
Department of Mathematics, IST — Probability and Statistics Unit

Introduction to Stochastic Processes
1st. Test 2nd. Semester — 2012/13

Duration: 1h30m 2013/04/19 — 5PM, Room P8

• Please justify all your answers.

• This test has two pages and three groups. The total of points is 20.0.

Group 0 — Introduction to Stochastic Processes 2.5 points

A Bernoulli process with parameter p = 1
2 has already been used in the investigation of

geomagnetic reversals,1 with Bernoulli trials separated by 282 ky (i.e., 282 thousand years).

(a) Consider the stochastic process {Sn : n ∈ N}, where Sn represents the number of

geomagnetic reversals in n× 282 ky.

Is this stochastic process (second order weakly) stationary? (1.0)

• Stochastic process

{Xi : i ∈ N} i.i.d.∼ Bernoulli(p = 1
2)

• Another stochastic process

{Sn =
∑n

i=1 Xi : n ∈ N}
Sn = number of geomagnetic reversals in n× 282 ky

Sn ∼ Binomial(n, p = 1
2)

• Investigating the 2nd. order weak stationarity

On one hand, E(Sn) = np depends on the time (n), thus, the stochastic process

{Sn : n ∈ N} is not 1st. order weakly stationary. On the other hand, 2nd. order

weak stationarity implies 1st. order weak stationarity. Consequently, this stochastic

process is not 2nd. order weakly stationary.

• [Obs.

For n, s ∈ N,

cov(Sn, Sn+s) = cov(Sn, Sn+s)

= cov

(
n∑

i=1

Xi,
n∑

i=1

Xi +
n+s∑

j=n+1

Xj

)

Xi i.i.d.
= cov

(
n∑

i=1

Xi,
n∑

i=1

Xi

)
+ 0

= V (Sn)

= np(1− p),

which depends on the time (n), thus, {Sn : n ∈ N} is not 2nd. order weakly

stationary.]

1A geomagnetic reversal is a change in the orientation of Earth’s magnetic field such that the positions of
magnetic north and magnetic south become interchanged (http://en.wikipedia.org/wiki/Geomagnetic reversal).
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(b) Find the probability that the number of Bernoulli trials needed to observe 4 geomagnetic

reversals does not exceed 10. (1.5)

• New r.v.

Tk = number of Bernoulli trials needed to observe exactly k geomagnetic reversals

Tk ∼ NegativeBinomial(k, p) (se formulae!)

• Requested probability

P (Tk ≤ x) = FNegativeBin(r,p)(x)
form.
= 1− FBinomial(x,p)(k − 1)

= 1− FBinomial(10,1/2)(4− 1)
tables
= 1− 0.1719

= 0.8281.

• Obs.

P (T4 ≤ 10) = P (S10 ≥ 4).

Group 1 — Poisson Processes 9.5 points

1. Admit outline accesses from within a local phone network are governed by a Poisson process

with rate λ = 1 access per minute.

(a) Find the joint probability that the cumulative number of accesses is equal to 2 at time 1

minute, 3 at time 2 minutes, and 5 at time 3 minutes. (1.5)

• Stochastic process

{N(t) : t ≥ 0} ∼ PP (λ = 1)

N(t) = cumulative number of outline accesses at time t

= number of outline accesses by time t

N(t) ∼ Poisson(λt = t)

• Requested probability

P [N(1) = 2, N(2) = 3, N(3) = 5] = P [N(1) = 2, N(2)−N(1) = 3− 2,

N(3)−N(2) = 5− 3]
indep. incr.

= P [N(1) = 2]× P [N(2)−N(1) = 3− 2]

×P [N(3)−N(2) = 5− 3]
station. incr.

= P [N(1) = 2]× P [N(2− 1) = 3− 2]

×P [N(3− 2) = 5− 3]

= P [N(1) = 1]× {P [N(1) = 2]}2

N(1)∼Poisson(1)
= e−1 11

1!
×

(
e−1 12

2!

)2

=
e−3

4
& 0.012448.
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(b) What is the probability that the cumulative number of accesses at time 2 minutes exceeds

10, given that the cumulative number accesses is equal to 20 at time 4 minutes? (1.5)

• R.v.

N(s) | N(t) = n, 0 < s < t, n ∈ N
(N(s) | N(t) = n) ∼ Binomial(n, s/t) (see form. for NNPP)

• Requested probability

P [N(2) > 10 | N(4) = 20] = 1− P [N(2) ≤ 10 | N(4) = 20]

= 1− FBinomial(20,2/4=0.5)(10)
tables
= 1− 0.5881

= 0.4119.

• [Obs.

