
Surveillance system using cheap sensors and drones
José Coelho, Daniel Silvestre, Rita Cunha

Laboratory of Robotics and Systems in Engineering and Science (LARSyS)
ISR/IST, University of Lisbon,

Lisbon, Portugal
josescoelho@tecnico.ulisboa.pt

Abstract—This work addresses the problem of creating a real
time surveillance system to provide early detection warning
related to forest fires that is based on an uncertainty map. The
dissertation begins by motivating the reader regarding the need to
monitor natural events that can have catastrophic consequences
for daily life. Following a logic of prevention and timely action,
the creation of a real-time surveillance system for wildfires is
proposed, aiming to maximize the useful information collected
by an autonomous aerial vehicle.

In a first chapter, we tackle the problem of optimizing non-
convex functions by proposing a novel hybrid iterative algorithm
that is able to adapt its behavior to have fast convergence to a
neighborhood of a local solution and reduced oscillation around
the maximizer. The algorithm is extensively tested with results
illustrating its ability to converge to a local maximum with a
faster rate than state-of-the-art methods present in the literature.

The proposal of this thesis is to use an algorithm to generate
waypoints and address the problem of surveillance under the
mild assumption of an aerial vehicle capable of taking local
measurements with onboard sensors. Modeling the uncertainty
map with Gaussian mixtures allows for a general solution that
can cope with any type of utility function. Resorting to the op-
timization algorithm proposed herein to generate the waypoints,
it is then generated a smooth path using B-spline. In order to
create a control law for tracking this path, a path following
algorithm is also studied, which should function as an outer loop
for the vehicle in question. The performance of the proposed
solution is evaluated using the simulation software Gazebo which
incorporates the dynamics of the drone, demonstrating the ability
of the proposed solution to guide the vehicle through surveillance
areas of high uncertainty.

Index Terms—Wildfire surveillance; Hybrid optimization algo-
rithms; Gaussian-mixture; B-spline; Path following

I. INTRODUCTION

During the last decades, the effects of wildfires have been a
major problem all over the world. According to an European
Commission’s publication [1, Super Case Study 4], just in
2017, Portugal reported 21 000 wildfires, resulting in 539 920
ha of burned area (almost 6% of the total area of Portugal),
claiming 117 human lives, including firefighters. The damages
were estimated at approximately 1.5 billion euros. These
events cause huge losses to populations, either directly, due to
the destruction of agricultural resources and private properties,
or indirectly due to effects on public infrastructures such as
energy networks, roads, and telecommunications.

In Portugal, the wildfire dynamics follow a critical con-
centration of multiple events in a short period of time [1]:
almost two-thirds of the burned area in Portugal in 2016 is
the result of fires that occurred in the space of only 10 days.

This fact raises two important aspects: i) the solution to this
problem must follow a philosophy of prevention, lowering the
probability of having a critical concentration of events; ii)
when prevention measures are not sufficient, early detection
increases the odds of having an efficient extinction of wildfires.

II. ENVISIONED SURVEILLANCE ARCHITECTURE

This work aims to develop an algorithm that can generate
an optimal trajectory for an unmanned aerial vehicle (UAV)
in real-time based on a dynamic uncertainty map. This map
represents the relevance of a particular position at a given time
for drone inspection to detect wildfire ignition early.

The proposed algorithm can be viewed as an overlay layer
that complements any pre-existing surveillance system. For
the purpose of this document, it is assumed that a previously
developed surveillance system using an a priori map is re-
sponsible for maintaining the uncertainty map.

There are two possible sources of uncertainty that shape the
uncertainty map, namely:

• Noisy measurements and technological constraints can
lead to inaccuracies in the data collected by the surveil-
lance system;

• The uncertain dynamics that govern how the risk in each
area involves in-between the update of the map using the
availability of fuel, temperature, wind, etc.

Due to the inability of having an exact evolution of the map,
the current thesis proposes the use of UAVs equipped with
sensors, such as cameras or smoke detectors that can inspect
high-risk zones that would be inaccessible using patrols on
the ground. Such a vehicle has to have a control algorithm
to generate a trajectory through the areas with the highest
uncertainty levels, enabling the onboard sensors to infer the
existence of a fire. This process adds new information to
update the uncertainty map. The framework is illustrated in
Fig. 1, where the drone flight creates a closed feedback
surveillance system that continuously gathers new information.
Our work will primarily focus on the green boxes. We will
assume the availability of an uncertainty map and develop a
solution to analyze this map. The goal is to propose an optimal
trajectory for the aerial vehicle to follow. Additionally, we
will study a path-following algorithm to enhance the vehicle’s
ability to accurately track the desired path.

The proposed framework can have a significant and positive
impact on firefighting operations. By reducing uncertainty

Prior Knowledge
Probability of fire, given

geographical and meteorological
data or records of past events

 Real-time Evidence
1) Crowd-sourced data
2) Vehicle's measurements
3) Satellite measurements
4) Others

+ Uncertainty
Map

Estimation
Filter

VehicleNew measurements
 from onboard sensors

Map
evaluation

Path

Fig. 1. Architecture of the Envisioned Surveillance. The green boxes
represents the main contributions of this thesis

levels in a given area, the system can help coordinate fire-
fighting authorities from an operational perspective, allowing
resources to be concentrated in strategic positions. With more
accurate and timely information firefighting teams can more
effectively allocate resources to contain and extinguish fires.
Early detection of wildfires also increases the likelihood of
successful firefighting operations and minimizes damage to
property and the environment.

