(b) Find the probability that the number of Bernoulli trials needed to observe 4 geomagnetic
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T\, = number of Bernoulli trials needed to observe exactly k& geomagnetic reversals
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¢ Requested probability
e Please justify all your answers. P(Te<2) =  FregativeBintrp) ()
e This test has TWO PAGES and THREE GROUPS. The total of points is 20.0. form.
= 1- FBinomial(z,p)(k - 1)
. . = 1 — Fginomiai(10,1/2)(4 — 1)
Group 0 — Introduction to Stochastic Processes 2.5 points ales 10 1710
A Bernoulli process with parameter p = % has already been used in the investigation of — 08981
geomagnetic reversals,® with Bernoulli trials separated by 282 ky (i.e., 282 thousand years). e Obs
(a) Consider the stochastic process {S, : n € N}, where S, represents the number of P(T, <10) = P(S1 > 4).
geomagnetic reversals in n X 282 ky.
Is this stochastic process (second order weakly) stationary? (1.0)
« Stochastic process Group 1 — Poisson Processes 9.5 points
) id.d. .
{Xi i € N} =" Bernoulli(p = %) 1. Admit outline accesses from within a local phone network are governed by a Poisson process
e Another stochastic process with rate A =1 access per minute.

{8, =Y, X, :neN}

. . (a) Find the joint probability that the cumulative number of accesses is equal to 2 at time 1
S, = number of geomagnetic reversals in n x 282 ky

manute, 3 at time 2 minutes, and 5 at time 3 minutes. (1.5)

S, ~ Binomial(n,p = 1)

e Stochastic process
{N(t):t>0} ~PP(A=1)

N (t) = cumulative number of outline accesses at time ¢

e Investigating the 2nd. order weak stationarity
On one hand, E(S,) = np depends on the time (n), thus, the stochastic process
{S,:n e N} ‘1s r%ot 1.st4 order weakly statlo.naryA. On the other handj 2nd. ordr?r — number of outline accesses by time ¢
weak stationarity implies 1st. order weak stationarity. Consequently, this stochastic N(#) ~ Poisson(At = t)
process is not 2nd. order weakly stationary.
e Requested probability

Obs.
* }[?OY Z cen P[N(1) = 2,N(2) = 3, N(3) = 5| - PIN(1) = 2,N(2) = N(1) =3 — 2,
COU(Sm Sn+5) = COU(Sm Sn+9) indep. incr- N(g) B N(2) - 5 a 3]
ML PIN(L) = 2] x PIN(2) — N(1) =3 - 2]
= cov(ZX,,ZX—i— ZX> xPIN(3) — N(2) =5 — 3]
Jj=n+1 . .
s statwg.mcr. P[N( ) _ 2] % P[ ( 1) 3_ 2}
= (S50 o CPING -2 =5 -3
i=1 i=1
= PIN(1) = 1] x {P[N(1) = 2]}?
_ s N () = 1] x {PIV() = 2}
= w(i-p) e N
which depends on the time (n), thus, {S, : n € N} is not 2nd. order weakly o '
e
stationary.| = T
LA geomagnetic reversal is a change in the orientation of Earth’s magnetic field such that the positions of =~ 0.012448.

magnetic north and magnetic south become interchanged (hitp://en.wikipedia.org/wiki/Geomagnetic_reversal).
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(b) What is the probability that the cumulative number of accesses at time 2 minutes exceeds

10, given that the cumulative number accesses is equal to 20 at time 4 minutes? (1.5)

e R.v.
N(s)|N({t)=n,0<s<t,neN
(N(s) | N(t) = n) ~ Binomial(n, s/t) (see form. for NNPP)

e Requested probability

PIN(2)>10 | N(4)=20] = 1— P[N(2)<10]|N(4) = 20]

= 1- FBinamial(20,2/4:OA5)(10)
s 1 - 0.5881
= 0.4119.
e [Obs.
ForO<s<t,neN x=0,1,...,n,
P[N(s) = z, N(t) =
P[N(s) =z | N(t) =n] = [ )[ N() = (ni n
B P[N(s) =z,N(t) — N(s) = n — x]
PIN(t) = n]
indcp:.incr. P[N(‘)_.T]XP[N() ():TL—%}
PIN(t) = n]
station. incr. P[N(S) = I] X P[N(t — 5) =n— l’]
PIN(t) = 7]
N (2)~Poisson(Az) C*AS% 7)\@ S)%
o et A"
g n!

