
Extended Self-Sovereign Identity Based Access
Control

Guilherme De Seiça Ribeiro Do Quental De Menezes
Instituto Superior Técnico, Universidade de Lisboa

Abstract—With the advancement of technology, data is being
shared among different entities and institutions. Most of these
institutions trust central authorities when users provide proof
of their identity. This situation comes not without danger as
these identities are not controlled by the users and can be
revoked or denied without the users’ permission. Control over
online resources suffers similar risks of centralization, making
access control also an important subject to study. Solutions have
been emerging to tackle those problems involving Decentral-
ized Ledger Technology (DLT). Through this new technology,
online services and applications become decentralized, i.e., no
central authority controls them. Efforts have also been made
to implement new concepts of identity in order to provide
decentralized identities and give their control back to the users.
Self-Sovereign Identity Based Access Control (SSIBAC) is an
access control model that joins ABAC, a conventional access
control model, with blockchain technology and decentralized
identifiers, providing decentralization to users and services. In
this document, we propose Extended Self-Sovereign Identity
Based Access Control, a SSIBAC extended version that adds the
RBAC, RBAC With Resource Roles and ACL models, increasing
the type of organizations that can integrate this solution and give
decentralization and identity control to their users. Our goal is to
provide full resource and identity control to users and contribute
to the decentralization of online services and applications.

I. INTRODUCTION

In a world where more and more people are using the Inter-
net, data is being collected and shared between a large variety
of entities, involving people, companies, medical institutions
or even governments. In the real world, our identities are tied
to central authorities and governments through citizen cards,
social security numbers or driver’s licenses. On the Internet,
most official social and economic services and applications,
like digital markets, business companies or social networks,
require a digital identity issued or verified by those central
authorities or governments to allow data to be shared among
these institutions.

Gathering and sharing this kind of information, poses a
danger to our right to personal privacy as our identities and
personal data can be controlled, denied or revoked [1]. With
the advancement of technology and its ubiquity, and with large
amounts of data collected and analysed, threats like identity
theft or data breaches are raising concerns and harming the
trust placed in online services. Because of this, access control
is becoming an important study matter in order to prevent
illegal resource access.

Bitcoin was the first decentralized software, i.e. not con-
trolled or managed by a single centralized entity or authority,

to emerge that managed transactions implementing a cryp-
tocurrency and providing security. Using a blockchain, Bitcoin
offers a ledger of records distributed across many computers
around the world and security through the use of cryptography.

Since then, blockchain technology has been included in
many projects that had in mind other uses for it. After Bitcoin
made this technology’s possibilities known to the world, order-
ing food, Uber-like transportation and other services and smart
devices’ applications could be made possible with Ethereum’s
smart contracts. These are applications distributedly executed
on the Ethereum’s decentralized network. Ethereum is just
one platform among many other blockchain-based solutions
that emerged in recent years and showed the potential of
Decentralized Ledger Technology (DLT) [2].

Work has been done to give control over an identity from
central authorities and federated models back to the users in
a decentralized manner through self-sovereign identities. This
way the identity can not be denied or revoked without the
user’s consent [3].

There are solutions that combine blockchain technology and
access control practices such as BlendCAC [4] as a way to
provide decentralized controlled access to resources, but there
isn’t a definitive approach that provides the same benefits
while using a layer of self-sovereign identity between the user
and the blockchain.

In order to achieve authentication based on Decentralized
Identifiers (DIDs) and decentralized authorization over a re-
source, we initially aimed to build a solution centered on the
Ethereum’ smart contracts. Information about DIDs would be
gathered with the help of a new technology called universal
resolver.

The QualiChain project, financed by the European Com-
mission, designed a solution for the verification of a person’s
academic qualifications in a job seeking context [5]. This
solution uses blockchain technology to provide the authenticity
and integrity of qualification certificates in a decentralized
platform. As a use case, our original goal was to combine the
work done by the authors with a layer of DIDs, furthering their
research and providing true decentralization over identities.
More specifically, we aimed to develop a service capable of
providing authorization and integrity over a person’s quali-
fications certificate by integrating a decentralized version of
OAuth2 framework.

Due to increasing difficulties in more than one technological
aspect of our intended solution, we were forced to change our
approach and contribute in a different way to the development

1



of a decentralized solution for the previously stated problems.
We decided to extend the work done by the authors in [6].
More specifically our objective was to build a more generic
version of SSIBAC model that included more traditional access
control models adapted to decentralization.

As such, We propose Extended Self-Sovereign Identity
Based Access Control (extSSIBAC), a SSIBAC extended
version that adds the RBAC, RBAC With Resource Roles and
ACL models, increasing the type of organizations that can
integrate this solution and give decentralization and identity
control to their users. Our goal is to provide full resource and
identity control to users and contribute to the decentralization
of online services and applications.

The remainder of the document is structured as follows.
Section ?? details related work, starting with information about
blockchain technology, where work is presented about the
most common types of identity management systems as well
as some developments on the Hyperledger Project, important
to understand our solution. Section ?? describes the proposed
solution architecture as well as its components. Section ??
defines the methods of evaluation used to assess the capability
of the proposed solution. Finally, Section ?? concludes this
document.

