## Department of Mathematics, IST - Probability and Statistics Unit

Introduction to Stochastic Processes

| 1st. Test ("Recurso") | 2nd. Semester - 2012/13 |
| :--- | ---: |
| Duration: 1 h 30 m | $\mathbf{2 0 1 3 / 0 9 / 2 4 - 8 A M , ~ R o o m ~ V 1 . 1 1 ~}$ |

- Please justify all your answers.
- This test has two pages and three groups. The total of points is 20.0.


## Group 1 - Introduction to Stochastic Processes

2.5 points

Let $\{N(t): t \geq 0\}$ be a Poisson process of intensity $\lambda$ and $T_{0}$ be an independent r.v. such that $P\left(T_{0}=-1\right)=P\left(T_{0}=1\right)=\frac{1}{2}$, and define $T(t)=T_{0} \times(-1)^{N(t)}$.
$\{T(t): t \geq 0\}$ is an example of burst noise (also called popcorn or random telegraph signal noise), a type of electronic noise that occurs in semiconductors.
(a) Derive the expected value and the variance of $T(t)$.

- Stochastic processes
$\{N(t): t \geq 0\} \sim P P(\lambda)$
$\left\{T(t)=T_{0} \times(-1)^{N(t)}: t \geq 0\right\}$ burst noise process
- R.v.
$N(t) \sim \operatorname{Poisson}(\lambda t)$
$P\left(T_{0}=-1\right)=P\left(T_{0}=1\right)=\frac{1}{2}$
$T_{0} \Perp\{N(t): t \geq 0\}$
- Requested expected value

$$
\begin{aligned}
E[T(t)] & =E\left[T_{0} \times(-1)^{N(t)}\right] \\
T_{0} & \stackrel{\Perp}{=}{ }^{N(t)} E\left(T_{0}\right) \times E\left[(-1)^{N(t)}\right] \\
& =\left[(-1) \times \frac{1}{2}+(+1) \times \frac{1}{2}\right] \times E\left[(-1)^{N(t)}\right] \\
& \left.=0 \times E\left[(-1)^{N(t)}\right] \text { (the 2nd. factor is finite; see }(\mathrm{b})\right) \\
& =0
\end{aligned}
$$

- Requested variance

$$
\begin{array}{rll}
V[T(t)] & \stackrel{E[T(t)]=0}{=} & E\left[T^{2}(t)\right] \\
& = & E\left[T_{0}^{2} \times(-1)^{2 N(t)}\right] \\
& \stackrel{N(t) \in \mathbb{N}_{0}}{=} & E\left(T_{0}^{2} \times 1\right) \\
& = & (-1)^{2} \times \frac{1}{2}+(+1)^{2} \times \frac{1}{2} \\
& =1 .
\end{array}
$$

(b) Is $\{T(t): t \geq 0\}$ a (second order weakly) stationary process?

Note: $\cosh x=\frac{e^{x}+e^{-x}}{2}=\sum_{n=0}^{+\infty} \frac{x^{2 n}}{(2 n)!} ; \quad \sinh x=\frac{e^{x}-e^{-x}}{2}=\sum_{n=0}^{+\infty} \frac{x^{2 n+1}}{(2 n+1)!}$.

- Investigating the 2 nd. order weak stationarity

On one hand $E[T(t)] \stackrel{(a)}{=} 0$, hence, constant for all $t \geq 0$.
On the other hand, if we recall that

