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Abstract
To implement a secure, decentralized ledger of cryptographically-

chained blocks, Blockchain systems must implement several steps:
select a group of transactions and include them in a block in a cer-
tain order; execute the ordered group of transactions; and agreewith
the other Blockchain participants on the results of the execution
of the transactions through a consensus algorithm. Today, almost
all Blockchain systems follow a monolithic architecture, where
all these components are intertwined and executed on the same
physical machine, sharing the same computational resources. As
a consequence, these systems suffer from severe scalability issues,
even in permissioned settings. In this thesis, we propose SepChain,
a system that aims to improve on these scalability issues by propos-
ing a simple and precise separation of the system into agreement
and execution components. To demonstrate the benefits of this
approach, we present a novel proof of concept of this principle,
which consists of taking an existing system implementation and
split it into one Blockchain that only orders transactions, and into
multiple other isolated Blockchains that then execute them.

1 Introduction
A blockchain is a distributed and decentralized ledger that holds

a number of client transactions in blocks, which are cryptographi-
cally linked, forming a chain. This ledger is shared between nodes
in a distributed system, where the nodes collectively implement
the task of adding new blocks to the chain. The nodes that form
this distributed system all have the same, symmetric behavior and
set of responsibilities, thus forming a peer-to-peer overlay network.
Clients interact with the blockchain by creating and sending trans-
actions to the nodes of the overlay network, where a transaction is
an action that alters the state of the ledger.

For a transaction to be added to the Blockchain, the nodes that
implement it follow a distributed protocol with a series of steps,
whose order and logic depend on the specifics of each system. For
instance, in Ethereum-based systems, the following transaction
processing steps occur. After clients send their transactions, these
are broadcast to the Blockchain network. Then, each node that
receives a transaction includes it in a pool with other pending
transactions, until it is able to assemble a large enough set in a
block. Afterwards, all the block transactions are executed in the
order previously defined for the purpose of determining the new
ledger state maintained by the Blockchain, while also validating
other parameters (e.g., gas) to ensure the correct outcome of the
execution. Finally, once all the transactions in the block have been
executed, the consensus protocol (e.g., Proof of Work, IBFT) will
define which block will in fact be added to the chain.

Additionally, many current Blockchain systems [2, 4, 12, 15] are
based on a monolithic design. As such, a Blockchain node is a single
machine that conflates the logic for the previously mentioned steps.
This monolithic design raises several problems, the most important
of which is that it becomes a scalability bottleneck. This is because
a monolithic design cannot separate the number of resources that
are allocated to each of the previously mentioned steps; similarly,
it cannot be scaled out – since this would only replicate the exist-
ing problems. In addition to these faults, the order by which the
previously mentioned steps occur also impacts the system nega-
tively. Taking into account that the execution phase comes before
the consensus protocol, the latter is dependent on the former to
finish. Moreover, since there are multiple nodes trying to get their
block to be the one added to the chain, this means that every node
other than the winning one wastes time and resources in a block
that will not be added to the chain. In our view, these issues are
key to why Blockchains are still not up to par with the scalability
and performance of centralized systems, even in the cases where
these Blockchains operate in permissioned settings and are able to
sidestep the expensive proof of work mechanisms.

In this thesis, we aim to demonstrate the importance of care-
fully layering state machine replication systems [18], namely by
separating two important aspects: agreeing on an order among the
commands, on the one hand, and executing the logic behind these
commands and validating the respective output, on the other [20].
Guided by these decades-old principles, we aim to demonstrate
that it is possible to improve Blockchain scalability by decoupling
the monolithic architecture of Hyperledger Besu [2], an Ethereum
client, to introduce a separation between the agreement and execu-
tion phases. To implement these principles, we built SepChain. In
simple terms, our architecture has two types of clusters: ordering
and execution clusters. There is only one of the former, which is
composed of ordering nodes that order the transactions by running
a consensus protocol. And then there are multiple, mostly indepen-
dent clusters of the latter type, each with several execution nodes.
As a result, execution clusters can process transactions with a high
degree of parallelism since one cluster’s execution no longer inter-
feres with the execution from other clusters. Additionally, we show
how this decoupling and careful layering enables us to break several
dependencies that may hamper scalability. For example, previous
designs would unnecessarily execute transactions assuming an or-
der that may not be final, leading to wasted computations. Finally,
SepChain shows these improvements with minimal changes: by
building on top of the Besu code base rather than tearing it apart.



2 The Blockchain Landscape
This section provides an overview of the space of Blockchain

architectures, by describing its most relevant data points.

2.1 Ethereum

In Ethereum, the ledger maintains the global state of the Ethereum
Network, which is composed of a set of accounts, where each ac-
count is identified by a unique address and stores a certain amount
of Ether (Ethereum’s currency). An Ethereum account can be used
to send and receive Ether to/from other accounts, but can also be
a smart contract: pieces of reusable code that provided a certain
input command, they perform an action and output a result.

The state of the Blockchain (the "world state") is continuously
changed through the execution of transactions, i.e., sending a cer-
tain amount of Ether from account A to B; or sending a smart
contract command as input to be executed and produce a result.
These transactions are in fact data blobs that contain the sender’s
message and signature, the recipient, and the Ether to be sent.

Executing a transaction implies using computational resources.
To account for these, each transaction has a fee, which is measured
in “gas” – a unit that measures an operation’s computational effort.
Gas exists to protect the Ethereum network from attackers that
try to maliciously exhaust all the nodes’ available computational
resources (e.g., by programming an infinite loop method in a smart
contract). For this reason, each transaction has a gas limit – the
maximum amount of computational effort a node can put into
executing that transaction. If the transaction execution goes over
the gas limit, the node halts and outputs an “out of gas” exception.

