Department of Mathematics, IST - Probability and Statistics Unit
 Introduction to Stochastic Processes

1st. Test

2nd. Semester - 2012/13
Duration: 1h30m
2013/04/19 - 5PM, Room P8

- Please justify all your answers
- This test has two pages and three groups. The total of points is 20.0 .

Group 0 - Introduction to Stochastic Processes

2.5 points

A Bernoulli process with parameter $p=\frac{1}{2}$ has already been used in the investigation of geomagnetic reversals, ${ }^{1}$ with Bernoulli trials separated by 282 ky (i.e., 282 thousand years).
(a) Consider the stochastic process $\left\{S_{n}: n \in \mathbb{N}\right\}$, where S_{n} represents the number of geomagnetic reversals in $n \times 282 \mathrm{ky}$.
Is this stochastic process (second order weakly) stationary?

- Stochastic process
$\left\{X_{i}: i \in \mathbb{N}\right\} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}\left(p=\frac{1}{2}\right)$
- Another stochastic process
$\left\{S_{n}=\sum_{i=1}^{n} X_{i}: n \in \mathbb{N}\right\}$
$S_{n}=$ number of geomagnetic reversals in $n \times 282 \mathrm{ky}$ $S_{n} \sim \operatorname{Binomial}\left(n, p=\frac{1}{2}\right)$
- Investigating the 2 nd. order weak stationarity

On one hand, $E\left(S_{n}\right)=n p$ depends on the time (n), thus, the stochastic process $\left\{S_{n}: n \in \mathbb{N}\right\}$ is not 1st. order weakly stationary. On the other hand, 2nd. order weak stationarity implies 1st. order weak stationarity. Consequently, this stochastic process is not 2 nd. order weakly stationary.

- [Obs.

For $n, s \in \mathbb{N}$,

$$
\operatorname{cov}\left(S_{n}, S_{n+s}\right)=\operatorname{cov}\left(S_{n}, S_{n+s}\right)
$$

$$
\begin{aligned}
& =\quad \operatorname{cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}+\sum_{j=n+1}^{n+s} X_{j}\right) \\
& X_{i} \stackrel{i . i . d .}{=} \\
& =\operatorname{cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right)+0 \\
& = \\
& = \\
& = \\
& \\
& =
\end{aligned}
$$

which depends on the time (n), thus, $\left\{S_{n}: n \in \mathbb{N}\right\}$ is not 2 nd. order weakly stationary.]

[^0](b) Find the probability that the number of Bernoulli trials needed to observe 4 geomagnetic reversals does not exceed 10.

- New r.v.
$T_{k}=$ number of Bernoulli trials needed to observe exactly k geomagnetic reversals
$T_{k} \sim \operatorname{NegativeBinomial}(k, p)$ (se formulae!)
- Requested probability

$$
\begin{aligned}
P\left(T_{k} \leq x\right) & =F_{\text {NegativeBin }(r, p)}(x) \\
& \stackrel{\text { form. }}{=} \\
& 1-F_{\text {Binomial }(x, p)}(k-1) \\
= & 1-F_{\text {Binomial }(10,1 / 2)}(4-1) \\
\text { tables } & 1-0.1719 \\
& =0.8281 .
\end{aligned}
$$

- Obs.
$P\left(T_{4} \leq 10\right)=P\left(S_{10} \geq 4\right)$.

Group 1 - Poisson Processes

1. Admit outline accesses from within a local phone network are governed by a Poisson process with rate $\lambda=1$ access per minute.
(a) Find the joint probability that the cumulative number of accesses is equal to 2 at time 1 minute, 3 at time 2 minutes, and 5 at time 3 minutes.

