac{4}{5}\end{array}\right]^{-1} \times \mathbf{R}$
$=\frac{1}{\frac{1}{2} \times \frac{4}{5}}\left[\begin{array}{cc}\frac{4}{5} & \frac{3}{10} \\ 0 & \frac{1}{2}\end{array}\right] \times \mathbf{R}$
$=\left[\begin{array}{cc}2 & \frac{3}{4} \\ 0 & \frac{5}{4}\end{array}\right] \times\left[\begin{array}{ll}\frac{1}{5} & 0 \\ \frac{2}{5} & \frac{2}{5}\end{array}\right]$
$=\left[\begin{array}{cc}\frac{7}{10} & \frac{3}{10} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$
Therefore the probability that the molar reaches state 4 before state 3 , given that $X_{1}=2$, is equal to

$$
\begin{aligned}
u_{24} & =P\left(X_{\tau}=4 \mid X_{1}=2\right) \\
& =\frac{1}{2}
\end{aligned}
$$

2. Let $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ be a branching process such that $X_{0}=1$ and admit the number of offspring per individual has p.g.f. given by $\frac{p}{1-(1-p) s}$, where $0<p<1$.

Prove that:
(a) if $0<p<\frac{1}{2}$ then the extinction probability is equal to $\frac{p}{1-p}$.

- Branching process
$\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$
$X_{n}=$ size of generation n
- Initial state
$X_{0}=1$ (single initial individual)
- State space
$\mathcal{S}=\mathbb{N}_{0}$
- Number of offspring per individual
$Z_{l} \equiv Z_{l, n}=$ number of offspring of the $l^{\text {th }}$ individual of generation n
$Z_{l} \stackrel{i . i . d}{\sim} Z, l \in \mathbb{N}$
- Distribution of the number of offspring per individual
$P_{Z}(s)=E\left(s^{Z}\right)=\sum_{j} s^{j} \times P(Z=j)=\sum_{j} s^{j} \times P_{j}=\frac{p}{1-(1-p) s}, s \in[0,1]$
$Z \stackrel{\text { form. }}{\sim}$ Geometric ${ }^{\star}(p)$

- Obs.

$X_{n}=\sum_{l=1}^{X_{n-1}} Z_{l}, n \in \mathbb{N}$

- Probability of extinction

Since

$$
E(Z) \quad\left[\left.\stackrel{\text { form }}{=} \frac{d P_{Z}(s)}{d s}\right|_{s=1}\right.
$$

$$
\begin{aligned}
& \left.=\left.\frac{(1-p) p}{[1-(1-p) s]^{2}}\right|_{s=1}\right] \\
& \stackrel{\text { form. }}{=} \frac{1-p}{p}
\end{aligned}
$$

and

$$
\begin{aligned}
E(Z) & >1 \\
\frac{1-p}{p} & >1 \\
1-p & >p \\
p & <\frac{1}{2}
\end{aligned}
$$

the probability of extinction,

$$
\pi \stackrel{\text { form. }}{=} \lim _{n \rightarrow+\infty} P\left(X_{n}=0 \mid X_{0}=1\right)
$$

is the smallest positive number satisfying

$$
\begin{aligned}
& \pi \stackrel{\text { form. }}{=} \sum_{j=0}^{+\infty} \pi^{j} \times P_{j} \\
&=P_{Z}(\pi) \\
&=\frac{p}{1-(1-p) \pi} \\
&(1-p) \pi^{2}-\pi+p=0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\pi & =\frac{1-\sqrt{1-4(1-p) p}}{2(1-p)} \\
& =\frac{1-\sqrt{1-4 p+4 p^{2}}}{2(1-p)} \\
& =\frac{1-\sqrt{(1-2 p)^{2}}}{2(1-p)} \\
p<1 / 2 & \frac{1-(1-2 p)}{2(1-p)} \\
& =\frac{p}{1-p} .
\end{aligned}
$$

(b) the probability that the process is extinct in the second generation equals $\frac{p}{1-(1-p) p}$.

- Requested probability

$$
\begin{aligned}
\pi_{2} & =P\left(X_{2}=0 \mid X_{0}=1\right) \\
& =P_{2}(0) \\
& \stackrel{\text { form. }}{=} P_{Z}\left[P_{Z}(0)\right] \\
& =P_{Z}\left[\frac{p}{1-(1-p) \times 0}\right] \\
& =P_{Z}(p) \\
& =\frac{p}{1-(1-p) \times p} .
\end{aligned}
$$

Group 3 - Continuous time Markov chains

9.0 points

1. Consider a job shop that consists of 3 identical machines and 2 technicians. Suppose that the amount of time:

- each machine operates before breaking down is exponentially distributed with mean 0.1^{-1};
- a technician takes to fix a machine is exponentially distributed with parameter 0.4.

Admit that all the times to breakdown and times to repair are independent r.v. and let $X(t)$ be the number of operating machines at time t.
(a) After having identified the birth and death rates, write the Kolmogorov's forward differential equations in terms of $P_{j}(t) \equiv P_{0 j}(t)=P[X(t)=j \mid X(0)=0]$, for $j \in\{0,1,2,3\}$.
Note: Consider that a conclusion of a repair (resp. a machine breakdown) corresponds to a birth (resp. death); do not try to solve the differential equations.