II. BACKGROUND AND RELATED WORK

To understand the work completed in this project, this
section presents our understanding of blockchain technology
and its advantages towards building decentralized applications
as well as an overview of Ethereum and Hyperledger Indy,
two famous examples of permissionless and permissioned
blockchain systems. Next, a framework to build applications
based on decentralized identities will be explained. This sec-
tion also talks about two new concepts of decentralized online
identity. Lastly, access control and some of its mechanisms
are mentioned to understand how they can be integrated with
a decentralized way of identifying an entity.

A. Blockchain and Bitcoin

Blockchain is a digitally distributed ledger technology that
is having an increasing impact in the industry, commerce and
global economy. Besides security properties, like integrity and
availability, features such as cutting middleman organizations,
namely banks and other third parties, make it appealing for
developing new ways to make secure transactions cheaper [7].
A blockchain is an append-only data structure consisting of
nodes, globally distributed computers on a network, that agree
on a set of blocks. These blocks contain information regarding
states and transactions and are consecutively connected to each
other through cryptographic pointers forming a chain of blocks
and maintaining their history protected. This means that when
a new block is attached it becomes immutable [8].

Since the nodes in the blockchain do not completely trust
each other, a transaction operation is replicated between all
nodes after going through a consensus process that validates
it. The consensus process is done by miners, computers in this
network that detect transactions requests and examine them to

check the validity of the owner’s transaction by calculating a
mathematical relationship between the owner’s cryptographic
keys that are used to digitally sign each new transaction. A
miner’s main objective is to ensure that these transactions are
irreversible. Each new block points to its predecessor, making
them tamper-proof and final. These new blocks have to be
accepted by all nodes hence a consensus protocol must be
used, Bitcoin’s proof-of-work (PoW) is an example of this
situation where only the node that gets the right result when
computing a mathematical problem is allowed to append the
new block to the blockchain [2].

A blockchain can be a public, fully decentralized system
also designated as permissionless where the network is decen-
tralized and one does not need to disclose their real-world
identity making it necessary to use PoW like protocols to
decide which computer has the right block to be added to
the chain and protect the ledger against attacks. One can also
play the role of the miner and use its protocols for verifying a
transaction and no central authority can delete or modify the
records in the blockchain. Since some financial institutions
are required to have their well identified clients, there was
need to find an alternative to permissionless blockchains and
as such, a blockchain can also be a permissioned system
where some access control and a small degree of trust exists
between all nodes. Only selected participants can view the
information in the system and add new blocks to the chain, and
as they are well identified the use of proof-of-work protocols
is unnecessary [2].

B. Ethereum and Smart Contracts

Ethereum is one of the most popular permissionless
blockchain systems. This section considers the original version
of Ethereum [9], not the Ethereum 2.0 that is currently being
launched and with slightly different characteristics. Ethereum
is similar to Bitcoin apart from the fact that it allows for
the creation of decentralized applications and smart contracts
using a Turing-complete programming language. An account
in Ethereum can be one of two types: an Externally Owned
Account (EOA) that contains no code whose messages can be
sent via transactions signed with its private key or a Contract
Account (CA) that holds code and when a message is received,
the code is executed enabling it to read and write to internal
storage [9].

Decentralized Applications (DApps) are run by Ethereum’s
state machine and the result is stored in the blockchain. A
DApp is composed by a smart contract and a web frontend
user interface.

A smart contract is a program that is executed by the
Ethereum Virtual Machine (EVM). Once deployed, it can
not be modified. A smart contract is written in a high-level
programming language like Solidity and then compiled into
the low-level byte code language executed by the EVM. Its
result is always the same depending on the context of the
transaction that launched its execution and the blockchain’s
state at the time of execution [10].

2



Each smart contract is identified by its own unique address
and the only way to execute it is via a transaction, by calling
one of its functions with the contract address. It is possible
to have a chain of contract calls, but the first has to have
been called in a transaction by an Externally Owned Account,
which is controlled by the users [10]. A Smart Contract can
be implemented for several tasks including conditional effects,
such as transferring timely payments of a security deposit or
moving a certain amount of money between accounts when a
certain event, namely the trigger, occurs [11].

A transaction contains a message, the STARTGAS and
GASPRICE values, some amount of Ether, Ethereum’s cryp-
tocurrency, and other data. STARTGAS represents the limit of
computational steps that a code executed by the transaction
is allowed to take, preventing infinite loops and GASPRICE
is the fee that needs to be paid by the sender for each
computational step. This serves as a deterrent to denial-of-
service attacks, because the attacker would have to pay for
the all resources expended. If the totality of the value of
GASPRICE is consumed before the end of the execution, all
state changes revert back, the execution is stopped and the fee
for the work done is still paid. All transactions are signed by
the sender’s private key [9].