$$
\begin{aligned}
& \cosh x=\frac{e^{x}+e^{-x}}{2}=\sum_{n=0}^{+\infty} \frac{x^{2 n}}{(2 n)!} \\
& \sinh x=\frac{e^{x}-e^{-x}}{2}=\sum_{n=0}^{+\infty} \frac{x^{2 n+1}}{(2 n+1)!} \\
& \text { we get, for } t, s \geq 0 \text {, } \\
& \operatorname{cov}(T(t), T(t+s)) \quad E[T(z)]=0, z \geq 0 \quad E[T(t) \times T(t+s)] \\
& \begin{array}{ll}
= & E\left[T_{0}^{2} \times(-1)^{N(t)+N(t+s)}\right] \\
= & E\left[T_{0}^{2} \times(-1)^{2 N(t)+[N(t+s)-}\right.
\end{array} \\
& =E\left[T_{0}^{2} \times(-1)^{2 N(t)+[N(t+s)-N(t)]}\right] \\
& { }^{\text {indep. inc. }}=\quad E\left(T_{0}^{2}\right) \times E\left[(-1)^{2 N(t)}\right] \times E\left[(-1)^{N(t+s)-N(t)}\right] \\
& \stackrel{(a), \text { station. inc. }}{=} \quad 1 \times E(1) \times E\left[(-1)^{N(s)}\right] \\
& {\left[=\quad \sum_{n=0}^{+\infty}(-1)^{n} \times P[N(s)=n]\right.} \\
& =\quad \sum_{n=0}^{+\infty}(-1)^{2 n} \times P[N(s)=2 n] \\
& +\sum_{n=0}^{+\infty}(-1)^{2 n+1} \times P[N(s)=2 n+1] \\
& N(s) \sim \text { Poi }(\lambda s) \quad \sum_{n=0}^{+\infty} e^{-\lambda s} \frac{(\lambda s)^{s}}{(2 n)!}-\sum_{n=0}^{+\infty} e^{-\lambda s} \frac{(\lambda s)^{s}}{(2 n+1)!} \\
& =\quad e^{-\lambda s} \times[\cosh (\lambda s)-\sinh (\lambda s)] \\
& =\quad e^{-\lambda s} \times\left(\frac{e^{\lambda s}+e^{-\lambda s}}{2}-\frac{e^{\lambda s}-e^{-\lambda s}}{2}\right) \\
& \left.=\quad e^{-2 \lambda s},\right]
\end{aligned}
$$

which does not depend on $t$ and only depends on the time lag $s$. Consequently, we are dealing with a second order weakly stationary process.

## Group 2 - Poisson Processes

9.5 points

1. Requests arrive to a web server according to a Poisson process having rate equal to $\lambda$ requests per hour.
(a) Suppose two requests arrived during the first hour. What is the probability that both (1.5) requests arrived during the first 20 minutes?

- Stochastic process
$\{N(t): t \geq 0\} \sim P P(\lambda)$
$N(t)=$ number of requests to a web server by time $t$ (time in hours) $N(t) \sim \operatorname{Poisson}(\lambda t)$
- Requested probability

According to Exercise 1.47,

$$
(N(s) \mid N(t)=n) \sim \operatorname{Binomial}(n, s / t), 0<s<t .
$$

Thus,

$$
\begin{aligned}
P[N(1 / 3)=2 \mid N(1)=2] & =P_{\text {Binomial }(n=2, s / t=1 / 3)}(2) \\
& =\binom{2}{2} \times(1 / 3)^{2} \times(1-1 / 3)^{2-2} \\
& =(1 / 3)^{2} \\
& =\frac{1}{9}
\end{aligned}
$$

- Alternatively...

$$
\begin{array}{rll}
P[N(1 / 3)=2 \mid N(1)=2] & = & \frac{P[N(1 / 3)=2, N(1)=2]}{P[N(1)=2]} \\
& = & \frac{P[N(1 / 3)=2, N(1)-N(1 / 3)=2-2]}{P[N(1)=2]} \\
\text { indep.incr. }
\end{array} \quad \frac{P[N(1 / 3)=2] \times P[N(1)-N(1 / 3)=2-2]}{P[N(1)=2]} \begin{aligned}
& \text { station.incr. } \\
& \stackrel{P[N(1 / 3)=2] \times P[N(1-1 / 3)=0]}{P[N(1)=2]} \\
& \stackrel{N(t) \sim \text { Poi }(\lambda t)}{=} \\
& \frac{e^{-\lambda / 3 \frac{(\lambda / 3)^{2}}{2!} \times e^{-2 \lambda / 3} \frac{(2 \lambda / 3)^{0}}{0!}}}{e^{-\lambda \frac{\lambda^{2}}{2!}}} \\
&=\frac{(1 / 3)^{2}}{9}
\end{aligned}
$$

(b) Derive $P\left[S_{1}<\frac{1}{3}\right.$ or $\left.\left.S_{2}<\frac{1}{3} \right\rvert\, N(1)=2\right]$, where $N(1)$ and $S_{i}(i=1,2)$ represent the (1.5) number of requests arrived during the first hour and the time the $i^{\text {th }}$ request arrived to the web server.

