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ABSTRACT
The introduction of mobile robots in education translates into
new learning possibilities for students who are being initiated
on topics such as robotics and the internet of things for the
first time. They benefit from a generalist and didactic robot
that enhances their learning experience. The first work objec-
tive is to provide a complete analysis on the operation of the
Waveshare Alphabot2-Ar robot and to create a solid base for
the correct functioning of the robot. The final objective of this
work is the creation of laboratory guides that allow students
to create programs that fully and correctly control the robot.
First, an analysis of the robot is made and the contents that
make up the developed laboratory guides are exposed. After
this analysis, the results of the application of the developed
code, which is constituted by a resolution of each of the labo-
ratory guides, are shown. The developed code, alongside the
respective laboratory guides, were tested in 2 racetracks. The
results prove the efficacy of the developed code in line follow-
ing, detection and avoidance of obstacles and in providing a
robust and complete interaction with the robot’s peripherals.
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INTRODUCTION
For this work, the focus relies on the educational experience
that mobile robots can provide. In particular, an analysis of
one specific robot is made, including seeing how well it in-
tegrates into a pedagogic environment. As mobile robots be-
come increasingly more advanced and capable machines, the
more difficult it becomes for beginners to learn the basis be-
hind the operation of said robots. With that in mind, the need
for a good and simple mobile robot, with easy to use charac-
teristics and an educational feature set, as well as an afford-
able price, arises. Alongside such a robot, an introductory
course that takes advantage of the characteristics of the robot
and that deploys a correct theoretical approach to the field
also has to exist. The goal of this work is to not only anal-
yse the mobile robot in discussion but to also prepare content
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that allows students, who are approaching the subject for the
first time, to have a complete yet practical introduction to the
topic of mobile robots. This introduction must be divided
into theoretical and practical components, with the theoreti-
cal part targeting the teaching of the necessary basis to op-
erate the components of the robot correctly and the practical
part to show the students the implementation and results of
their work.
The basic tasks that the students need to program consist of
having the robot follow a black line over a white surface, to
have it react to obstacles using the robot’s sensors and to re-
spond to commands given by the user in real-time, while also
taking advantage of the robot’s peripherals to increase the
quality of the experience of working with this robot. As a
final task, after completing the laboratory guides, it is asked
for the students to compete between them in a race, to see
which team has programmed the best solution.

BACKGROUND
For the mobile robot being used to be adequate for an edu-
cational use, it must not deviate too much from the norm that
guides other universities in similar courses while also being fit
and ideal to use in the courses that plan on utilizing it within
Instituto Superior Técnico (IST ). So, this meant it was nec-
essary to understand what other schools are doing in terms of
their curriculum structure for these courses and what robots
they are using to fulfill these curricular plans. Understanding
the technical and theoretical concepts is also important, as to
see if they match the ones taught in IST , in these courses.
In this particular case, the main functionalities being pre-
sented with this robot are line following and obstacle detec-
tion. With this in mind, it becomes necessary to know how
other robots with similar hardware and software are perform-
ing these two tasks and understand whether those ways are
the ideal ways to show and teach the students.

Theoretical Model 1
The first theoretical model compiled states that, for robotic
introductory courses, the theoretical contents being taught in
other schools are in line with the contents proposed in the de-
veloped laboratory guides and that the commonly used type
of mobile robot is pretty similar to the one being proposed to
be used in this work, the Waveshare Alphabot2-Ar. The sim-
ilarities within the course structure itself consist in the fact
that these robotic introductory courses are usually divided
into theoretical and laboratory classes; targeted at students
with few or no experience at all handling robots and where
the laboratory work is executed upon the results of the work