C. Identity Management

Nowadays most systems manage the identities of their
users through centralized methods usually based on trusted
entities. Even though this way of identifying an individual
is useful in some cases, in other situations it is thought to
be a threat to human society’s autonomy as habits, transac-
tions and internet activity can be surveilled by governments
interfering with personal privacy and having some power
over a person’s behaviour. Some activities and actions such
as using public transportation and other public services do
not require a centralised way of managing identities [12].
Furthermore, centralized Identity Management (IdM) systems
have been suffering from regular data breaches, facing cases
of identity fraud and other cyber attacks, making it less secure
for people’s privacy [13].

Active Directory from Microsoft is an example of a central-
ized IdM system. It allows companies’ network administrators
to maintain all kinds of data in centralized repositories and as
soon as information gets into the system, it can be accessed
and use throughout the organizations. Active Directory uses
Access Control Lists (ACLs) to manage permissions on who
can access each object and the worker’s identities are kept in
plain text as one of the object’s attributes [14].

1) Decentralized Identity: An Identity that is not regulated
by any central authority and is controlled only by its owner
is designated self-sovereign identity [1]. Its ownership can not
be denied and a decentralized system can facilitate the im-
plementation of this concept of identity. Before self-sovereign
identity, central authorities had full control of a user’s digital
identity, it was in their power to deny its existence and users
had to manage multiple identities which they had no control
over [1].

Decentralized Identity can be achieved by implementing
the concept of self-sovereign identity using decentralized
ledger technology. This way, the history of activities and data
changes cannot be tampered with, users keep control over their
identifiers and since their identity information is kept in a
decentralized ledger, no central authority can deny it or change
it. Namecoin is a cryptocurrency with a blockchain [15],
similar to Bitcoin that was able to achieve decentralization
and security while keeping names readable [13]. It stores
name/value pairs on the blockchain and users can trade these
values between them for a cost. This makes Namecoin a
namespace and users have full control over the names on the
blockchain. Namecoin has also some limitations, for example,
the amount of readable and meaningful names to humans
are limited as opposed to the normal computer generated
identifiers on other blockchain systems [15].

A Decentralized Identifier (DID) is composed of three parts:
a URL scheme identifier, an identifier for the DID method
and a DID method-specific identifier. A DID method defines
how the syntax of a DID can be implemented in different
blockchains. A DID is associated with a DID Document,
which contains information that identifies the user that it
belongs to, such as public keys and other data that can be
used to authenticate the user and prove his or her identity.
This document is retrieved by the Universal Resolver [16].

The Universal Resolver can be included in architectures
or protocols in order to determine information behind each
DID, like cryptographic keys and service endpoints. Most
DID registration methods are supported by this tool regardless
of the blockchain system used. Even though the Universal
Resolver is still being worked on, it is a good tool to be used
when implementing the use of DIDs with decentralized ledger
technology [17].

2) Hyperledger Indy: Hyperledger Indy enables the storing
of digital identities on distributed ledgers by providing the nec-
essary tools and components. Decentralized Identifiers are the
core of these digital identities. Indy is a public permissioned
blockchain, meaning everyone can access it, but to be able to
place transactions on the ledger an entity needs to have the role
of Trust Anchor. A Trust Anchor is an entity that is recognized
by the ledger. It is within its abilities to publish new DIDs on
the ledger, which is done through a transaction. One of its
most important fields is the Verkey (target verification key),
that allows an entity to verify that someone who knows the
corresponding signing key is the unique owner of that DID.
Furthermore, a Trust Anchor can create Credential Schemas.
These schemas delineate the attributes of a specific credential
that can be used to define a specific document. Indy’s ledger
stores public data such as public keys, credential definitions,
credential schemas and service endpoints [18].

3) Hyperledger Aries: Hyperledger Aries is application
framework that provides tools that allow interactions, based on
a blockchain, between entities. It offers a blockchain interface
to create, read and sign transactions. Aries has a cryptographic
storage to keep secrets and other sensitive information safe,
to build clients for issuing and proving Verifiable Creden-

3



tials(VC). Using Aries’ secure messaging system, depended
on DIDs, entities are able to interact outside the blockchain
environment through those clients [19].

A Verifiable Credential is the digital equivalent of a physical
credential and it represents the same important information.
The owner of a VC can generate a Verifiable Presentation
(VP). This VP can then be shared with a verifying entity,
allowing it to validate the claim that the owner of that VP
possesses a VC with specific characteristics [20].

Developers can add application-specific code to the Aries
agent framework to create particular applications. One of
its agent frameworks is the Hyperledger Aries Cloud Agent
Python (ACA-Py). This framework provides tools for envi-
ronments based on VCs [21].

D. Access Control Based on Blockchain

With the growth of objects and new technologies that are
being connected to the Internet, data is being increasingly
collected and shared between entities, sometimes without the
user’s consent [22]. Privacy and authentication are some of the
issues that come with the relationship between smart devices
and the Internet with access control being one of the top
concerns.

1) Access Control: Most software, like a computer’s oper-
ating system, ensure the protection against malicious access
attempts to resources. This is done with access control and
its main focus is to manage what actions are allowed to be
taken by users and prevent data breaches. This kind of control
is enforced by a reference monitor, an abstract component
that relies on an authorization database to allow or deny a
certain action. This component is the intermediary between
the users and the resources [23]. The reference monitor should
be impossible to circumvent, impossible to be maliciously
modified and it should be verifiable to ensure its correctness
[24].

