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Introduction to Stochastic Processes
1st. Test (“Recurso”) 2nd. Semester — 2012/13

Duration: 1h30m 2013/09/24 — 8AM, Room V1.11

• Please justify all your answers.

• This test has two pages and three groups. The total of points is 20.0.

Group 1 — Introduction to Stochastic Processes 2.5 points

Let {N(t) : t ≥ 0} be a Poisson process of intensity λ and T0 be an independent r.v. such

that P (T0 = −1) = P (T0 = 1) = 1
2 , and define T (t) = T0 × (−1)N(t).

{T (t) : t ≥ 0} is an example of burst noise (also called popcorn or random telegraph signal

noise), a type of electronic noise that occurs in semiconductors.

(a) Derive the expected value and the variance of T (t). (1.0)

• Stochastic processes

{N(t) : t ≥ 0} ∼ PP (λ)

{T (t) = T0 × (−1)N(t) : t ≥ 0} burst noise process

• R.v.

N(t) ∼ Poisson(λt)

P (T0 = −1) = P (T0 = 1) = 1
2

T0 ⊥⊥ {N(t) : t ≥ 0}

• Requested expected value

E[T (t)] = E
[
T0 × (−1)N(t)

]

T0 ⊥⊥ N(t)
= E(T0)× E

[
(−1)N(t)

]

=

[
(−1)× 1

2
+ (+1)× 1

2

]
× E

[
(−1)N(t)

]

= 0× E
[
(−1)N(t)

]
(the 2nd. factor is finite; see (b))

= 0

• Requested variance

V [T (t)]
E[T (t)]=0

= E[T 2(t)]

= E
[
T 2

0 × (−1)2N(t)
]

N(t)∈N0
= E(T 2

0 × 1)

= (−1)2 × 1

2
+ (+1)2 × 1

2
= 1.

(b) Is {T (t) : t ≥ 0} a (second order weakly) stationary process? (1.5)

Note: cosh x = ex+e−x

2 =
∑+∞

n=0
x2n

(2n)! ; sinh x = ex−e−x

2 =
∑+∞

n=0
x2n+1

(2n+1)! .

1

• Investigating the 2nd. order weak stationarity

On one hand E[T (t)]
(a)
= 0, hence, constant for all t ≥ 0.

On the other hand, if we recall that

cosh x =
ex + e−x

2
=

+∞∑

n=0

x2n

(2n)!

sinh x =
ex − e−x

2
=

+∞∑

n=0

x2n+1

(2n + 1)!

we get, for t, s ≥ 0,

cov(T (t), T (t + s))
E[T (z)]=0, z≥0

= E [T (t)× T (t + s)]

= E
[
T 2

0 × (−1)N(t)+N(t+s)
]

= E
[
T 2

0 × (−1)2N(t)+[N(t+s)−N(t)]
]

indep. inc.
= E(T 2

0 )× E
[
(−1)2N(t)

]
× E

[
(−1)N(t+s)−N(t)

]

(a), station. inc.
= 1× E(1)× E

[
(−1)N(s)

]

[=
+∞∑

n=0

(−1)n × P [N(s) = n]

=
+∞∑

n=0

(−1)2n × P [N(s) = 2n]

+
+∞∑

n=0

(−1)2n+1 × P [N(s) = 2n + 1]

N(s)∼Poi(λs)
=

+∞∑

n=0

e−λs (λs)s

(2n)!
−

+∞∑

n=0

e−λs (λs)s

(2n + 1)!

= e−λs × [cosh(λs)− sinh(λs)]

= e−λs ×
(

eλs + e−λs

2
− eλs − e−λs

2

)

= e−2λs, ]

which does not depend on t and only depends on the time lag s. Consequently, we

are dealing with a second order weakly stationary process.

Group 2 — Poisson Processes 9.5 points

1. Requests arrive to a web server according to a Poisson process having rate equal to λ requests

per hour.

(a) Suppose two requests arrived during the first hour. What is the probability that both (1.5)
requests arrived during the first 20 minutes?

• Stochastic process

{N(t) : t ≥ 0} ∼ PP (λ)

N(t) = number of requests to a web server by time t (time in hours)

N(t) ∼ Poisson(λt)
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• Requested probability

According to Exercise 1.47,

(N(s) | N(t) = n) ∼ Binomial(n, s/t), 0 < s < t.