= "Nty - s/t
(-)

which is the p.f. of a Binomial(n, s/t) r.v.]

. Harry owns a vegetarian food stand that is open from 8:00 to 17:00 and admits that the
customers arrive to it according to a non-homogeneous Poisson process with time dependent

rate equal to

10, 8<t<11
Mt)=4{ 20, 11<t<13
15, 13<t<17.

(a) Derive the associated mean value function and obtain the expected number of arrivals to
the vegetarian food stand between 10:00 and 14:00. (2.0)

e Stochastic process
{N(t):8 <t <17} ~ NHPP(A(t))
N(t) = number of arrivals to the Harry’s vegetarian food stand until time ¢
10, 8<t<11
A(t) = intensity function = { 20, 11 <t <13
15, 13<t<17

e Mean value function
For 8 <t <17,

m(t / Az

Ji10dz = 10(t - 8), §<t <11
= m(11) + [{,20dz = 30 +20(t — 11), 11 <t <13
m(13) + [/, 15dz =70 + 15(t — 13), 13 <¢ <17
e Requested expected value
E[N(14) — N(10)] "Z" m(14) — m(10)
= [70+15(14 — 13)] — [10(10 — 8)]
= 85-20
= 65

(b) Compute the probability that the second customer arrives to the Harry’s vegetarian food
stand between 8:30 and 9:00.

e R.v.
Sy = time of the 2nd. arrival
e Requested probability
P(85< 5, <9) = P(Sy <9) — P(S3 <8.5)
Fom. PIN(9) > 2] — P[N(8.5) > 2
- {1 - PIN() < 1]} — {1 - P[N(8.5) < 1]}
= P[N(8.5) < 1] — P[N(9) <1]

N(f,)NPo'is'on(Tn(t))

FPoisson(m(S,S)) (1) - FPOisson(m(Q))(l)

= FPoisson(lUx(&SfS))(l) - FPO’L‘SSOTL(IOX(‘J*&?))(I)
= FPoisson(S)(l) - FPoisson(lO)(l)
talles 0.0404 — 0.0005

= 0.0399.

3. Suppose that the number of requests to a web server follows a conditional Poisson process with
random rate A (in requests per minute) and admit that A ~ Gamma(a, 8), where a, 3 > 0.

Derive expressions for the expected value, the variance and the moment generating function
of the number of requests to the web server by time t (t > 0).

e Stochastic process
{N(t) : t > 0} ~ Conditional PP(Gamma(c, §)), o, 6 > 0

N(t) = number of requests to a web server until time ¢

e Random arrival rate
A ~ Gamma(a, )

BE(\) =4

(2.0)

(2.5)



V(A) =5

e Distribution of N(t) conditional to A = ), etc.
(N(t) | A= X) ~ Poisson(At)
EN@#) | A==\
VIN@#) A= X=X

e Requested expected value

EIN@)] = E{E[N() | Al}

= E(At)
«
= —xt

5
o Requested variance
VIN@)] = V{E[N(t) [ Al} + E{V[N(t) | Al}
= V(At) + E(At)

= x 24+ 2%t

S ()
g g
e Requested m.g.f.
E [esN(t)] E {E[esN(t) ‘ A]}
= ElMyon(s)]
= E[A[P()iss(m,(At) (8)]
form. E[eAt(es—l)]
= ]W/\[t(cs — 1)}
= ]\/[Gu,mma(u,[)') [t(es - 1)]

fOLm # o .
- [6 —t(e" - 1)} B> e’ —1).
Group 2 — Renewal Processes 8.0 points

1. Suppose machines 1 and 2 process jobs independently. Moreover, admit processing times by
machines 1 and 2 have Gamma(a = 4, \ = 2) and a Uniform(0,4) distributions, respectively.