Access Control List (ACL), Role-based Access Control
(RBAC) and Attribute-based Access Control (ABAC) are
some of the approaches used in IT systems nowadays, as
mechanisms that decide who gets to access what resource
regarding some security policies.

The ACL mechanism associates to every resource a list of
subjects that can access it and their respective access level
(e.g., ”only read” or ”read and write”). RBAC defines each
user’s access right according to their roles and each role’s
privileges [25]. ABAC grants access to users by considering
their attributes associated with the resource they are trying to
access and its access policies [26].

These mechanisms lack the ability to provide good tools
to face the rapid growth of the number of smart devices or
the challenge of adapting to a panoply of different technolo-
gies with different identity authentication specifications [4].
As progress is made with blockchain technology and smart
contracts, some ideas have been appearing to deliver reliable
decentralized access control mechanisms.

2) Access Control with Blockchain: Since the previous
mechanisms for access control are normally based on cen-
tralized entities, [22] presents an access control framework to
tackle access control problems in an IoT system composed of
a server, a storage device, a user device, an IoT gateway and
finally an IoT device. The Ethereum smart contract platform
is used to create Access Control Contracts (ACCs), which are
deployed by peers in order to control access requests to a
resource from other peers, Judge Contracts (JC) which judge
the behaviour of peers who want to access that resource and
arrange a penalty in case of a misbehaviour report sent by an
ACC and lastly, a Register Contract (RC) which register all the
information from misbehaviour-judging methods and manage
them. This work does not mention any way of identifying users
nor does it show the possibility of integrating a decentralized
identity management system with its architecture as this was
not the authors’ main focus.

III. EXTSSIBAC

This section starts by providing an overview of the
Qualichain Certificate Verification system and the SSIBAC
model, essential to fully understand the proposed solution.
After that, our extSSIBAC solution and its architecture are
described. Finally, this section ends by detailing our use case
and implementation of our work.

A. QualiChain Certificate Verification Overview

As stated previously, Serranito et al. [5] presented the design
and implementation of a system that provides a decentralized
qualification certificate verification in a job seeking context.
The authors identify three important external entities: Higher-
Education Institutions (HEIs), recruiters and job seekers. The
system is composed of a consortium smart contract, which
contains data about a set of HEIs, and each HEI is represented
by a HEI smart contract which contains information about the
certificates.

The consortium smart contract keeps an identifier for every
HEI registered in the system and membership of each new HEI
is decided by a voting scheme between the current members.
A HEI needs only to use the HEI Client to register, revoke or
verify a certificate. This Client, in turn, calls that HEI smart
contract corresponding methods. The system does not store
the full virtual certificate information but keeps a hash of each
certificate’s PDF along with each certificate corresponding job
seeker ID. Finally, recruiters use the Recruiting App to verify
the job seekers’ education certificate.

The authors allow different representation of each job
seeker’s ID, but there is not an actual implementation of the
system using DIDs to identify a job seeker. An access control
mechanism is also not present so in order to allow the use of
decentralized identifiers and provide security when accessing
the certificates’ hashes through an access control mechanism,
we propose added components to this system’s architecture as
well as a change in the system initial behaviour in order to
provide resource authorization.

4



B. SSIBAC

As stated before, authentication methods and access control
management using centralized models, based on personal
sensitive user information, face a wide variety of risks and
challenges. This risks include the gathering of unnecessary
user data to perform access control, privacy violation through
data breaches, ineffective security policies and the improper
sharing of private user information. Belchior et al. [6] argue
that Self-Sovereign Identity (SSI) in conjunction with the use
of blockchain technology, is a viable tool for an alternative
user authentication method, allowing for the existence of a
more secure access control management. These authors further
explain that by combining blockchain technology, decentral-
ized identifiers (DIDs) and verifiable credentials (VCs), they
were able to propose a decentralized and safe access control
management model called SSIBAC, Self-Sovereign Identity
Based Access Control.

On the SSIBAC model, a user is identified by a DID. The
permission to access a resource is granted after a decision
is calculated considering a set of variables. After a request
is put forward, one of these variables is the mapping of a
verifiable credential to a permission validator. In this case, an
instance of SSIBAC was initialized with the ABAC model,
so the permission validator is a specific attribute policy that
a user must fulfill in order to access that resource. Those
VCs are issued by trusted issuers. DIDs, VCs and verifiable
presentations (VPs) are supported by blockchain technology.

The SSIBAC model can be explained in terms of a few
simple steps:

• A user starts by requesting a verifiable credential from a
certain issuer

• After issuing that VC, the credential schema and the proof
of the VC emission are stored on a decentralized ledger

• The user is then able to request access to a specific
resource

• To gain access, the user needs to generate a VP and reply
to a VP request from the verifier

• After the VC validation, the verifier redirects an access
control request to an access control engine

• Following the access control decision computation, ac-
cess is given if the user’s credentials meet the verifier’s
system’s security policies

In the SSIBAC use case, the decision computation is done
based on a Zero-Knowledge proof related to a certain attribute.
This allows maintaining privacy about the parameters used
for evaluating access (e.g., what is the exact age of the
user). However, it is also restrictive because the access control
models we introduce require verifying if there is an exact
match of certain parameters (e.g., is the user really John).