A. Mathematical Definition

Assuming that the estimation filter provides a new uncer-
tainty map to the path planner at a given frequency rate, the
map received at time k by the planner can be viewed as a
function hk(x) : ℜ2 → ℜ, where x ∈ X where X represents
the surveilled space, and k ∈ [0, 1, ...,K − 1] represents the
number of maps received until the instant k.

Using hk(x), the path planner generates a discrete tra-
jectory φ[k] ∈ ℜ2×N , composed of N discrete waypoints
[φ

[k]
1 , ..., φ

[k]
N] ⊂ X . We also pose the assumption that at each

position x ∈ X , a drone possesses a circular measurement
area centered at x with radius r, denoted by C(x, r).

An optimal trajectory obtained from K sequential maps can
be represented as a set of waypoints φ ∈ ℜ2×K·N in the form

φ = [φ
[0]
1 , ..., φ

[0]
N , ..., φ

[k]
1 , ..., φ

[k]
N , ..., φK−1

N]. (1)

This trajectory can be obtained by solving the optimization
problem presented in Eq. 2. In this equation, the drone is
modeled as a non-linear system f(s), with state s and actuated
by a control signal u. The function g(s, u) represents the
constraints imposed on the state and/or control signal of the
drone.

maximize
φ

K−1∑
k=0

∫
γ(φ[k])

hk(x)dx,

subject to ṡ = f(s)
g(s, u) ≤ 0

φ
[k]
n ∈ X

(2)

where
γ(φ[0]) =

⋃N
n=1 C(φ

[0]
n , r)

The function γ(φk) : ℜ2×N → ℜ2 is essential in preventing
the drone from stopping at a local uncertainty maximizer.

Refer to Fig. 2 and Fig 3 to understand how the integration area
is acquired using this union of neighborhoods. This function
ensures that overlapping regions are only considered once
during the uncertainty integration process for each new map.

However, it is possible that the drone may not be able to
reduce the uncertainty of a location during its first visit. To
address this, the neighborhood’s union, γ(φk), has to be reset
whenever a new map is received. This allows for repeated
integration of a position across different maps while still
avoiding the risk of getting stuck in local maximizers of the
current map.

The proposed formulation enables the planner to compute
an optimal trajectory on-the-fly using only the most recently
received map. To better understand this on-the-fly property,
we can decompose the original problem from Eq. 2 into K
separate sub-problems:

Sub-problem 0 up to K-1 - change from problem k − 1 to
problem k when a new map arrives. Here k starts in 1 and is
a constant for each problem:

maximize
φ[k]

∫
γ(φ[k])

hk(x)dx,

subject to ṡ = f(s)
g(s, u) ≤ 0

φ
[k]
n ∈ X , ∀n ∈ {1, 2, ..., N}

φ
[k]
1 = φ

[k−1]
N

(3)

The blue constrain is added to guarantee concordance
between problems. Therefore, for K = 0, this constrain must
not be considered.

Despite the separation of the problem into K sub-problems,
each sub-problem still requires solving a non-convex optimiza-
tion function with non-convex constraints. Additionally, the
cost function involves an integral computation that does not
have a closed-form solution in the general case. Therefore, the
computation of this optimal trajectory may require significant
processing power and time resources.

In conclusion, a potential solution to address this problem
must be able to compute close to optimal trajectories for
each of the received maps since this is a vital feature for the
envisioned application of wildfire detection. Fig. 2 and Fig 3
shows an example trajectory for a generic map k with N = 4.

Fig. 2. 3 dimensional view of a path for a generic map k and N = 4

Fig. 3. Top view of a path for a generic map k and N = 4

III. NON CONVEX FUNCTION OPTIMIZATION

The primary objective of this section is to assess the efficacy
of different algorithms in locating local maxima of non-convex
functions. Such an algorithm is the primary building block
required for the development of a solution to the described
problem.

In this section, we are focusing on addressing unconstrained
problems of the form:

minimize
x

f(x) (4)

where x stands for the decision variable belogingng to the set
Rn. The objective function f(x) reflects the specific goals or
criteria associated with the problem.

A. Background Theory

In most practical cases, solving optimization problems an-
alytically is not feasible. Even using computational tools to
help with algebraic manipulation may be too burdensome.
Consequently, the most valuable approaches are numerical
algorithms of first and second order. A typical format of first
order algorithms is

xk+1 = xk + αkdk. (5)

where xk denotes the current estimate, αk is the step size and
dk the search direction. The difference between each first-order
algorithm is the philosophy behind the choice of the search
direction dk and the step size αk.