- Stochastic process
$\{N(t): t \geq 0\} \sim P P(\lambda=1)$
$N(t)=$ cumulative number of outline accesses at time t

$$
=\text { number of outline accesses by time } t
$$

$N(t) \sim \operatorname{Poisson}(\lambda t=t)$

- Requested probability

$$
P[N(1)=2, N(2)=3, N(3)=5]
$$

$$
\begin{array}{cc}
= & P[N(1)=2, N(2)-N(1)=3-2, \\
& N(3)-N(2)=5-3] \\
\text { indep.incr. } & P[N(1)=2] \times P[N(2)-N(1)=3-2] \\
= & \times P[N(3)-N(2)=5-3] \\
\text { station. incr. } & P[N(1)=2] \times P[N(2-1)=3-2] \\
& \times P[N(3-2)=5-3] \\
= & P[N(1)=1] \times\{P[N(1)=2]\}^{2}
\end{array}
$$

$$
N(1) \sim \text { Poisson }(1) \quad e^{-1} \frac{1}{1!} \times\left(e^{-1} \frac{1^{2}}{2!}\right)^{2}
$$

$$
=\quad \frac{e^{-3}}{4}
$$

$$
\simeq \quad 0.012448
$$

(b) What is the probability that the cumulative number of accesses at time 2 minutes exceeds 10, given that the cumulative number accesses is equal to 20 at time 4 minutes?

- R.v.
$N(s) \mid N(t)=n, 0<s<t, n \in \mathbb{N}$
$(N(s) \mid N(t)=n) \sim \operatorname{Binomial}(n, s / t)$ (see form. for NNPP)

- Requested probability

$$
\begin{aligned}
P[N(2)>10 \mid N(4)=20] & =1-P[N(2) \leq 10 \mid N(4)=20] \\
& =1-F_{\text {Binomial }(20,2 / 4=0.5)}(10) \\
& \stackrel{\text { tables }}{=} 1-0.5881 \\
& =0.4119 .
\end{aligned}
$$

- [Obs.

$$
\begin{aligned}
& \text { For } 0<s<t, n \in \mathbb{N}, x=0,1, \ldots, n \text {, } \\
& P[N(s)=x \mid N(t)=n] \quad=\quad \frac{P[N(s)=x, N(t)=n]}{P[N(t)=n]} \\
& =\quad \frac{P[N(s)=x, N(t)-N(s)=n-x]}{P[N(t)=n]} \\
& \text { indep. incr. } \\
& \frac{P[N(s)=x] \times P[N(t)-N(s)=n-x]}{P[N(t)=n]} \\
& \text { station.incr. } \quad \frac{P[N(s)=x] \times P[N(t-s)=n-x]}{P[N(t)=n]} \\
& N(z) \sim \operatorname{Poisson}(\lambda z) \frac{e^{-\lambda s} \frac{(\lambda s)^{x}}{x!} \times e^{-\lambda(t-s)} \frac{[\lambda(t-s)]^{n-x}}{(n-x)!}}{e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}} \\
& =\quad\binom{n}{x}(s / t)^{x}(1-s / t)^{n-x},
\end{aligned}
$$

which is the p.f. of a $\operatorname{Binomial}(n, s / t)$ r.v.]
2. Harry owns a vegetarian food stand that is open from 8:00 to 17:00 and admits that the customers arrive to it according to a non-homogeneous Poisson process with time dependent rate equal to

$$
\lambda(t)= \begin{cases}10, & 8 \leq t \leq 11 \\ 20, & 11<t \leq 13 \\ 15, & 13<t \leq 17\end{cases}
$$

(a) Derive the associated mean value function and obtain the expected number of arrivals to the vegetarian food stand between 10:00 and 14:00.

- Stochastic process
$\{N(t): 8 \leq t \leq 17\} \sim N H P P(\lambda(t))$
$N(t)=$ number of arrivals to the Harry's vegetarian food stand until time t

$$
\lambda(t)=\text { intensity function }= \begin{cases}10, & 8 \leq t \leq 11 \\ 20, & 11<t \leq 13 \\ 15, & 13<t \leq 17\end{cases}
$$

- Mean value function

For $8 \leq t \leq 17$,

$$
\begin{aligned}
m(t) & \stackrel{f o r m .}{=} \int_{8}^{t} \lambda(z) d z \\
& = \begin{cases}\int_{8}^{t} 10 d z=10(t-8), & 8 \leq t \leq 11 \\
m(11)+\int_{11}^{t} 20 d z=30+20(t-11), & 11<t \leq 13 \\
m(13)+\int_{13}^{t} 15 d z=70+15(t-13), & 13<t \leq 17\end{cases}
\end{aligned}
$$

- Requested expected value

$$
\begin{aligned}
E[N(14)-N(10)] & \stackrel{\text { form. }}{=} m(14)-m(10) \\
& =[70+15(14-13)]-[10(10-8)] \\
& =85-20 \\
& =65 .
\end{aligned}
$$

(b) Compute the probability that the second customer arrives to the Harry's vegetarian food stand between 8:30 and 9:00.