SSIBAC allows for access control management using de-
centralized technologies in order to provide user identity
sovereignty and protect user privacy, where users disclose only
the necessary information to gain access to a certain resource,
preventing unnecessary risks and mitigating the consequences
of data breaches [6].

C. extSSIBAC

[6] describes an instance of SSIBAC with the ABAC
model. Our work is to extend this Self-Sovereign Identity
Based Access Control prototype to include other relevant
access control models. More specifically: RBAC, RBAC with
resource roles and ACL.

1) RBAC Model: This access control structure is defined
by the relationship between a user and a set of roles. These
roles are then associated with different permissions.

Users are validated to access a resource if they possess the
proper role. This role can be assigned by the service the user
is using or by a different separate entity. This model can be
defined by a set U of users, a set R of roles and a set S of
services. A user u with a role r is allowed to access a specific
service s if there is a relationship between (u,r) ∈ UA and (r,s)
∈ SA where UA ⊂ U × R and SA ⊂ R × S [27].

In a business context, roles can be associated with different
job functions and can be appointed to users based on their
qualifications and duties. These roles can be reassigned and
permissions can be added or removed from a specific role.
This model permits the access control management to be
considerably more simplified [28].

2) RBAC with Resource Roles Model: extSSIBAC allows
for the mapping between users and roles to be done in a secure
way by preserving user identity using decentralized identifiers.
RBAC with resource roles is an access control model where
both users and resources can be assigned roles, allowing for
the creation of groups, making extSSIBAC able to meet the
complexity of a more elaborate system. This way, with RBAC
With Resource Roles, resource access group policies can be
defined relating to multiple resources instead of one policy per
resource [29].

3) ACL Model: The Access Control Lists model focuses on
building a relationship between objects and users. An action on
an object can only be performed if the user or a group of users
carrying it are listed on that object’s ACL and if that action
is associated with those users [30]. Although extSSIBAC was
implemented so that it could also be instantiated with the ACL
model, in our solution, a user’s privacy protection is limited
due to the way our use case is configured.

D. Arquitecture

extSSIBAC’s architecture is similar to the original SSIBAC
model. It tries to be adaptable to the structure of all kinds
of organizations. Figure 3.1 provides a simple schematic of
our solution’s general architecture. Our system is composed
by three Hyperledger Aries framework agents, a decentralized
ledger and an access control engine.

A user would get a verifiable credential from a trusted
issuer. That VC’s schema and proof of emission would then be
stored on a decentralized ledger, this way, no official credential
associated with a specific user could be denied or altered. The
user would then be able to use that VC to access a specific
resource or service. The verifier, which in this case can be a
company, service or a specific system, would ask for a VP
from the user. After that, the user would be able to prove to

5



Fig. 1: General arquitecture scheme.

the verifier that they have the necessary credentials to use or
access that particular resource or service. Next, after receiving
the VP from the user, the verifier would then confirm on the
blockchain that the credentials the user presented exist and are
valid. Finally, the verifier would redirect the request to access
to its access control model in order to calculate a decision for
that request and return it to the user.

1) Integrating the Access Control Models in the Arquitec-
ture: In our use case, the verifier entities choose what model
they want to use to control access to a specific resource or
object. This is done using a built-in access control library. In
our system, the Policy Information Point (PIP) is represented
by the users as they will be the source of the credentials
necessary to access a resource. The verifier entities represent
both the Policy Administration Point (PAP) and the Policy
Enforcement Point (PEP) as they will manage the security
access policies and redirect the access requests to the Policy
Decition Point (PDP). Finally, the Access control engine, the
PDP, will be provide a decision.

Even though in our use case every entity will have a
personal DID, a unique pseudonym (unique DID) is created for
each specific connection. On the one hand, this is a great way
to provide extra security and privacy to all entities involved,
as a profile about any entity is impossible if their identifying
DID is always changing. On the other hand it brings certain
challenges depending on the access control model being used.
In the ABAC case, the service provider will request a VP
to make sure the user possesses the necessary attribute values.
The access control engine will infer the attribute value to allow
access through ZKP and compare it to the security policies

in the system. This way, the user does not fully disclose the
values of the VC issued to them by the trusted issuer.

With RBAC and RBAC with resource roles, in a business
context, there is no need to keep the role of a user secret.
A service provider will request the role from the user in a
VP. As such, a specific role value will be disclosed in a VP
generated by the user. Only if the user was issued a credential
with the proper role value from a trusted issuer, they will be
given access. From the organizational point of view, it is also
possible to assign roles to resources and access them without
disclosing anymore information about the user than already
necessary with the basic RBAC model.

