Department of Mathematics, IST - Probability and Statistics Unit

Introduction to Stochastic Processes

1st. Test ("Recurso")	2nd. Semester - 2013/14
Duration: 1h30m	$\mathbf{2 0 1 4 / 0 7 / 0 1 - 8 A M , ~ R o o m ~ C 9 ~}$

- Please justify all your answers.
- This test has two pages and three groups. The total of points is 20.0.

Group 0 - Introduction to Stochastic Processes

2.5 points

A computer operates in discrete time units (slots). A priority task arises with probability p at the beginning of each slot, independently of other slots, and requires one full slot to be complete. With this in mind, let us call a slot busy (resp. idle) if within this slot the computer executes (resp. does not execute) a priority task.
(a) Identify the c.d.f. of the time index of the first busy slot.

- Stochastic process
$\left\{X_{i}: i \in \mathbb{N}\right\} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Bernoulli}(p)$
$X_{i}=$ indicator of the state of $i^{\text {th }}$ slot (busy=1, idle=0)
- R.v.
$T_{1}=$ time index of the first busy slot
$T_{1}=U_{1} \stackrel{\text { form. }}{\sim}$ Geometric (p)
- P.f. of T_{1}
$P\left(T_{1}=x\right) \stackrel{\text { form. }}{=}(1-p)^{x-1} p, x \in \mathbb{N}$
- C.d.f. of T_{1}

For $t \in \mathbb{R}$,

$$
P\left(T_{1} \leq t\right)= \begin{cases}\begin{array}{rl}
0, & t<1 \\
\sum_{x \leq t} P\left(T_{1}\right. & =x)=\sum_{x=1}^{\lfloor t\rfloor}(1-p)^{x-1} p
\end{array} \\
=p \frac{1-(1-p)^{[t]}}{1-(1-p)}=1-(1-p)^{\lfloor t\rfloor}, & t \geq 1\end{cases}
$$

(b) Calculate the probability that 5 out of the first 10 slots were busy, given that 15 out of the first 20 slots were idle.

- New r.v.
$S_{n}=$ number of busy slots out of the first n slots
- Conditional distribution
$S_{m} \mid S_{n}=k \stackrel{\text { form. }}{\sim} \operatorname{HyperG}(n, m, k), 0 \leq m \leq n, 0 \leq k \leq n$
- P.f.
$P\left(S_{m}=x \mid S_{n}=k\right)=\frac{\binom{m}{x}\binom{n-m}{k-x}}{\binom{n}{k}}, x=\max \{0, k-n+m\}, \ldots, \min \{k, m\}$
- Requested probability

Considering $n=20, m=10, k=20-15$ and $x=5$ yields

$$
\begin{aligned}
P\left(S_{10}=5 \mid S_{20}=20-15\right) & =\frac{\binom{10}{5}\binom{20-10}{(20-15)-5}}{\binom{20}{20-15}} \\
& =\frac{\frac{10!}{5!5!}}{\frac{20!}{5!15!}} \\
& =\frac{10!15!}{5!20!} \\
& =\frac{10 \times \cdots \times 6}{20 \times \cdots \times 16} \\
& =\frac{21}{1292} \\
& \simeq 0.016254
\end{aligned}
$$

Group 1 - Poisson Processes

9.0 points

1. You get email messages according to a Poisson process at a rate of $\lambda=0.2$ messages per hour.
(a) Suppose you have not checked your email for a whole day. What is the probability of (1.5) finding 2 new messages in the first 12 hours and no new messages in the last 16 hours?

