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Abstract

We provide an introduction to the theory of derived categories and derived functors. To achieve
this, we begin by studying the triangulated structure on the homotopy category of complexes over an
abelian category A , and define its derived category D(A ) by formally inverting quasi-isomophisms. In
this way, the derived category, although not abelian, inherits a canonical structure of a triangulated
category, and derived functors are defined as initial objects in the category of extensions that preserve the
distinguished triangles. We apply these constructions to the abelian category CohX of coherent sheaves on
a smooth projective variety X, with the help of tools such as spectral sequences and δ-functors. Finally,
we introduce integral functors. Given two such varieties X and Y , these are geometrically motivated
functors Db(CohX) → Db(CohY ) between the derived categories, which are extensively used in present
day Algebraic Geometry and Mathematical Physics.

Keywords: Derived Categories, Derived Functors, Integral Functors, Fourier-Mukai Transforms,
Homological Algebra.

1. Introduction

The field of Homological Algebra reached maturity in 1956 with the publication of [CE56]. There,
Cartan and Eilenberg defined short exact sequences and injective/projective resolutions of modules. Given
a commutative ring A, an A-module I is said to be injective if, for each monomorphism of A-modules
i : M ↪→ N and morphism f : M → I, there exists an arrow g : N → I such that f = g ◦ i. Therefore, we
can think of injective modules as ones giving extensions of morphisms to them. An injective resolution of
M ∈ ModA is then a complex I • of injective A-modules such that the sequence 0→M → I • is exact. These
resolutions always exist.

In the homotopy category K(ModA) of complexes of A-modules, any two injective resolutions ofM are
isomorphic, via a uniquely defined isomorphism. In fact, recalling the terminology of homotopy equivalence
as the the notion of isomorphism in K(ModA), given an A-module homomorphism M → N , and injective
resolutions 0→M → I •M and 0→ N → I •N , there is a unique arrow I •M → I •N making the square

M I •M

N I •N

∃ ! (1)

commute in K(ModA). In particular, I •M → I •N is a quasi-isomorphism (or quis for short), that is, for
each i, the induced map Hi(I •M )→ Hi(I •N ) on cohomology is an isomorphism of abelian groups.

In [CE56], we also find the definition of a right iterated satellite. Given a short exact sequence

0 M N K 0

of A-modules, and other P ∈ ModA, the functor Hom(P,−) : ModA → Ab yields a complex

0 Hom(P,M) Hom(P,N) Hom(P,K) 0 (2)

which may not be exact anymore at Hom(P,K). For Cartan and Eilenberg, the i-th iterated satellite
(i ≥ 0) of Hom(P,−) was a functor Exti(P,−) : ModA → Ab defined as follows. Given M ∈ ModA, we take
a resolution 0→M → I • by injective modules, and apply Hom(P,−) to 0→ I •, in order to get the complex
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0 Hom(P, I0) Hom(P, I1) Hom(P, I2) . . . .

We set Exti(P,M) to be the cohomology of the complex above at Hom(P, Ii). This object is well-defined
up to canonical isomorphism, by the fact that any two injective resolutions of M are homotopy equivalent,
via a unique homotopy, as previously asserted. The collection {Exti(P,−)}i has a nice property, in that it
extends the Hom sequence (2) to a sequence

0 Hom(P,M) Hom(P,N) Hom(P,K)

Ext1(P,M) Ext1(P,N) Ext1(P,K)

Ext2(P,M) · · ·

which is now exact at every object.
One year after the release of [CE56], Grothendieck axiomatized the notion of abelian category in the

celebrated Tôhoku article, [Gro57]. From the archetypical example of the category ModA of modules over a
commutative ring A, one could generalize the notion of injective object to any abelian category. However, the
French mathematician noted that there were several cases of abelian categories where one would have to deal
with resolutions that were not given by injective/projective objects. As an example, in the category AbX of
sheaves of abelian groups over a topological space X, any such sheaf F can be embedded in its Godement
sheaf, Gode(F ), [God58]. This is just the sheaf defined over each open subset U ⊆ X as the product of the
stalks of F at points in U ,