- Requested probability

Capitalizing once again on the fact $(N(s) \mid N(t)=n) \sim \operatorname{Binomial}(n, s / t), 0<s<t$, we conclude that

$$
\begin{aligned}
P\left[S_{1}<1 / 3 \text { or } S_{2}<1 / 3 \mid N(1)=2\right] & =P[N(1 / 3) \geq 1 \mid N(1)=2] \\
& =\sum_{i=1}^{2} P[N(1 / 3)=i \mid N(1)=2] \\
& \stackrel{(a)}{=} P[N(1 / 3)=1 \mid N(1)=2]+\frac{1}{9} \\
& =P_{\text {Binomial }(n=2, s / t=1 / 3)}(1)+\frac{1}{9} \\
& =\binom{2}{1} \times(1 / 3)^{1} \times(1-1 / 3)^{2-1}+\frac{1}{9} \\
& =\frac{5}{9}
\end{aligned}
$$

## - Alternatively...

Given that

$$
\left(S_{1}, \ldots, S_{n} \mid N(t)=n\right) \sim\left(Y_{(1)}, \ldots, Y_{(n)}\right), n \in \mathbb{N}
$$

where $Y_{i} \stackrel{i . i . d .}{\sim} Y \sim \operatorname{Uniform}(0, t), i=1, \ldots, n$. Furthermore, since $t=1$, we can add that

$$
\left.\begin{array}{rl}
F_{Y}(y) & = \begin{cases}0, & y \leq 0 \\
y, & 0<y<1 \\
1, & y \geq 1\end{cases} \\
f_{Y}(y) & = \begin{cases}1, & 0<y<1 \\
0, & \text { otherwise }\end{cases} \\
F_{Y_{(i)}}(y) \stackrel{\text { form. }}{=} 1-F_{\text {Binomial }\left(n, F_{Y}(y)=y\right)}(i-1) \\
= & 1-F_{\text {Binomial }(n, y)}(i-1), 0<y<1
\end{array}, \begin{array}{l}
n!\times \prod_{i=1}^{n} f_{Y}\left(y_{(i)}\right)
\end{array}\right\} \begin{array}{ll} 
& =n!, 0<y_{(1)} \leq \cdots \leq y_{(n)}<1 .
\end{array}
$$

## Hence,

$$
\begin{aligned}
P\left[S_{1}<1 / 3 \text { or } S_{2}<1 / 3 \mid N(1)=2\right]= & P\left[S_{1}<1 / 3 \mid N(1)=2\right] \\
& +P\left[S_{2}<1 / 3 \mid N(1)=2\right] \\
& -P\left[S_{1}<1 / 3, S_{2}<1 / 3 \mid N(1)=2\right] \\
\stackrel{n=2}{=} & F_{Y_{(1)}}(1 / 3)+F_{Y_{(2)}}(1 / 3)-F_{Y_{(1)}, Y_{(2)}}(1 / 3,1 / 3),
\end{aligned}
$$

where

$$
\begin{aligned}
F_{Y_{(1)}}(1 / 3) & =1-F_{\text {Binomial }\left(n=2, F_{Y}(1 / 3)=1 / 3\right)}(1-1) \\
& =1-\binom{2}{0} \times(1 / 3)^{0} \times(1-1 / 3)^{2-0} \\
& =\frac{5}{9} \\
F_{Y_{(2)}}(1 / 3) & =1-F_{\text {Binomial }\left(n=2, F_{Y}(1 / 3)=1 / 3\right)}(2-1) \\
& =1-\binom{2}{0} \times(1 / 3)^{0} \times(1-1 / 3)^{2-0}-\binom{2}{1} \times(1 / 3)^{1} \times(1-1 / 3)^{2-1} \\
& =\frac{1}{9} \\
& =\int_{0}^{1 / 3} 2 y_{(2)} d y_{(2)} \\
F_{Y_{(1)}, Y_{(2)}}(1 / 3) & =\int_{0}^{1 / 3} \int_{0}^{y_{(2)}} 2!d y_{(1)} d y_{(2)} \\
& =\frac{1}{9} .
\end{aligned}
$$

We finally obatin

$$
\begin{aligned}
P\left[S_{1}<1 / 3 \text { or } S_{2}<1 / 3 \mid N(1)=2\right] & =\frac{5}{9}+\frac{1}{9}-\frac{1}{9} \\
& =\frac{5}{9}
\end{aligned}
$$

2. An insurance company feels that a randomly chosen policyholder will make claims according to a conditional Poisson process with rate uniformly distributed over ( 0,1 ) and time measured in years.
(a) Derive the mean value and variance of the number of claims made by that policyholder in $t$ years.

