
Department of Mathematics, IST — Probability and Statistics Unit

Introduction to Stochastic Processes
2nd. Test 2nd. Semester — 2012/13

Duration: 1h30m 2013/06/11 — 8AM, Room P8

• Please justify all your answers.

• This test has two pages and three groups. The total of points is 20.0.

Group 1 — Renewal Processes 4.0 points

The duration Z (in years) of a component is a non negative r.v. with c.d.f. G(z) = 1− e−z,

for z ≥ 0. However, Clotilde replaces the component by a new one as soon as the old one

either breaks down or reaches the age of A = 1 year. Suppose that the time spent replacing

a component is fixed and equal to λ = 1 month.

(a) Obtain the expected time between two consecutive replacements (of components). (2.5)

• R.v.

Z = duration (in years) of a component

G(z) = P (Z ≤ z) = 1− e−z, z ≥ 0

g(z) = dG(z)
dz = e−z, z ≥ 0, i.e., Z ∼ Exponential(1)

• Up time

U = time a component is used (system is up)

U = min{Z, A} =

{
Z, Z < A

A, Z ≥ A

• Down time

D = time spent replacing a component = λ (system is down)

• Duration of the up-down cycle

X = U + D

• Expected duration of the up-down cycle

By integration by parts,1

E(U) =

∫ A

0

z × g(z) dz +

∫ +∞

A

A× g(z) dz

=

∫ A

0

z × e−z dz + A× P (Z > A)

= −z × e−z
∣∣A
0

+

∫ A

0

e−z dz + A× [1−G(A)]

= −A× e−A − e−z
∣∣A
0

+ A× e−A

= 1− e−A

= 1− e−1.

1In case you forgot:

{
u = z

v′ = e−z

{
u′ = 1
v = −e−z

∫
uv′ = uv −

∫
u′v

1

Moreover,

E(D) = λ

=
1

12
.

Consequently,

E(X) = E(U) + E(D)

= (1− e−1) +
1

12
& 0.715454.

(b) Determine the long-run proportion of time that is spent replacing components. (1.5)

• State variable

X(t) =

{
1, if the component is being used (system is up) at time t

0, if the component is being replaced (system is down) at time t

• Alternating renewal process

{X(t) : t ≥ 0}

• Long-run proportion of time spent replacing components

Let

Q(t) = P [X(t) = 0]

= P (system is down at time t).

Then the long-run proportion of time spent replacing components is given by:

lim
t→+∞

Q(t)
[Prop. 2.106]

=
E(D)

E(U) + E(D)

=
1
12

(1− e−1) + 1
12

& 0.116476.

Group 2 — Discrete time Markov chains 9.0 points

1. A drilling machine can be in any of 3 different states of alignment, labeled 1 for the best,

2 for the next, down to the worst state 3. From one week to the next, it either stays in its

current state with probability 0.95, or moves to the next lower state with probability 0.05.

Furthermore, if state 3 is reached the machine is certain to remain in this state indefinitely.

Let {Xn : n ∈ N0} be a discrete time Markov chain (DTMC), where X0 denotes the initial

state and Xn represents the state of alignment of the machine at the end of week n.

(a) Draw the associated transition diagram and determine the transition probability matrix (0.5)
(TPM).

• DTMC

{Xn : n ∈ N0}
X0 = initial state of alignment

Xn = state of alignment at the end of week n
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• State space

S = {1, 2, 3}
1 = best alignment

2 = average alignment

2 = worst alignment

• Transition diagram

According to the description in the test, we are dealing with the following transition

diagram:

0.95 0.05

0.95

0.05 11 2 3

• TPM

Follows from the transition diagram above:

P = [Pij]i,j∈S

= [P (Xn+1 = j | Xn = i)]i,j∈S , n ∈ N0

= [P (X1 = j | X0 = i)]i,j∈S

=




0.95 0.05 0

0 0.95 0.05

0 0 1





(b) Admit the initial distribution is α = [0.5 0.5 0] and obtain not only P (X1 = 1) but (1.5)
also P (X3 = 2, X1 = 1).

• 1st. requested probability

Since

α = [P (X0 = i)]i∈S

= [0.5 0.5 0]

αn = [P (Xn = i)]i∈S
[(3.8)]
= α×Pn,

we get

α1 = [P (X1 = i)]i∈S

= α×P

= [0.5 0.5 0]×




0.95 0.05 0

0 0.95 0.05

0 0 1





= [0.475 0.5 0.025]

and conclude that P (X1 = 1) = 0.475.