Definition 1: dk is a valid search direction to minimize a
function f(x), if it respects

dTk∇f(x) < 0 (6)

such that there always exists a ᾱ > 0 that makes

f(xk + αdk) < f(xk) for all 0 < α ≤ ᾱ. (7)

A common and computationally efficient approach to define
the parameter αk is to choose a constant step size and let the
gradient norm determine both the direction and the magnitude
of the estimate’s movement. This fixed value may depend
on a compromise for the convergence rate over all possible
initializations.

The most popular first-order algorithms are:

• Gradient Descent:

xk+1 = xk − α∇f(xk) (8)

• Heavy Ball:

xk+1 = x̃k − α∇f(xk), (9)

where x̃k = xk + β(xk − xk−1)

• Nesterov’s
xk+1 = x̃k − α∇f(xk), (10)

where xk = xk + β(xk − xk−1)

Other algorithms have been suggested in the literature, such
as the Triple Momentum approach proposed in [2], where the
authors extend the last two momenta Nesterov’s approach to
the overall estimation:

xk+1 = xNk+1 + δ(xNk+1 − xNk), (11)

where xNk is the Nesterov’s estimate.
An alternative to using momentum terms in algorithms is to

employ adaptive step approaches. Almeida & Silva et al. [3]
propose updating the step size individually for each dimension
based on the gradient signal in that dimension. This approach
can be summarized as follows:

αk =

{
u · αk−1 if df

dx (xk−1) · df
dx (xk) > 0

d · αk−1 otherwise
, (12)

where 0 < u < 1 and d > 1 are respectively the ”up” and
”down” update constants.

In this work, we will be using a normalized version of the
gradient when applying the adaptive step algorithm. Normaliz-
ing the gradient ensures that the step size is independent of the
magnitude of the gradient, making the algorithm more robust
and less sensitive to changes in the objective function’s scale.

To avoid manual tuning of parameters, the authors of [4]
and [2] define a procedure to find optimal parameters for the
gradient methods, in the sense that guarantee minimal worst-
case convergence rate ρworst, as in defined in the following
definition:

Definition 2: A sequence xk is converging with convergence
rate 0 < ρ < 1 if there exists a positive constant C > 0 such
that

||xk+1 − x∗|| ≤ Cρk||x0 − x∗|| (13)

These parameters, present in Tab I, are obtained from a set of
strongly convex functions with m-strongly convexity and L-
Lipschitz continuous gradient for a given 0 < m < L. In other
words, the optimal parameters are computed for functions
f : ℜn → ℜ such that ∀x, y ∈ ℜn:

m||x−y||2 ≤ (∇f(x)−∇f(y))T (x−y) ≤ L||x−y||2. (14)

After considering momentum terms, adaptive steps, and op-
timal parameter tuning, another approach is the use of hybrid
algorithms capable of adapting their behavior throughout the
iterations. In [5], the authors propose the use of a hybrid
algorithm for optimizing convex functions, which aims to

TABLE I
OPTIMAL PARAMETERS FOR EACH METHOD AND THEIR CORRESPONDING

WORST-CASE CONVERGENCE RATES. κ = L/m REPRESENTS THE
CONDITION NUMBER.

Method Optimal
Parameters

Convergence
Rate, ρmax

Gradient Descent α = 2
L+m

κ−1
κ+1

Nesterov’s α = 4
3L+m

1− 2√
3κ+1

β =
√
κ+1−2√
3κ+1+2

Heavy Ball α = 4

(
√
L+

√
m)2

√
κ−1√
κ+1

β =
(√

κ−1√
κ+1

)2

Triple Momentum

α =
2−1/

√
κ

L

1− 1√
κ

β =
(1−1/

√
κ)2

1+1/
√
κ

γ =
(1−1/

√
κ)2

(2−1/
√
κ)(1+1/

√
κ)

δ =
(1−1/

√
κ)2

1−(1−1/
√
κ)2

achieve fast convergence, reduced oscillations, and robustness.
The algorithm utilizes two versions of a heavy ball method,
each characterized by a specific set of parameters: (α1, β1)
and (α2, β2). The algorithm can be defined as follows:

xk+1 = xk − ασ(k)∇f(xk) + βσ(k)(xk − xk−1). (15)

The function σ(k) ∈ {1, 2} is updated in every iteration and
takes values from the set {1, 2} based on a supervisor.

B. Problem Statement

Given that the objective function for the wild fire detection
is going to be the result of an estimation process, related to
different characteristics like the weather, terrain, etc., the cost
function h(x) : R2 → R will be nonconvex and we pose the
assumption of being represented as a Gaussian mixture model.
In this section, we remove the constraints and integrals from
the previous optimization problem, and solve the problem:

maximize
x

h(x). (16)

A GM model consists of a weighted sum of K Gaussian
distributions, where the weights wk indicates the contribution
of each Gaussian to the overall function, i.e.,

h(x) =

K∑
k=1

wkNk(x), (17)

where
∑K

k=1 wk = 1, and Nk(x) represents the Gaussian
probability density function for component k with mean µk

and covariance Σk:

Nk(x) =
1

2π
√
||Σk||

e−1/2(x−µk)
TΣ−1

k (x−µk).