from the previous laboratory session, with evaluations in the
end of each laboratory guide. Concerning the curriculum, the
contents taught include perception (localization using sensors
- in the case of this paper, the sensors used are infrared obsta-
cle detection, infrared line detection and ultrasonic obstacle
detection - and filtering methods - in the case of this paper,
data normalization and weighted average) and action (reac-
tive control - in the case of this paper, using the Proportional,
Integral and Derivative (PID) algorithm and obstacle detec-
tion and avoidance algorithms). Finally, concerning the robot,
a platform that moves on wheels, that processes data within
its structure and that has sonar and infrared sensors is on par
with the robot used here. The paper presented below supports
this researched thesis.
An analysis of the Mobile Robot Programming Laboratory
course at Carnegie Mellon University (CMU ), done by
Lalonde et. al [19], shows a multitude of similarities to
the Applications and Computation for the Internet of Things
(ACIC) [5] course in IST . ACIC, as the Mobile Robot
Programming Laboratory course, also consists of a one-
semester course that gives students hands-on experience with
mobile robot programming. It is also a problem driven
course, where the practical component is used to develop a
solution to problems presented on laboratory guides. This
solution is then improved upon in the next laboratory guide,
where new problems are presented and must be solved using
the previous solution as base. Regarding the robotic platform,
the Alphabot2-Ar does not have a camera but it does have
a line sensing infrared sensor that, for the maze activity in
which the Carnegie Mellon robot participates, the Alphabot2-
Ar can also manage to engage. The difference being that, in-
stead of using a camera to detect ”gold in front of the robot
(blue cardboard attached to a metal base)” [19], which identi-
fies the final contest location, it can use its line sensing hard-
ware to sense a final location placed in a contrasting color to
the background on which it is drawn. Since the Alphabot2-
Ar also uses ultrasonic sensors, wall detection can also oc-
cur, although the difference in number of sensors used by the
Carnegie Mellon robot and the IST robot makes the Carnegie
Mellon one better at the task of identifying walls surrounding
the robot. The use of the sonars is similar in both robots,
being used to measure distances and detecting obstacles. In
terms of the actuators, both robots present two motorized
wheels. The main difference comes with the processing unit
of the robots, where the Alphabot2-Ar uses Arduino while
the Carnegie Mellon one uses a laptop running Windows XP.
As for the course curriculum and theoretical/practical con-
tent, the laboratory guides developed in this work also fo-
cus on obtaining data from sensors and treating that data. To
do this, students will learn about Analog-Digital Converter
(ADC), Inter-Integrated Circuit (I2C) with serial interface,
data normalization and weighted averages. The gathered data
must, after having already been treated, be used to guide the
movement of the robot. Here, both the CMU course and the
developed laboratory guides approach the subject using the
same method, the PID algorithm. The action both robots are
being asked to perform is similar, where theCMU course ex-
pects the robot to go through a maze and the IST one expects
the mobile robot to go around a track, delimited by a line that

the robot must follow.

Theoretical Model 2
The second theoretical model compiled states that, for a con-
sistent line tracking functionality, using data normalization,
weighted average and then applying the PID algorithm to
that data ensures the most robust method applicable in a low-
cost, small-form educational-oriented mobile robot with the
sensor and actuator set that the Alphabot2-Ar has, alongside
similar processing power. Data normalization is used to trans-
late the [0; 1023] interval of the resolution of the ADC into
a scale that is equal for each of the 5 Infrared (IR) sensors.
This needs to occur because, for each sensor, a calibration is
done where, in the designed track, the sensor will indicate its
highest valued and lowest valued readings. These values then
serve as limits for the values read and, since every sensor will
present their own limits, a normalized value between a pre-
set scale for each sensor is going to allow an equal reading
for each sensor when they are sensing the lowest and highest
value data. The equation used for the data normalization is
the following:

normV al =
(val(sensor)−minCalV al(sensor)) ∗ scaleMaxV al

maxCalV al(sensor)−minCalV al(sensor)
(1)

Weighted average is used to calculate the position of the robot
in regards to the line, by attributing different weights to each
sensor. By doing this, it is possible to assign a numeric value
to the position of the robot in regards to line. The equation
used for the weighted average is, for each sensor j, with j be-
tween [0; 4], and with final value representing the normalized
value for that sensor:

weightedAverage =

∑4
j=0(finalV alue(j) ∗ (j ∗ 100− 200))∑4

j=0 finalV alue(j)
(2)

In this formula, the (j * 100 - 200) part will translate into the
[-200; 200] interval that equals the weights used in the algo-
rithm, depending on the number of the sensor (0 to 4 = -200
to 200). The value returned by the formula is the position of
the robot in regards to the line. By having that numeric value
of the position and then applying the PID algorithm to de-
termine the speed value necessary for each wheel, in order to
center the robot, it is possible to attain a smooth and accu-
rate operation for the robot. The classical PID equation, that
is also used for the implementation of the PID algorithm in
this work, is the following:

pidV al = proportional∗KP+integral∗KI+derivative∗KD
(3)