Gode(F )(U) :=
∏
p∈U

Fp ,

with the projection maps giving the restrictions. With this type of embeddings, one can build an exact
sequence of sheaves of abelian groups

0 F Gode0(F ) Gode1(F ) Gode2(F ) . . . ,

that is, a resolution of F by Godement sheaves. The sheaves Godei(F ) have the property of being flasque
(or flabby), i.e. for each pair of open subsets U ⊆ V ⊆ X, the restriction map Gode(F )(V )→ Gode(F )(U)
is surjective. Given a morphism of sheaves F → G on X, and resolutions F → R •

1 and G → R •

2 by flasque
sheaves, there may be two distinct dashed arrows making the diagram

F R •

1

G R •
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commute in K(AbX), unlike in the case of (1). Therefore, a resolution of a sheaf by flasque sheaves need
not be unique up to homotopy, but only up to quasi-isomorphism. This fact led Grothendieck to invent a
new category D(AbX), together with a functor K(AbX)→ D(AbX), such that quasi-isorphisms in K(AbX)
became canonically isomorphic in D(AbX) – the derived category of AbX .

2. Derived categories

A proper definition of the derived categoryD(A ) of an abelian category A first appeared in Verdier’s 1967
PhD thesis, titled appropriately Des catégories dérivées des catégories abéliennes, which he conducted under
the supervision of Grothendieck. This text was only published later in the nineties in Société Mathématique
de France’s journal Astérisque, [Ver96].

Verdier’s construction of D(A ) relies on a structure of distinguished triangles in the homotopy category
K(A ), which we now explain briefly.

2.1. Triangulated categories
Definition. Let D be an additive category and T : D → D an automorphism. A triangle in (D , T ) is a
collection of three objects and three arrows of the form
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A B C T (A).
f g h

Amorphism of triangles is the data of the three vertical downward morphisms in the following commutative
diagram:

A B C T (A)

D E F T (D)

α

f

β

g

γ

h

T (α)

x y z

.

The morphism above is an isomorphism if α, β, γ are isomorphisms. The following axioms specify a class of
triangles which we call distinguished :

A1) i) Any triangle of the form A
idA−−→ A→ 0→ T (A) is distinguished.

ii) Any triangle isomorphic to a distinguished triangle is itself distinguished.
iii) For each morphism f : A→ B, there exists a distinguished triangle of the form

A B C T (A)
f

.

A2) The triangleA f−→ B
g−→ C

h−→ T (A) is distinguished if and only if the triangleB g−→ C
h−→ T (A)

−T (f)−−−−→ T (B)
is distinguished.

A3) Every solid diagram

A B C T (A)

D E F T (D)

α β γ T (α)

whose rows are distinguished triangles can be completed (not necessarily uniquely) by γ to a morphism
of triangles.

The pair (D , T ) endowed with a class of distinguished triangles is said to be a triangulated category.

Remark. We have purposefully left out Verdier’s fourth axiom in the definition above. This axiom is usually
called the octahedron axiom – see (?) Remark 2.2.3 in the main text for more information1.

The axioms of the definition above provide a great deal of information. For example,

• The composition of any two consecutive morphisms in a distinguished triangle is zero, (?, Proposition
2.2.4).

• Any distinguished triangle A f−→ B
g−→ C

h−→ T (A), can be included in an helix of morphisms

T−1(A) A T (A) T 2(A)

T−2(C) T−1(C) C T (C) . . .

. . . T−1(B) B T (B) T 2(B)

h

g

f

and, according to the statement above, this helix is a complex in D .

• Given a morphism of distinguished triangles

A B C T (A)

A′ B′ C ′ T (A′)

f g h T (f) ,

if two of the morphisms f, g and h are isomorphisms, then so is the third, (?, Proposition 2.2.8).
1From now on, we use the symbol (?) to refer to the main text.
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Definition. Let (D , T ) and (N , S) be triangulated categories. An additive functor F : D → N is called
exact if:

i) There is a functor isomorphism F ◦ T
∼=

=⇒ S ◦ F .

ii) Any distinguished triangle A → B → C → T (A) in D is mapped via F to a distinguished triangle
F (A) → F (B) → F (C) → S(F (A)) in N , where F (T (A)) is identified with S(F (A)) via the
isomorphism in i).