In order to gather intuition related to the use of Gaussian
Mixture models, we present an illustrative example that will
guide the design in the remaining of this section. T We start
by comparing three groups of algorithms: gradient descent

(”GD”), momentum algorithms (”HB”, ”N”, and ”TM”), and
gradient descent with adaptive step (”Adaptive”). These al-
gorithms will be evaluated using fixed parameters obtained
through manual tuning using several runs to improve their
values.

The experiments is conducted using a Gaussian mixture

with K = 1, µ =
[
0 0

]T
and Σ =

[
1 0
0 5

]
, as shown

in Fig. 4. Two initial points are tested for each algorithm:
x0 =

[
−1.5 2

]T
and x0 =

[
−5 −5

]T
. The first initial

point was chosen to represent the behavior of each algorithm
when initialized near a maximum, where the gradient is
meaningful whereas the second point starts far away in a
plateau region. The stopping criteria was defined as the k value
such that

||xk−1 − xk|| ≤ 10−4. (18)

Fig. 4. Top view of the objective function and tested initialization

For the first initial point, x0 =
[
−1.5 2

]T
, the perfor-

mance can be seen in Fig. 5. All algorithms were able to
find the maximum of the Gaussian function and converge to
it. However, the gradient descent algorithm and its momen-
tum versions showed better overall performance, reaching the
stopping criteria after around 40 iterations.

Fig. 5. Distance to a local maximum in each iteration using initialization
point 1

For the second initial point, x0 =
[
−5 −5

]T
, the per-

formance can be seen in Fig. 6. This example highlights
the challenge regarding plateau regions. Plateau regions are
characterized by the magnitude of gradients almost negligible,

where the algorithms need high α parameters to be able to
move their estimate in such a low gradient magnitude area.
However, given these high-value parameters, a problem may
arise when the estimate gets near the non-plateau regions.
There, the algorithm may become unstable using too large
steps for the magnitude of the gradient in this region. The
adaptive step algorithm is an exception to this problem because
it uses normalized gradients, making the algorithm robust to
variations in the gradient’s magnitude.

Fig. 6. Distance to a local maximum in each iteration using initialization
point 2

In conclusion, Gaussian mixture functions pose a significant
challenge for optimization algorithms due to the presence of
plateau regions in the search space. Even when algorithm
parameters are tuned to address these regions, there is no
guarantee of good performance in regions called non-plateau
regions, near the maximum, where the gradient increases.
This example highlights the need to employ an algorithm that
can adapt its behavior while optimizing a Gaussian mixture
objective function.

C. Proposed Solution

Taking into account the challenges identified during the
illustrative result, we propose a hybrid algorithm capable of
effectively converging to local maximums of Gaussian mixture
functions, even when the functions contain multiple Gaussians
and the initial estimate resides in a plateau region.

The hybrid algorithm aims to combine the strengths of two
optimization algorithms: a global strategy and a local strategy.
The global strategy is designed to show fast convergence in
plateau regions, while the local strategy focuses on reducing
oscillations in non-plateau regions. To enable this hybrid
approach, the algorithm relies on information about the L-
Lipschitz and m strongly convex constants, which are assumed
to be supplied by an oracle. The relevance of knowing these
constants is related to the usage of the optimal parameters
from Tab. I. This way, the parameters of each gradient descent
algorithm can be automatically tuned, minimizing the need for
human intervention and increasing the adaptability to different
optimization environments.

We start by suggesting the design of a specific Gaussian
mixture oracle. However, our hybrid algorithm is pretended to
work with any oracle capable of providing such constants.

1) Gaussian mixture Oracle design: We have developed
an oracle for estimating the L-Lipschitz constant of a given

Gaussian mixture. Additionally, it also estimates the m-
convexity constant of the non-plateau regions around the local
maxima. For that, without loss of generality, we go through
the design assuming diagonal covariance matrices in the form

Σk =

[
σ2
1 0
0 σ2

2

]
.

In doing so, the Gaussian probability density on Eq.17 turns
into

Nk(x) =
1

2πσ1σ2
e

(
−(x1−µ1)

2σ1
+

−(x2−µ2)
2σ2

)
. (19)

Our oracle employs a second-order Taylor approximation
for each Gaussian in the Gaussian mixture function. Taking
into account some vanishing terms due the null gradient at
x = µ, and due the assumed diagonal covariance matrix, each
expansion is centered in a Gaussian mean as:

N (x) ≈ N (µ) +
(x1 − µ1)

2

2

∂2N
∂x21

(µ)

+
(x2 − µ2)

2

2

∂2N
∂x22

(µ).

(20)

This results in a function that reasonably approximates the
Gaussian distribution around its mean point, as shown in Fig. 7
for a one dimensional Gaussian function.

Fig. 7. Example of a one dimensional Gaussian function and the respective
second-order Taylor’s approximations

At this point, our oracle applies the definition of the
constants L and m, as given in Eq. 14 to each quadratic
function obtained from the second-order Taylor’s expansions.
Specifically, for 2-dimensional quadratic functions, the defi-
nition implies that L and m correspond, respectively, to the
eigenvalues of maximum and minimum absolute value of the
Hessian matrix:

H =
1

2πσ1σ2

[
1/σ2

1 0
0 1/σ2

2

]
, (21)

associated with each quadratic term. Since Eq. 21 is a 2 × 2
diagonal matrix, its eigenvalues can be obtained directly from
the non-zero entries of the matrix.