- CTMC
$\{X(t): t \geq 0\}$
$X(t)=$ number of operating machines at time t
- State space
$\mathcal{S}=\{0,1,2,3\}$
- Birth and death rates

Having in mind that we are dealing with a job shop with 3 machines and 2 technicians and considering that a conclusion of a repair (resp. a machine breakdown) corresponds to a birth (resp. death), we have:

- birth rates (conclusion of repairs)
(i) $j=0 \rightarrow 0$ machines operating, 2 technicians busy repairing 2 machines, the conclusion of the shortest of the two repair occurs in an exponentially distributed time with rate

$$
\lambda_{0}=2 \times 0.4=0.8
$$

(ii) $j=1 \rightarrow 1$ machine operating, 2 technicians busy repairing 2 machines, the conclusion of the shortest of the two repair occurs in an exponentially distributed time with rate

$$
\lambda_{1}=2 \times 0.4=0.8
$$

(iii) $j=2 \rightarrow 2$ machines operating, 1 technicians busy repairing 1 machine, the conclusion of the repair occurs in an exponentially distributed time with rate $\lambda_{2}=0.4$
(iv) $\lambda_{3}=\lambda_{4}=\cdots=0$;

- death rates (machine breakdows)
(i) $j=1 \rightarrow 1$ machine operating, a breakdown will occur in an exponentially distributed time with rate $\mu_{1}=0.1$
(ii) $j=2 \rightarrow 2$ machines operating, the shortest of two possible breakdowns occurs in an exponentially distributed time with rate $\mu_{2}=2 \times 0.1=0.2$
(iii) $j=3 \rightarrow 3$ machines operating, the shortest of three possible breakdowns occurs in an exponentially distributed time with rate $\mu_{3}=3 \times 0.1=0.3$
(iv) $\mu_{4}=\mu_{5}=\cdots=0$.

- Kolmogorov's forward differential equations

Note that

$$
\begin{aligned}
P_{j}(t) & \equiv P_{0 j}(t)=P[X(t)=j \mid X(0)=0], j \in \mathbb{N}_{0} \\
P_{-1}(t) & =P_{4}(t)=P_{5}(t)=\cdots=0 \\
\lambda_{-1} & =\lambda_{3}=\lambda_{4}=\cdots=0 \\
\mu_{0} & =\mu_{4}=\mu_{5}=\cdots=0
\end{aligned}
$$

therefore the Kolmogorov's forward differential equations

$$
\frac{d P_{j}(t)}{d t} \stackrel{\text { form. }}{=} P_{j-1}(t) \lambda_{j-1}+P_{j+1}(t) \mu_{j+1}-P_{j}(t)\left(\lambda_{j}+\mu_{j}\right), j \in \mathcal{S}=\{0,1,2,3\}
$$

read as follows:

$$
\begin{aligned}
\frac{d P_{0}(t)}{d t} & =P_{1}(t) \mu_{1}-P_{0}(t) \lambda_{0} \\
& =P_{1}(t) \times 0.1-P_{0}(t) \times 0.8 \\
\frac{d P_{1}(t)}{d t} & =P_{0}(t) \times 0.8+P_{2}(t) \times 0.2-P_{1}(t) \times(0.8+0.1) \\
\frac{d P_{2}(t)}{d t} & =P_{1}(t) \times 0.8+P_{3}(t) \times 0.3-P_{2}(t) \times(0.4+0.2) \\
\frac{d P_{3}(t)}{d t} & =P_{2}(t) \times 0.4-P_{3}(t) \times 0.3
\end{aligned}
$$

(b) What are the equilibrium probabilities $P_{j}=\lim _{t \rightarrow+\infty} P_{j}(t)$?

- [Ergodicity condition

Guaranteed because the finiteness of the state space (and the birth and death rates).]

- Equilibrium probabilities $P_{j}=\lim _{t \rightarrow+\infty} P_{j}(t)$

It is well known that

$$
\begin{aligned}
& P_{0} \stackrel{\text { form. }}{=}\left(1+\sum_{n=1}^{+\infty} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}\right)^{-1} \\
& P_{j} \stackrel{\text { form. }}{=} \frac{\lambda_{j-1}}{\mu_{j}} P_{j-1}, j \in \mathbb{N}
\end{aligned}
$$

But since $\mathcal{S}=\{0,1,2,3\}$ we get

$$
\begin{aligned}
P_{0} & =\left(1+\sum_{n=1}^{3} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}\right)^{-1} \\
& =\left(1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}}+\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{3}}\right)^{-1} \\
& =\left(1+\frac{0.8}{0.1}+\frac{0.8 \times 0.8}{0.1 \times 0.2}+\frac{0.8 \times 0.8 \times 0.4}{0.1 \times 0.2 \times 0.3}\right)^{-} \\
& =\frac{3}{251} \\
& \simeq 0.011952 \\
P_{1} & =\frac{\lambda_{0}}{\mu_{1}} \times P_{0} \\
& =\frac{0.8}{0.1} \times \frac{3}{251} \\
& =\frac{24}{251} \\
& \simeq 0.0956178 \\
P_{2} & =\frac{\lambda_{1}}{\mu_{2}} \times P_{1} \\
& =\frac{0.8}{0.2} \times \frac{24}{251} \\
& =\frac{96}{251} \\
& \simeq 0.382470 \\
P_{3} & =\frac{\lambda_{2}}{\mu_{3}} \times P_{2} \\
& =\frac{0.4}{0.3} \times \frac{96}{251} \\
& =\frac{128}{251} \\
& \simeq 0.509960
\end{aligned}
$$

(c) Obtain the fraction of busy technicians in the long-run.