For 0 < s < t, n ∈ N, x = 0, 1, . . . , n,

P [N(s) = x | N(t) = n] =
P [N(s) = x, N(t) = n]

P [N(t) = n]

=
P [N(s) = x, N(t)−N(s) = n− x]

P [N(t) = n]

indep. incr.
=

P [N(s) = x]× P [N(t)−N(s) = n− x]

P [N(t) = n]

station. incr.
=

P [N(s) = x]× P [N(t− s) = n− x]

P [N(t) = n]

N(z)∼Poisson(λz)
=

e−λs (λs)x

x! × e−λ(t−s) [λ(t−s)]n−x

(n−x)!

e−λt (λt)n

n!

=

(
n

x

)
(s/t)x(1− s/t)n−x,

which is the p.f. of a Binomial(n, s/t) r.v.]

2. Harry owns a vegetarian food stand that is open from 8:00 to 17:00 and admits that the

customers arrive to it according to a non-homogeneous Poisson process with time dependent

rate equal to

λ(t) =






10, 8 ≤ t ≤ 11

20, 11 < t ≤ 13

15, 13 < t ≤ 17.

(a) Derive the associated mean value function and obtain the expected number of arrivals to

the vegetarian food stand between 10:00 and 14:00. (2.0)

• Stochastic process

{N(t) : 8 ≤ t ≤ 17} ∼ NHPP (λ(t))

N(t) = number of arrivals to the Harry’s vegetarian food stand until time t

λ(t) = intensity function =






10, 8 ≤ t ≤ 11

20, 11 < t ≤ 13

15, 13 < t ≤ 17
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• Mean value function

For 8 ≤ t ≤ 17,

m(t)
form.
=

∫ t

8

λ(z) dz

=






∫ t

8 10 dz = 10(t− 8), 8 ≤ t ≤ 11

m(11) +
∫ t

11 20 dz = 30 + 20(t− 11), 11 < t ≤ 13

m(13) +
∫ t

13 15 dz = 70 + 15(t− 13), 13 < t ≤ 17

• Requested expected value

E[N(14)−N(10)]
form.
= m(14)−m(10)

= [70 + 15(14− 13)]− [10(10− 8)]

= 85− 20

= 65.

(b) Compute the probability that the second customer arrives to the Harry’s vegetarian food

stand between 8:30 and 9:00. (2.0)

• R.v.

S2 = time of the 2nd. arrival

• Requested probability

P (8.5 < S2 ≤ 9) = P (S2 ≤ 9)− P (S2 ≤ 8.5)
form.
= P [N(9) ≥ 2]− P [N(8.5) ≥ 2]

= {1− P [N(9) ≤ 1]}− {1− P [N(8.5) ≤ 1]}
= P [N(8.5) ≤ 1]− P [N(9) ≤ 1]

N(t)∼Poisson(m(t))
= FPoisson(m(8.5))(1)− FPoisson(m(9))(1)

= FPoisson(10×(8.5−8))(1)− FPoisson(10×(9−8))(1)

= FPoisson(5)(1)− FPoisson(10)(1)
tables
= 0.0404− 0.0005

= 0.0399.

3. Suppose that the number of requests to a web server follows a conditional Poisson process with

random rate Λ (in requests per minute) and admit that Λ ∼ Gamma(α, β), where α, β > 0.

Derive expressions for the expected value, the variance and the moment generating function

of the number of requests to the web server by time t (t > 0). (2.5)

• Stochastic process

{N(t) : t ≥ 0} ∼ ConditionalPP (Gamma(α, β)), α, β > 0

N(t) = number of requests to a web server until time t

• Random arrival rate

Λ ∼ Gamma(α, β)

E(Λ) = α
β

4



V (Λ) = α
β2

• Distribution of N(t) conditional to Λ = λ, etc.

(N(t) | Λ = λ) ∼ Poisson(λt)

E[N(t) | Λ = λ] = λt

V [N(t) | Λ = λ] = λt

• Requested expected value

E[N(t)] = E{E[N(t) | Λ]}
= E(Λt)

=
α

β
× t

• Requested variance

V [N(t)] = V {E[N(t) | Λ]} + E{V [N(t) | Λ]}
= V (Λt) + E(Λt)

=
α

β2
× t2 +

α

β
× t

=
αt

β
×

(
t

β
+ 1

)

• Requested m.g.f.

E
[
esN(t)

]
= E

{
E[esN(t) | Λ]

}

= E[MN(t)|Λ(s)]

= E[MPoisson(Λt)(s)]
form.
= E[eΛt(es−1)]

= MΛ[t(es − 1)]

= MGamma(α,β)[t(e
s − 1)]

form.
=

[
β

β − t(es − 1)

]α

, β > t(es − 1).

Group 2 — Renewal Processes 8.0 points

1. Suppose machines 1 and 2 process jobs independently. Moreover, admit processing times by

machines 1 and 2 have Gamma(α = 4, λ = 2) and a Uniform(0, 4) distributions, respectively.