- Stochastic process
$\{N(t): t \geq 0\} \sim$ Conditional $P P(\operatorname{Uniform}(0,1))$
$N(t)=$ number of claims by time $t$
- Random arrival rate
$\Lambda \sim \operatorname{Uniform}(0,1)$
$E(\Lambda) \stackrel{\text { form. }}{=} \frac{0+1}{2}=\frac{1}{2}$
$V(\Lambda) \stackrel{\text { form. }}{=} \frac{(1-0)^{2}}{12}=\frac{1}{12}$
- Distribution of $\mathbf{N}(\mathrm{t})$ conditional to $\Lambda=\lambda$, etc.
$(N(t) \mid \Lambda=\lambda) \sim \operatorname{Poisson}(\lambda t)$
$E[N(t) \mid \Lambda=\lambda]=\lambda t$
$V[N(t) \mid \Lambda=\lambda]=\lambda t$
- Requested expected value

$$
E[N(t)]=E\{E[N(t) \mid \Lambda]\}
$$

$=E(\Lambda t)$
$=\frac{1}{2} \times t$

- Requested variance

$$
\begin{align*}
V[N(t)] & =V\{E[N(t) \mid \Lambda]\}+E\{V[N(t) \mid \Lambda]\} \\
& =V(\Lambda t)+E(\Lambda t) \\
& =\frac{1}{12} \times t^{2}+\frac{1}{2} \times t \\
& =\frac{t(t+6)}{12} . \tag{2.5}
\end{align*}
$$

(b) Compute the probability that the policyholder makes exactly one claim in one year.

- Random arrival rate
$\Lambda \sim \operatorname{Uniform}(0,1)$
$G(\lambda)=F_{\Lambda}(\lambda)=\lambda, 0<\lambda<1$
$g(\lambda)=f_{\Lambda}(\lambda)=1,0<\lambda<1$
- F.p. of $N(t)$
$P[N(t+s)-N(s)=n] \stackrel{\text { form. }}{=} \int_{0}^{+\infty} \frac{e^{-\lambda t}(\lambda)^{n}}{n!} d G(\lambda)$


## - Requested probability

Considering $t=1, s=0$ and $n=1$ in the previous formula and using integration by parts, ${ }^{1}$ we get

$$
\begin{aligned}
P[N(1)=1] & =\int_{0}^{+\infty} e^{-\lambda} \lambda d G(\lambda) \\
& =\int_{0}^{1} \lambda e^{-\lambda} d \lambda \\
& =-\left.\lambda e^{-\lambda}\right|_{0} ^{1}+\int_{0}^{1} e^{-\lambda} d \lambda \\
& =-e^{-1}-\left.e^{-\lambda}\right|_{0} ^{1} \\
& =1-2 e^{-1} \\
& \simeq 0.2642 .
\end{aligned}
$$

3. Consider a maternity ward in a hospital. A delivery may result in one, two or three births with probabilities 0.9, 0.08, and 0.02, respectively.

Admit the number of deliveries forms a Poisson process with rate 10 deliveries per day.
(a) Obtain the probability of at least one twin being born on a given day.

- Stochastic process
$\{N(t): t \geq 0\} \sim P P(\lambda=10$ deliveries per day $)$
$N(t)=$ number of deliveries by time $t$
$N(t) \sim \operatorname{Poisson}(\lambda t)$
- Split process
$\left\{N_{\text {twins }}(t): t \geq 0\right\} \sim P P(\lambda p)$
$N_{\text {twins }}(t)=$ number of deliveries leading to twins by time $t$
$p=P($ delivery leading to twins $)=0.08$
$N_{\text {twins }}(t) \sim$ Poisson $(10 \times 0.08 \times t=0.8 t)$
- Requested probability

$$
\begin{aligned}
P\left[N_{\text {twins }}(t) \geq 1\right] & =1-P\left[N_{\text {twins }}(t)=0\right] \\
& \stackrel{t=1}{=} 1-e^{-0.8} \frac{0.8^{0}}{0!} \\
& =1-e^{-0.8} \\
& \simeq 0.550671
\end{aligned}
$$

(b) Calculate an approximate value to the probability that there will be more than 700 births in a 8 week period.