The world state is stored in the state machine, also called the
Ethereum Virtual Machine (EVM), which also defines the state tran-
sition function: the group of selected transactions are executed on
the current state and output the resulting state. The actual trans-
action execution is made possible through an iterator structure: it
executes each transaction that was select by the node and subtracts
the gas used. When the iterator halts (either by reaching the end of
the transaction or due to an exception, e.g., running out of gas), it
gets the next transaction until all transactions are executed.

To execute transactions, a client submits them to an Ethereum
node, and then these stay pending in a transaction pool. Then, for
the transaction to be added to the chain, the following steps are
needed. First, each Ethereum node selects some of these transac-
tions in a certain order and batches them into a block. Then, each of
the transactions is executed, sequentially, applying the state transi-
tion function to the current state (corresponding to a tentative order
that may be overturned). Third, once all transactions are executed,
the consensus phase begins. This last phase entails: 1) running the
consensus algorithm (e.g., Proof-of-Work) to determine which node
adds their block to the chain. 2) all the system nodes verify this new
block (the correctness of its timestamp, block number, among other
parameters), and incorporate its state changes to their local state.
3) the block is added to the chain and becomes visible, provided
that a sufficient number of nodes agree on adding the block in that
position.

2.2 Hyperledger Fabric
The previous description highlighted an issue with most Blockchain
designs, which is that its monolithic architecture leads to the se-
quence of protocol steps being formed organically, without carefully
thinking through the consequences of the order of that sequence,
and even leading to some wasted work. Hyperledger Fabric [9] was
one of the first systems to think through this order, by proposing
an execute-order-validate architecture.

The design of Fabric defines three possible roles for the blockchain
nodes: clients, who submit transaction proposals for execution and
broadcast the accepted transactions for ordering; peers, who exe-
cute transaction proposals and validate transactions; and ordering
nodes, who establish the total order for the transactions.

An application that runs on the Fabric blockchain has two parts:
the chaincode, which is a smart contract that implements the appli-
cation logic and is triggered by other transactions; and the endorse-
ment policy attached to the chaincode, defining which peers will
receive the transaction and stating the criteria for the transaction
to be valid, e.g., X peers must have the same result in the end.

The processing of transactions works as follows. First, during
execution, the client sends a proposal to the peers defined in the en-
dorsement policy (also called endorsers). This proposal is simulated
(i.e., the chaincode operation is executed) in the endorsers’ local
blockchains and they store the set of values that were read and
written. These sets are then sent to the client, cryptographically
signed, forming a message called "endorsement". Once the client
collects enough endorsements that satisfy the policy, they create
the transaction and send it to the ordering nodes.

Second, the ordering phase will define a total order on the re-
ceived transactions by batching them into a block and atomically
broadcasting the block, establishing consensus using a determin-
istic protocol such as RAFT [16]. The block is then sent to a new
group of peers (the committer peers) for the validation phase.

Third, in the validation phase, the peers verify if the endorsement
set satisfies the endorsement policy; then, they verify each transac-
tion sequentially, ensuring that the read set corresponds to the same
write set. If in any of these steps the validation fails, the transaction
is discarded. Finally, the block is added to the blockchain.

This design implies that there are multiple instances where a
transaction that has already been executed can end up being dis-
carded due to its invalidity or due to concurrent execution of re-
quests [19]. Therefore, the fact that transactions are first executed
can lead to the waste of resources.

2.3 CORFU
In trying to search for a more effective layering based on better
abstractions, we sought inspiration in a system called CORFU. It
defines the abstraction of a single log shared across multiple devices,
implemented over a cluster of flash storage that can be accessed by
multiple clients concurrently over the network. The log works as a
map, linking each map position to a flash storage unit.

This abstraction defines the interface between the concurrent
clients and the storage layer. Thus, for the clients to interact with
the storage, there are two main methods: read and append. The
former reads stored data from a given index, and the latter appends
new data to storage at a given index. This interface provides a clear
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Figure 1: Proposed design. This figure only represents one client and one ex-
ecution cluster for simplicity.

separation and a high degree of independence between the two
layers. Therefore, the shared log logic is simplified to the point of
being faster and of easy and concurrent access, while the client
logic can be as complex as necessary.

Despite serving a different purpose than Blockchains, CORFU
defines a fundamental concept that can be applied in other settings:
a layering based on simple, precise and well-designed abstractions,
with a lower layer allowing for reaching a consensus on the order
of the execution of requests, and the upper layer implementing the
application-specific logic.

3 A Proof-of-Concept Architecture
As seen before, modern Blockchains such as Ethereum [12] in-

tertwine consensus and application execution into a single inter-
dependent blob, hindering performance. Fortunately, there is a
ready-made architectural solution to this dilemma: separate agree-
ment from execution [13, 14, 20], which has already been applied
in systems like Delos [10]. We now detail how SepChain applies
these principles to a Blockchain setting.

SepChain’s main goal is to separate the Blockchain monolithic
design (seen in Ethereum-based systems) into two different layers:
ordering and execution. The reason for such a separation is a result
of many problems inherent tomonolithic systems, most importantly
the inability of scaling out the system – since all the components
are intricately connected, adding more resources only replicates or
even heightens the already existing overheads.