- Stochastic process
$\{N(t): t \geq 0\} \sim P P(\lambda=0.2)$
$N(t)=$ number of new messages by time t (time in hours)
- Relevant distribution
$N(t) \sim \operatorname{Poisson}(\lambda t)$
$P[N(t)=x]=\frac{e^{-\lambda t}(\lambda t)^{x}}{x!}, x \in \mathbb{N}_{0}$
- Requested probability

We want to obtain

$$
P[N(12)=2, N(24)-N(24-16)=0]=\star,
$$

which is equal to

$$
\begin{array}{rll}
\star & = & P[N(12)=2, N(24)-N(8)=0] \\
& = & P[N(8)=2, N(12)-N(8)=0, N(24)-N(12)=0] \\
\text { indep.incr. } & P[N(8)=2] \times P[N(12)-N(8)=0] \times P[N(24)-N(12)=0] \\
\text { station.incr. } & P[N(8)=2] \times P[N(12-8)=0] \times P[N(24-12)=0] \\
& = & P[N(8)=2] \times P[N(4)=0] \times P[N(12)=0] \\
& =(t) \sim P o i(0.2 t) & \frac{e^{-0.2 \times 8} \times(0.2 \times 8)^{2}}{2!} \times e^{-0.2 \times 4} \times e^{-0.2 \times 12} \\
& = & \frac{e^{-4.8} \times 1.6^{2}}{2} \\
\simeq & 0.010534 .
\end{array}
$$

[Alternatively,

$$
\begin{array}{cl}
\star & P[N(8)=2, N(24)-N(8)=0] \\
\begin{array}{cl}
\text { indep.incr. }
\end{array} & P[N(8)=2] \times P[N(24)-N(8)=0] \\
\text { station. incr. } & \\
= & P[N(8)=2] \times P[N(24-8)=0] \\
& P[N(8)=2] \times P[N(16)=0] \\
& =(t) \sim P \text { Poi }(0.2 t) \\
& \frac{e^{-0.2 \times 8} \times(0.2 \times 8)^{2}}{2!} \times e^{-0.2 \times 16} \\
& \frac{e^{-4.8} \times 1.6^{2}}{2} \\
\simeq & 0.010534 .]
\end{array}
$$

(b) Obtain the probability that you will have to wait for more than 6 hours to get (exactly) (1.0) 3 new messages.

- R.v.
$S_{n}=$ time of the arrival of the $n^{\text {th }}$ new message
$S_{n} \stackrel{\text { form. }}{\sim}$ Erlang (n, λ)
- Requested probability

$$
\begin{array}{ccl}
P\left(S_{n}>t\right) & = & 1-F_{S_{n}}(t) \\
& \stackrel{\text { form. }}{=} & 1-\left[1-F_{\text {Poisson }(\lambda t)}(r\right. \\
\lambda=0.2, t=6, n=3 & (& F_{\text {Poisson }(0.2 \times 6)}(3-1) \\
& = & F_{\text {Poisson }(1.2)}(2) \\
& \stackrel{\text { tables }}{=} & 0.8795 .
\end{array}
$$

2. A bank undergoes inspections, which occur according to a homogeneous Poisson process (2.0) with intensity λ. This bank fails an inspection at time s if its current amount of capital, $a \times s(a>0)$, does not exceed a nonnegative random amount U, where the p.d.f. of U is equal to $f_{U}(u)=\frac{1}{(1+u)^{2}}, u \geq 0$.
Find the probability the bank will pass all the inspections done up to time t (write it in terms of λ, a and t).

- Stochastic process
$\{N(t): t \geq 0\} \sim P P(\lambda=5)$
$N(t)=$ number of inspections by time t
- Non-homogenous Bernoulli splitting

An inspection, which occurred at time $s(0<s<t)$, will lead to a failure with probability

$$
\begin{aligned}
p(s) & =P(a s \leq U) \\
& =\int_{a s}^{+\infty} f_{U}(u) d u \\
& =\int_{a s}^{+\infty} \frac{1}{(1+u)^{2}} d u
\end{aligned}
$$

$$
\begin{aligned}
p(s) & =-\left.\frac{1}{1+u}\right|_{a s} ^{+\infty} \\
& =\frac{1}{1+a s},
\end{aligned}
$$

for $a s \geq 0$. Then the number of inspections this bank fails until time $t, N_{f}(t)$, result from a non-homogenous Bernoulli splitting of $\{N(t): t \geq 0\}$. As a consequence,

$$
N_{f}(t) \stackrel{\text { form. }}{\sim} \text { Poisson }\left(\lambda \int_{0}^{t} p(s) d s\right),
$$

where

$$
\begin{aligned}
\int_{0}^{t} p(s) d s & =\int_{0}^{t} \frac{1}{1+a s} d s \\
& =\left.\frac{1}{a} \ln (1+a s)\right|_{0} ^{t} \\
& =\frac{1}{a} \ln (1+a t)
\end{aligned}
$$