- Relevant stochastic process
$\left\{X(t)=\sum_{i=1}^{N(t)} Y_{i}: t \geq 0\right\} \sim$ Compound $P P(\lambda, Y)$
$X(t)=$ total number of births by time $t$
${ }^{1}$ In case you forgot: $\left\{\begin{array}{l}u=\lambda \\ v^{\prime}=e^{-\lambda}\end{array}\left\{\begin{array}{l}u^{\prime}=1 \\ v=-e^{-\lambda}\end{array} \quad \int u v^{\prime}=u v-\int u^{\prime} v\right.\right.$
- R.v. et al.
$Y_{i}=$ number of births/babies in the $i^{\text {th }}$ delivery
$Y_{i} \stackrel{i . i . d .}{\sim} Y$
$P(Y=y)= \begin{cases}0.9, & y=1 \\ 0.08, & y=2 \\ 0.02, & y=3\end{cases}$
$\left\{Y_{i}: i \in \mathbb{N}\right\}$ indep. of $\{N(t): t \geq 0\} \sim P P(\lambda=10)$
- Requested probability (approximate value)

According to the formulae, $E[X(t)]=\lambda t \times E(Y)$ and $V[X(t)]=\lambda t E\left(Y^{2}\right)$. Hence for $t=8 \times 7=56$ days,

$$
E[X(56)]=10 \times 56 \times(1 \times 0.9+2 \times 0.08+3 \times 0.02)
$$

$$
=560 \times 1.12
$$

$$
=627.2
$$

$V[X(56)]=10 \times 56 \times\left(1^{2} \times 0.9+2^{2} \times 0.08+3^{2} \times 0.02\right)$
$=560 \times \times 1.4$
$=784$
Thus,

$$
\begin{aligned}
& P[X(56)>700] \simeq 1-\Phi\left(\frac{700-E[X(56)]}{\sqrt{V[X(56)]}}\right) \\
&=1-\Phi\left(\frac{700-627.2}{\sqrt{784}}\right) \\
&=1-\Phi\left(\frac{72.8}{28}\right) \\
&=1-\Phi(2.6) \\
& \stackrel{\text { table }}{=} 1-0.9953 \\
&=0.0047 .
\end{aligned}
$$

## Group 3 - Renewal Processes

8.0 points

1. Planes land at Heathrow airport at the times of a renewal process with inter-renewal distribution $\chi_{(4)}^{2}$.
(a) Compute and interpret $\lim _{t \rightarrow+\infty} \frac{m(t)}{t}$.

- Renewal process
$\{N(t): t \geq 0\}$
$N(t)=$ number of airplanes that landed by time $t$
- Inter-renewal times
$X_{i} \stackrel{i . i . d .}{\sim} X, i \in \mathbb{N}$
$X \sim \chi_{(4)}^{2}$
$\mu=E(X) \stackrel{\text { form. }}{=} 4$
- Requested limit

According to the elementary renewal theorem (ERT) (see formulae!),

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \frac{m(t)}{t} & =\frac{1}{\mu} \\
& =\frac{1}{4}
\end{aligned}
$$

- Interpretation

In the long-run expect that one airplane lands every 4 time units.
(b) Derive the renewal function $m(t)$ of this renewal process, by using the Laplace-Stieltjes (2.5) transform method and capitalizing on the table of important Laplace transforms in the formulae.