Obtain an approximate value to the probability that the two machines together process at

least 90 jobs by time t = 100. (2.5)

• Renewal processes

{N (1)(t) : t ≥ 0} ⊥⊥ {N (2)(t) : t ≥ 0}
N (j)(t) = number of jobs processed by machine j until time t, j = 1, 2

• Inter-renewal times
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X(1)
i

i.i.d.∼ X(1), i ∈ N X(2)
i

i.i.d.∼ X(2), i ∈ N
X(1) ∼ Gamma(α = 4, λ = 2) X(2) ∼ Uniform(a = 0, b = 4)

µ(1) = E[X(1)] = 4
2 = 2 µ(2) = E[X(2)] = 0+4

2 = 2

(σ(1))2 = V [X(1)] = 4
22 = 1 (σ(2))2 = V [X(2)] = (4−0)2

12 = 4
3

• Approximate distributions

For large t,

N (j)(t)
a∼indep. Normal

(
t

µ(j)
,
t(σ(j))2

(µ(j))3

)
, j = 1, 2.

Consequently,2

N (1)(t) + N (2)(t)
a∼indep. Normal

(
2∑

j=1

t

µ(j)
,

2∑

j=1

t(σ(j))2

(µ(j))3

)
.

• Requested probability (approximate value)

P [N (1)(t) + N (2)(t) ≥ n] = 1− P [N (1)(t) + N (2)(t) < n]

form.
& 1− Φ




n−

∑2
j=1

t
µ(j)

√∑2
j=1

t(σ(j))2

(µ(j))3





n=90,t=100,etc.
= 1−Φ



90− (50 + 50)√
25
2 + 50

3





= 1−Φ



− 10√
175
6





= Φ



 10√
175
6





& Φ (1.85)
tables
= 0.9678.

2. Airplanes take off from an airport according to a renewal process with inter-renewal times

with Gamma(α = 2, λ = 1) distribution.

(a) What is the long-run rate at which take offs occur? Interpret it. (1.0)

• Renewal process

{N(t) : t ≥ 0}
N(t) = number of airplanes that took off until time t

• Inter-renewal times

Xi
i.i.d.∼ X, i ∈ N

X ∼ Gamma(α = 2, λ = 1)

µ = E(X) = 2
1 = 2

2Recall that the sum of independent normal distributions is normally distributed, etc.
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• Long-run rate at which airplanes take off

According to the SLLN for renewal processes (see formulae!),

lim
t→+∞

N(t)

t
w.p.1
=

1

µ

=
1

2
.

• Interpretation

In the long-run one airplane takes off every two time units.

(b) Derive the renewal function m(t) of this renewal process, by using the Laplace-Stieltjes

transform method and capitalizing on the table of important Laplace transforms in the

formulae. (2.5)

• Deriving the renewal function

Since the inter-renewal times are continuous r.v. the LST of the inter-renewal

distribution is given by

F̃ (s) =

∫ +∞

0−
e−sx dF (x)

= E(e−sX)

= MX(−s)
form., α=2, λ=1

=
1

(1 + s)2
.

Moreover, the LST of the renewal function can be obtained in terms of the one of

F :

m̃(s)
form
=

F̃ (s)

1− F̃ (s)

=
1

(1 + s)2
× 1

1− 1
(1+s)2

=
1

s(s + 2)
.

Taking advantage of the LT in the formulae, we successively get:
dm(t)

dt
= LT−1 [m̃(s), t]

= LT−1

[
1

s(s + 2)
, t

]

=
e−0×t − e−2×t

2− 0

=
1− e−2×t

2

m(t) =

∫ t

0

1− e−2×s

2
ds

=

(
s

2
+

e−2×s

4

)∣∣∣∣
t

0

=
t

2
+

e−2×t

4
− 1

4
.
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(c) Show that the renewal function obtained in (b) verifies the elementary renewal theorem. (1.0)

• Verification of the elementary renewal theorem (ERT)

lim
t→+∞

m(t)

t
= lim

t→+∞

t
2 + e−2×t

4 − 1
4

t

=
1

2

=
1

µ
,

thus, verifying the ERT.

(d) Admit Clotilde arrived to the airport at time t = 100. Compute the expected time until

the first take off occurs after her arrival. (1.0)

• R.v.

Y (t)
form.
= SN(t)+1−t = time until the first take off occurs after Clotilde’s arrival at time t

• Requested expected value

E[Y (t)] = E[SN(t)+1]
form.
= µ[m(t) + 1]− t

(b),t=100
= 2×

[(
100

2
+

e−2×100

4
− 1

4

)
+ 1

]
− 100

& 2× 50.75− 100

= 1.5.

• Obs.

Since t = 100 is sufficiently large, E[Y (100)]
form.
& E(X2)

2E(X) = V (X)+E2(X)
2E(X) = · · · = 1.5
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