Definition. Let (D , T ) be a triangulated category. If D ′ is a full additive subcategory of D , we say that
(D ′, T ) is a full triangulated subcategory if D ′ is invariant under shift and, for any distinguished triangle
A→ B → C → T (A) in D with A,B ∈ Obj(D ′), C is isomorphic to an object in D ′.

2.2. The homotopy category is triangulated
Throughout this section let A stand for an abelian category, ComA for its category of complexes and

K(A ) for its homotopy category of complexes.

Definition (?, 2.3.12). The left shift by 1 is the automorphism [1] : ComA → ComA that sends A• ∈
ComA to (A•[1], dA•[1]), with dA•[1] := −dA• and the i-th term of A•[1] being Ai+1. Similarly, one defines
[1] : K(A )→ K(A ).

Definition (?, 2.3.17). Given a chain map f : A• → B• in ComA , the cone of f is the chain complex
(cone (f) , dcone(f)), where (cone (f))i := Ai+1 ⊕Bi and the differential is

dicone(f) :=

(
−di+1

A 0
f i+1 diB

)
for every i.

Proposition (?, Definition/Proposition 2.3.19 and Proposition 2.3.20). Given any chain map f : A• → B•,
there is a short exact sequence of chain complexes

0 B• cone (f) A•[1] 0,
τf πf (3)

where τf and πf are natural maps given, for each degree i, by the canonical injection Bi ↪→ Ai+1 ⊕Bi, and
the canonical projection Ai+1 ⊕Bi � Ai+1, respectively. Consequently, we have a long exact sequence

· · · Hi(A•)

Hi(B•) Hi(cone (f)) Hi+1(A•)

Hi+1(B•) · · ·

∂i−1

∂i

and the connecting homomorphism is actually ∂i = Hi+1(f).

Corollary (?, Corollary 2.3.21). A chain map f : A• → B• is a quasi-isomorphism if and only if cone (f) is
acyclic.

Proposition (?, Proposition 2.3.24). K(A ) has a structure of a triangulated category by choosing the
automorphism [1] : K(A )→ K(A ), and by specifying the distinguished triangles to triangles isomorphic to
ones of the form (3).

2.3. The derived category is triangulated
Definition (?, Definition 2.4.1). Let A be an abelian category. The derived category of A is a category
D(A ), together with a functor Q : K(A )→ D(A ) that sends quasi-isomorphisms in K(A ) to isomorphisms
in D(A ). Moreover, Q should be initial with respect to this property, i.e. given any category C with a
functor F : K(A )→ C that sends quasi-isomorphisms in K(A ) to isomorphisms in C , there exists a unique
arrow G : D(A )→ C making the diagram

K(A ) C

D(A )

F

Q ∃ ! G
(4)

commute.
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Proposition (?, Propositions 2.1.5 and 2.4.2). In the notation above, the derived category D(A ) exists. We
say that D(A ) is obtained by localization of K(A ) with respect to quasi-isomorphisms.

An explicit description of D(A ) can be given as follows:

• The objects of D(A ) are the same as those of ComA or K(A ), that is, chain complexes A• whose
terms Ai are objects of A .

• (?, Proposition 2.4.2) shows that that class of quis in K(A ) has the following properties:

i) It is multiplicatively closed (i.e., for every A• ∈ K(A ), idA• is a quis, and the composition of any
two composable quis is again a quis).

ii) Given a solid diagram

B• Y •

X • Z •

quis quis ,

there exist dashed arrows completing the diagram to a commutative square.

iii) Given a morphism f : A• → B•, if there exists a quis C • s−→ A• such that f ◦s is nulhomotopic, then

there exists a quis B• s′−→ D• such that s′ ◦ f is nulhomotopic.

• A right roof from A• to B• in K(A ) is a diagram of the form

A• B•

C •

quis
(5)

where C • is some complex. We can define an equivalence class on the set of right roofs by declaring two
right roofs from A• to B• to be equivalent if there exists a third right roof from A• to B• dominating
the other two:

A• B•

C •

1 C2
•

C •

3

qui
s

qu
is

is
al
so

qu
is

.