- Requested probability

$$
\begin{aligned}
P\left[N_{f}(t)=0\right] & =e^{-\lambda \times \frac{1}{a} \ln (1+a t)} \\
& =(1+a t)^{-\frac{\lambda}{a}}
\end{aligned}
$$

3. Suppose that particle emissions due to radioactive decay by an unstable substance are governed by a non-homogeneous Poisson process with intensity function $\lambda(t)=\frac{1}{1+t}, t \geq 0$.
(a) Compute the expected number of particle emissions in the interval $(0, t]$.

- Stochastic process
$\{N(t): t \geq 0\} \sim N H P P$
$N(t)=$ number of particle emissions by time t
- Intensity function
$\lambda(t)=\frac{1}{1+t}, t \geq 0$
- Mean value function
$m(t)=E[N(t)]$
$=\int_{0}^{t} \lambda(s) d s$
$=\int_{0}^{t} \frac{1}{1+s} d s$
$=\left.\ln (1+s)\right|_{0} ^{t}$
$=\ln (1+t), t \geq 0$
(b) Find the probability that the first particle emission occurred within the first t time units. (1.5
- R.v.
$S_{n}=$ time of the $n^{t h}$ particle emission
- P.d.f.
$f_{S_{n}}(t) \stackrel{f o r m .}{=} \lambda(t) e^{-m(t)} \frac{[m(t)]^{n-1}}{(n-1)!}, t \geq 0$
- Requested probability

$$
\begin{aligned}
P\left(S_{1} \leq t\right) & =\int_{-\infty}^{t} f_{S_{1}}(s) d s \\
& =\int_{0}^{t} \lambda(s) e^{-m(s)} d s \\
& =\int_{0}^{t} \frac{1}{1+s} e^{-\ln (1+s)} d s \\
& =\int_{0}^{t} \frac{1}{(1+s)^{2}} d s \\
& =-\left.\frac{1}{1+s}\right|_{0} ^{t} \\
& =1-\frac{1}{1+t}
\end{aligned}
$$

[Alternatively,

$$
\begin{array}{rll}
P\left(S_{1} \leq t\right) & = & P[N(t) \geq 1] \\
& = & 1-P[N(t)=0] \\
& \stackrel{N(t) \sim \operatorname{Poisson}(m(t))}{=} & 1-e^{-m(t)} \\
& = & 1-e^{-\ln (1+t)} \\
& = & \left.1-\frac{1}{1+t} .\right]
\end{array}
$$

4. Suppose the number of claims generated by a small portfolio of insurance policies is governed by a Poisson process with rate $\lambda=2$ (claims per month). Individual claim amounts will be 1 or 2 with probabilities 0.6 and 0.4 , respectively.
Obtain the p.g.f. of the monthly claims amount and use it to derive the probability that this r.v. is equal to 1 .

- Relevant stochastic processes
$\{N(t): t \geq 0\} \sim P P(\lambda=2)$
$N(t)=$ number of claims up to month t
$N(t) \sim \operatorname{Poisson}(\lambda t)$
- Another stochastic process
$\left\{X(t)=\sum_{i=1}^{N(t)} Y_{i}: t \geq 0\right\} \sim$ Compound $P P(\lambda, Y)$
$X(t)=$ total claims amount up to time t
- R.v. et al.
$Y_{i}=$ amount of the $i^{\text {th }}$ claim
$Y_{i} \stackrel{i . i . d .}{\sim} Y$
$P(Y=y)= \begin{cases}0.6, & y=1 \\ 0.4, & y=2\end{cases}$
$\left\{Y_{i}: i \in \mathbb{N}\right\}$ indep. of $\{N(t): t \geq 0\}$
- P.g.f. of $X(t)$