As a new DID is created each time a new connection is
established, this poses a challenge when using the ACL model.
As explained before, a user needs to be on an ACL of a
resource in order to be able to perform a certain action. As
such, the user needs to be properly identified. This can still be
done with decentralized identifiers if the system in question
openly doesn’t protect against behaviour profiling, but in our
use case this doesn’t happen, so each user has a username
registered in the system, that also needs to be part of a VC
issued by a trusted issuer and is verified through the normal
exchange of VPs between the user and the verifier.

E. extSSIBAC Use Case

As mentioned in the document written on the previous
phase of this work, we initially aimed to proposed a solution
similar to the SSIBAC model, but based on Ethereum and
the smart contract technology. The idea was that users (job
seekers) would apply for an opening at a company by sending

6



their qualification certifications, emitted by their university,
and other relevant information. Recruiting organizations would
then be able to join a QualiChain Certification application that
would validate the applicant’s certification. This application
would receive the applicant’s DID and the DID of their Higher-
Education Institution (University). After that, their DID would
be verified by the Universal Resolver, a technology able to
resolve DIDs and obtain important information about their
owners. The next step was for the HEI smart contract to ask
permission from the user (job seeker) to share the certifi-
cation’s hash with the recruiting organization. Confirmation
that it was a valid certification from the user would come by
comparing the hash received from the applicant and the one
returned by the recruiting application. The scientific addition
by the proposed work was to combine the Qualichain Certifi-
cation Verification system with the new Universal Resolver
technology, decentralized identifiers and a relevant access
control model.

Unfortunately our investigation was challenging particularly
due to the fact that there was a lack of detailed documentation
about the new technologies proposed and communication with
the developers was difficult and slow.

We decided to change perspectives and contribute with an
extension of the work mentioned in [6]. We combined a few
more access control models with SSIBAC to prove that a
system to manage access to a resource using ledger technology
and decentralized identifiers was possible to be implemented
with other relevant access control models.

extSSIBAC aims to aid in the resource organization and
security policy building by providing the means to choose
what better access control model fits a specific organization.
Decentralization need not to be discarded in favor of a specific
access model. Entities have their credentials securely stored on
a decentralized ledger and without the right credentials access
is denied.

Figure 2 shows our final solution arquitecture and access
control flow. Alice starts by requesting a verifiable credential
from her university of her qualifications (1). After the Univer-
sity (issuer) issues Alice’s VC (2), it publishes the credential
schema and proof of credential emission on a decentralized
ledger(3). A request to use a service provided in the context
of the QualiChain project is sent to the QualiChain Service
Provider (QualiChain Certification Verification system)(4). A
verifiable presentation request is generated (5) and sent back
(6) to Alice. After generating a VP, Alice sends the VP back
to the QualiChain Service Provider (7). Next, Alice’s VC is
validated (8) and the access control request is redirected to the
Access Control Engine (9). Here, the AC model choosen by
the service provided calculates a decision (10) that is returned
to the QualiChain Certificate Verification System Agent (11).
Finally, if Alice presented the proper credentials, the decision
will be to allow access (12).

IV. IMPLEMENTATION

The decentralized ledger from our solution was imple-
mented by using Hyperledger Indy, a blockchain where the

credential schemas, proof of verifiable credential emissions
and the decentralized identifiers are stored. As such, for testing
purposes, the GreenLight Dev Ledger, brought fourth by the
Verifiable Organizations Networks (VON) blockchain test net
for developers, based on Hyperledger Indy, was used.

Alice, the university and the QualiChain Credential Veri-
fication system are represented by three Hyperledger Aries
Cloudagent Python agents (ACA-Py) built to be able to
establish connections and exchange credentials between them.
Each agent will have a designated decentralized identifier and
a unique DID will be created for each new connection. The
university agent is capable of generating verifiable credentials
and both the Alice agent and the QualiChain agent are capable
of generating verifiable presentations. Every agent is able to
communicate with the GreenLight Dev Ledger.

The access control models proposed by our solution are
implemented using Casbin, an access control model open-
source library and ABAC, RBAC, ACL are a few of the
models supported. Our solution is implemented using the
Python programming language, also supported by Casbin, as it
is effortless to install and use. Casbin’s workflow involves two
phases, configuration and implementation. On the configura-
tion phase, each model is defined based on the requirements
of each system that is employing Casbin. The implementation
phase is done in a policy file, where we define the subject that
can or can not do a certain action over a resource [29]. Each
access control model has their own policy Configuration and
policy Comma Separated Values files. After Alice’s credentials
are validated, a Casbin enforcer will be called to try and match
Alice’s access request with the QualiChain system’s security
policies. If everything is within the system’s access policies,
Alice will be allowed to perform the action requested.

In an instance of extSSIBAC with the RBAC model, the uni-
versity will emit a credential with a role field where its value
will be Alice’s role in that institution (student or teacher). The
QualiChain service provider will first validate if Alice has a
valid credential with the role she claims to have and then it will
check if that role is enough to perform the action Alice is re-
questing. With RBAC with Resource Roles, Alice will take the
hypothetical role of someone with the function of QualiChain
service provider administrator (data group admin), where she
will be able to read two different objects belonging to the
same group that are identified with the same role. Finally, in
extSSIBAC instantiated with the ACL model, Alice will have
a specific username that will be written in a specific resource’s
ACL in order to be allowed to perform some action over it.