3.1 Design
SepChain’s design defines three layers: the clients, the ordering
service cluster, and multiple execution clusters.

3.1.1 Clients. The clients are simple programs that request their
commands to be executed on their applications, remotely and asyn-
chronously. To do this, they interact exclusively with one of the
execution clusters through an interface with four methods.First,
clients can install their application on the execution cluster, through
the install method, which provides the execution cluster with the
name of the contract to install. This cluster then sends a transaction
that creates a smart contract containing the client application on
the designated execution cluster nodes. Second, as with the install
method, the client calls their execution cluster to send a transaction
with their command to be executed on their contract with send-
Command. Third, they can query their execution cluster for the

status of the command, to see if it has already been executed or if
it is still pending with (getStatus). If it has been executed, it returns
the hash of the result, which the client considers trustworthy after
receiving that same hash from a majority of execution nodes in
that cluster. Fourth, they can query the contract (after receiving the
hash), to get the return value of the command they sent (getResult).

3.1.2 Ordering. The ordering service is a Blockchain with multiple
ordering nodes that provide the global order of commands. When
commands are received, each node batches them into a block ac-
cording to a local order. Then, through a consensus protocol (e.g.,
PoW, IBFT), the ordering nodes reach an agreement on the order
of the transactions. Once consensus is reached, the ordered com-
mands are appended to a log structure, to be read by the execution
nodes. The log is a shared log abstraction [11] in the form of a smart
contract, where this contract is always installed before the clients
start interacting with the system. The log stores the commands
received in a map structure (mapping the log position to the com-
mand stored), and defines three methods that the execution clusters
call remotely: append, lastIndex, readIndex, which are defined next.

3.1.3 Execution. Each execution cluster is composed of a group
of execution nodes, where each node is running an independent
Blockchain. The execution cluster stores client smart contracts, and
each cluster node holds a copy of that contract. In our proof-of-
concept prototype, we statically define which clusters store which
contracts; the clients only interact with the execution clusters that
have their contracts. Each node of the execution cluster has a front-
end, to receive client commands and relay back the result; and a
back-end, to interact with the ordering service through remote
method calls directed to a shared log interface with the methods
append, lastIndex, readIndex. The first method causes the clients’
commands to be added to the log’s map structure sequentially, on
the next position available. The second method and third are always
used together. The former returns the last index on the log; if the
latest index read by the node is smaller than the last index written
on the log, then the node continues to read the next index until it
reaches the last one. The latter method reads the log’s command
stored on the index provided as an argument.

3.2 Order of Events
The flow of the execution starts when a client calls sendCommand in
their execution node’s interface with the command to be executed.
From this point on, the client can call getStatus asynchronously to
check the progress of the command execution; initially, it should
receive "Pending" as a reply since the command has not been exe-
cuted yet. The execution node’s front-end receives the command
and calls the append method on the ordering shared log contract.
The ordering Blockchain receives the command and batches it with
other pending commands in a certain order. Afterwards, the consen-
sus protocol is executed and the order of these commands is agreed
upon by all the nodes, and the commands are appended to the log.
After that, each execution node calls lastIndex to check if there are
still log positions to read. If there are, then it calls readIndex to
get the command stored on that index; if the command belongs to
one of its contracts, the node reads and executes it; otherwise, it
moves on to the next index if it has not reached the end of the log.
Eventually, the client calls getStatus and verifies if a majority of
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the cluster nodes has replied with the same hash (consensus). If so,
then calls getResult on their execution node to get the result.

4 Implementation
As the codebase for an Ethereum-based implementation, we

decided to use Hyperledger Besu [2], an Ethereum client written in
Java. Besu provides essential features, which make it fitting to our
needs: it has an EVM to deploy smart contracts, provides multiple
consensus mechanisms (in particular, the IBFT 2.0 protocol [17]),
and it has the option to test on a private Blockchain network.

To implement our architecture, our prototype is layered over
Besu’s codebase without changing the codebase itself. Therefore,
to separate order and execution, we assigned Besu nodes, grouped
as clusters, to each of these parts of the system: a single instance
of a cluster of a specific type for the ordering layer and multiple
same-type clusters to the execution layer. What differs between
the two types of nodes is simply the smart contract they install:
the ordering cluster installs the log contract, while each of the
execution clusters only installs client applications – this way, the
Besu codebase is completely unchanged.

Each Besu node is hosted in a different virtual machine, which
has its unique name: "client", "exec" or "order", followed by a unique
integer indicating the instance number of that type of virtual ma-
chine. SepChain recognizes this number as the machine’s id. A
Besu node is started by a bash process that executes the Besu bi-
nary which is pre-installed from the source repository [3]. When
executing the binary, individual aspects of each node are defined
through flags, such as the P2P and RPC host and port addresses.
Another relevant flag is the path for the genesis file. This JSON file
contains the basic Blockchain configuration parameters such as the
consensus protocol used, the gasLimit – set to the maximum to
allow heavy transactions – and the Blockchain difficulty, among
other parameters. Finally, there is a flag for the "static nodes" JSON
file, defining the nodes which participate in the network.

While Bash is essential to execute the individual node processes,
the code that supports our architecture was written in JavaScript
with Node.js [5]. Additionally, the smart contract themselves were
written in Solidity [6], a smart contract programming languages,
which is then compiled to the EVM bytecode. To support our sys-
tem architecture, there are six main JavaScript modules: the client,
two execution front-ends, two execution back-ends, and a general
configuration module utilized by all the other ones. Finally, the logic
for sending transactions uses Besu’s unaltered implementation of
sending a signed transaction through HTTP-RPC (using the web3
library [7]). Messages sent in transactions are always in a string
format and are processed upon being received.