In this equation, the proportional value equals the error, the
integral value is the sum of the error over time and the deriva-
tive value is the difference between the error present in the
current measure and the error present in the previous measure.
KP, KI and KD are constants used as multipliers, which alter
the effect of the proportional, integral and derivative values.
The paper presented below supports this researched thesis.
Engin et al. [18] developed their work over a low-cost
wheeled mobile robot with the same intent of having the robot



following a line. Their target audience also consists of stu-
dents beginning their learning in such diverse topics as ”...
microcontroller hardware and software, interfacing technolo-
gies, automatic control theory, and sensor technologies etc”
[18]. And to teach these topics, their work also relies on
laboratory sessions where students can learn embedded sys-
tems. Finally, the robot used also presents many similarities
to Alphabot2-Ar, including the two motorized wheels, the
Printed Circuit Board (PCB) acting as chassis and the use
of optical sensors for line detection. When it comes to the ac-
tual data processing, a different approach is used by Engin et
al. [18]. The difference resides with the fact that a quadratic
line detection algorithm was used, as opposed to a weighted
average [18]. Similar to both algorithms are the facts that
the sensors closer to the line report higher values, the attribu-
tion of weights to each sensor in order to have a numerical
value for each sensor and a line position value that is lim-
ited by the biggest and lowest value attributed to the sensors.
The similarities between the weighted average procedure and
this quadratic approach mean both can be considered similar
ways to extract the line’s position in regards to the sensors.
In regards to the PID algorithm used, both approaches im-
plement the algorithm in a similar way. An error between the
center of the sensors and the line is used to calculate the speed
change the robot needs to assume in order to correct the error
and make it 0. The PID algorithm implemented works with
the proportional value controlling how much the magnitude
of the turn is, the integral value commanding the future turn
values in order to smoothly correct the error and the deriva-
tive value is used to reduce the oscillation of the robot and
make it behave without more curves than the ones needed to
correct the position and turn the error to 0. To support this
algorithm, KP, KI and KD constants must be used as multi-
pliers, which alter the effect of the proportional, integral and
derivative values.

ROBOT ANALYSIS

Robot Structure
The Alphabot2-Ar has a two-level circular PCB chassis with
11 cm in diameter and 6 cm in height. The base level of the
chassis is called Alphabot2-Base. The top chassis board is
called the Alphabot2-Ar and the Arduino board attaches to
this PCB. The robot comes with some pre-assembled parts
but some assembly is still required. Laboratory guide 0 pro-
vides detailed instructions on how to assemble the remaining
parts. In [4], it is possible to find the schematics regarding the
assembly of all the components of the Alphabot2-Base and,
at [3], it is present the schematics of the assembly of all the
components that make up the Alphabot2-Ar.

Arduino UNO Plus
The Alphabot2-Ar uses an Arduino UNO Plus as the process-
ing board. This board integrates all the Input/Output (I/O)
and processes the data sent by the sensors and sends com-
mands to the actuators [6].
The processor used by the Arduino UNO Plus is the
ATMEGA328P-AU. It has 32k bytes of Flash memory, 1k

byte Electrically-Erasable Programmable Read-Only Mem-
ory (EEPROM ) and 2k bytes Static Random-Access Mem-
ory (SRAM ). This board also has a built-in ADC with 8
channels as well as support for serial communication proto-
cols such as I2C and Serial Peripheral Interface (SPI), used
for communication with external modules. In order to de-
velop code to operate the Arduino board and, consequently,
the Alphabot2-Ar, the Arduino Integrated Development Envi-
ronment (IDE) was used, alongside the Arduino Language
Reference.