- Deriving the renewal function

Since the inter-renewal times are continuous r.v. the LST of the inter-renewal distribution is given by

$$
\begin{aligned}
\tilde{F}(s) & =\int_{0^{-}}^{+\infty} e^{-s x} d F(x) \\
& =E\left(e^{-s X}\right) \\
& =M_{X}(-s) \\
& \stackrel{\text { form. }}{=} \\
& \left(\frac{1 / 2}{1 / 2+s}\right)^{4 / 2} \\
& \stackrel{\text { form. }}{=}
\end{aligned} \frac{1}{(2 s+1)^{2}} .
$$

Moreover, the LST of the renewal function can be obtained in terms of the one of $F$ :

$$
\begin{aligned}
\tilde{m}(s) & \stackrel{\text { form. }}{=} \frac{\tilde{F}(s)}{1-\tilde{F}(s)} \\
& =\frac{1}{(2 s+1)^{2}} \times \frac{1}{1-\frac{1}{(2 s+1)^{2}}} \\
& =\frac{1}{4} \times \frac{1}{s(s+1)}
\end{aligned}
$$

Taking advantage of the LT in the formulae, we successively get:

$$
\begin{aligned}
\frac{d m(t)}{d t} & =L T^{-1}[\tilde{m}(s), t] \\
& =L T^{-1}\left[\frac{1}{4} \times \frac{1}{s(s+1)}, t\right] \\
& =\frac{1}{4} \times L T^{-1}\left[\frac{1}{s(s+1)}, t\right] \\
& =\frac{1}{4} \times \frac{e^{-0 \times t}-e^{-1 \times t}}{1-0} \\
& =\frac{1-e^{-t}}{4}
\end{aligned}
$$

$$
\begin{aligned}
m(t) & =\int_{0}^{t} \frac{1-e^{-x}}{4} d x \\
& =\frac{t}{4}+\frac{e^{-t}}{4}-\frac{1}{4}, t \geq 0
\end{aligned}
$$

2. Admit that at time 0 we started to install a component of a mechanical system. The duration $Z$ of this component is a r.v. with c.d.f. G. When the component breaks down it is replaced by a new/similar one and this replacement takes a fixed time equal to $\lambda$.

Consider the stochastic process $\{N(t): t \geq 0\}$, where $N(t)$ represents the number of completed replacements by time $t$.
(a) Derive a renewal-type equation for $E[Y(t)]$, the expected value of the residual life at time (3.0) $t$ of the stochastic process. (Do not try to solve it!)

- Renewal process
$\{N(t): t \geq 0\}$
$N(t)=$ number of completed replacements by time $t$
- Inter-renewal times
$X_{i} \stackrel{i . i . d .}{\sim} X \stackrel{s t}{=} Z+\lambda, i \in \mathbb{N}_{0}$, where
$Z=$ duration of a component
$\lambda=$ time spent replacing a component
- Important r.v.
$Y(t)=$ residual life at time $t$
- Renewal-type equation

Applying the renewal argument, that is, conditioning on the time of the first renewal $X_{1}=x$ (which coincides with the time the first component broke down), we have

- for $0<x \leq t$,

$$
E\left[Y(t) \mid X_{1}=x\right]=E[Y(t-x)]
$$

- for $x>t$,

$$
E\left[Y(t) \mid X_{1}=x\right]=x-t
$$

Consequently,

$$
\begin{aligned}
E[Y(t)] & =\int_{0}^{+\infty} E\left[Y(t) \mid X_{1}=x\right] d F(x) \\
& =\int_{0}^{t} E[Y(t-x)] d F(x)+\int_{t}^{+\infty}(x-t) d F(x)
\end{aligned}
$$

where $F(x)=P(X \leq x)=P\left(X_{1} \leq x\right)$.
(b) Determine the limiting value of $E[Y(t)]$ when $Z \sim \operatorname{Exponential}\left(\xi^{-1}\right)$.

- R.v.
$Z \sim \operatorname{Exponential}\left(\xi^{-1}\right)$
- Requested limit

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} E[Y(t)] & \stackrel{\text { form }}{=} \frac{E\left(X^{2}\right)}{2 E(X)} \\
& =\frac{E\left[(Z+\lambda)^{2}\right]}{2 E(Z+\lambda)} \\
& =\frac{E\left(Z^{2}\right)+2 \lambda E(Z)+\lambda^{2}}{2[E(Z)+\lambda]} \\
& =\frac{V(Z)+E^{2}(Z)+2 \lambda E(Z)+\lambda^{2}}{2[E(Z)+\lambda]} \\
& =\frac{\xi^{2}+\xi^{2}+2 \lambda \xi+\lambda^{2}}{2(\xi+\lambda)} \\
& =\xi+\frac{\lambda^{2}}{2(\xi+\lambda)} .
\end{aligned}
$$