Thus,

P [N(1/3) = 2 | N(1) = 2] = PBinomial(n=2,s/t=1/3)(2)

=

(
2

2

)
× (1/3)2 × (1− 1/3)2−2

= (1/3)2

=
1

9
.

• Alternatively...

P [N(1/3) = 2 | N(1) = 2] =
P [N(1/3) = 2, N(1) = 2]

P [N(1) = 2]

=
P [N(1/3) = 2, N(1)−N(1/3) = 2− 2]

P [N(1) = 2]

indep. incr.
=

P [N(1/3) = 2]× P [N(1)−N(1/3) = 2− 2]

P [N(1) = 2]

station. incr.
=

P [N(1/3) = 2]× P [N(1− 1/3) = 0]

P [N(1) = 2]

N(t)∼Poi(λt)
=

e−λ/3 (λ/3)2

2! × e−2λ/3 (2λ/3)0

0!

e−λ λ2

2!

= (1/3)2

=
1

9

(b) Derive P
[
S1 < 1

3 or S2 < 1
3 | N(1) = 2

]
, where N(1) and Si (i = 1, 2) represent the (1.5)

number of requests arrived during the first hour and the time the ith request arrived to

the web server.

• Requested probability

Capitalizing once again on the fact (N(s) | N(t) = n) ∼ Binomial(n, s/t), 0 < s < t,

we conclude that

P [S1 < 1/3 or S2 < 1/3 | N(1) = 2] = P [N(1/3) ≥ 1 | N(1) = 2]

=
2∑

i=1

P [N(1/3) = i | N(1) = 2]

(a)
= P [N(1/3) = 1 | N(1) = 2] +

1

9

= PBinomial(n=2,s/t=1/3)(1) +
1

9

=

(
2

1

)
× (1/3)1 × (1− 1/3)2−1 +

1

9

=
5

9
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• Alternatively...

Given that

(S1, . . . , Sn | N(t) = n) ∼ (Y(1), . . . , Y(n)), n ∈ N,

where Yi
i.i.d.∼ Y ∼ Uniform(0, t), i = 1, . . . , n. Furthermore, since t = 1, we can add

that

FY (y) =






0, y ≤ 0

y, 0 < y < 1

1, y ≥ 1

fY (y) =

{
1, 0 < y < 1

0, otherwise

FY(i)
(y)

form.
= 1− FBinomial(n,FY (y)=y)(i− 1)

= 1− FBinomial(n,y)(i− 1), 0 < y < 1

fY(1),...,Y(n)
(y(1), . . . , y(n)) = n!×

n∏

i=1

fY (y(i))

= n!, 0 < y(1) ≤ · · · ≤ y(n) < 1.

Hence,

P [S1 < 1/3 or S2 < 1/3 | N(1) = 2] = P [S1 < 1/3 | N(1) = 2]

+P [S2 < 1/3 | N(1) = 2]

−P [S1 < 1/3, S2 < 1/3 | N(1) = 2]
n=2
= FY(1)

(1/3) + FY(2)
(1/3)− FY(1),Y(2)

(1/3, 1/3),

where

FY(1)
(1/3) = 1− FBinomial(n=2,FY (1/3)=1/3)(1− 1)

= 1−
(

2

0

)
× (1/3)0 × (1− 1/3)2−0

=
5

9
FY(2)

(1/3) = 1− FBinomial(n=2,FY (1/3)=1/3)(2− 1)

= 1−
(

2

0

)
× (1/3)0 × (1− 1/3)2−0 −

(
2

1

)
× (1/3)1 × (1− 1/3)2−1

=
1

9

FY(1),Y(2)
(1/3) =

∫ 1/3

0

∫ y(2)

0

2! dy(1) dy(2)

=

∫ 1/3

0

2y(2) dy(2)

= y2
(2)

∣∣1/3

0

=
1

9
.
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We finally obatin

P [S1 < 1/3 or S2 < 1/3 | N(1) = 2] =
5

9
+

1

9
− 1

9

=
5

9
.

2. An insurance company feels that a randomly chosen policyholder will make claims according

to a conditional Poisson process with rate uniformly distributed over (0,1) and time measured

in years.

