
Department of Mathematics, IST — Probability and Statistics Unit

Introduction to Stochastic Processes
2nd. Test (“Recurso”) 2nd. Semester — 2013/14

Duration: 1h30m 2014/07/01 — 9:45 PM, Room C9

• Please justify all your answers.

• This test has two pages and three groups. The total of points is 20.0.

Group 1 — Renewal Processes 1.5 points

Customers arrive at a bus depot according to a renewal process with i.i.d. inter-arrival times (1.5)

with mean µ < +1. As soon as there are k (k 2 N) customers waiting at the depot, a

shuttle is immediately dispatched to (instantly) clear all the k customers. Let X(t) denote

the number of customers in the depot at time t.

After having identified the regenerative epochs of the stochastic process {X(t) : t � 0},
derive the long-run proportion of time the bus depot has j (j 2 {0, 1, . . . , k�1}) customers?

• Renewal process

{N(t) : t � 0}
N(t) = number of customers that arrived at the bus depot up to time t

• Inter-renewal times

X
i

i.i.d.⇠ X, i 2 N
E(X) = µ < +1

• Important

As soon as there are k (k 2 N) customers waiting at the depot, a shuttle is immediately

dispatched to (instantly) clear all the k customers.

• Regenerative process

{X(t) : t � 0}
X(t) = number of customers in the depot at time t

• Regenerative epochs

S
n

= dispatch time of the nth shuttle

S1 =
P

k

i=1 Xi

, S2 =
P2k

i=k+1 Xi

, . . . , S
n

=
P

nk

i=(n�1)k+1 Xi

• Requested proportion

The long-run proportion of time the bus depot has j (j 2 {0, 1, . . . , k � 1}) customers

is equal to

P
j

= lim
t!+1

P [X(t) = j]

=
E(U

j

)

E(S1)

1

where

E(S1) =
kX

i=1

E(X
i

)

Xi
i.i.d.⇠ X

= k E(X)

= k µ

E(U
j

) = E(time between the arrivals of customers j and j + 1)

= E(X
j+1)

= E(X)

= µ.

Consequently,

P
j

=
µ

k µ

=
1

k
.

Group 2 — Discrete time Markov chains 9.5 points

1. Dental records included the classification of molar teeth essentially according to the number

of dental caries on their 5 surfaces: no caries (state 1); caries in one surface (state 2); caries

in more than one surface (state 3); and filling (state 4). These records led to the following

TPM governing the transitions of a molar between those 4 states in consecutive semesterly

visits to the dentist:
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Consider the DTMC {X
n

: n 2 N}, whereX
n

represents the state of a molar at the beginning

of the nth semesterly visit to the dentist.

(a) Draw the associated transition diagram and classify the states of this DTMC. (1.0)

• DTMC

{X
n

: n 2 N}
X

n

= state of a molar at the beginning of the nth semesterly visit to the dentist

• State space

S = {1, 2, 3, 4}
1 = no caries

2 = caries in one surface

3 = caries in more than one surface

4 = filling
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• TPM

P =

2

6664
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• Transition diagram
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• Classification of the states of the DTMC

– States 1, 2 and 3 are all transient because we may never return to any of these

states.

[{1}, {2}, {3} are open and transient (communicating) classes.]

– Since P44 = 1, state 4 is absorbing (hence recurrent) — once we reach this state

we never leave it.

[{4} is a closed and recurrent (communicating) class.]

(b) Admit the initial state X1 is uniformly distributed in the state space and obtain: (1.5)

(i) the probability that a molar has caries in more than one surface at the beginning

of the third visit to the dentist;

(ii) P (X3 = 3 | X1 = 3).

• Initial state

X1 ⇠ Uniform({1, 2, 3, 4})

• 1st. requested probability

Since the initial state of this DTMC is X1 (instead of X0) we have to adapt the

results in the list of formulae:

↵ = [P (X1 = i)]
i2S

= [1/4 1/4 1/4 1/4]

↵n = [P (X
n+1 = i)]

i2S
form.

= ↵⇥Pn.

Thus,

3

↵2 = [P (X2+1 = i)]
i2S

= ↵⇥P2

P (X2+1 = 3) = ↵⇥P⇥ 3rd. column of P

= ↵⇥

2
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= [1/4 1/4 1/4 1/4]⇥

2

6664

13
50
4
25
1
25

0

3

7775

=
23

200

• 2nd. requested probability

P (X3 = 3 | X1 = 3) = P 2
33

[= 3rd. row of P⇥ 3rd. column of P

= [0 0 1/5 4/5]⇥

2

6664
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7775
]

=
1

25
(from the previous calculations).