TLC1543 Analog-Digital Converter
Present in the Alphabot2-Ar PCB is the TLC1543 Analog-
Digital Converter. The function of this ADC is to convert
analog signals sent by the IR line detecting sensors and by
the battery (which is also connected to the ADC) into digital
ones. The TLC1543 is a 10-bit resolution ADC with 11 ana-
log input channels [14]. According to its specification man-
ual, the TLC1543 has ”three inputs and a 3-state output [chip
select (CS), input-output clock (I/O CLOCK), address input
(ADDRESS), and data output (DATA OUT)] that provide a
direct 4-wire interface to the serial port of a host processor.
(...) In addition to a high-speed A/D converter and versatile
control capability, these devices have an on-chip 14-channel
multiplexer that can select any one of 11 analog inputs ...”
[14].
The way the ADC works for the IR line detecting sensors
is as follows: A constant reference voltage of 3.3V flows
through theADC. Each of the infrared sensors sends a signal
varying from 0V (when it detects the line with the maximum
intensity) to 3.3V (when no line is detected). The ADC then
compares the voltage each sensor sends with the reference
voltage and converts the final result to a digital one. Since the
TLC1543 is a 10-bit ADC, the final converted values range
from 0 (when it detects the line with the maximum intensity)
to 1023 (when no line is detected). This value is then received
by the Arduino board. In order to access the ADC with the
Arduino board, there are 4 pins connecting the ADC to the
Arduino: CHIP SELECT (CS – Output pin), DATA OUT (In-
put pin), ADDRESS (Output pin) and CLOCK (Output pin).
A High to Low transition on the CS pin resets the internal
counters and controls and enables DATA OUT, ADDRESS,
and CLOCK [14]. DATA OUT pin outputs the 10-bit re-
sult of the previous conversion from the ADC to the Arduino
board [14]. ADDRESS pin is the pin from the ADC that re-
ceives the 4-bit address sent by the Arduino board. Both AD-
DRESS and DATA OUT operate with Most Significant Bit
(MSB) first [14]. A High to Low transition on the CLOCK
pin advances one operation cycle in the ADC. For each bit
received, processed or sent by the ADC, one operation cycle
must be started and concluded (High to Low transition in the
CLOCK pin). In the operating mode present in the laboratory
guides (fast mode - mode 3 [14]), the ADC operates with
each conversion cycle (receive address and output previous
conversion plus Analog-Digital conversion operation cycles)
taking 16 operation cycles [14].

ICR 14500 Batteries
The Alphabot2-Ar is powered by 2x ICR 14500 3.7V
800mAh rechargeable batteries connected in series to the



Alphabot2-Base PCB. This effectively doubles the voltage
provided to the system, for a total of 7.4V. However, these
batteries actually charge to 4.2V when full, so the total volt-
age when full is 8.4V (For all the calculations we will con-
sider the theoretical voltage capacity of the battery of 7.4V
instead of the actual maximum of 8.4V, due to discrepancies
between this maximum value) [9]. As the battery is drained,
the voltage of the batteries decreases till what’s called the
Safe Discharge Voltage – minimum battery voltage to ensure
the battery works properly [9]. That voltage, for this type of
battery, usually ranges between 2.75V to 3V. Since the pro-
vided batteries may present some differences, we will con-
sider the Safe Discharge Voltage as 3V [9]. This means the
combined provided voltage of the batteries must not decrease
below 6V. The battery voltage is provided, simultaneously, to
the electric motors, Arduino board and TLC1543 ADC (all
of them receive the same voltage). The two batteries (from
this point forwards only mentioned as battery) are connected
to the VIN pin of the Arduino. This port is designed to re-
ceive between 7V and 12V and then regulates this voltage to
output a consistent and constant 5V (voltage necessary for
the correct functioning of the Arduino board), through a tech-
nique called voltage divider. Voltage divider technique takes
a higher voltage and reduces it to a lower voltage by using
a pair of resistors. Depending on the values of the resistors,
the conversion can produce a higher or lower new voltage
value. This same technique is used to connect the battery to
the ADC, which allows the reading of the level of the battery
voltage.
Inserted between the ADC and the battery is a pair of 10k
Ohms resistors, as visible in [3]. According to the formula
for voltage dividers:

Vout =
Vs ∗R2

R1 +R2
(4)

where Vout corresponds to the voltage leaving the voltage di-
vider circuit, Vs corresponds to the voltage going into the
circuit and R1 and R2 stand for the two resistors placed in
the circuit, a Vs of 7.4V and an R1 and R2 of 10k Ohms cor-
responds to a Vout of 3.7V. This means that going into the
ADC is a voltage of 3.7V, when the voltage provided is 7.4V.
The ADC presents the battery voltage in the 10-bit scale of
[0; 1023]. However, the 1023 value does not equal the 8.4V
theoretical maximum voltage nor the 7.4V either. Since the
reference voltage flowing through the ADC, and that is used
to compare with the signals sent by the infrared line detect-
ing sensors, is actually 3.3V, the maximum that theADC can
convert from analog to digital is 3.3V. So, the 1023 value ac-
tually equals 3.3V. So that allows you to know that the battery
has at least 3.3V, which corresponds to 6.6V, if the voltage
dividing is undone. So this ADC allows to read the voltage
level of the battery up to 6.6V, which is enough since it is a
higher value than the safe discharge voltage of 6V (voltage at
which the batteries should be charged). Since the voltage di-
viding operation cuts the voltage flowing from the battery to
the ADC in half, the voltage provided to the ADC is, when
battery is full, 4.2V. When nominal, 7.4V, voltage is provided
to the system, the ADC only receives 3.7V. To convert the

scale from [0; 1023] to [0V; 6.6V], the formula is:

Vbattery =
ADCvalue ∗ADCreferenceV

1023
∗ 0.5 (5)

where the ADC referenceV equals 3.3, 1023 the resolu-
tion of the adcValue and 0.5 equals the voltage divider
(10000/(10000 + 10000)).

PCF8574 I/O Expander
Installed into the Alphabot2-Ar PCB is the PCF8574 8-Bit
I/O Expander. This I/O expander is used to increase the
number of I/O devices connected to the Arduino board. Con-
nected to this I/O expander are the two infrared obstacle de-
tecting sensors, the joystick and the buzzer. It is communi-
cates with the Arduino using I2C communication protocol.
To communicate with any of the I/O devices, the Arduino
must send ”a start condition, a high-to-low transition on the
SDA I/O while the SCL input is high. After the start con-
dition, the device address byte is sent, MSB first, including
the data direction bit (R/W). This device does not respond
to the general call address. After receiving the valid address
byte, this device responds with an acknowledge, a low on the
SDA I/O during the high of the acknowledge-related clock
pulse. The address inputs (A0–A2) of the slave device must
not be changed between the start and the stop conditions. The
data byte follows the address acknowledge. If the R/W bit is
high, the data from this device are the values read from the P
port. If the R/W bit is low, the data are from the master, to
be output to the P port. The data byte is followed by an ac-
knowledge sent from this device.” [10]. This means that I2C
communication with this device may be used to send data or
receive data. The only component that receives data is the
buzzer, while the two infrared sensors and the joystick only
send data back to the Arduino. To control this communica-
tion, the Wire.h library is used [7]. This library automates
many of the procedures necessary to communicate with the
device into ”simple to call” functions. In order to access the
devices, specific addresses must be used. First, the I2C ad-
dress for the expander itself must be calculated. This is done
using the table in [11]. After having the I2C address of the
expander, it now becomes necessary to know the address of
each of the devices connected to the I/O expander. To do
this, it is necessary to look to [3] and to [10]. To assemble
the address of a device, one needs simply to put the bit corre-
sponding to that device equaling 0 and the remainder equaling
1, according to Table 1.

Table 1. PCF8574 Interface Definition. [10]

Infrared Receiver
Attached to the Alphabot2-Ar PCB is an infrared receiver.
This IR receiver is used to receive commands sent by the
IR remote control. Each button of the remote control is as-
sociated with a given address code. To receive information
from the IR receiver, the library IRremote.h should be used



[8]. To identify the address for each of the buttons, it is nec-
essary to call the IrReceiver.decode() function, to see if any
IR command has been received by the IR sensor and then
save the IrReceiver.decodedIRData.command value [8]. To
unlock the receiver and allow it to receive new commands,
execute IrReceiver.resume() [8]. To test the component and
to learn how to interact with it in an Arduino environment,
the example program IR.ino was used [16, 2].