It is given by

$$
\begin{aligned}
P_{X(t)}(s) & =E\left[s^{X(t)}\right] \\
& =E\left\{E\left[s^{X(t)} \mid N(t)\right]\right\},
\end{aligned}
$$

where $E\left[s^{X(t)} \mid N(t)\right]$ is a r.v., which takes value

$$
\begin{array}{rll}
E\left[s^{X(t)} \mid N(t)=n\right] & = & E\left[s^{\sum_{i=1}^{N(t)} Y_{i}} \mid N(t)=n\right] \\
& = & E\left[\prod_{i=1}^{N(t)} s^{Y_{i}} \mid N(t)=n\right] \\
Y_{i}^{i . i . d .} \stackrel{Y, Y_{i}}{=} \Perp N(t) & E\left\{\left[E\left(s^{Y}\right)\right]^{n}\right\}
\end{array}
$$

with probability $P[N(t)=n]=\frac{e^{-\lambda t}(\lambda t)^{n}}{n!}, n \in \mathbb{N}_{0}$. Moreover, since the p.g.f. of Y and $N(t)$ are equal to

$$
\begin{aligned}
P_{Y}(s) & =E\left(s^{Y}\right) \\
& =\sum_{y} s^{y} \times P(Y=y) \\
& =s^{1} \times 0.6+s^{2} \times 0.4 \\
& =0.6 s+0.4 s^{2} \\
P_{N(t)}(s) & =E\left[s^{N(t)}\right] \\
& \stackrel{\text { form. }}{=} e^{-\lambda t(1-s)}
\end{aligned}
$$

(respectively), we get

$$
\begin{aligned}
P_{X(t)}(s) & =E\left\{\left[E\left(s^{Y}\right)\right]^{N(t)}\right\} \\
& =P_{N(t)}\left[P_{Y}(s)\right] \\
& =e^{-\lambda t\left[1-P_{Y}(s)\right]} \\
& =e^{-\lambda t\left(1-0.6 s-0.4 s^{2}\right)} \\
\lambda=2, t=1 & e^{-2\left(1-0.6 s-0.4 s^{2}\right)} .
\end{aligned}
$$

- Requested probability

$$
\begin{aligned}
P[X(t)=1] & \left.\stackrel{\text { form. }}{=} \quad \frac{d P_{X(t)}(s)}{d s}\right|_{s=0} \\
& =-\lambda t(-0.6-0.8 s) \times\left. e^{-\lambda t\left(1-0.6 s-0.4 s^{2}\right)}\right|_{s=0} \\
& =\lambda t \times 0.6 \times e^{-\lambda t} \\
& \stackrel{\lambda=2, t=1}{=} 1.2 e^{-2} \\
& \simeq 0.162402 .
\end{aligned}
$$

- Obs. - Since $N(t)$ and the Y_{i} are independent r.v., we could also obtain

$$
P[X(t)=1]=P\left[N(t)=1, Y_{1}=1\right]=\frac{e^{-\lambda t}(\lambda t)^{1}}{1!} \times 0.6=1.2 e^{-2} \simeq 0.162402
$$

Group 2 - Renewal Processes

8.5 points

1. Replacements of an electronic part take a negligible time and occur according to a renewal process whose inter-renewal time:

- is equal to zero with probability p (the replacing part is defective and leads to another replacement);
- follows an exponential distribution with parameter λ with probability $1-p$.
(a) What is the long-run rate at which replacements occur? Interpret it.

Note: Every inter-renewal time is a mixture of two r.v.

- Renewal process
$\{N(t): t \geq 0\}$
$N(t)=$ number of replacements until time t

- Inter-renewal times

$X_{i} \stackrel{i . i . d .}{\sim} X, i \in \mathbb{N}$

- Expected inter-renewal time

Since X is a mixture of two r.v. - one taking value 0 (with weight p) and another one exponentially distributed with parameter λ (with weight $1-p$) —, its expected value is given by a convex linear combination of expected values:

$$
\begin{aligned}
\mu & =E(X) \\
& =p \times 0+(1-p) \times \frac{1}{\lambda} \\
& =\frac{1-p}{\lambda}
\end{aligned}
$$

- Requested long-run rate

According to the SLLN for renewal processes (see formulae!),

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \frac{N(t)}{t} \stackrel{w . p .1}{=} & \frac{1}{\mu} \\
& =\frac{\lambda}{1-p}
\end{aligned}
$$

- Interpretation

In the long-run a replacement takes place every $\mu=\frac{1-p}{\lambda}$ time units.
(b) Derive the renewal function $m(t)$ of this stochastic process.