4.1 Configuration Module
This module contains fixed parameters such as the HTTP and web
sockets addresses and ports used. In particular, it defines a function
that returns the cluster (in the form of a list of node addresses) with
which the client interacts. The pairing between the cluster and the
client is based on the client’s id, the total number of clusters and
the number of nodes per cluster. Similarly, this module also defines
a method for the client to get a specific address from a node from
that cluster. Additionally, the configuration file contains a function
that transforms a string to the actual command call object. And

finally, it contains the functions to create and send transactions.
The former creates a transaction object (i.e., a JavaScript object
with a transaction’s defining parameters) containing the from and
to addresses, the data to send and the gas limit; the object is then
signed and serialized into a hex number, which is then encoded
into ASCII. The latter uses web3’s sendSignedTransacton method,
which receives the encoded transaction object hex as an argument
and sends this signed transaction to the indicated address.

4.2 Client
. The technology chosen for the clients to interact with the ex-
ecution nodes was the WebSocket [8], implemented through its
library for Node.js. In particular, the client uses the web socket in-
terface method "send" to send the required strings, and the method
"addEventListener" to receive data.

The client JavaScript module defines four methods and contains
a fifth method "main": a sequence of calls to the other four defined
methods to simulate a simplified Ethereum client’s interaction with
the Blockchain: 1) install, 2) send, 3) getStatus, 4) getResult. The
module itself receives as arguments the smart contract name and
the command name. Every time the client sends a socket message,
the message content is the string for the execution nodes to parse,
separated by special characters. This string includes the two client
parameters (contract and command name), the client id (from the
client’s machine name), the request id (incremented per request),
and the method name (e.g., "install").

Through the install method, the client sends its smart contract
application to be installed. To achieve this, the client establishes a
web-socket connection with the address predefined on the configu-
ration file and uses the socket’s send method to send a string with
the following fields, separated by a special character: the name of
the contract to be installed (the client’s parameter), the method ("in-
stall") and the client id and the request id. The send method follows
the same principle, but sends the method name "send" instead.

Each client uses getStatus to request the status of the command
execution until a majority of the replies contain the same hash. This
method iterates through a list of the predefined cluster addresses
and establishes a different, asynchronous web socket connection
with each of themFor each of these cluster nodes, the client sends
the string with the contract name, command name, client id, the
request id and the method name (getStatus). It then waits for the ex-
ecution cluster’s replies and stores them in a map structure, where
the key is the cluster address list index, and the value is the status
received. Afterwards, in each of those asynchronous iterations, a
new map structure is used to store the status received and how
many times it was received. In addition, two variables store both
the maximum counter and the respective status with the maximum
counter. After all the asynchronous connections are finalized, the
client then checks for consensus: if the maximum counter registered
is higher than half of the total nodes on that cluster, then there
is consensus on that status. Moreover, if the value string is either
"Pending" or "Deprecated" – meaning the command is not yet exe-
cute or that the command is not up to date, respectively – the client
calls getStatus again. Otherwise, the hash of the command result is
received and getResult is called. The latter command chooses one
of the execution node addresses from the achieved majority and
queries it for the command result in a new web socket connection.
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4.3 Ordering

To implement the ordering structure, we simply reuse the func-
tionality of Besu; the implementation derives from the fact that
each ordering Blockchain node has the log contract installedThis
contract has three methods and one map structure that symbol-
izes the log itself, mapping from an integer – the log position –
to a string – the string sent by the client, containing the contract
name, and the command name. The first method is append, which
receives the string, adds it to the log on the current index position,
and increments the current index position afterwards. Second, the
readIndex method returns the string stored in the index received as
argument. Finally, lastIndex returns the last log position (i.e., the
highest index).

4.4 Execution

The execution implementation is split across a total of four JavaScript
modules: two front-end modules and two back-end modules.

The first front-end program deals with relaying client requests
to the ordering chain (either install requests or send command re-
quests).Every time this module receives a message string from a
client through its web-socket connection, it checks whether the
method to be executed is either install or sendCommand. In both
cases, it adds the cluster id (predefined and passed as an argument
when the JavaScript file is executed) to the string. Once the string
is formed, the module then creates and sends a transaction to the
ordering Blockchain to execute the append method on the log con-
tract, which will add this string to the log contract’s map.

Then, the first back-end module deals with checking if a new
contract has been added to the log. First, the back-end executes an
infinite loop where it continuously calls the lastIndex log method.
This method obtains the last index written on the log contract’s
map. After obtaining the last index, it is subtracted from the current
index (stored locally). If the result of this operation is greater than
0, there is in fact a new command added to the log. If in fact there
is a new command added to the log, then the back-end calls the
log’s readIndex method with the current index as an argument,
which returns the string sent by the client; the current index is then
incremented. The program splits the string by its special delimiter
character. If the cluster id matches the one read from the log, a data-
store [1] map is set with the number of strings (i.e., the number of
client commands) read as key, and the string itself as the value.