By this we mean that there exist dashed arrows C •

1 99K C •

3 L99 C •

2 such that the composition
B• → C •

2 99K C
•

3 is a quis and, in addition, the two inscribed triangles commute.

• The composition of the equivalence class of the right roof A• → X • quis←−− B• with the equivalence class
of the right roof B• → Y • quis←−− C • is given in the following way: we fill in the solid diagram

A• B• C •

X • Y •

Z •

qu
is

qu
is

qu
is

by completingX • quis←−− B → Y • to the shown commutative square (which is always possible, as claimed).
The composition of the equivalence classes is defined as the equivalence class of the "big" right roof
A• → Z • ← C •. One can check that this well-defined, (?, Definition/Proposition 2.1.2).

• Finally, morphisms A• → B• in D(A ) are given by equivalence classes of right roofs of the form (5).
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• One can also show thatD(A ) inherits a canonical structure of an additive category fromK(A ). Indeed,
one can do addition with right roofs by "reducing to common denominators", (?, Proposition 2.1.6).

• The functorQ : K(A )→ D(A ) is defined asQ(A•) = A• for everyA• ∈ K(A ), and sends f ∈ HomK(A )(A
•, B•)

to the equivalence class of the right roof

A• B•

B•

f idB•

In addition, Q is an exact functor of triangulated categories.

• There are well defined cohomology functors on the derived category, arising from the universal property
of Q : K(A )→ D(A ):

K (A ) A

D(A )

Q

Hi

.

• In particular, any two quasi-isomorphic complexes become canonically isomorphic in D(A ).
(?, Corollary 2.4.4) shows that a complex A• is the zero object in D(A ) if and only if A• is acyclic,
that is, Hi(A•) = 0 for every i.

With this description D(A ) inherits a canonical structure of a triangulated category from the one in
K(A ), by choosing the automorphism [1] : D(A ) → D(A ), and by declaring the distinguished triangles to
be triangles that are isomorphic to the image under Q : K(A )→ D(A ) of canonical distinguished triangles
in K(A ), that is, triangles of the form (3), (?, Proposition 2.4.7).

One advantage of working with the derived category D(A ) is that there is a one-to-one correspondence
between short exact sequences in ComA and distinguished triangles inD(A ), unlike in the homotopy category
K(A ). Indeed, consider the following statement.

Proposition (?, Proposition 2.4.9). Let 0→ A• f−→ B• g−→ C • → 0 be a short exact sequence in ComA . Then,
there is a natural quasi-isomorphism α : cone (f)→ C •, and so the triangle

A• B• C • A•[1]
f g πf◦α−1

is distinguished in D(A ), where α−1 is the inverse of α in D(A ), and πf : cone (f) → A•[1] is the natural
projection. Moreover, any distinguished triangle in D(A ) is isomorphic to one obtained in this way.

3. Derived functors

Consider the following proposition.

Proposition 3.1. Let A ,B be abelian categories and F : A → B an additive functor. Denote by
QA : K(A )→ D(A ) the natural functor of the localization (and similarly forQB), and byK(F ) : K(A )→ K(B)
the functor one obtains by applying F term-wise to complexes in K(A ). Then, there exists an exact functor
of triangulated categories D(A ) 99K D(B) making the diagram

D(A ) D(B)

K(A ) K(B)

QA

K(F )

QB

commute if and only if F is exact.

In particular, if F is only left-exact, strict commutativity of the diagram above is impossible. The idea of
the right derived functor RF of such a F is to extend the morphism K(F ) : K(A ) → K(B) to the derived
categories, but weakening the condition of strict commutativity. However, it will not be possible to define
this extension over all D(A ), but only to a full triangulated subcategory.
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Definition/Proposition (?, Definition/Proposition 3.1.2). The category K+(A ) is the full triangulated
subcategory of K(A ) whose objects are complexes A• that are bounded below, i.e. ∃ N such that Ai = 0
for all i ≤ N .

The localization ofK+(A ) with respect to quasi-isomorphisms is a full triangulated subcategory of D(A ),
which we denote by D+(A ). The canonical functor D+(A )→ D(A ) is exact.