V. RESULTS

This section describes our testing environment and method-
ology as well as our understanding of the results obtained. Our
solution aims to be an extension of the SSIBAC model. As
such, our objective was to make sure that our system behaved
in an acceptable way with the additions brought by the work
done in this dissertation.

7



Fig. 2: extSSIBAC applied to a QualiChain Project scenario.

A. Testing Environment and Methods

For testing purposes, a portable computer was used with the
following specifications:

• Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz 2.59
processor

• NVIDIA GeForce GTX 965M
• 16.0 GB RAM
• 64-bit Windows 10 operationg system
• Intel 802.11ac (2x2) Wi-Fi and Bluetooth 4.2 Combo
A Oracle VM Virtual Box Manager was used to create a

virtual machine where our solution was implemented, with the
following specifications:

• Ubuntu 20.04 64-bit operating system
• 10 GB base memory
• Nº of processors: 1 Intel(R) Core(TM) i7-6700HQ CPU

@ 2.60GHz 2.59 processor
• 16.0 GB RAM
Hyperledger Aries software uses a group of specifications

and protocols that were installed with the following versions:
• aiohttp (version 3.5.4)
• aiohttp-apispec (version 1.1.2)
• aiohttp-cors (version 0.7.0)
• apispec (version 2.0.2)
• async-timeout (version 3.0.1)
• base58 (version 1.0.3)
• Markdown (version 3.1.1)
• marshmallow (version 3.0.0)
• msgpack (version 0.6.1)
• prompt toolkit (version 2.0.9)

• pynacl (version 1.3.0)
• requests (version 2.23.0)
• casbin (no version specified)
Hyperledger Indy version 1.11.1 was installed and in total,

our solution was tested 30 times, 10 for each access control
model and the complete process can be divided into three
phases (startup, connect and access control) as explained in
[6]. Since it was not possible to test our solution in the same
testing environment as the one used by the authors and since
the ABAC model was already implemented, we also decided to
test the ABAC model 10 times in our own testing environment
and use those as a baseline.

B. Evaluation and Results

Our startup phase began by initializing the three agents
(University, Alice and QualiChain service provider). This was
done using Docker containers, one container for each agent.
A Docker container is a piece of software that encapsulates all
application code and the related dependencies in order for it to
be easily transported and used on any computing environment
[31]. By launching the agents using Docker containers, we
save the effort to install all their necessary components. Also
included in this initial phase was the time it took for the
university agent to publish the schema for the credentials on
the blockchain.

Figure 3 shows the average time taken for the agents
to initialize for each access control model. Both Alice and
QualiChain agents took approximately 20 seconds to initialize
with every access control model. The university agent had
some time variations, mainly when publishing the credential

8



Fig. 3: Startup Phase Duration.

schema on the blockhchain. Since the schemas had the same
fields on every test, we can assume that the time discrepancy
(17, 21, 26 and 24 seconds with ABAC, RBAC, RBAC
With Resource Roles and ACL respectively) was due to the
internet connectivity state and the communication between the
university agent and the decentralized ledger.

Since the startup phase accounts for the majority of the
duration of the total access control proccess, Figure 4 displays
only the duration of the connect and access control phases. The
connect phase is composed by three parts, Alice first connects
to the University, then the University issues a verifiable cre-
dential to Alice and finally Alice connects to the QualiChain
service provider. The access control phase encompasses the
process of Alice requesting access to a resource, the verifiable
presentation request sent to Alice in return, the VP sent from
Alice to QualiChain and lastly the final evaluation of the access
control request. The Connect phase took an average total of
2.1 seconds with every access control model. The full Access
Control phase took 1.7 (ACL), 2 (RBAC-WRR), 2 (RBAC)
and 1.6 (ABAC) seconds. Here, the process of Alice building
the verifiable presentation as a reply to the VP request sent
by the QualiChain occupied the greatest part of this phase
duration.

When we take into account the total duration of the access
control process of our baseline (ABAC) we can accept the
small variation (max. one hundredth of a second) between
each model’s access control phase, since each of them utilizes
different security policies and policy configurations. As a
result, the evaluation of the access control requests had small
duration variations.

VI. CONCLUSION

In this document, we propose Extended Self-Sovereign
Identity Based Access Control model, an extended version of
the SSIBAC model. Since the SSIBAC leverages blockchain
technology and a self-sovereign identity solution but was de-
veloped only with the ABAC model instantiated, we developed
a simple version with the RBAC, RBAC With Resource Roles
and ACL models adapted to decentralization in addition to the
ABAC model already implemented. This way, organizations
can opt to use extSSIBAC when ABAC does not suit their
needs.

A. Achievements

Our solution employs the Casbin library as it supports all
the models mentioned in this project. Hyperledger Aries offers
the infrastructure of our architecture’s agents and Hyperledger
Indy is used as our decentralized ledger. Overall, the main
access control process takes on average 1.8 seconds with every
access control model (1.6 with ABAC, 2 with RBAC, 2 with
RBAC WRR and 1.7 seconds with ACL model). We consider
this duration acceptable when dealing with solutions that must
offer private data protection when controlling access to their
resources.

extSSIBAC has some limitations when trying to protect
systems against user behaviour profiling, since when using the
RBAC and ACL models, our solution’s access control process
deals not only with DIDs but also with attribute roles and
usernames.