Notes: The following LST may come handy in the auxiliary calculations: $p+(1-p) \times$ $\frac{\lambda}{\lambda+s}$. Recall that $L T^{-1}[1, t]=\delta(t)$, where $\delta(t)$ denotes the Dirac delta function.

- C.d.f. of X

$$
\begin{aligned}
F(x) & =P(X \leq 0) \\
& = \begin{cases}0, & x<0 \\
p, & x=0 \\
p+(1-p) \times \int_{0}^{x} \lambda e^{-\lambda s} d s=1-(1-p) e^{-\lambda x}, & x>0\end{cases}
\end{aligned}
$$

- Deriving the renewal function

Since the X is the mixed r.v. we have just described, its LST is given by

$$
\begin{aligned}
\tilde{F}(s) & =\int_{0^{-}}^{+\infty} e^{-s x} d F(x) \\
& =p \times e^{-s \times 0}+(1-p) \int_{0}^{+\infty} e^{-s x} \lambda e^{-\lambda x} d x \\
& =p+(1-p) \times M_{\operatorname{Exp}(\lambda)}(-s) \\
& \stackrel{\text { form. }}{=} p+(1-p) \times \frac{\lambda}{\lambda+s} .
\end{aligned}
$$

Moreover, the LST of the renewal function can be obtained in terms of \tilde{F} :

$$
\begin{aligned}
\tilde{m}(s) & \stackrel{\text { form. }}{=} \frac{\tilde{F}(s)}{1-\tilde{F}(s)} \\
= & \frac{p+(1-p) \times \frac{\lambda}{\lambda+s}}{1-p-(1-p) \times \frac{\lambda}{\lambda+s}} \\
& =\frac{\frac{p \lambda+p s+\lambda-p \lambda}{\lambda+s}}{\frac{(1-p)(\lambda+s-\lambda)}{\lambda+s}} \\
& =\frac{p}{1-p}+\frac{\lambda}{(1-p) s} .
\end{aligned}
$$

Taking advantage of the LT in the formulae and on the fact that $L T^{-1}[1, t]=\delta(t)$,
where $\delta(t)$ denotes the Dirac delta function, we successively get:

$$
\begin{aligned}
\frac{d m(t)}{d t} & =L T^{-1}[\tilde{m}(s), t] \\
& =L T^{-1}\left[\frac{p}{1-p}+\frac{\lambda}{(1-p) s}, t\right] \\
& =\frac{p}{1-p} \times L T^{-1}[1, t]+\frac{\lambda}{1-p} \times L T^{-1}\left[\frac{1}{s}, t\right] \\
& =\frac{p}{1-p} \times \delta(t)+\frac{\lambda}{1-p} \\
m(t) & =\int_{0}^{t}\left[\frac{p}{1-p} \times \delta(x)+\frac{\lambda}{1-p}\right] d x \\
& =\frac{p}{1-p}+\frac{\lambda t}{1-p}, t \geq 0
\end{aligned}
$$

(c) Show that the renewal function obtained in (b) verifies the elementary renewal theorem. (1.0)

- Verification of the elementary renewal theorem (ERT)