Definition 3.2. Let F : A → B be a left exact functor between abelian categories. The right derived
functor of F is a pair (RF, η) consisting of an exact functor of triangulated categories
RF : D+(A ) → D+(B), together with a natural transformation η : QB ◦ K+(F ) ⇒ RF ◦ QA, which we
represent diagrammatically by

K+(A ) D+(B)

D+(A )

QB◦K+(F )

QA RF
η .

The pair (RF, η) is required to satisfy the following universal property: for any other pair
(G : D+(A )→ D+(B), γ : QB ◦K+(F )⇒ G◦QA), there exists a unique natural transformation ε : RF ⇒ G
such that the diagram

QB ◦K+(F ) G ◦QA

RF ◦QA

γ

η ε◦QA

commutes.

The theorem below is central to our discussion. Its proof is in (?, Section 3.2).

Theorem (?, Definition 3.1.4 and Theorem 3.1.10). In the notation above, RF exists if there exists a class
of objects R ⊆ Obj(A ) verifying three axioms:

A1) R is closed under direct sums;

A2) K+(F ) maps any bounded below acyclic complex with terms in R into an acyclic complex with terms
in B;

A3) every object in A is a subobject of an object in R.

In this case, R is said to be adapted to F .

We now summarize the construction of RF .

• First of all, given A• ∈ K+(A ), axiom A3 implies the existence of R• ∈ K+(R) and a quis q : A• → R•.
We say that such a q is a quasi-resolution of A• by a bounded below complex of F -adapted objects.
It can be shown that giving quasi-resolutions is a functorial procedure, i.e. given f ∈ HomK(A )(A

•, B•),
we can find quasi-resolutions of A• and B• and a dashed arrow,

A• R•

A

B• R•

B

quis

f

quis

,

such that the diagram above commutes.

• Moreover, by axioms A1 and A2, we can show that, given any A• ∈ K+(A ), there exists an isomorphism
in D+(A ) from A• to some R• ∈ K+(R), which is represented by a right roof of the form

A• R•

T •

quis quis

where T • is also in K+(R). By applying K+(F ) : K(A )→ K(B), we get a right roof
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K+(F )(A•) K+(F )(R•)

K+(F )(T •)

quis
(6)

in K+(B).

• In the notation above, we define RF (A•) := K+(F )(R•), and η(A•) to be the morphism in D+(B)
determined by the roof (6). We refer the reader to (?, Section 3.2) for details.

• In this way, we can think of η(A•) as measuring the difference, in D+(B), between the complex
K+(F )(A•) that one obtains from A• by term-wise application of F , and its image RF (A•) under
the construction of the right derived functor. Indeed, by the universal property of (RF, η), when F is
exact, RF (A•) = K+(F )(A•), and η is just the identity.

Under certain conditions on the abelian category A , there is a class of objects in A which is adapted to
any left exact functor F : A → B.

Theorem 3.3 (?, Theorem 3.4.10). Let A be an abelian category with enough injectives, and F : A → B
a left exact functor. Then the class I of injective objects in A is F -adapted.

The next definition asserts how we can recover the classical derived functors of Cartan-Eilenberg2 from
Verdier’s "total" derived functor.

Definition (?, Definitions 3.3.1 and 3.3.8). Let A ,B be abelian categories and F : A → B a left exact
functor. Suppose that RF : D+(A ) → D+(B) is everywhere defined. The i-th (higher) right derived
functor of F is the functor RiF : A → B defined as A 7→ Hi(RF (A)), where A is seen as a complex
concentrated in degree 0.

We say that A ∈ Obj(A ) is F -acyclic if RiF (A) = 0 for i ≥ 1.

It is easy to see that any object in F -adapted class is F -acyclic (?, Lemma 3.3.9). Something less
obvious to show is that, if the right derived functor RF exists, one can compute it using F -acyclic resolutions
(?, Corollary 3.4.3).

The collection of higher right derived functors {RiF : A → B}i≥0 is an example of a more general
construction of homological algebra, that of a δ-functor. This concept is introduced in (?, Subsection 3.3.1).