The second back-end file deals with the contract execution part.
Similarly, the back-end is again in an infinite loop. First, it checks if
there is a new string (i.e., command) to read. To do this, it subtracts
the data-store map number of strings read from its local counter.
If the difference is greater than zero, there is a new command to
execute. The first thing to verify is if the request is to install a smart
contract. If so, the contract is compiled locally, and a transaction is
created and sent to the node’s own address. Once the transaction is
finalized (i.e., the contract has been added to the execution node
Blockchain), the contract address is stored locally. However, if the
request is to execute a command, there are a few changes. A trans-
action is again created and sent to the node address. Then, once the
transaction finishes, its result is hashed using the sha256 algorithm,
using the Node.js cryptography library. Lastly, a new data-store

map is created to store the client’s command string mapped to a list
of three elements: the result, the result’s hash, and the log index.

The second front-end program deals with getting the status and
getting the results back to the clients, following their requests. The
program listens on their respective web sockets for messages (on
a different port than the first front-end program). If the message
received is to get the status, first the program checks if the index
stored locally matches the one read on the data-store result struc-
ture. If it does, it means that the request is still pending, and thus a
"pending" message is sent back to the client. If the index stored is
higher than the one read from the data-store, then the request is
"deprecated", which is also sent as a reply to the client. Otherwise,
there are no issues with the request and the program sends the
hash back to the client. However, if the action is to get the result,
the program will read the result stored on the data-store result
structure and send it back to the client.

5 Evaluation
In this section, we showcase the results of the evaluation of

SepChain in comparison to running the same contract logic running
directly on Besu, whichwe use as a baseline system. In both systems,
the consensus algorithm utilized was IBFT 2.0 [17]

5.1 Experimental Methodology
To compare both systems, we measured the throughput (in trans-
actions per second) in each experiment we conducted.Every client
sends the same number of requests to the system, and we count the
total time it takes since the first request is sent and the last one is re-
ceived. Thus,𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = (𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑃𝑒𝑟𝐶𝑙𝑖𝑒𝑛𝑡∗𝑐𝑙𝑖𝑒𝑛𝑡𝑠)/𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 .

To evaluate SepChain’s performance and compare it with Besu’s,
we decided on a set of experiments that tested an array of pa-
rameters: the number of ordering nodes, the number of execution
clusters, the number of execution nodes per cluster, and the gas
consumed by the smart contract (represented in loop iterations). Ad-
ditionally, the clients interact with the system by sending requests
sequentially on a closed-loop.

Each of the following sections will present one of these exper-
iments, where some of these parameters are changed, while the
others are fixed. When measuring the amount of gas consumed,
we use the fixed values of 100 and 50, 000 iterations. These val-
ues represent the minimum and maximum gas tested, or, in other
words, light and heavy smart contract requests. Similarly, in some
experiments, the values of execution clusters are fixed as 9 and
35 clusters, each with 3 execution nodes, which demonstrate two
different levels of SepChain’s performance.

5.2 Top-level comparison
The first experiment aims to establish a top-level comparison be-
tween Besu and SepChain – it compares how both systems deal
with a constantly increasing system load, which is represented both
by an increase in the number of clients interacting with the system
as well as by two types of contract: with 100 and 50, 000 iterations.
Additionally, and since SepChain greatly depends on the number of
execution clusters available, we present two distinct configurations
with 9 and 35 clusters, as a way to showcase a wider range of results.
Furthermore, we fix three execution nodes per execution cluster
and four ordering nodes.
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Looking closely at Figure 2, with 9 clusters and 50, 000 iterations,
SepChain is saturated with 15 clients with a performance of 0.53
tx/s, increasing in 0.2 tx/s from the 5-client mark. Besu, in turn,
only increases 0.04 tx/s from 5 clients to 30 clients and saturates
with the latter at 0.38 tx/s. Therefore, we conclude that SepChain is
consistently better in this setting. Conversely, with 100 iterations
on the smart contract, we saturate our performance with 30 clients
at 2.44 tx/s while Besu’s performance cannot be saturated with only
90 clients – it reaches 22.72 tx/s and it would most likely reach an
even higher number with more clients.
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Figure 2: Throughput values as the the number of clients varies using 9 clus-
ters

Now observing Figure 3, only SepChain changes – Besu cannot
be scaled up and thus maintains the same number of Blockchain
nodes. With 35 clusters, we can see a major improvement in our
performance: at 90 clients we have almost 4 times the performance,
sitting at 9.55 tx/s. With this configuration, SepChain cannot be sat-
urated with 90 clients – we have an increase of more than 2𝑥 from
the 30-client mark. This improvement in performance is expected
since having more clusters directly translates into less system load
per cluster, which in turn makes each cluster faster. The improve-
ment over Besu’s performance becomes clearer the more gas there
is in the system. Additionally, it is also logical that the saturation
point increases to further than 90 clients in this setting, since more
clusters are able to handle a larger system load.
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Figure 3: Throughput values as the the number of clients varies, using 35 clus-
ters

Finally, Table 1 depicts a theoretical estimate for SepChain’s
behavior with 75 clusters. The values at 90 clients are deduced

from our performance with 1 cluster, as observed in section 5.4,
multiplied by 75. We also assume there is a linear progression with
the increase of the number of clients – if there are 3 times the
clients, the performance is 3 times better. Of course, this would not
be accurate in a real system due to inherent overheads, but it gives
us a solid estimate of such a system configuration. We chose 75
clusters since it is the number of clusters from which we can match
Besu’s performance at 100 iterations.