Buzzer
Connected to the PCF8574 I/O expander is a buzzer. This
buzzer bips whenever active and stops bipping once deacti-
vated. In order to access this device, the Wire.h library must
be used [7]. The buzzer’s 2 possible commands are ON and
OFF. In order to set the buzzer working, first the Wire.h li-
brary must be configured [7]. To do so, initiate the pro-
gram with Wire.begin() [7]. Then, since a transmission is
going to take place from the Arduino to the I/O expander,
the Wire.beginTransmission(device) function must be called,
where device is the address for the I/O expander (0x20) [7].
Then, to send the command, the address of the buzzer turn
on and turn off commands must be sent to the I/O expander,
via the Wire.write(message), with message being the address
(0xDF to turn on and 0xFF to turn off) [7]. After finishing the
transmission, call Wire.endTransmission() to terminate it [7].

Joystick
Also connected to the PCF8574 I/O expander is the joy-
stick. The joystick is used to interact with the robot and
corresponds to a sensor, in the sense that it transmits data
to the Arduino rather than receiving it. Using the joystick
requires the Wire.h library as well, but this time it is used
for reading rather than writing. Once again, initialization
via the Wire.begin() function must be done, but then to re-
ceive data from the expander, it is only necessary to call the
Wire.requestFrom(device, bytes) function [7]. In this call,
the device is the address of the expander (0x20) and bytes
is equal to 1 (= 8 bits), since the expander is an 8-bit one.
After making the call, using the Wire.available() function al-
lows the verification if any data was received and, if so, using
the Wire.read() functions returns the data sent back by the ex-
pander [7]. This data corresponds to which direction the joy-
stick was pressed at the time of the call of the requestFrom
function. The returned data has a similar address structure
to the data sent with the send mechanism of the Wire library
[7]. For the 8 bits of the response, each bit corresponds to
one I/O pin (P0 - P7). The bit, in the returned data, that is
set to LOW (= 0) corresponds to the direction pressed in the
joystick at the time of the call. To test the component and to
learn how to interact with it in an Arduino environment, the
example program Joystick.ino was used [16, 2].

OLED Screen
In the front of the Alphabot2-Ar PCB is a small, 0.96 inch
Organic Light Emitting Diode (OLED) two-color display,
with a resolution of 128x64. To manage the contents of the
screen, a specific external library should be used, that man-
ages the communication with the display drivers. The choice
made was the SSD1306Ascii library [13]. Since the OLED

display is connected to the Arduino via I2C bus and utilizes
the I2C communication protocol, the SSD1306Ascii library
provides a specific implementation of the library for displays
connected via I2C, the SSD1306AsciiAvrI2c.h library [13].
To use, first the address code for the display must be de-
fined. In [3], the address is defined as 0x3C. After having
defined the screen address, all that’s left to do is to create a
variable of type SSD1306AsciiAvrI2c [13]. Then, to initial-
ize the variable, in the setup() function of the Arduino, call
the oled.begin(&Adafruit128x64, OLEDI2C, OLEDRESET)
function [13]. In here, the arguments are the type of display,
the I2C address of the display and the reset pin of the display
(pin 9 of the Arduino board). To clear the display, call the
function clear() on the defined variable and to print, call the
print(message) function on the defined variable, with message
being the content to print [13]. To test the component and to
learn how to interact with it in an Arduino environment, the
example program oled.ino was used [16, 2].

HC-SR04 Ultrasonic Obstacle Detecting Sensor
The first of the sensors installed into the Alphabot2-Ar is the
HC-SR04 ultrasonic obstacle detecting sensor. This com-
ponent is plugged directly into the Arduino board, meaning
there is no need to access neither the ADC nor the I/O ex-
pander. The pins utilized are the 2 and 3. Plugged into pin
2 is the receiver sensor, also known as ECHO and plugged
into pin 3 is the emitter sensor, also known as TRIG (trigger).
The way this ultrasonic sensor works is by having the TRIG
sensor emit ultrasonic waves which are then reflected by ob-
jects and obstacles in the vicinity of the robot. The ECHO
sensor then senses the reflected sound waves. This allows,
through the measurement of how much time passed since the
first wave was emitted by the TRIG sensor and the first re-
flected wave was received by the ECHO sensor, the calcula-
tion of the distance at which an obstacle is from the robot.
The way this calculation is done is by having the following
formula:

distance =
duration ∗ 0.034

2
(6)