Composition of derived functors is straightforward under the formalism we describe. Indeed, we have the
following result.

Proposition 3.4 (?, Proposition 3.6.1). Let F1 : A → B and F2 : B → C be two left exact functors. Suppose
there exist subclasses RA ⊆ Obj(A ) and RB ⊆ Obj(B) which are adapted to F1 and F2, respectively. If
F1(RA) ⊆ RB , then there is a natural isomorphism of functors R(F2 ◦ F1) R(F2) ◦R(F1)

∼= .

Verdier’s construction of derived functors simplified the composition of (higher) right derived functors
immensely. Indeed, these compositions had been previously studied by Grothendieck using spectral sequences,
[Gro57]. By Hartshorne’s wording, the proposition above "shows the convenience of derived functors in the
context of derived categories. What used to be a spectral sequence becomes now simply a composition of
functors. (And of course one can recover the old spectral sequence from this proposition by taking cohomology
and using the spectral sequence of a double complex)", [Har66, Pag. 60]. Nonetheless, spectral sequences
remain a very useful gadget in homological algebra. They are introduced in (?, Appendix C).

3.1. A few remarks
The construction of right derived functors RF : D+(A ) → D(B) can be generalized in order not to

require F to be defined over abelian categories. We give a precise definition of what we mean.

Definition (?, Definition 3.2.3). Let A and B be abelian categories, and V : K+(A ) → K(B) an exact
functor of triangulated categories. The right derived functor of V is a pair (RV, η) consisting of an exact
functor of triangulated categories RV : D+(A )→ D(B), and a natural transformation η : QB◦V ⇒ RV ◦QA.
This pair is required to be initial with respect to any other such pair.

Theorem (?, Theorem 3.2.4). In the notation of the definition above, RV exists if K+(A ) admits a
triangulated subcategory KV satisfying two conditions:

2That is, the right iterated satellites we mentioned in the introduction.
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a1) if A• ∈ KV is acyclic, V (A•) is acyclic;

a2) for any A• ∈ K+(A ), there exists R• ∈ KV and a quis A• → R•.

We also note that mostly everything we defined so far about derived functors admits a dual statement.
Indeed, given a right exact functor F : A → B, we have a dual definition of its left derived functor
LF : D−(A ) → D−(B) between the bounded above derived categories of A and B. There are some
subtleties with the duality between these constructions, namely when it comes to the definition of morphisms
in the derived categories. These subtleties are explained in (?, Remark 2.1.3) and (?, Subsection 3.2.5).

4. Application to coherent sheaves

We now give a very brief summary of (?, Chapters 4 and 5). Until otherwise mentioned, let X and Y
stand for Noetherian schemes over a field k.

We define the following notation for certain categories: Schk the category of Noetherian schemes over k,
ModX the abelian category of OX -modules, and Veck the abelian category of k-vector spaces. The next table
recalls some important functors of sheaf theory.

Name Required data Symbol Exactness

Stalk p ∈ X (−)p : ModX → Veck Exact
Sections U open subset of X Γ(U,−) : ModX → Veck Left exact

Pushforward f ∈ MorSchk
(X,Y ) f∗ : ModX → ModY Left exact

Tensor product F ∈ ModX F ⊗OX
(−) : ModX → ModX Right exact

Pullback f ∈ MorSchk
(X,Y ) f∗ : ModY → ModX Right exact

Table 1: Important functors over categories of sheaves.

A coherent sheaf F on X is a sheaf of OX -modules with particularly nice algebrogeometric properties.
For starters, the category CohX of coherent sheaves on X is abelian. In addition, if A is a Noetherian
ring, there is an exact functor (−)∼ : Vecfk → CohSpecA taking any finitely generated k-vector space V to a
coherent sheaf Ṽ over the affine scheme SpecA. In fact, this functor is an equivalence, whose inverse is the
global sections functor Γ(SpecA,−) : CohSpecA → Vecfk , (?, Proposition 4.1.8).