Clients
System Besu50000 SepChain50000 Besu100 SepChain100

5 0.32 0.33 1.66 1.25
15 0.32 1 4.95 3.75
30 0.36 2 9.81 7.5
90 0.38 6 22.72 22.5

Table 1: Theoretical throughput values as the the number of clients varies,
using 75 clusters

By looking at the previous Figures, we can confirm that, performance-
wise, the choice of the system that performs better depends on the
number of iterations (i.e., the amount of gas) in the contract being
executed: Besu is better at 100 iterations, while we outperform
Besu at 50, 000 iterations. Additionally, we can also observe that
SepChain’s performance improves when the number of clusters
increases. Finally, the number of clients is also crucial since it has
to be high enough for the system to be saturated; low client num-
bers reduce the throughput drastically because the load that these
clients offer is insufficient to saturate the system. Furthermore, the
reason why Besu is so much faster than SepChain when the num-
ber of iterations is low is simply that SepChain has extra phases of
communication and consensus overheads, adding to the fact that it
is implemented on top of Besu’s implementation. Although Besu
has the upper hand when the gas values are low, this experiment
shows that SepChain is able to scale out by adding more clusters
to progressively match Besu’s performance with low gas contracts,
and outperform Besu with high gas contracts.

5.3 Impact of ordering nodes
We now take a step back and analyze the effects of removing the
cost of execution. Thus, this second experiment intends to study
how fast SepChain is able to order transactions. Therefore, in this
experiment exclusively, we only test the ordering part of SepChain.
That is, the clients still send their transactions to the execution
clusters and these send to the ordering Blockchain, but, when the
ordering Blockchain finishes adding the transaction to the log, the
result (i.e., the log position of their command) returns to the client.

Figure 4 shows four different lines: two for Besu’s performance
and two for SepChain’s ordering performance, each system with
50, 000 and 100 iterations. As expected, the performance of Besu
is better with fewer iterations but drops as the number of nodes
increases. This is expected behavior since having more nodes in a
blockchain tends to slow down the consensus protocol. With 100
transactions, it drops from 22.78 to 8.49 tx/s; and with 50, 000 it
drops from 0.38 to 0.19 tx/s. SepChain’s lines (which are in fact the
same line) also decrease as the number of nodes increases, going
from 23.64 to 7.74 tx/s.
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Figure 4: Throughput values as the the number of (ordering) nodes varies

SepChain shows two lines overlapping, which are in fact the
same line, because SepChain’s ordering is indifferent to the number
of transactions that are going to be executed – the gas of the log
contract is always the same. Conversely, a 50, 000 iteration contract
is bound to take longer to execute than a 100 iteration contract,
which still is a problem for Besu. Additionally, we can also observe
that we can match Besu’s performance at 100 iterations, but we
can maintain that same performance for higher gas values such as
50, 000 iterations while Besu has a severe drop in performance.

In this case, because SepChain is exempt from the execution and
post-execution consensus phases – it only uses the execution nodes
to relay the requests to the ordering Blockchain – the performance
bottleneck is on how fast the ordering phase is. For that reason,
the performance of both systems is dependent on how many nodes
there are on the Blockchain: more nodes equate to making consen-
sus slower because communication becomes harder with a higher
number of nodes.

This experiment shows the theoretical limit for how fast we can
order, which is also the upper bound for how fast we can execute.
Even though it is expected that our performance always increases
with more clusters added, eventually the ordering Blockchain will
be saturated: the ordering section becomes the system bottleneck.
Thus, from that point onward, adding more clusters is irrelevant to
improving the system performance.

5.4 Impact of scaling out
The previous experiment allowed us to determine how fast we can
order, which is, in other words, the upper bound to our execution
layer performance. Therefore, this third experiment intends to show
the effects of adding execution clusters, i.e., scaling out the system,
while maintaining the number of nodes (3) per cluster, to uncover
if we are able to reach that upper bound. We, again, test different
cluster values while varying the number of iterations between
50, 000 and 100. Throughout this experiment, the number of order
nodes is 4.

In Figure 5, we can verify that the throughput is affected as the
number of execution clusters changes: the more clusters there are,
the higher our throughput is. With 50, 000 iterations, the through-
put varies from 0.084 tx/s (1 cluster) to 2.9 tx/s (35 clusters). The
predicted value for 75 clusters is 6.3 tx/s, calculated by simply multi-
plying the throughput value for 1 cluster by 75. With 100 iterations,
1 cluster stays at 0.3 tx/s, while with 35 clusters we reach 9.55 tx/s.

The predicted value for 75 clusters is 22.5 tx/s, calculated the same
way as before. Note that the latter value is close to the maximum
performance value observed for the ordering layer, which suggests
that 75 is a close number of clusters to what we need to show
maximum performance in the execution layer.
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Figure 5: Throughput values as the the number of execution clusters varies

This experiment showcases the expected behavior: allocating
more clusters translates to having more units to execute requests
in parallel. Since each cluster is only responsible for executing a
set of client contracts, as the cluster number increases there are
fewer clients assigned to each cluster, which, in turn, speeds up
the executions per cluster and contributes to an overall system
improvement.

5.5 Impact of added security
This fourth experiment intends to pinpoint if adding security to
the system affects the ability to scale out. It showcases how the
performance of both systems varies as the number of ordering
nodes increases (4, 9 and 15), for two iteration values: 100 and
50, 000. And, in particular, SepChain is tested with multiple settings
varying also the number of clusters between 1, 2, 4, 8, 16 and 32.

For the experiment with 50, 000 iterations (figure 6), and looking
at the 4 ordering node data points, our throughput increases from
around 0.08 tx/s to 2.6 tx/s. Besu is fixed at 0.38 tx/s, which means
that our performance is better only from the 8 cluster mark onwards,
which is set at 0.46 tx/s. For the experiment with 100 iterations
(figure 7), looking again at 4 ordering nodes, our throughput values
now range from 0.3 tx/s (at 1 cluster) to 8.61 tx/s (at 32 clusters).
Besu, however, is able to reach 22.78 tx/s, as seen before.