• 1st. requested probability (alternative solution)

P (X1 = 1) =
∑

i∈S P (X0 = i) × P (X1 = 1 | X0 = i) = α × 1st. column of P

= [0.5 0.5 0]× [0.95 0 0]& = 0.475
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• 2nd. requested probability

P (X3 = 2, X1 = 1) = P (X1 = 1)× P (X3 = 2 | X1 = 1)

= P (X1 = 1)× P (X2 = 2 | X0 = 1)

= P (X1 = 1)× P 2
12

= P (X1 = 1)× 1st. row of P× 2nd. column of P

= 0.475× [0.95 0.05 0]×




0.05

0.95

0





= 0.475× 0.095

= 0.045125.

2. Evaristo owns a restaurant in a region where the daily weather is governed by a four-state

DTMC, with states 1 (sunny), 2 (very humid), 3 (cloudy) and 4 (rainy), and TPM:

P =





0.4 0.2 0.1 0.3

0.4 0.3 0.2 0.1

0.6 0.1 0.1 0.2

0.2 0.4 0.3 0.1





(a) What is the long-run proportion of days which are cloudy? (2.0)

Note: Check the footnote! 2

• DTMC

{Xn : n ∈ N0}
X0 = initial weather

Xn = weather on day n

• State space

S = {1, 2, 3, 4}
1 = sunny

2 = very humid

3 = cloudy

4 = rainy

• TPM

P =





0.4 0.2 0.1 0.3

0.4 0.3 0.2 0.1

0.6 0.1 0.1 0.2

0.2 0.4 0.3 0.1





2The following results may come handy in this and the next lines:
2

6664

1.6 0.8 0.9 0.7

0.6 1.7 0.8 0.9

0.4 0.9 1.9 0.8

0.8 0.6 0.7 1.9

3

7775

−1

$

2

6664

0.815 −0.213 −0.264 −0.088

−0.135 0.850 −0.194 −0.271

0.022 −0.334 0.712 −0.149

−0.309 −0.056 −0.090 0.704

3

7775
and

2

64
0.6 −0.2 −0.1

−0.4 0.7 −0.2

−0.6 −0.1 0.9

3

75

−1

$

2

64
2.723 0.848 0.491

2.143 2.143 0.714

2.054 0.804 1.518

3

75
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• Obs.

We are dealing with an irreducible DTMC with finite state space. Hence, all states

are positive recurrent[, by Prop. 3.55]. Furthermore, the DTMC looks aperiodic.

• Stationary distribution

Since the DTMC is irreducible positive recurrent and aperiodic we can add that

lim
n→+∞

P n
ij = πj > 0, i, j ∈ S,

where {πj : j ∈ S} is the unique stationary distribution and satisfies the following

system of equations:
{

πj =
∑

i∈S πiPij, j ∈ S∑
j∈S πj = 1.

Equivalently [(see Prop. 3.68)], the row vector denoting the stationary distribution,

π = [πj]j∈S , is given by

π = 1× (I−P + ONE)−1,

where:

1 = [1 · · · 1] a row vector with #S ones;

I = identity matrix with rank #S;

P = [Pij]i,j∈S is the TPM;

ONE is the #S ×#S matrix all of whose entries are equal to 1.

By capitalizing on the first inverse in the footnote, we obtain

π = 1× (I−P + ONE)−1

= 1×









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




−





0.4 0.2 0.1 0.3

0.4 0.3 0.2 0.1

0.6 0.1 0.1 0.2

0.2 0.4 0.3 0.1




+





1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1









−1

= 1×





1.6 0.8 0.9 0.7

0.6 1.7 0.8 0.9

0.4 0.9 1.9 0.8

0.8 0.6 0.7 1.9





−1

& [1 1 1 1]×





0.815 −0.213 −0.264 −0.088

−0.135 0.850 −0.194 −0.271

0.022 −0.334 0.712 −0.149

−0.309 −0.056 −0.090 0.704





= [0.393 0.247 0.164 0.196] .

(With the previous and incorrect data the result is slightly different

[0.400 0.249 0.166 0.185].)

Thus, the long-run proportion of days which are cloudy is equal to [the sum of the

entries of the 3rd. column of (I−P + ONE)−1]:

π3 & 0.164.
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(b) The daily profit of Evaristo’s restaurant is weather dependent: c(1) = 200, c(2) = 150, (1.0)
c(3) = 100, c(4) = 50.