- R.v.
$Y(t)=$ number of busy technicians at time t

$$
= \begin{cases}2, & X(t)=0,1 \\ 1, & X(t)=2 \\ 0, & X(t)=3\end{cases}
$$

- Fraction of busy technicians in the long-run

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} E\left[\frac{Y(t)}{2}\right] & =\frac{1}{2} \sum_{i=0}^{2} i \times \lim _{t \rightarrow+\infty} P[Y(t)=i] \\
\lim _{t \rightarrow+\infty} E\left[\frac{Y(t)}{2}\right] & =\frac{1}{2} \times\left[0 \times P_{3}+1 \times P_{2}+2 \times\left(P_{0}+P_{1}\right)\right] \\
& =\frac{1}{2} \times\left[\frac{96}{251}+2 \times\left(\frac{2}{251}+\frac{24}{251}\right)\right] \\
& =\frac{75}{251} \\
& \simeq 0.298805
\end{aligned}
$$

2. A small car rental company has 6 cars available. The costs (depreciation, insurance, maintenance, etc.) are of 60 monetary units per car per day. Admit:

- customers arrive according to a Poisson process with a rate of 5 customers per day;
- a customer rents a car for an exponential time with a mean of 1.5 days;
- renting a car costs 110 monetary units per day;
- arriving customers for which no car is available are lost.

Consider this system in equilibrium and determine:
(a) the fraction of arriving customers for which no car is available;

- Birth and death queueing system
$M / M / m / m$
- Arrival process/rate
$\lambda=5$ customers per day
- Service times/rate
$S_{i} \stackrel{i . i . d .}{\sim} \operatorname{Exponential}\left(\mu=1.5^{-1}\right)$
$\mu=\frac{2}{3}$
- Servers; waiting area
$m / m=6 / 6$ small car rental company has 6 cars available and arriving customers for which no car is available are lost.
- Traffic intensity/ergodicity condition

$$
\begin{aligned}
\rho & =\frac{\lambda}{m \mu} \\
& =\frac{5}{6 \times \frac{2}{3}} \\
& =\frac{5}{4} \\
& <+\infty
\end{aligned}
$$

- Performance measure (in the long-run)
$L_{s}=$ no. of customers with rented cars from this company (an arriving customer sees)
- Limiting probabilities

$$
P\left(L_{s}=j\right) \stackrel{\text { form. }}{=} \begin{cases}\frac{\frac{(m \rho)^{j}}{j}}{\sum_{k=0}^{m} \frac{(m \rho)^{k}}{k!}}=\frac{m!}{k!(m \rho)^{m-k}} \times B(m, m \rho), & j=0,1, \ldots, m \\ 0, & j=m+1, m+2, \ldots\end{cases}
$$

$$
\text { where } B(m, m \rho)=P\left(L_{s}=m\right)=\frac{\frac{(m \rho)^{m}}{m!}}{\sum_{j=0}^{m} \frac{(m \rho))^{\prime}}{j!}} \text {. }
$$

- Requested probability

Since a customer is lost if upon her/his arrival all $m=6$ cars have been already rented and m, we want to calculate

$$
\begin{aligned}
& P\left(L_{s}=m\right)=B(m, m \rho) \\
& m=6, \underline{\rho}=5 / 4 \frac{(6 \times 5 / 4)^{6}}{6!} \\
& \sum_{j=0}^{6} \frac{(6 \times 5 / 4)^{j}}{j!} \\
&=\frac{\frac{7.5^{6}}{6!}}{\sum_{j=0}^{6} \frac{7.5^{j}}{j!}} \\
& \simeq 0.361541 .
\end{aligned}
$$

(b) the mean profit per day.

- R.v.

$$
\begin{aligned}
Y & =\text { profit per day in equilibrium (rentals }- \text { costs) } \\
& =110 \times L_{s}-60 \times 6
\end{aligned}
$$

- Mean profit per day (in the long-run)

$$
\begin{aligned}
E(Y) & =E\left(110 \times L_{s}-60 \times 6\right) \\
& =110 \times E\left(L_{s}\right)-60 \times 6 \\
& \stackrel{\text { form. }}{=} 110 \times m \rho[1-B(m, m \rho)]-60 \times 6 \\
& \stackrel{(a)}{\simeq} 110 \times 6 \times \frac{5}{4} \times(1-0.361541)-60 \times 6 \\
& \simeq 166.729 .
\end{aligned}
$$