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \frac{m(t)}{t} & =\lim _{t \rightarrow+\infty} \frac{\frac{p}{1-p}+\frac{\lambda t}{1-p}}{t} \\
& =\frac{\lambda}{1-p} \\
& =\frac{1}{\mu}
\end{aligned}
$$

thus, verifying the ERT.
2. Clotilde is selling a certain article by phone. The duration of the phonecalls are independent (3.0) mixed r.v. with common c.d.f. given by

$$
F(x)= \begin{cases}0, & x \leq 0 \\ 3 x(1-x), & 0<x<\tau \\ 1, & x \geq \tau\end{cases}
$$

where τ is a constant in ($0, \frac{1}{2}$]. An article is considered sold if Clotilde manages to persuade the customer to buy the article before time τ.
Find the value of τ that maximizes the number of sold articles per time unit in the long-run. Notes: Recall that for any nonnegative r.v. $X, E(X)=\int_{0}^{+\infty}\left[1-F_{X}(x)\right] d x$. It is convenient to deal with the objective function $\frac{6(1-\tau)}{2-3 \tau+2 \tau^{2}}$.

- Renewal process
$\{N(t): t \geq 0\}$
$N(t)=$ number of phonecalls by time t
- Inter-renewal times
$X_{n} \stackrel{i . i . d .}{\sim} X, n \in \mathbb{N}$

$$
F(x)=F_{X}(x)= \begin{cases}0, & x \leq 0 \\ 3 x(1-x), & 0<x<\tau \\ 1, & x \geq \tau\end{cases}
$$

- Reward renewal process
$\left\{R(t)=\sum_{n=1}^{N(t)} R_{n}: t \geq 0\right\}$
$R(t)=$ number of articles sold until time t
$R_{n}= \begin{cases}1, & \text { if } X_{n}<\tau \text { (i.e., if the } n^{\text {th }} \text { phonecall led to the sale of an article) } \\ 0, & \text { otherwise }\end{cases}$
$\left(X_{n}, R_{n}\right) \stackrel{i . i . d .}{\sim}(X, R), n \in \mathbb{N}$
- Expected inter-renewal time

$$
\begin{aligned}
E(X) & \stackrel{X \geqq 0}{=} \int_{0}^{+\infty}\left[1-F_{X}(x)\right] d x \\
& =\int_{0}^{\tau}[1-3 x(1-x)] d x \\
& =\int_{0}^{\tau}\left(1-3 x+3 x^{2}\right) d x \\
& =\left.\left(x-\frac{3 x^{2}}{2}+x^{3}\right)\right|_{0} ^{\tau} \\
& =\tau-\frac{3 \tau^{2}}{2}+\tau^{3}
\end{aligned}
$$

- Expected number of articles sold per phonecall

$$
\begin{aligned}
E(R) & =1 \times P(X<\tau)+0 \times P(X \geq \tau) \\
& =3 \tau(1-\tau)
\end{aligned}
$$

- Number of articles sold per time unit in the long-run

Since $E(X), E(R)<+\infty$, we can add that

$$
\frac{R(t)}{t} \xrightarrow{w . p .1} \frac{E(R)}{E(X)},
$$

where $\frac{E(R)}{E(X)}$ represents the number of articles sold per time unit in the long-run. Moreover,

$$
\begin{aligned}
\frac{E(R)}{E(X)} & =h(\tau) \\
& =\frac{3 \tau(1-\tau)}{\tau-\frac{3 \tau}{2}+\tau^{3}} \\
& =\frac{6(1-\tau)}{2-3 \tau^{2}+2 \tau^{2}}
\end{aligned}
$$

- Maximizing the number of articles sold per time unit in the long-run

$$
\begin{aligned}
\tau \in(0,1 / 2]: & \frac{d h(\tau)}{d \tau}=0 \quad\left(\text { and } \frac{d^{2} h(\tau)}{d \tau^{2}}<0\right) \\
& -6\left(2-3 \tau+2 \tau^{2}\right)-6(1-\tau)(-3+4 \tau)=0 \\
& -12+18 \tau-12 \tau^{2}+18-24 \tau-18 \tau+24 \tau^{2}=0 \\
& 12 \tau^{2}-24 \tau+6=0 \\
& 2 \tau^{2}-4 \tau+1=0 \\
& \tau=\frac{4 \pm \sqrt{16-8}}{4} \\
& \tau=1-\frac{\sqrt{2}}{2} \\
& \tau \simeq 0.292893
\end{aligned}
$$