What is Evaristo’s long-run profit per day?

• Vector of profits/rewards

c = [c(j)]j∈S

=





200

150

100

50





• Long-run expected profit per time unit

[According to Prop. 3.81,]

π × c =
∑

j∈S

πj × c(j)

& 0.393× 200 + 0.247× 150 + 0.164× 100 + 0.196× 50

= 141.85.

(With the previous and incorrect data the result is slightly different: 0.400 × 200 +

0.249× 150 + 0.166× 100 + 0.185× 50 = 143.2 instead of 141.85.)

(c) Determine the expected number of days until it rains, given that the weather is now (2.0)
cloudy.

Note: Check the footnote!

• Initial/present state

X0 = i

• Important

To obtain the expected number of days until it rains, given X0 = i, we have to

consider another CTMC where state 4 (rainy) is absorbing. The associated TPM is

P′ =





0.4 0.2 0.1 0.3

0.4 0.3 0.2 0.1

0.6 0.1 0.1 0.2

0 0 0 1




.

• Requested expected value

Let

Q =




0.4 0.2 0.1

0.4 0.3 0.2

0.6 0.1 0.1





be the substochastic matrix governing the transitions between the states in T =

{1, 2, 3}, the class of transient states of this new DTMC, and

τ = inf{n ∈ N0 : Xn (∈ T}
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be the number of transitions/days until it rains. Then [(see Prop. 3.116)] the 2nd.

inverse in the footnote yields

[E(τ | X0 = i)]i=1,2,3 = (I−Q)−1 × 1

= . . .

=




0.6 −0.2 −0.1

−0.4 0.7 −0.2

−0.6 −0.1 0.9





−1

× 1

&




2.723 0.848 0.491

2.143 2.143 0.714

2.054 0.804 1.518



×




1

1

1





=




4.062

5.000

4.376



 .

Hence

E(days until it rains | the weather is now cloudy) = E(τ | X0 = 3)

& 4.376.

(d) Compute the probability that a sunny day will occur before it rains, given that the weather (2.0)
today is very humid.

Note: You may have to consider states 1 and 4 absorbing, eventually relabel the states,

identify substochastic matrices Q and R and calculate (I−Q)−1 ×R.

• Important

To calculate the requested probability, we have to consider once again another

CTMC. In this case states 1 (sunny) and 4 (rainy) are absorbing and the resulting

TPM equals

P" =





1 0 0 0

0.4 0.3 0.2 0.1

0.6 0.1 0.1 0.2

0 0 0 1




.

The substochastic matrix governing the transitions between the states in T = {2, 3},
the class of transient states of this new DTMC is

Q =

[
0.3 0.2

0.1 0.1

]
.

As for the transitions from the transient to the absorbing states, they are governed

by the substochastic matrix

R =

[
0.4 0.1

0.6 0.2

]
.
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• Requested probability

Keeping in mind that

[
a b

c d

]−1

=
1

ad− bc

[
d −b

−c a

]
,

we get

U = [P (reach absorbing state k | X0 = i)]i∈T, k (∈T

= [uik]i∈T, k (∈T

= (I−Q)−1 ×R

=

[
0.7 −0.2

−0.1 0.9

]−1

×
[

0.4 0.1

0.6 0.2

]

=
1

0.7× 0.9− (−0.2)× (−0.1)

[
0.9 0.2

0.1 0.7

]
×

[
0.4 0.1

0.6 0.2

]

=
1

0.61

[
0.48 0.13

0.46 0.15

]

&
[

0.787 0.213

0.754 0.246

]
.

Thus, the probability that a sunny day (state 1) will occur before it rains (state 4),

given that the weather today is very humid (state 2) is equal to

u21 = P (Xτ = 1 | X0 = 2)

& 0.787.

Group 3 — Continuous time Markov chains 7.0 points

1. Admit that the number of customers in a drive-in banking system at time t, X(t), is governed

by a birth and death process {X(t) : t ≥ 0} with rates equal to: λj = λ, for j ∈ N0; and

µj = min{j, 2}× µ, for j ∈ N.

(a) Write the Kolmogorov’s forward differential equations in terms of Pj(t) ≡ P0 j(t) = (1.5)
P [X(t) = j | X(0) = 0], for j ∈ N0. (Do not try to solve them!)

• Birth and death process

{X(t) : t ≥ 0}
X(t) = number of customers in the drive-in banking system at time t

• Birth and death rates

λj = λ, j ∈ N0

µj =

{
µ, j = 1

2µ, j = 2, 3, . . .