From the set of K pairs (Lk,mk), we now can choose the
largest Lk and the smallest mk as the output of our oracle.

2) Hybrid Algorithm: The intuitive idea behind the algo-
rithm is to divide its behavior based on the proximity to
a maximum or to a plateau region. At each iteration, this
decision is made using a finite differences second-order gra-
dient of the objective function, computed for each dimension.
It is worth noting that the algorithm does not compute the
full Hessian matrix, but only the second-order derivatives
with respect to each dimension. For the current iteration
xk =

[
xk1 xk2

]T
, the second-order derivative approximations,

∇̃2nd(xk) =
[
∇̃k2nd

1 ∇̃k2nd

2

]T
are given by:

∇̃k2nd

1 =
f(xk1 + δx)− 2f(xk1) + f(xk1 − δx)

δ2x
, (22)

∇̃k2nd

2 =
f(xk2 + δx)− 2f(xk2) + f(xk2 − δx)

δ2x
, (23)

where δx represents the step size for the finite difference
approximation.

Our oracle is able to characterize reasonably well the non-
plateau regions. Furthermore, the L-Lipschitz and m-convexity
constant of a function can be used as the upper and lower
bounds of the eigenvalues of its Hessian matrix, which are
related to the second-order derivatives of the function. Thus,
the hybrid algorithm compares the minimum value of the
finite differences second-order derivative approximation with
the m constant obtained from our oracle. This comparison
is based on the fact that the m-convexity condition implies
that the curvature of non-plateau regions is greater than or
equal to m, which in turn is greater than the curvature of
plateau regions. This condition enables the algorithm to use the
second-order derivative approximation to determine whether
the current estimation is in a plateau or non-plateau region.

The subroutine responsible for performing these computa-
tions serves as a supervisor that triggers a global algorithm
(designed for fast convergence) or a local algorithm (tailored
to avoid oscillations). Fig. 8 formalizes the state machine used.

Global Algorithm Active

Local Algorithm Not Active

Global Algorithm Not Active

Local Algorithm Active
Otherwise Otherwise

Fig. 8. Hybrid algorithm supervisor decision

D. Hybrid Algorithm Results

This section focuses on evaluating the performance of our
hybrid algorithm using a range of local and global methods
against the adaptive step by measuring the distance to the
closest local maximum of the Gaussian mixture function. The
following options were considered:

• Adaptive step as the global algorithm and gradient de-
scent with parameters defined using the oracle output and
Tab. I as the local algorithm - Identified as ”A+GD”.

• Adaptive step as the global algorithm and Heavy Ball
with parameters defined using the oracle output and Tab. I
as the local algorithm - Identified as ”A+HB”.

• Adaptive step as the global algorithm and Nesterov’s with
parameters defined using the oracle output and Tab. I as
the local algorithm - Identified as ”A+NE”.

• Adaptive step as the global algorithm and Triple Momen-
tum algorithm with parameters defined using the oracle
output and Tab. I as the local algorithm - Identified as
”A+TM”.

1) Gaussian mixture with K = 6 near Gaussians: We
evaluate the performance of each algorithm using a Gaussian
mixture function with 6 overlapping Gaussians. We use this
function to assess whether our local algorithms can converge
to local maxima when the individual Gaussians overlap. This
test is interesting because the oracle computes the L and m
constants using the individual Gaussians without considering
their proximity.

The test consists on running each algorithm using 50
random initializations, as shown in Fig. 9. Each algorithm
was run for every initialization, and we recorded the number
of iterations required to meet the stopping criteria for each
initialization. A cumulative average is reported in Fig. 10.
In addition to successfully converging to a local maximum
in each initialization, the results indicate that the gradient
descent algorithm and its momentum versions outperform the
adaptive algorithm. Among the gradient descent algorithms,
the momentum versions also outperform the gradient descent.

Fig. 9. Test 3 - Initial estimate and hybrid algorithm with gradient descent
trajectories for each one of the 50 random initializations

IV. UAV PATH PLANNING AND PATH FOLLOWING

In this section, we explore an approach for solving the
problem of optimal trajectory generation from multiple un-
certainty maps, as discussed in the introductory section. We
will focus on a specific case of that original problem. This

Fig. 10. Test 3 - Cumulative average of iterations required by each algorithm
to meet the stopping criteria

approach allows us to consider certain simplifications while
still achieving effective solutions. We will:

• Narrow our scope to a single map problem, where K = 1
• Adopt an empirical approach to determine the set of

waypoints φ that will be utilized by the path planner,
instead of directly addressing the sub-problem outlined
in Equation 3

• Consider that the uncertainty map h(x) is modeled as
a discrete Gaussian mixture function. Furthermore, we
assume that a previously developed surveillance system
is responsible for maintaining the uncertainty map.