(a) Derive the mean value and variance of the number of claims made by that policyholder (1.5)
in t years.

• Stochastic process

{N(t) : t ≥ 0} ∼ ConditionalPP (Uniform(0, 1))

N(t) = number of claims by time t

• Random arrival rate

Λ ∼ Uniform(0, 1)

E(Λ)
form.
= 0+1

2 = 1
2

V (Λ)
form.
= (1−0)2

12 = 1
12

• Distribution of N(t) conditional to Λ = λ, etc.

(N(t) | Λ = λ) ∼ Poisson(λt)

E[N(t) | Λ = λ] = λt

V [N(t) | Λ = λ] = λt

• Requested expected value

E[N(t)] = E{E[N(t) | Λ]}
= E(Λt)

=
1

2
× t

• Requested variance

V [N(t)] = V {E[N(t) | Λ]} + E{V [N(t) | Λ]}
= V (Λt) + E(Λt)

=
1

12
× t2 +

1

2
× t

=
t(t + 6)

12
.

(b) Compute the probability that the policyholder makes exactly one claim in one year. (2.5)

• Random arrival rate

Λ ∼ Uniform(0, 1)

G(λ) = FΛ(λ) = λ, 0 < λ < 1

g(λ) = fΛ(λ) = 1, 0 < λ < 1

• F.p. of N(t)

P [N(t + s)−N(s) = n]
form.
=

∫ +∞
0

e−λt(λt)n

n! dG(λ)
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• Requested probability

Considering t = 1, s = 0 and n = 1 in the previous formula and using integration

by parts,1 we get

P [N(1) = 1] =

∫ +∞

0

e−λλ dG(λ)

=

∫ 1

0

λe−λ dλ

= −λe−λ
∣∣1
0
+

∫ 1

0

e−λ dλ

= −e−1 − e−λ
∣∣1
0

= 1− 2e−1

( 0.2642.

3. Consider a maternity ward in a hospital. A delivery may result in one, two or three births

with probabilities 0.9, 0.08, and 0.02, respectively.

Admit the number of deliveries forms a Poisson process with rate 10 deliveries per day.

(a) Obtain the probability of at least one twin being born on a given day. (1.0)

• Stochastic process

{N(t) : t ≥ 0} ∼ PP (λ = 10 deliveries per day)

N(t) = number of deliveries by time t

N(t) ∼ Poisson(λt)

• Split process

{Ntwins(t) : t ≥ 0} ∼ PP (λp)

Ntwins(t) = number of deliveries leading to twins by time t

p = P (delivery leading to twins) = 0.08

Ntwins(t) ∼ Poisson(10× 0.08× t = 0.8t)

• Requested probability

P [Ntwins(t) ≥ 1] = 1− P [Ntwins(t) = 0]

t=1
= 1− e−0.8 0.80

0!
= 1− e−0.8

( 0.550671.

(b) Calculate an approximate value to the probability that there will be more than 700 births (1.5)
in a 8 week period.

• Relevant stochastic process{
X(t) =

∑N(t)
i=1 Yi : t ≥ 0

}
∼ Compound PP (λ, Y )

X(t) = total number of births by time t

1In case you forgot:

{
u = λ

v′ = e−λ

{
u′ = 1
v = −e−λ

∫
uv′ = uv −

∫
u′v
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• R.v. et al.

Yi = number of births/babies in the ith delivery

Yi
i.i.d.∼ Y

P (Y = y) =






0.9, y = 1

0.08, y = 2

0.02, y = 3
{Yi : i ∈ N} indep. of {N(t) : t ≥ 0} ∼ PP (λ = 10)

• Requested probability (approximate value)

According to the formulae, E[X(t)] = λt × E(Y ) and V [X(t)] = λtE(Y 2). Hence,

for t = 8× 7 = 56 days,

E[X(56)] = 10× 56× (1× 0.9 + 2× 0.08 + 3× 0.02)

= 560× 1.12

= 627.2

V [X(56)] = 10× 56× (12 × 0.9 + 22 × 0.08 + 32 × 0.02)

= 560××1.4

= 784

Thus,

P [X(56) > 700] ( 1− Φ

(
700− E[X(56)]√

V [X(56)]

)

= 1− Φ

(
700− 627.2√

784

)

= 1− Φ

(
72.8

28

)

= 1− Φ(2.6)
table
= 1− 0.9953

= 0.0047.