- R.v.
$S_{2}=$ time of the 2nd. arrival
- Requested probability

$$
P\left(8.5<S_{2} \leq 9\right)
$$

$$
\begin{array}{cll}
= & P\left(S_{2} \leq 9\right)-P\left(S_{2} \leq 8.5\right) \\
\stackrel{\text { form. }}{=} & P[N(9) \geq 2]-P[N(8.5) \geq 2] \\
= & \{1-P[N(9) \leq 1]\}-\{1-P[N(8.5) \leq 1]\} \\
= & P[N(8.5) \leq 1]-P[N(9) \leq 1] \\
\begin{array}{c}
N(t) \sim \operatorname{Poisson}(m(t)) \\
=
\end{array} & F_{\text {Poisson }(m(8.5))(1)-F_{\text {Poisson(m(9)) }}(1)} \\
= & F_{\text {Poisson }(10 \times(8.5-8))(1)-F_{\text {Poisson }(10 \times(9-8))}(1)} \\
= & F_{\text {Poisson(5) }(1)-F_{\text {Poisson(10) }}(1)} \\
\stackrel{\text { tables }}{=} & 0.0404-0.0005 \\
= & 0.0399 .
\end{array}
$$

3. Suppose that the number of requests to a web server follows a conditional Poisson process with random rate Λ (in requests per minute) and admit that $\Lambda \sim \operatorname{Gamma}(\alpha, \beta)$, where $\alpha, \beta>0$.

Derive expressions for the expected value, the variance and the moment generating function of the number of requests to the web server by time $t(t>0)$.

- Stochastic process
$\{N(t): t \geq 0\} \sim C o n d i t i o n a l P P(\operatorname{Gamma}(\alpha, \beta)), \alpha, \beta>0$
$N(t)=$ number of requests to a web server until time t
- Random arrival rate
$\Lambda \sim \operatorname{Gamma}(\alpha, \beta)$
$E(\Lambda)=\frac{\alpha}{\beta}$

$V(\Lambda)=\frac{\alpha}{\beta^{2}}$

- Distribution of $\mathbf{N}(\mathbf{t})$ conditional to $\Lambda=\lambda$, etc.
$(N(t) \mid \Lambda=\lambda) \sim \operatorname{Poisson}(\lambda t)$
$E[N(t) \mid \Lambda=\lambda]=\lambda t$
$V[N(t) \mid \Lambda=\lambda]=\lambda t$
- Requested expected value

$$
\begin{aligned}
E[N(t)] & =E\{E[N(t) \mid \Lambda]\} \\
& =E(\Lambda t) \\
& =\frac{\alpha}{\beta} \times t
\end{aligned}
$$

- Requested variance

$$
\begin{aligned}
V[N(t)] & =V\{E[N(t) \mid \Lambda]\}+E\{V[N(t) \mid \Lambda]\} \\
& =V(\Lambda t)+E(\Lambda t) \\
& =\frac{\alpha}{\beta^{2}} \times t^{2}+\frac{\alpha}{\beta} \times t \\
& =\frac{\alpha t}{\beta} \times\left(\frac{t}{\beta}+1\right)
\end{aligned}
$$

- Requested m.g.f.

$$
\begin{aligned}
E\left[e^{s N(t)}\right] & =E\left\{E\left[e^{s N(t)} \mid \Lambda\right]\right\} \\
& =E\left[M_{N(t) \mid \Lambda}(s)\right] \\
& =E\left[M_{\text {Poisson }(\Lambda t)}(s)\right] \\
& \stackrel{\text { form. }}{=} E\left[e^{\Lambda t\left(e^{s}-1\right)}\right] \\
& =M_{\Lambda}\left[t\left(e^{s}-1\right)\right] \\
& =M_{\text {Gamma }(\alpha, \beta)}\left[t\left(e^{s}-1\right)\right] \\
& \stackrel{\text { form. }}{=}\left[\frac{\beta}{\beta-t\left(e^{s}-1\right)}\right]^{\alpha}, \beta>t\left(e^{s}-1\right) .
\end{aligned}
$$

Group 2 - Renewal Processes

8.0 points

1. Suppose machines 1 and 2 process jobs independently. Moreover, admit processing times by machines 1 and 2 have $\operatorname{Gamma}(\alpha=4, \lambda=2)$ and a Uniform $(0,4)$ distributions, respectively. Obtain an approximate value to the probability that the two machines together process at least 90 jobs by time $t=100$.