Regarding the second consideration, our decision is driven
by a trade-off between accuracy and complexity. Solving the
original problem using integral calculations and area unions
would be computationally expensive. Instead, by leveraging
our intuition regarding the map’s structure we aim to find an
effective solution to the problem at hand.

A. Proposed Solution

Our proposed algorithm is based on the observation that the
uncertainty map is likely to contain multiple local maxima,
which correspond to areas of higher uncertainty where the
quadrotor needs to conduct detailed surveillance. Intuitively,
the vehicle should navigate towards one of these local maxima,
allowing it to gather new measurements and reduce uncertainty
in those specific areas. Hence, each local maximum will serve
as a target location for the quadrotor to reach. Once it arrives
at the target location, it carries out a surveillance mission using
a spiral path to systematically scan the region.

Fig. 11 provides a visual representation of the entire process.

B. Waypoint Generation

The generation of waypoints in our system is implemented
using a state machine approach, as depicted in Figure 12. The
waypoint generation process is performed online, at regular
intervals. Whenever a new waypoint is computed, it is sent to
the path following ROS package through a ROS publication.
The waypoint generation state machine is divided into two
main parts.

Input/telemetry
module

Waypoint generationMap

B-spline

Path following

Accelerations
to

Thrust and angular references

Output/offboard
module

Generation
ROS package

Path Following
ROS package

ROS Publication

.

Fig. 11. Diagram of the proposed solution. Each module is further explored
in the following section

In the first part, corresponding to states 1 and 2, the state
machine employs the hybrid algorithm previously proposed.

State 1: Global algorithm

Hybrid algorithm with global
strategy

State 2: Local algorithm

Hybrid algorithm with local
strategy

State 3: Computing spiral
parameters

Quadratic least squares
regression using a sample of
the uncertainty map

State 4: Spiral
discretization

Get waypoints from a spiral
discretization with computed
parameters

Stop detected

Computation finished

Spiral surveillance no
longer beneficial

Start

Fig. 12. State machine for waypoint generation

The second part, corresponding to states 3 and 4, is activated
when the state machine is in state 2 and successfully converges
to a local maximum of the uncertainty map. These states are
responsible for defining and discretizing a spiral path that
allows the quadrotor to enhance its inspection of the area with
high uncertainty using its onboard sensors. Defining VCLV as
the magnitude of the first derivative of the spiral curve, and ∆r
as the spiral pitch or sampling pitch along the radial dimension
(a measurement for the growth rate of the radius), we define
the paremtrization as:

rx(γ) = ry(γ) = γ,

θ(γ) = γ,
(24)

where

rx(γ) = ry(γ) =

√
∆rVCLV

π
γ,

θ(γ) =

√
VCLV 4π

∆r
γ.

(25)

This parameterization allows us to easily generate waypoints
that are uniformly distributed along the entire spiral. However,
it assumes a circular spiral with rx(γ) = ry(γ), which does
not fully meet the second consideration.

To address this limitation we employ a neighbor map based
on the current drone position. This neighborhood corresponds
to the grid position where the drone is located and the five
neighboring grids in each direction, resulting in a total of (2×
5 + 1)2 cell values. These values are utilized to conduct a
regression using the least squares principle and the quadric
model:

ĥ =
[
x y

] [a b/2
b/2 c

]
︸ ︷︷ ︸

Q

[
x
y

]
+
[
d e f

] xy
1

 . (26)

to adapt the spiral radius to the desired shape we can find the
major and minor axis of the ellipse defined by[

x y
]
Q

[
x
y

]
= 1 (27)

To do so, we compute the eigenvalues, λ1,2 , and eigenvec-
tors, v1,2, of the matrix Q, which provides an estimate for the
shape of the area around the local maximum of the uncertainty
map. Defining the magnitude of the major and minor axis, as
a and b and the rotation of major axis as α:

a =
1√
λ1
, b = 1√

λ2
, α = arctan

(
v
(2)
1

v
(1)
1

)
, (28)

where λ1 < λ2, and vi =
[
v
(1)
i v

(2)
i

]T
denotes the eigen-

vector corresponding to the eigenvalue λi of the matrix Q.
To prevent the magnitude of the standard deviation of a

Gaussian from affecting the parameters a and b, which are
intended to characterize the shape of the Gaussian rather than
its magnitude, a normalization step is performed. Specifically,
the values of a and b are normalized to satisfy the condition
||a+ b|| = 1.

Using these shaping parameters, and defining Pcenter as the
waypoint where the local maximum was detected, the spiral
path is parametrized as

C(γ) = Pcenter +

[
cos (α) − sin (α)
sin (α) cos (α)

] [
a · r(t) cos(θ(γ))
b · r(t) sin(θ(γ))

]
,

(29)

C. B-spline

The path following ROS package receives individual way-
points and accumulates them for use in the B-spline module.
This module parameterizes the path to be followed by the
vehicle using a 2-dimensional uniform cubic B-spline in the
form

C(γ) =
1

6
Bi(γ)


Pi

Pi+1

Pi+2

Pi+3

 , (30)

where

Bi(γ) =


(γ − i)3

(γ − i)2

(γ − i)
1


T 

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

 . (31)

D. Path Following

The key idea behind our path following strategy is to drive
the vehicle to a virtual target that moves along the desired path
defined as a uniform cubic B-spline, denoted as pd(γ) ∈ ℜ2.
Fig. 13 illustrates this approach.