• Kolmogorov’s forward differential equations

Note that
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Pj(t) ≡ P0 j(t) = P [X(t) = j | X(0) = 0], j ∈ N0

P−1(t) = λ−1 = µ0 = 0

therefore the Kolmogorov’s forward differential equations
d Pj(t)

dt
= Pj−1(t) λj−1 + Pj+1(t) µj+1 − Pj(t) (λj + µj), j ∈ N0

reads as follows:
d P0(t)

dt
= P1(t) µ− P0(t) λ;

d P1(t)

dt
= P0(t) λ + P2(t) 2µ− P1(t)(λ + µ);

d Pj(t)

dt
= Pj−1(t) λ + Pj+1(t) 2µ− Pj(t) (λ + 2µ), j = 2, 3, . . .

(b) After having admitted that ρ = λ
2µ < 1, prove that the equilibrium probabilities Pj = (2.5)

limt→+∞ Pj(t) are given by: P0 = 1−ρ
1+ρ ; and Pj = 2 1−ρ

1+ρ ρj, for j ∈ N.

• Ergodicity condition

ρ = λ
2µ < 1

• Equilibrium probabilities Pj = limt→+∞ Pj(t)

P0 =

(
1 +

+∞∑

n=1

λ0 λ1 . . . λn−1

µ1 µ2 . . . µn

)−1

=

[
1 +

λ

µ

+∞∑

n=1

(
λ

2µ

)n−1
]−1

=

[
1 + 2ρ

+∞∑

n=1

ρn−1

]−1

=

(
1 +

2ρ

1− ρ

)−1

=
1− ρ

1 + ρ

Pj = P0 ×
λ0 λ1 . . . λj−1

µ1 µ2 . . . µj

= P0 ×
λ

µ

(
λ

2µ

)j−1

=
1− ρ

1 + ρ
× 2ρ ρj−1

= 2
1− ρ

1 + ρ
ρj, j ∈ N.

2. A corporate computing center has two computers of the same capacity. The jobs arriving at

the center are of two types, internal and external jobs. These jobs arrive according to two

independent Poisson processes with rates 18 internal jobs per hour and 15 external jobs per

hour. The service times are i.i.d. r.v. exponentially distributed with mean 3 minutes.
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(a) Find the average waiting time per arriving job, when the two computers handle both (2.0)
types of jobs.

• Birth and death queueing system

M/M/m

• Arrival process/rate

We ought to note that mergi two independent PP with rates λint and λext leads to

a PP having rate

λ = λint + λext

= (18 + 15)

= 33 jobs per hour

• Service times/rate

Si
i.i.d.∼ Exponential(µ−1 = 3)

µ = 1 job per 3 minutes ≡ 20 jobs per hour

• Servers

m = 2 because the two computers handle both types of jobs

• Traffic intensity/ergodicity condition

ρ =
λ

m µ

=
33

2× 20
= 0.825

< 1

• Performance measure (in the long-run)

Wq = time (in hours) an arriving job waits until it starts being “served”

• Requested expected value

E(Wq)
form
=

C(m, mρ)

m µ(1− ρ)

=
C(2, 2ρ)

2× µ(1− ρ)

form
=

2ρ2

1+ρ

2× µ(1− ρ)

=
ρ2

µ(1− ρ2)

=
0.8252

20× (1− 0.8252)
& 0.106556 hours

& 6.393346 minutes

(b) Obtain the average waiting time per arriving internal job, when one computer is used (1.0)
exclusively for internal jobs and the other for external jobs. Comment the result in light

of (a).
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• Another birth and death queueing system (internal jobs)

Mint/M/mint

• Arrival rate

λint = 18 internal jobs per hour

• Service rate

µint = µ = 20 internal jobs per hour

• Servers

mint = 1 because only one computer is handling internal jobs

• Traffic intensity/ergodicity condition

ρint =
λint

mint µint

=
18

1× 20
= 0.9

< 1

• Performance measure (in the long-run)

W int
q = time (in hours) an arriving internal job waits until it starts being “served”

• Requested expected value

E(W int
q )

form
=

ρint

µint(1− ρint)

=
0.9

20× (1− 0.9)
& 0.45 hours

& 27 minutes

• Comment

Unsurprisingly, E(W int
q ) is much larger than E(Wq), i.e., it is more efficient to have

both computers handling both types of jobs.
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