Obtain an approzimate value to the probability that the two machines together process at
least 90 jobs by time t = 100. (2.5)
e Renewal processes
{(NO@) :t>0} L {NO(@):t>0}

NUO)(#) = number of jobs processed by machine j until time ¢, j = 1,2

e Inter-renewal times

ot

XM XW ieN XP X0 i eN
XU ~ Gamma(a = 4, \ = 2) X®@ ~ Uniform(a = 0,b = 4)
p = ExXW] =2 =2 p? = B[X®] = % =2

2 _ — — _ (40?2 _
(W2 =V[xXO] =4 =1 (@2 =V[X®?] = = 4

4
2
=22 3

e Approximate distributions

For large t,

. t o)\ |
@) 2. _ =
N (t) indep. Normal (H(J) ) (H(J))g s J 17 2.

Consequently,?
2 2 N
" t H(or(1))?
(¢Y] @) 2. : o E
NW(t) + N®(t) ~ingep. Normal ( E wor O )

pl)’ =

~

Jj=1
e Requested probability (approximate value)
PINW(t) + NO(t) > n] = 1— PINW(@) + NO(t) < n]

2 t
foLm. 1— n-— Zj:l el
B )

)

2 t(c@)?
\/Zj:l ((,jm)):s
)

7!,:90715;100,615(1. - 90 — (50 + 50
1
= g |10
175
6
= ) 10
175
6
i~ D (1.85)
e 0.9678.

2. Aurplanes take off from an airport according to a renewal process with inter-renewal times
with Gamma(a = 2, X = 1) distribution.

(a) What is the long-run rate at which take offs occur? Interpret it. (1.0

e Renewal process

{N(t):t >0}

N(t) = number of airplanes that took off until time ¢
o Inter-renewal times

X, "X, ieN

X ~ Gamma(a =2,\ =1)

p=EX)=2=2

2Recall that the sum of independent normal distributions is normally distributed, etc.
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e Long-run rate at which airplanes take off
According to the SLLN for renewal processes (see formulae!),

N(t) wp

lim ®) 2! l

t—+oco o
_ 1
= 3

e Interpretation

In the long-run one airplane takes off every two time units.

(b) Derive the renewal function m(t) of this renewal process, by using the Laplace-Stieltjes
transform method and capitalizing on the table of important Laplace transforms in the
formulae.

e Deriving the renewal function
Since the inter-renewal times are continuous r.v. the LST of the inter-renewal
distribution is given by

(c) Show that the renewal function obtained in (b) verifies the elementary renewal theorem. (1.0)

e Verification of the elementary renewal theorem (ERT)

t lf?Xf 1

. om(t) st5r——1

lim —= = m =—=
t—+4o00 t t—+o0 t

li
1
2
1
I
thus, verifying the ERT.

(d) Admit Clotilde arrived to the airport at time t = 100. Compute the expected time until
the first take off occurs after her arrival.
e R.v.
Y (t) Jorm- Sn(+1—t = time until the first take off occurs after Clotilde’s arrival at time ¢

(2.5) (1.0)

e Requested expected value

F(s) = /+OO e T dF(x)

= E(e™*%)
= A/fx(*é)
form.,a=2,A=1 1
a (1+s)2
Moreover, the LST of the renewal function can be obtained in terms of the one of
F: ~
orm F
m(s) fo #f
1—F(s)
_ 1 o 1
(145" 1- g5
B 1
s(s+2)
Taking advantage of the LT in the formulae, we successively get:
dm(t
WO L),
1
= LT |——0x )t
s(s+2)
0%t _ o—2xt
- 2-0
1— e—2><t
-2
t 1— ’72><s
m(t) = T s
0 2
B s N e—2x%s t
—\2 4 /|,
t et 1
S T TT
7

EY@®)] = ElSvw+]
Torm fm(t) + 1] — ¢
BI00 o [(% + e_jmn - %) + 1} — 100
~  2x50.75 — 100
1.5.
e Obs.
Since t = 100 is sufficiently large, E[Y(100)] *=" B _ VXSEAX) _ . _ 5

BE(X) —  2B(X)