where the duration parameter represents the time measured
between the first wave was emitted and the first reflected wave
was detected. 0.034 is the equivalent of the speed of sound
(340m/s) in cm/microsecond. The 2 is used to divide the fi-
nal distance value by two, as the distance travelled during
the duration time frame is equivalent of the sounds wave go-
ing and coming back, meaning it travelled twice the distance,
hence the division by two. To operate this sensor in the Ar-
duino environment, it is necessary to use the digitalWrite(pin,
value) function, that can either send a LOW or HIGH value,
depending on whether the pin should be deactivated or ac-
tivated. The pin parameter should be the TRIG one. The
receiver, also known as ECHO, is activated when it detects
the reflection of these ultrasonic waves. By using the pul-
seIn(pin, state) function, the Arduino waits for the pin indi-
cated as argument to go from the state indicated as argument
to the other state. It then returns the duration in microsec-
onds. In the case of the ultrasonic sensor, the ECHO has
a HIGH state as soon as the TRIGGER begins emitting ul-
trasonic waves and that state goes to LOW as soon as the



ECHO detects an ultrasonic wave. The accuracy of the ultra-
sonic sensor is the interval [2; 400] cm. To test the com-
ponent and to learn how to interact with it in an Arduino
environment, the example programs Ultrasionc Ranging.ino,
Ultrasionc-Infrared-Obstacle-Avoidance.ino and Ultrasionc-
Obstacle-Avoidance.ino were used [16, 2].

ST188 Infrared Obstacle Detecting Sensors
The second of the installed sensors for obstacle detection are
the 2x ST188 IR obstacle detecting sensors. These sensors
are activated as soon as they detect an obstacle, either indi-
vidually or both of them simultaneously. They are both con-
nected to the PCF8574 I/O Expander, so accessing them
must be done using the Wire.h library. These sensors have,
each of them, a potentiometer associated. These potentiome-
ters are located on the underside of the Alphabot2-Base PCB
and serve to tune the sensibility of the sensor. These infrared
obstacle detecting sensors emit a signal to the Arduino when
the photo sensor, part of the infrared sensor assembly, detects
the reflected beam. To access these sensors, it is first nec-
essary to know the addresses for the sensors. After having
the addresses defined, done in a similar way to the joystick
and buzzer, since these sensors only send information and
don’t receive it, it is necessary to use the Wire.h library in
a similar way to the joystick. Using the Wire.read() functions
returns the data sent back by the expander [7]. This data cor-
responds to which sensors were active at the time of the call
of the requestFrom function. It can be either the left IR sen-
sor, the right IR sensor or both. To test the component and
to learn how to interact with it in an Arduino environment,
the example programs Infrared-Obstacle-Avoidance.ino and
Ultrasionc-Infrared-Obstacle-Avoidance.ino were used [16,
2].

ITR20001/T Infrared Line Detecting Sensors
The last set of sensors installed in the Alphabot2-Ar mobile
robot are the 5x IR line detecting sensors. They are used to
detect a color over a contrasting one. The most common use
for them is to detect a line, which guides the movement of the
robot, over a given background. These sensors work by emit-
ting a beam of infrared light, which is then reflected on the
surfaces which the beam encounters. Depending on how dark
or light the surface is, the less or more light it reflects. This
difference in the amount of reflected light is enough for the
sensor to identify a light coloured surface and dark coloured
one. This distinction is done via the values returned by the
ADC after converting the voltage sent by the sensor. These
sensors operate on a voltage of 3.3V, meaning they can send
any voltage ranging from 0 to 3.3V. TheADC then compares
the voltage each sensor sends with the reference voltage and
converts the final result to a digital one. Since the TLC1543 is
a 10-bit ADC, the final converted values range from 0 (when
it detects the line with the maximum intensity) to 1023 (when
no line is detected). This value is then received by the Ar-
duino board. However, to read the value of each sensor, an
address code for each sensor must be provided. To see which
sensor has each value, it is only necessary to analyze [3]. Ac-
cording to [14], pins A0-A4 have the address codes 0-4. After
having the address codes, all it takes to get the values in the