Fig. 13. Virtual target for path following representation

Our path following algorithm aims to generate a set of
desired accelerations, denoted as udes ∈ ℜ3. For that, it is
designed to achieve two main objectives:

• Convergence of the quadrotor’s position p(t) to a tube
around the desired position pd(γ).This convergence can
be made arbitrarily small, effectively reducing the norm
||p(t)− pd(γ)|| to a neighborhood of the origin.

• Convergence of the speed of the virtual target to a desired
speed profile denoted vd(γ). In other words, ensuring that
|γ̇−vd(γ)| → 0 as t→ ∞. The speed of the virtual target
can be seen as the progression rate of the parametrize
variable that is moving along the path.

Let us define the position and velocity errors between the
vehicle, located at p(t), and the virtual target as follows:

ep := p(t)− pd(γ) (32)

ev := ṗ− ∂pd

∂γ vd(γ) (33)

Our path following controller is inspired by a Proportional
Derivative controller proposed by Jacinto et al. [6], and
futher extented to become a Proportional Integral Derivative
controller:

udes = h(γ)vd(γ)−Kpep −Kvev −Ki

∫
ep, (34)

where
∫
ep represents a discrete integration process of ep,

while Kp, Ki and Kv are the control gains. The function h(γ)
is derived from the expression of the path’s acceleration when
the virtual target converges to the desired speed profile, i.e,
when γ̇ = vd(γ). Therefore, we can obtain the corresponding
expression for h(γ) as

d2pd
dt2

(γ) =

[
∂2pd
∂γ2

vd(γ) +
∂pd
∂γ

∂vd
∂γ

]
︸ ︷︷ ︸

h(γ)

γ̇ (35)

Fig. 14. Adopted reference frames

For controlling the speed of the virtual target γ̇ we assume
that it can precisely follow the desired speed profile, resulting
in γ̇ = vd(γ).

E. Acceleration to Thrust and angular references

Consider two frames used to characterize the dynamics of
the vehicle, denoted as follows:

• Frame {B}: A body-fixed frame rigidly attached to the
geometric center of mass of the quadrotor.

• Frame {U}: An inertial reference frame.
Let’s define the following notations:

• η2 = [ϕ, θ, ψ]T : Orientation of frame {B} with respect
to frame {U}, expressed in Euler angles.

• FRB = [X,Y, Z]T : External forces measured in frame
{B}.

Consider now that the quadrotor is modeled as a double
integrator system given by

p̈ := η̈1 = −Z

m
U
BR(η2)e3 + ge3 (36)

Where U
BR(η2) represents the rotation matrix from the body

reference frame to the inertial frame and can be defined as
U
BR(η2) = Rz(ψ)Ry(θ)Rx(ϕ)

=

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ


(37)

Where c and s denote the trigonometric functions cos(.) and
sin(.) respectively.

We will utilize the inner loop controller provided by the
PX4 autopilot, which takes input as a set of angular references
[ϕdes, θdes, ψdes]

T and total thrust Z. We will consider the yaw
angle reference, ψdes, as a free variable defined by the outer-
loop controller. Specifically, we will set ψdes to a constant
value of zero.

Expanding Eq. 36:

udes = η̈1 = − 1

m
Rz(ψdes)[Ry(θ)Rx(ϕ)Z]e3 + ge3 (38)

Let’s consider an auxiliary variable u∗ defined by

u∗ := Ry(θ)Rx(ϕ)Z (39)

Once we receive the input udes from the outer-loop, it is
possible to compute the value of the auxiliary variable u∗ by
replacing Eq. 39 in Eq. 38:

u∗ = −mRT
z (ψdes)(udes − ge3) (40)

The auxiliary variable can be related to the total required
thrust by

||u∗|| = Z. (41)

Finally, to get the desired angular references, we can use the
following relation:

u∗

||u∗||
=

cos (ϕ) sin (θ)sin (θ)
cos (ϕ) cos (θ)

 (42)

By solving Equation Eq. 42 with respect to the attitude
angles and considering that u∗ = [u∗1, u

∗
2, u

∗
3]

T , we obtain the
following expressions:

ϕdes = arcsin

(
−u

∗
2

Z

)
(43)

θdes = arccos

(
u∗1
u∗3

)
(44)

V. RESULTS

A discretized version of the previously introduced map
consisting of 6 Gaussians is used to test the overall solution
in . In the continuous version of this function, the hybrid
algorithm successfully converged to local maximums. There-
fore, we expect the same capability in this test. However, it
remains crucial to evaluate the performance of the waypoint
generation package in terms of the spiral path. The waypoint
generation module should be capable of extracting the shape
of the neighborhood of each local maximum to infer how to
parameterize the spiral and enhance the surveillance task. This
particular map has its Gaussians relatively separated from each
other, providing an interesting starting point to evaluate this
capability.