(c) Given that X1 = 1, calculate the expected number of months until the molar is classified (2.0)

in state 4.1

• Important

Let

Q =

2

64
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be the substochastic matrix governing the transitions between the transient states

(T = {1, 2, 3}), and

⌧ = inf{n 2 N : X
n

62 T}

be the number of semesterly visits until the molar is classified in state 4.

Then [(see Prop. 3.116)] the result in the footnote yields

1
The following result may come handy in this line:

2
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[E(⌧ | X1 = i)]
i2T

form.

= (I�Q)�1 ⇥ 1

=

0

B@

2

64
1 0 0

0 1 0

0 0 1
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75�
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1

CA

�1

⇥ 1

=

2

64

1
2 � 3

10 �1
5

0 4
5 �2

5

0 0 4
5

3

75

�1

⇥ 1

=

2

64
2 3

4
7
8

0 5
4

5
8

0 0 5
4

3

75⇥

2

64
1

1

1

3

75

=

2

64

29
8
15
8
5
4

3

75 .

Finally, since we are dealing with semesterly visits (i.e., visits every six months),

the expected number of months until the molar is classified in state 4, given that

the molar has initially no caries, equals

E(⌧ | X1 = 1)⇥ 6 =
29

8
⇥ 6

=
87

4
= 21.75.

(d) What is the probability that the molar reaches state 4 before state 3, given X1 = 2? (2.0)

Note: You may have to consider state 3 absorbing, identify substochastic matrices Q

and R and calculate (I�Q)�1 ⇥R.

• Important

To calculate the requested probability, we have to consider another DTMC, whose

states 3 (caries in more than one surface) and 4 (filling) are absorbing and whose

associated TPM is

P? =

2

6664
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The substochastic matrices governing the transitions between the transient states

(T = {1, 2}) of this DTMC and the transitions from the transient to the absorbing

states (T = {3, 4}) are

Q =

"
1
2

3
10

0 1
5

#

R =

"
1
5 0
2
5

2
5

#
,

respectively.

5

• Requested probability

Keeping in mind that

"
a b

c d

#�1

=
1

ad� bc

"
d �b

�c a

#
,

we get

U = [u
ik

]
i2T, k2T

= [P (reach absorbing state k | X1 = i)]
i2T, k2T

form

= (I�Q)�1 ⇥R

=

 "
1 0

0 1

#
�
"

1
2

3
10

0 1
5

#!�1

⇥R

=

"
1
2 � 3

10

0 4
5

#�1

⇥R

=
1

1
2 ⇥

4
5

"
4
5

3
10

0 1
2

#
⇥R

=

"
2 3

4

0 5
4

#
⇥
"

1
5 0
2
5

2
5

#

=

"
7
10

3
10

1
2

1
2

#
.

Therefore the probability that the molar reaches state 4 before state 3, given that

X1 = 2, is equal to

u24 = P (X
⌧

= 4 | X1 = 2)

=
1

2
.

2. Let {X
n

: n 2 N0} be a branching process such that X0 = 1 and admit the number of

o↵spring per individual has p.g.f. given by p

1�(1�p)s , where 0 < p < 1.

Prove that:

(a) if 0 < p < 1
2 then the extinction probability is equal to p

1�p

. (2.0)

• Branching process

{X
n

: n 2 N0}
X

n

= size of generation n

• Initial state

X0 = 1 (single initial individual)

• State space

S = N0

• Number of o↵spring per individual

Z
l

⌘ Z
l,n

= number of o↵spring of the lth individual of generation n
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Z
l

i.i.d.⇠ Z, l 2 N

• Distribution of the number of o↵spring per individual

P
Z

(s) = E(sZ) =
P

j

sj ⇥ P (Z = j) =
P

j

sj ⇥ P
j

= p

1�(1�p)s , s 2 [0, 1]

Z
form.⇠ Geometric?(p)

• Obs.

X
n

=
P

Xn�1

l=1 Z
l

, n 2 N

• Probability of extinction

Since

E(Z) [
form

=
dP

Z

(s)

ds

����
s=1

=
(1� p)p

[1� (1� p)s]2

����
s=1

]

form.

=
1� p

p
and

E(Z) > 1
1� p

p
> 1

1� p > p

p <
1

2
,

the probability of extinction,

⇡
form.

= lim
n!+1

P (X
n

= 0 | X0 = 1),

is the smallest positive number satisfying

⇡
form.