Under certain conditions, we can restrict the functors in the table above to the coherent setting. Indeed,
if f is proper (?, Definition 4.3.18), then we can restrict the pushforward to a functor f∗ : CohX → CohY
(?, Theorem 4.3.22). If f is flat (?, Definition 4.3.31) then f∗ : CohY → CohX is actually exact (?, Proposition
4.3.33). In particular, its left derived functor is just usual term-wise application of f∗ to complexes, i.e.
Lf∗ = K−(f∗), in the notation we used in the last section. To simplify notation, we still denote this functor
by f∗ : D−(CohY )→ D−(CohX).

In (?, Chapter 4), we study the construction of the derived functors of the half-exact functors of Table 1.
It is relatively straightforward to construct Rf∗ : D+(ModX)→ D+(ModY ) since ModX has enough injective
objects (?, Proposition 4.1.2), and similarly for RΓ(X,−) : D+(ModX)→ D+(Veck). The restriction of this
functor to a right derived functor Rf∗ : D+(CohX) → D+(CohY ) in the case of f being proper is much
harder. Indeed, we do this by studying a bigger full abelian subcategory of ModX , that of quasicoherent
sheaves, QCohX . We then use the chain of inclusions CohX ( QCohX ( ModX to indirectly define the
derived functor of the pushforward on D+(CohX). This process is described in (?, Subsection 4.3.4), and
relies on the help of spectral sequences and δ-functors.

The tensor product F ⊗OX
(−) : ModX → ModX is not immediate to left derive as well, due to the lack

of projective objects in ModX (?, Example 4.1.4). In fact, the non-existence of projective objects holds in
the smaller full abelian subcategories CohX ( QCohX ( ModX as well (?, Example 4.1.32). The solution
is to find a class of adapted objects other than the projective ones. For F ∈ CohX , this is possible for the
class of locally free coherent sheaves (?, Proposition 4.3.24), if we require X to be a projective scheme. With
this adapted class, L(F ⊗OX

(−)) : D−(CohX)→ D−(CohX) exists.
Having defined the derived functors

RΓ(X,−) : D+(CohX)→ D+(Vecfk),

Rf∗ : D+(CohX)→ D+(CohY ),

L(F ⊗OX
(−)) : D−(CohX)→ D−(CohX),

and in order to find a common category to work over, we restrict these functors to the bounded derived
category Db(CohX). This is, as the name suggests, the full triangulated subcategory of D(CohX) whose
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objects are chain complexes of coherent sheaves that are simultaneously bounded above and bounded below.
In addition, we also extend the definition of the derived tensor product to a bifunctor (?, Proposition 4.3.29).
At the end of (?, Chapter 4), we are left with the following derived functors

RΓ(X,−) : Db(CohX)→ Db(Vecfk),

Rf∗ : Db(CohX)→ Db(CohY ) for f proper,

(−)⊗L (−) : Db(CohX)×Db(CohX)→ Db(CohX),

f∗ : Db(CohY )→ Db(CohX) for f flat,

under the additional requirement that X is smooth. The three last functors are the main components of an
integral functor. Indeed, consider the following definition.

Definition (?, Definition 5.2.4). Let X and Y be smooth projective varieties over k, and

X × Y

X Y

q p

be the projections. The integral functor ΦX→YP• with kernel P • ∈ Db(CohX×Y ) is the functor

ΦX→YP• : Db(CohX)→ Db(CohY )

F • 7→ Rp∗(q
∗F • ⊗L P •

).

We say that ΦX→YP• is a Fourier-Mukai transform if it is an equivalence of categories. In this case, we
say that X and Y are Fourier-Mukai partners.

We prove that the composition of integral functors is again an integral functor in (?, Proposition 5.2.7).
As a last remark, let us state a celebrated result by Orlov, originally published in [Orl97].

Theorem (?, Theorem 5.2.8). Let F : Db(CohX)→ Db(CohY ) be a fully faithful exact functor. Then there
exists an object P • ∈ Db(CohX×Y ), unique up to unique isomorphism, such that F is naturally isomorphic
to the integral transform ΦX→YP• with kernel P •.

Corollary (?, Corollary 5.2.9). Any exact equivalence of categories F : Db(CohX)→ Db(CohY ) is given by
a Fourier-Mukai transform ΦX→YP• , with uniquely defined kernel P •.
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