Besu is clearly impacted by the increase of ordering nodes: at 15
nodes, its performance has a clear drop. In contrast, SepChain is able
to show similar performance regardless of the number of ordering
nodes. This is not as clear to see on the 32 cluster lines, as our
performance is also affected by the increase on the execution cluster
number: more execution clusters translate to more communication
overhead when interacting with the ordering log.

This experiment allows us to demonstrate how we can in fact
scale out with the added value that even if we want to increase
security – by adding more ordering nodes – we are able to do so
without jeopardizing performance. Again, this is something that
Besu cannot achieve.
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Figure 7: Throughput values as the number of ordering nodes varies, where
both systems use contracts with 100 iterations.

5.6 Impact of execution costs
Sections 5.4 and 5.5 demonstrated that SepChain has the ability to
scale out. This fifth experiment explores how gas affects perfor-
mance, more specifically how it affects contract execution, and how
much SepChain needs to scale out to match Besu’s performance.
To simplify these measurements, as mentioned before, different
levels of gas are measured as the number of iterations in the smart
contract loop. This experiment is composed of two parts, one where
SepChain has 9 clusters and another where it has 35 clusters.

Figure 8 shows the 9 cluster experiment and has six different data
points, each corresponding to a different number of iterations per
system. Immediately, we can verify that the more iterations there
are in a contract, the worse the throughput is, which is expected
since executing a smart contract with more iterations takes longer,
hence slowing down the system. Particularly, Besu’s throughput
ranges from around 22.72 tx/s (when at 100 iterations) to 0.38 tx/s
(when at 50, 000 iterations). Similarly, SepChain suffers a drop in
performance, but ranging from around 2.4 tx/s (when at 100 iter-
ations) to 0.29 tx/s at 50, 000 iterations. The 13, 000 iteration data
point of 1.21 tx/s is particularly relevant, as it shows the point from
where (with this setting) SepChain outperforms Besu.

Figure 9 shows the 35 cluster experiment, which also has 6 dif-
ferent data points per system. Besu’s data points are the same, and
there is a similar decrease in performance as the number of itera-
tions increases. In particular, with 100 iterations, our throughput
is 9.55 tx/s, while at 50, 000 iterations it decreases to 2.9 tx/s. With
this system configuration, the intersection point is now at 4, 000
iterations, with a throughput value of 7.65 tx/s. It makes sense that
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Figure 8: Throughput values as the number of smart contract iterations varies,
with 9 clusters.

the intersection is at an earlier point since Besu’s performance stays
the same, yet ours improves with the addition of more clusters.
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Figure 9: Throughput values as the number of smart contract iterations varies,
with 35 execution clusters.

All in all, this experiment makes clear that more iterations (i.e.,
more gas per contract) represent a higher load on the Blockchain,
leading to the contract execution taking longer and the throughput
decreasing in all systems. As the number of clusters increases, we
are able to have less load per cluster (working in parallel) which
speeds up the overall system performance. Additionally, it would be
expected that as the number of iterations doubles (i.e., the gas dou-
bles), Besu’s performance halves. However, this is only observable
from around 4, 000 onward, as seen in Figures ?? and ??, where the
Besu line becomes almost a straight descending line. The reason for
this is the following.When a request is executed, there are two parts
that make the cost: the overhead of the execution of the contract,
and the complexity of the request itself. Therefore, we only observe
the expected halving once the complexity of the request itself is
much more prominent than the overhead – from 25, 000 to 50, 000
the performance is halved. Hence, when the number of iterations
is small, the overhead is the dominant factor – there is not much of
a difference between the values at 100 and 1000 iterations.

5.7 Impact of execution nodes
With the basis from the previous experiments, we now start explor-
ing SepChain’s capabilities in comparison to Besu. In particular,
this sixth experiment progressively adds more execution nodes to
a fixed number of 9 clusters with the aim of discovering how it
impacts the system.
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In our case, by looking at figure 10, we observe that adding more
nodes does not impact performance – we can stay at around the
0.53-0.6 tx/s mark. In this figure, the Besu line appears only as a way
to compare the obtained values with constant Besu performance
– there is no variation in performance since its number of nodes
stays the same. Note that there is, however, a slight increase in
SepChain’s performance as the number of nodes increases. This
is a reflection of increasing the quorum of nodes to accept the
correct result: as the quorum size increases, the more likely it is to
immediately find the correct result, which can translate into overall
performance improvements.

This experiment shows that SepChain is able to freely add more
resources to its execution layer without negatively affecting the
system performance. This translates into having, for instance, bet-
ter fault-tolerance – since more nodes are added to each cluster –
without jeopardizing the throughput.
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Figure 10: Throughput values as the number of execution nodes varies, with
9 clusters.

5.8 Impact of Sharding
Finally, the seventh experiment intends to demonstrate SepChain’s
ability of handling transactions with different ’weights’, that is,
with different numbers of iterations. We, therefore, consider two
types of transactions: light and heavy ones, which have 100 and
50, 000 iterations per smart contract, respectively. To test how this
affects the system, we split the client pool into heavy and light
clients – each client only sends one type of transaction. We, again,
test two different system configurations – 9 and 35 clusters – and,
additionally, we test the differences of the system sharding its clus-
ters or not. If the system is not sharded, then different types of
clients can share clusters; if the system is sharded, then there each
cluster can only take one type of request.