=
+1X

j=0

⇡j ⇥ P
j

= P
Z

(⇡)

=
p

1� (1� p) ⇡

(1� p)⇡2 � ⇡ + p = 0.

Thus,

⇡ =
1�

p
1� 4(1� p)p

2(1� p)

=
1�

p
1� 4p+ 4p2

2(1� p)

=
1�

p
(1� 2p)2

2(1� p)

p<1/2
=

1� (1� 2p)

2(1� p)

=
p

1� p
.

(b) the probability that the process is extinct in the second generation equals p

1�(1�p)p . (1.0)
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• Requested probability

⇡2 = P (X2 = 0 | X0 = 1)

= P2(0)
form.

= P
Z

[P
Z

(0)]

= P
Z


p

1� (1� p)⇥ 0

�

= P
Z

(p)

=
p

1� (1� p)⇥ p
.

Group 3 — Continuous time Markov chains 9.0 points

1. Consider a job shop that consists of 3 identical machines and 2 technicians. Suppose that

the amount of time:

• each machine operates before breaking down is exponentially distributed with mean

0.1�1;

• a technician takes to fix a machine is exponentially distributed with parameter 0.4.

Admit that all the times to breakdown and times to repair are independent r.v. and let X(t)

be the number of operating machines at time t.

(a) After having identified the birth and death rates, write the Kolmogorov’s forward (2.5)

di↵erential equations in terms of P
j

(t) ⌘ P0 j(t) = P [X(t) = j | X(0) = 0], for

j 2 {0, 1, 2, 3}.
Note: Consider that a conclusion of a repair (resp. a machine breakdown) corresponds

to a birth (resp. death); do not try to solve the di↵erential equations.

• CTMC

{X(t) : t � 0}
X(t) = number of operating machines at time t

• State space

S = {0, 1, 2, 3}

• Birth and death rates

Having in mind that we are dealing with a job shop with 3 machines and

2 technicians and considering that a conclusion of a repair (resp. a machine

breakdown) corresponds to a birth (resp. death), we have:

– birth rates (conclusion of repairs)

(i) j = 0 ! 0 machines operating, 2 technicians busy repairing 2 machines,

the conclusion of the shortest of the two repair occurs in an exponentially

distributed time with rate

�0 = 2⇥ 0.4 = 0.8
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(ii) j = 1 ! 1 machine operating, 2 technicians busy repairing 2 machines,

the conclusion of the shortest of the two repair occurs in an exponentially

distributed time with rate

�1 = 2⇥ 0.4 = 0.8

(iii) j = 2 ! 2 machines operating, 1 technicians busy repairing 1 machine, the

conclusion of the repair occurs in an exponentially distributed time with rate

�2 = 0.4

(iv) �3 = �4 = · · · = 0;

– death rates (machine breakdows)

(i) j = 1 ! 1 machine operating, a breakdown will occur in an exponentially

distributed time with rate

µ1 = 0.1

(ii) j = 2 ! 2 machines operating, the shortest of two possible breakdowns occurs

in an exponentially distributed time with rate

µ2 = 2⇥ 0.1 = 0.2

(iii) j = 3 ! 3 machines operating, the shortest of three possible breakdowns

occurs in an exponentially distributed time with rate

µ3 = 3⇥ 0.1 = 0.3

(iv) µ4 = µ5 = · · · = 0.

• Kolmogorov’s forward di↵erential equations

Note that

P
j

(t) ⌘ P0 j(t) = P [X(t) = j | X(0) = 0], j 2 N0

P�1(t) = P4(t) = P5(t) = · · · = 0

��1 = �3 = �4 = · · · = 0

µ0 = µ4 = µ5 = · · · = 0,

therefore the Kolmogorov’s forward di↵erential equations

dP
j

(t)

dt
form.

= P
j�1(t)�j�1 + P

j+1(t)µj+1 � P
j

(t) (�
j

+ µ
j

), j 2 S = {0, 1, 2, 3},

read as follows:

dP0(t)

dt
= P1(t)µ1 � P0(t)�0

= P1(t)⇥ 0.1� P0(t)⇥ 0.8

dP1(t)

dt
= P0(t)⇥ 0.8 + P2(t)⇥ 0.2� P1(t)⇥ (0.8 + 0.1)

dP2(t)

dt
= P1(t)⇥ 0.8 + P3(t)⇥ 0.3� P2(t)⇥ (0.4 + 0.2)

dP3(t)

dt
= P2(t)⇥ 0.4� P3(t)⇥ 0.3.

(b) What are the equilibrium probabilities P
j

= lim
t!+1 P

j

(t)? (2.0)

9

• [Ergodicity condition

Guaranteed because the finiteness of the state space (and the birth and death rates).]