- Renewal processes
$\left\{N^{(1)}(t): t \geq 0\right\} \quad \Perp \quad\left\{N^{(2)}(t): t \geq 0\right\}$
$N^{(j)}(t)=$ number of jobs processed by machine j until time $t, j=1,2$
- Inter-renewal times

$$
\begin{aligned}
& X_{i}^{(1)} \stackrel{i . i . d .}{\sim} X^{(1)}, i \in \mathbb{N} \\
& X^{(1)} \sim \operatorname{Gamma}(\alpha=4, \lambda=2) \\
& \mu^{(1)}=E\left[X^{(1)}\right]=\frac{4}{2}=2 \\
& \left(\sigma^{(1)}\right)^{2}=V\left[X^{(1)}\right]=\frac{4}{2^{2}}=1
\end{aligned}
$$

$$
\begin{aligned}
& X_{i}^{(2)} \stackrel{i . i . d .}{\sim} X^{(2)}, i \in \mathbb{N} \\
& X^{(2)} \sim \operatorname{Uniform}(a=0, b=4) \\
& \mu^{(2)}=E\left[X^{(2)}\right]=\frac{0+4}{2}=2
\end{aligned}
$$

$$
\left(\sigma^{(2)}\right)^{2}=V\left[X^{(2)}\right]=\frac{(4-0)^{2}}{12}=\frac{4}{3}
$$

- Approximate distributions

For large t,

$$
N^{(j)}(t) \stackrel{a}{\sim}_{\text {indep. }} \text { Normal }\left(\frac{t}{\mu^{(j)}}, \frac{t\left(\sigma^{(j)}\right)^{2}}{\left(\mu^{(j)}\right)^{3}}\right), j=1,2
$$

Consequently, ${ }^{2}$

$$
N^{(1)}(t)+N^{(2)}(t) \stackrel{a}{\sim}_{\text {indep. }} \text {. Normal }\left(\sum_{j=1}^{2} \frac{t}{\mu^{(j)}}, \sum_{j=1}^{2} \frac{t\left(\sigma^{(j)}\right)^{2}}{\left(\mu^{(j)}\right)^{3}}\right)
$$

- Requested probability (approximate value)

$$
\begin{array}{rlrl}
P\left[N^{(1)}(t)+N^{(2)}(t) \geq n\right] & = & 1-P\left[N^{(1)}(t)+N^{(2)}(t)<n\right] \\
& \stackrel{\text { form. }}{\sim} & & 1-\Phi\left[\frac{n-\sum_{j=1}^{2} \frac{t}{\mu^{(j)}}}{\sqrt{\sum_{j=1}^{2} \frac{t\left(\sigma^{(j)}\right)^{2}}{\left(\mu^{(j)}\right)^{3}}}}\right] \\
& \begin{array}{ll}
n=90, t=100, \text { etc. }
\end{array} & 1-\Phi\left[\frac{90-(50+50)}{\sqrt{\frac{25}{2}+\frac{50}{3}}}\right] \\
& = & 1-\Phi\left(-\frac{10}{\sqrt{\frac{175}{6}}}\right) \\
& = & \Phi\left(\frac{10}{\sqrt{\frac{175}{6}}}\right) \\
& \simeq & \Phi(1.85) \\
& & & \\
\text { tables } & & 09678
\end{array}
$$

2. Airplanes take off from an airport according to a renewal process with inter-renewal times with $\operatorname{Gamma}(\alpha=2, \lambda=1)$ distribution.
(a) What is the long-run rate at which take offs occur? Interpret it.