Since there are two types of clients, we must also settle on how
many clients of each type there are. To this end, we decided on the
following percentages of heavy clients: 0, 1, 10, 25, 50, 75 and 100.
Note that in the case of sharding, these percentages also correspond
to the percentages of heavy clusters available.Wemust also consider
another parameter: the percentage of heavy requests. Therefore
the data points presented in the following graphs have the latter
percentages as the x-axis, but still maintaining the same initial
percentage of clients and clusters. For instance, the third data point
in SepChain with 9 clusters has the x-axis value of 6.42. This means

that even though there are 25% of heavy clients, only 6.42% of the
total number of requests are in fact heavy.

The following figures (11, 12) show the data points for different
percentages of heavy requests, one with 9 and the other 35 clusters.
There are a total of 4 lines per graph: the Besu line, SepChain with
sharding; SepChain without sharding; and the theoretical values
for SepChain with sharding. Considering that our performance
with 0% of heavy requests is 2.43 tx/s, and with 100% of heavy
requests is 0.53 tx/s, the theoretical value for a system with 16.66%
of heavy requests where 50% of the clients are heavy is 2.43∗ (100−
16.66)/100 + 0.53 ∗ 16.66/100.

In both Figure 11 and Figure 12, we observe that as the percent-
age of heavy requests increases, the performance in all the systems
decreases. We can also observe that the values where there is shard-
ing are better than those where sharding is not being applied. This
is a logical outcome since when there is no sharding applied, heavy
(i.e., slower) transactions can upset light (i.e., faster) transactions
when sharing the same cluster; with sharding, heavy and light
transactions are completely separated.

By looking at Figure 11, we see that SepChain with 9 clusters
is only able to outperform Besu when there are 90% of heavy
clients, with a percentage of heavy requests of 75.68. With shard-
ing, SepChain reaches 0.99 tx/s, while without sharding we only
manage to get 0.87 tx/s; both these marks are better than Besu’s
0.86 tx/s. It was expected that SepChain would improve over Besu’s
with and without sharding since we are able to increase the degree
of independence between light and heavy transactions, especially
with sharding enabled. However, it is unexpected that we only
outperform Besu when there are 90% heavy clients and clusters –
this suggests that this separation is not particularly effective given
our inherent system overheads, especially with a low number of
execution clusters.
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Figure 11: Throughput values as the percentage of heavy requests varies, with
9 clusters.

With 35 clusters (Figure 12), the overall performance increases, as
observed in previous experiments, which also amplifies the effect
of splitting light and heavy requests. Therefore, we are able to
outperform Besu at an earlier stage: with 10% of heavy clients and
5% of heavy requests, SepChain reaches 7.66 tx/s without sharding,
and 8.99 tx/s with sharding; Besu stays at 6.46 tx/s.

Note that SepChain with sharding – regardless of the configura-
tion – is always below the theoretical line. Since we already elimi-
nated the possible tail effect of heavy requests by over-representing
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Figure 12: Throughput values as the percentage of heavy requests varies, with
35 clusters.

the light requests, there are still two possible reasons that explain
this behavior. Firstly, there are the already-mentioned inherent sys-
tem overheads of implementing SepChain on top of Besu, and these
will always affect negatively any results obtained. However, there
is also the possibility of having a sub-optimal percentage of heavy
requests, given the percentage of clusters and clients. For instance,
in the system setting with 35 clusters, with 50% heavy clients and
clusters, and with 29% of heavy requests, we get 5.79 tx/s, almost
2 tx/s less than the theoretical value of 7.62 tx/s. Yet, having 29%
of heavy requests might not be ideal for this setting, which might
have skewed the results.

All in all, this experiment allows us to demonstrate that we are
able to show performance improvement if we decide to split the
system into different types of requests. This improvement is further
increased if we have sharding, which has the particular advantage
of isolating different contract types so that each has their desired
performance without being delayed by each other.

5.9 Summary
Overall, the evaluation work confirms that our implementation is
able to show performance improvement by separating the agree-
ment and execution phases, even without changing the original
codebase, and this way we are able to scale out the execution layer
by adding more clusters. In addition to this, we are able to take
advantage of this architecture by enabling sharding. However, the
implementation is far from being perfect: while it shows good per-
formance at a larger system scale (i.e., with higher gas and a higher
number of clusters), the system still needs to improve on some im-
plementation overheads, which are noticeable mainly at a smaller
system scale, where Besu still has the upper hand.

6 Conclusion
In this thesis, we argue the need for a different Blockchain archi-

tecture to improve scalability. By applying a 20-year old proposal
of separating the agreement and execution phases, we can define a
clear interface between these layers and fully scale the execution
layer to obtain better performance. Moreover, by carefully defining
the order of the various events in the execution of a transaction,
we can capitalize on the layered model and remove the implicit
dependency that the agreement phase has on the execution phase
in current architectures. Through our experimental work, we con-
firmed that SepChain is able to achieve a better performance than

a current monolithic Blockchain system, mainly in larger-scale sys-
tems. Conversely, in smaller systems, we confirmed the handicaps
of implementing the system on top of Besu, without changing the
codebase: an added overhead on both ordering and execution layers.
Overall, we show that creating well-defined interfaces and a com-
prehensive and logical order of events can simultaneously lead to
improvements in current systems, stimulate the discussion on how
to improve future systems, and challenge the blockchain systems
paradigm as a whole.
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