• Equilibrium probabilities P
j

= lim
t!+1 P

j

(t)

It is well known that

P0
form.

=

 
1 +

+1X

n=1

�0 �1 . . . �
n�1

µ1 µ2 . . . µ
n

!�1

P
j

form.

=
�
j�1

µ
j

P
j�1, j 2 N.

But since S = {0, 1, 2, 3} we get

P0 =

 
1 +

3X

n=1

�0 �1 . . . �
n�1

µ1 µ2 . . . µ
n

!�1

=

✓
1 +

�0

µ1
+

�0 �1

µ1 µ2
+

�0 �1 �2

µ1 µ2 µ3

◆�1

=

✓
1 +

0.8

0.1
+

0.8⇥ 0.8

0.1⇥ 0.2
+

0.8⇥ 0.8⇥ 0.4

0.1⇥ 0.2⇥ 0.3

◆�1

=
3

251
' 0.011952

P1 =
�0

µ1
⇥ P0

=
0.8

0.1
⇥ 3

251

=
24

251
' 0.0956178

P2 =
�1

µ2
⇥ P1

=
0.8

0.2
⇥ 24

251

=
96

251
' 0.382470

P3 =
�2

µ3
⇥ P2

=
0.4

0.3
⇥ 96

251

=
128

251
' 0.509960.

(c) Obtain the fraction of busy technicians in the long-run. (1.5)

• R.v.

Y (t) = number of busy technicians at time t

=

8
><

>:

2, X(t) = 0, 1

1, X(t) = 2

0, X(t) = 3
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• Fraction of busy technicians in the long-run

lim
t!+1

E


Y (t)

2

�
=

1

2

2X

i=0

i⇥ lim
t!+1

P [Y (t) = i]

lim
t!+1

E


Y (t)

2

�
=

1

2
⇥ [0⇥ P3 + 1⇥ P2 + 2⇥ (P0 + P1)]

=
1

2
⇥

96

251
+ 2⇥

✓
2

251
+

24

251

◆�

=
75

251
' 0.298805.

2. A small car rental company has 6 cars available. The costs (depreciation, insurance,

maintenance, etc.) are of 60 monetary units per car per day. Admit:

• customers arrive according to a Poisson process with a rate of 5 customers per day;

• a customer rents a car for an exponential time with a mean of 1.5 days;

• renting a car costs 110 monetary units per day;

• arriving customers for which no car is available are lost.

Consider this system in equilibrium and determine:

(a) the fraction of arriving customers for which no car is available; (1.5)

• Birth and death queueing system

M/M/m/m

• Arrival process/rate

� = 5 customers per day

• Service times/rate

S
i

i.i.d.⇠ Exponential(µ = 1.5�1)

µ = 2
3

• Servers; waiting area

m/m = 6/6 small car rental company has 6 cars available and arriving customers

for which no car is available are lost.

• Tra�c intensity/ergodicity condition

⇢ =
�

mµ

=
5

6⇥ 2
3

=
5

4
< +1

• Performance measure (in the long-run)

L
s

= no. of customers with rented cars from this company (an arriving customer sees)

11

• Limiting probabilities

P (L
s

= j)
form.

=

8
<

:

(m⇢)j

j!
Pm

k=0
(m⇢)k

k!

= m!
k! (m⇢)m�k ⇥ B(m,m⇢), j = 0, 1, . . . ,m

0, j = m+ 1,m+ 2, . . . ,

where B(m,m⇢) = P (L
s

= m) =
(m⇢)m

m!Pm
j=0

(m⇢)j

j!

.

• Requested probability

Since a customer is lost if upon her/his arrival all m = 6 cars have been already

rented and m, we want to calculate

P (L
s

= m) = B(m,m⇢)

m=6, ⇢=5/4
=

(6⇥5/4)6

6!P6
j=0

(6⇥5/4)j

j!

=
7.56

6!P6
j=0

7.5j

j!

' 0.361541.

(b) the mean profit per day. (1.5)

• R.v.

Y = profit per day in equilibrium (rentals - costs)

= 110⇥ L
s

� 60⇥ 6

• Mean profit per day (in the long-run)

E(Y ) = E(110⇥ L
s

� 60⇥ 6)

= 110⇥ E(L
s

)� 60⇥ 6
form.

= 110⇥m ⇢ [1� B(m,m⇢)]� 60⇥ 6
(a)
' 110⇥ 6⇥ 5

4
⇥ (1� 0.361541)� 60⇥ 6

' 166.729.
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