B. Future Work

For future work, our solution can be implemented with
concurrent programming in order to support multiple requests

9



Fig. 4: AC Process Duration.

at the same time. Also, ideally, extSSIBAC could be adapted to
use a decentralized solution for the access control models and
security policies instead of relying on a single programming
library to support their implementation.

REFERENCES

[1] C. Allen, “The path to self-sovereign identity,” Life with Alacrity, 2016.
[2] M. E. Peck, “Blockchains: How they work and why they’ll change the

world,” IEEE spectrum, vol. 54, no. 10, pp. 26–35, 2017.
[3] A. Tobin and D. Reed, “The inevitable rise of self-sovereign identity,”

The Sovrin Foundation, vol. 29, no. 2016, 2016.
[4] R. Xu, Y. Chen, E. Blasch, and G. Chen, “BlendCAC: A blockchain-

enabled decentralized capability-based access control for IoTs,” in 2018
IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). IEEE, 2018, pp. 1027–1034.

[5] D. Serranito, A. Vasconcelos, and M. C. Sergio Guerreiro, “Blockchain
ecosystem for verifiable qualifications,” in 2nd Conference on
Blockchain Research Applications for Innovative Networks and Services
BRAINS 2020 September 28 – 30, 2020 Paris, France, 2020.

[6] R. Belchior, B. Putz, G. Pernul, M. Correia, A. Vasconcelos, and
S. Guerreiro, “Ssibac: Self-sovereign identity based access control,” in
2020 IEEE 19th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom). IEEE, 2020, pp. 1935–
1943.

[7] S. Underwood, “Blockchain beyond Bitcoin,” Communications of the
ACM, vol. 59, no. 11, pp. 15–17, 2016.

[8] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
“Untangling blockchain: A data processing view of blockchain systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 7,
pp. 1366–1385, 2018.

[9] V. Buterin and Ethereum team, “Ethereum - a next-generation smart
contract and decentralized application platform,” 2014-17, white Paper.

[10] A. M. Antonopoulos and G. Wood, Mastering Ethereum: building smart
contracts and dapps. O’Reilly Media, 2018.

[11] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 254–269.

[12] G. Goodell and T. Aste, “A decentralised digital identity architecture,”
Available at SSRN 3342238, 2019.

[13] P. Dunphy and F. A. Petitcolas, “A first look at identity management
schemes on the blockchain,” IEEE Security & Privacy, vol. 16, no. 4,
pp. 20–29, 2018.

[14] D. Iseminger, Active directory services for Microsoft windows 2000.
Microsoft Press, 1999.

[15] H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and
A. Narayanan, “An empirical study of namecoin and lessons for de-
centralized namespace design.” in WEIS. Citeseer, 2015.

[16] W3C, “Decentralized Identifiers,” https://www.w3.org/TR/did-core/,
April 2020.

[17] M. Sabadello, “A universal resolver for self-sovereign identifiers,” 2017.
[18] H. Indy Revision 6b6c21b2, “Indy Walkthrough,” https://hyperledger-

indy.readthedocs.io/projects/sdk/en/latest/docs/getting-started/indy-
walkthrough.html, 2018.

[19] D. Huseby et al., “Hyperledger Aries,”
https://wiki.hyperledger.org/display/ARIES/Hyperledger+Aries, may
2020.

[20] “W3c on vcs,” https://www.w3.org/TR/vc-data-model/what-is-a-
verifiable-credential.

[21] “aries cloudagent python,” https://github.com/hyperledger/aries-
cloudagent-python.

[22] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the internet of things,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 1594–1605, 2018.

[23] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE communications magazine, vol. 32, no. 9, pp. 40–48, 1994.

[24] M. P. Correia and P. J. Sousa, Segurança no Software, 2nd ed. FCA,
2017.

[25] J. P. Dias, L. Reis, H. S. Ferreira, and Â. Martins, “Blockchain for access
control in e-health scenarios,” arXiv preprint arXiv:1805.12267, 2018.

[26] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide
to attribute based access control (abac) definition and considerations
(draft),” NIST special publication, vol. 800, no. 162, 2013.

[27] J. P. Cruz, Y. Kaji, and N. Yanai, “Rbac-sc: Role-based access control
using smart contract,” Ieee Access, vol. 6, pp. 12 240–12 251, 2018.

[28] R. S. Sandhu, “Role-based access control,” in Advances in computers.
Elsevier, 1998, vol. 46, pp. 237–286.

[29] “Casbin library,” https://casbin.org/docs/en/supported-models.
[30] J. Barkley, “Comparing simple role based access control models and

access control lists,” in Proceedings of the second ACM workshop on
Role-based access control, 1997, pp. 127–132.

[31] “Docker container,” https://www.docker.com/resources/what-container.

10