Fig. 15 depicts two runs of the complete algorithm with
different initializations: (−9, 9) and (9,−9). In both runs, it
is evident that the waypoint generation algorithm successfully
inferred the shape of each spiral, allowing the quadrotor
to adjust its flight path to measure the regions with higher
uncertainty effectively. Moreover, the generated waypoints,
combined with the B-spline module, created a smooth path
that the vehicle was able to follow accurately.

Fig. 16 and Fig. 17 illustrate the position tracking error
and the speed of the vehicle during the first run of the test,
with an initial position at (−9, 9). The vehicle successfully
followed the proposed path, with the error between the desired
position of the quadrotor and the actual position converging
to approximately zero. However, it is visible some occasional
peaks in the tracking error of around 0.5 meters in the more
aggressive parts of the trajectory. These peaks are observed at
the start of the flight, as well as when the vehicle hovers in a
local maximum and begins its spiral trajectory. During these
instances, the quadrotor needs to accelerate and overcome

Fig. 15. Top view of the desired and performed path for two initializations

Fig. 16. Position error for the first run with initial location (−9, 9)

its dynamics to converge to the virtual target. An example
of this behavior can be seen around t = 90 seconds when
the vehicle is at the local maximum located approximately
at (−5,−5). The speed of the quadrotor exhibits a similar
pattern. It remains relatively constant at Vdis = 0.7m/s,
showing higher deviations from this value when the tracking
error increases.

VI. CONCLUSION

In conclusion, this master’s thesis has focused on the
development of a real-time surveillance system specifically
designed for wildfire monitoring. The primary objective was
to design a system that utilizes an uncertainty map to identify
the most relevant location for drone inspections. Through a
comparative analysis of existing surveillance systems, this
thesis proposed the idea of adding an overlay layer that
can complement other solutions with drones to inspect high-
priority zones. The inspection problem is formulated mathe-
matically as a maximization of the uncertainty value within the
measured areas along the trajectory followed by the vehicle.
Such an approach has the potential to have an early detection
of wildfire ignitions.

Fig. 17. Speed and desired speed for the first run with initial location (−9, 9)

Chapter 2 was dedicated to the creation of a hybrid al-
gorithm capable of converging to local maximums of non-
convex functions. By modeling non-convex functions as Gaus-
sian mixtures, it was seen that an alternative algorithm was
necessary to address plateau regions with very low gradient
magnitudes while avoiding divergence in regions with high
gradient magnitudes. Our algorithm was tested and shown to
overcome these challenges, converging to a local maximum
in every test performed. Furthermore, the presented algorithm
is also able to auto tune its parameters based solely in
the estimate of two parameters to characterize the objective
function.

Chapter 3 presents a real-time solution designed to guide a
quadrotor through the most uncertain areas of an uncertainty
map. We begin by formulating a trade-off solution between
the accuracy and complexity of the original problem. The
proposed solution relies on an empirical approach to analyze
the received uncertainty map and determine the set of way-
points to be extracted. These waypoints can be generated using
either the hybrid algorithm proposed in this study or a spiral
parametrization technique that adapts its shape to the non-
plateau Gaussian region where the vehicle is located. We ex-
plore how to parametrize this adaptable spiral parametrization
using a sample from the objective function.

In the subsequent sections, we develop a path following
algorithm capable of utilizing the generated waypoints to
compute a smooth cubic B-spline path. To follow the desired
path, we suggest the use of a PID outer-loop controller
capable of computing acceleration references, which are later
translated into thrust and angular values.

To evaluate the performance of our approach, we conducted
tests in a detailed simulation environment provided by Gazebo.
This simulation environment closely emulates real-world flight
arenas, ensuring the accuracy and fidelity of our path following
algorithm. The results obtained from these tests affirm the
success of our approach, as we observed a maximum root
mean square error of the tracking position of 0.098 meters.
Furthermore, the trajectory is successfully tailored to address
the shape of the uncertainty region in which the drone was
conducting surveillance.

REFERENCES

[1] Commission and J. R. Centre, Science for disaster risk management
2020: acting today, protecting tomorrow, I. Clark, K. Poljansek, A.
Casajus Valles, and M.Martı́n Ferrer, Eds. Publications Office, 2021

[2] B. V. Scoy, R. A. Freeman, and K. M. Lynch, “The fastest known
globally convergent first-order method for minimizing strongly convex
functions,” IEEE Control Systems Letters, vol. 2, pp. 49–54, 1 2018

[3] F. M. Silva and L. B. Almeida, “Speeding up backpropagation,” in
Advanced neural computers. Elsevier, 1990, pp. 151–158

[4] L. Lessard, B. Recht, and A. Packard, “Analysis and design of opti-
mization algorithms via integral quadratic constraints,” SIAM Journal
on Optimization, vol. 26, pp. 57–95, 2016

[5] D. M. Hustig-Schultz and R. G. Sanfelice, “A robust hybrid heavy ball
algorithm for optimization with high performance;,” American Control
Conference (ACC), 2019

[6] M. F. Jacinto, “Cooperative motion control of aerial and marine vehicles
for environmental applications,” Master’s thesis, 2021.