Group 3 — Renewal Processes 8.0 points

1. Planes land at Heathrow airport at the times of a renewal process with inter-renewal

distribution χ2
(4).

(a) Compute and interpret limt→+∞
m(t)

t . (1.0)

• Renewal process

{N(t) : t ≥ 0}
N(t) = number of airplanes that landed by time t

• Inter-renewal times

Xi
i.i.d.∼ X, i ∈ N

X ∼ χ2
(4)

µ = E(X)
form.
= 4

7

• Requested limit

According to the elementary renewal theorem (ERT) (see formulae!),

lim
t→+∞

m(t)

t
=

1

µ

=
1

4
.

• Interpretation

In the long-run expect that one airplane lands every 4 time units.

(b) Derive the renewal function m(t) of this renewal process, by using the Laplace-Stieltjes (2.5)
transform method and capitalizing on the table of important Laplace transforms in the

formulae.

• Deriving the renewal function

Since the inter-renewal times are continuous r.v. the LST of the inter-renewal

distribution is given by

F̃ (s) =

∫ +∞

0−
e−sx dF (x)

= E(e−sX)

= MX(−s)

form.
=

(
1/2

1/2 + s

)4/2

form.
=

1

(2s + 1)2
.

Moreover, the LST of the renewal function can be obtained in terms of the one of

F :

m̃(s)
form.
=

F̃ (s)

1− F̃ (s)

=
1

(2s + 1)2
× 1

1− 1
(2s+1)2

=
1

4
× 1

s(s + 1)
.

Taking advantage of the LT in the formulae, we successively get:
dm(t)

dt
= LT−1 [m̃(s), t]

= LT−1

[
1

4
× 1

s(s + 1)
, t

]

=
1

4
× LT−1

[
1

s(s + 1)
, t

]

=
1

4
× e−0×t − e−1×t

1− 0

=
1− e−t

4
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m(t) =

∫ t

0

1− e−x

4
dx

=
t

4
+

e−t

4
− 1

4
, t ≥ 0.

2. Admit that at time 0 we started to install a component of a mechanical system. The duration

Z of this component is a r.v. with c.d.f. G. When the component breaks down it is replaced

by a new/similar one and this replacement takes a fixed time equal to λ.

Consider the stochastic process {N(t) : t ≥ 0}, where N(t) represents the number of

completed replacements by time t.

(a) Derive a renewal-type equation for E[Y (t)], the expected value of the residual life at time (3.0)
t of the stochastic process. (Do not try to solve it!)

• Renewal process

{N(t) : t ≥ 0}
N(t) = number of completed replacements by time t

• Inter-renewal times

Xi
i.i.d.∼ X

st
= Z + λ, i ∈ N0, where

Z = duration of a component

λ = time spent replacing a component

• Important r.v.

Y (t) = residual life at time t

• Renewal-type equation

Applying the renewal argument, that is, conditioning on the time of the first renewal,

X1 = x (which coincides with the time the first component broke down), we have

– for 0 < x ≤ t,

E[Y (t) | X1 = x] = E[Y (t− x)]

– for x > t,

E[Y (t) | X1 = x] = x− t.

Consequently,

E[Y (t)] =

∫ +∞

0

E[Y (t) | X1 = x] dF (x)

=

∫ t

0

E[Y (t− x)] dF (x) +

∫ +∞

t

(x− t) dF (x),

where F (x) = P (X ≤ x) = P (X1 ≤ x).

(b) Determine the limiting value of E[Y (t)] when Z ∼ Exponential(ξ−1). (1.5)

• R.v.

Z ∼ Exponential(ξ−1)
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• Requested limit

lim
t→+∞

E[Y (t)]
form
=

E(X2)

2E(X)

=
E[(Z + λ)2]

2E(Z + λ)

=
E(Z2) + 2λE(Z) + λ2

2[E(Z) + λ]

=
V (Z) + E2(Z) + 2λE(Z) + λ2

2[E(Z) + λ]

=
ξ2 + ξ2 + 2λξ + λ2

2(ξ + λ)

= ξ +
λ2

2(ξ + λ)
.
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