- Renewal process
$\{N(t): t \geq 0\}$
$N(t)=$ number of airplanes that took off until time t
- Inter-renewal times
$X_{i} \stackrel{i . i . d .}{\sim} X, i \in \mathbb{N}$
$X \sim \operatorname{Gamma}(\alpha=2, \lambda=1)$
$\mu=E(X)=\frac{2}{1}=2$
${ }^{2}$ Recall that the sum of independent normal distributions is normally distributed, etc.
- Long-run rate at which airplanes take off

According to the SLLN for renewal processes (see formulae!),

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \frac{N(t)}{t} & \stackrel{w . p .1}{=} \\
& \frac{1}{\mu} \\
& =\frac{1}{2}
\end{aligned}
$$

- Interpretation

In the long-run one airplane takes off every two time units.
(b) Derive the renewal function $m(t)$ of this renewal process, by using the Laplace-Stieltjes transform method and capitalizing on the table of important Laplace transforms in the formulae.

- Deriving the renewal function

Since the inter-renewal times are continuous r.v. the LST of the inter-renewal distribution is given by

$$
\begin{array}{rll}
\tilde{F}(s) \quad & = & \int_{0^{-}}^{+\infty} e^{-s x} d F(x) \\
& = & E\left(e^{-s X}\right) \\
& = & M_{X}(-s) \\
\text { form., } & \stackrel{\alpha=2, \lambda=1}{=} & \frac{1}{(1+s)^{2}} .
\end{array}
$$

Moreover, the LST of the renewal function can be obtained in terms of the one of F :

$$
\begin{aligned}
\tilde{m}(s) & \stackrel{\text { form }}{=} \frac{\tilde{F}(s)}{1-\tilde{F}(s)} \\
& =\frac{1}{(1+s)^{2}} \times \frac{1}{1-\frac{1}{(1+s)^{2}}} \\
& =\frac{1}{s(s+2)}
\end{aligned}
$$

Taking advantage of the LT in the formulae, we successively get:

$$
\begin{aligned}
\frac{d m(t)}{d t} & =L T^{-1}[\tilde{m}(s), t] \\
& =L T^{-1}\left[\frac{1}{s(s+2)}, t\right] \\
& =\frac{e^{-0 \times t}-e^{-2 \times t}}{2-0} \\
& =\frac{1-e^{-2 \times t}}{2} \\
m(t) & =\int_{0}^{t} \frac{1-e^{-2 \times s}}{2} d s \\
& =\left.\left(\frac{s}{2}+\frac{e^{-2 \times s}}{4}\right)\right|_{0} ^{t} \\
& =\frac{t}{2}+\frac{e^{-2 \times t}}{4}-\frac{1}{4} .
\end{aligned}
$$

(c) Show that the renewal function obtained in (b) verifies the elementary renewal theorem. (1.0)

- Verification of the elementary renewal theorem (ERT)

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \frac{m(t)}{t} & =\lim _{t \rightarrow+\infty} \frac{\frac{t}{2}+\frac{e^{-2 \times t}}{4}-\frac{1}{4}}{t} \\
& =\frac{1}{2} \\
& =\frac{1}{\mu}
\end{aligned}
$$

thus, verifying the ERT
(d) Admit Clotilde arrived to the airport at time $t=100$. Compute the expected time until the first take off occurs after her arrival.

- R.v.
$Y(t) \stackrel{\text { form. }}{=} S_{N(t)+1}-t=$ time until the first take off occurs after Clotilde's arrival at time t
- Requested expected value

$$
\begin{aligned}
E[Y(t)] & \stackrel{\text { form. }}{=} \\
& E\left[S_{N(t)+1}\right] \\
& \mu[m(t)+1]-t \\
& \stackrel{(b), t=100}{=} 2 \times\left[\left(\frac{100}{2}+\frac{e^{-2 \times 100}}{4}-\frac{1}{4}\right)+1\right]-100 \\
& \simeq \\
& 2 \times 50.75-100 \\
& 1.5
\end{aligned}
$$

- Obs.

Since $t=100$ is sufficiently large, $E[Y(100)] \stackrel{\text { form. }}{\sim} \frac{E\left(X^{2}\right)}{2 E(X)}=\frac{V(X)+E^{2}(X)}{2 E(X)}=\cdots=1.5$

[^0]: ${ }^{1} A$ geomagnetic reversal is a change in the orientation of Earth's magnetic field such that the positions of magnetic north and magnetic south become interchanged (http://en.wikipedia.org/wiki/Geomagnetic_reversal).