range of [0; 1023], is to access the ADC for each sensor, by
sending the sensor’s address to the ADC. After having the
values for each of the sensors, it is easy to understand that
the sensor which presents the lowest value and that presents
a significant decrease over the remaining sensors values’ is
the one placed closer the line. The attained values should
then be normalized to create a uniform base line and then a
weighted average should be performed, with each sensor hav-
ing a weight associated to it. This weighted average allows
for a precise determination of the robot’s position in relation
to the line. Finally, using the PID algorithm allows the robot
to adjust its speed in the smoothest and quickest possible way
to correct the error of its position, in regards to the line, to
0. An in-depth analysis of the information regarding the sen-
sor, present at [15], was also made to complete the provided
information. To test the component and to learn how to inter-
act with it in an Arduino environment, the example programs
TRSensorExample.ino and Infrared-Line-Tracking.ino were
used [16, 2].

WS2812B RGB LEDs
One other component attached to the Alphabot2-Base PCB
are the 4x WS2812B Red, Green and Blue (RGB) Light
Emitting Diode (LED)s. These LEDs are connected to the
Arduino board via pin 7 [3]. Similar to the OLED display
and the IR receiver, the LEDs must also be managed with
the help of an external library. The chosen library is the
Adafruit NeoPixel.h [1]. To utilize this library, simply cre-
ate a variable of type Adafruit NeoPixel, that has to be ini-
tialized with a call to Adafruit NeoPixel(4, PINS, NEO GRB
+ NEO KHZ800) [1]. This function takes as arguments the
number of LEDs, the pin to which they are connected and
the type of LEDs. After having initialized the variable, all
that’s necessary is to call the begin() function on the vari-
able [1]. Then, to set a given colour, simply call the function
setPixelColor(i, red, green, blue) on the created variable [1].
The arguments for this function are the number of the LED
(which in the case of the Alphabot2-Ar ranges from 0-3), the
amount of red in a scale of 0-255, the amount of green in a
scale of 0-255 and the amount of blue in a scale of 0-255. Af-
ter setting the colour for a given LED, calling the function
show() on the variable makes the LED emit the chosen color
[1]. To test the component and to learn how to interact with it
in an Arduino environment, the example program W2812.ino
was used [16, 2].

N20 Micro Gear Motors
Finally, to conclude this robot analysis chapter, the motors are
introduced. The Alphabot2-Ar possesses 2x N20 Micro Gear
DC Motors connected to the Alphabot2-Base PCB. These
motors are rated for 6V and can handle up to 600RPM. Con-
nected to each motor is a rubber wheel with 42mm in di-
ameter and 19mm width. Similar to the Mona robot used
in [17], so too in the Alphabot2-Ar ”The rotational speed
for each motor is controlled individually using pulse-width
modulation (PWM). Each motor is controlled separately by
an H-bridge DC motor driver, which requires approximately
74 mW to operate. As the motors are directly powered by
the on-board battery, any voltage drop impacts the speed of



the robot.” [17]. To calculate the theoretical maximum speed
of the robot, one needs only to consider that the maximum
revolutions per minute the motor can handle is 600, which
is equivalent to 10 revolutions per second. With this fact
in mind, one needs only to know the distance equivalent to
one revolution, multiply it by 10 and the speed in units/s is
achieved. Bearing in mind the fact that the wheels have 42mm
= 4.2cm in diameter, it is easy to calculate the perimeter of the
wheels. Using the formula:

perimeter = π ∗ diameter (7)

the diameter can be calculated to be approximately 13.2cm.
This means that, one revolution equals 13.2cm and 10 revolu-
tions equal 132cm. This means that the theoretical maximum
speed, without the robot and with the same tires, in m/s, is
1.32m/s. The motors connect to the Arduino board via the
pins A0, A1, A2 and A3, alongside pins 5 and 6 [3]. The pins
A0 and A1 connect the forward and backward circuit, respec-
tively, for the left motor [3]. The pins A2 and A3 connect
the backward and forward circuit, respectively, for the right
motor [3]. Pins 5 and 6 are used for the Pulse Width Mod-
ulation (PWM ) [12] speed pin, for the right and left mo-
tors respectively [3]. To make the robot move forward, it is
only necessary to call the digitalWrite(PIN, HIGH) function
to the A0 and A3 pins, with the value HIGH. This will en-
sure the forward circuit is closed and the motors are moving
forward. To make the robot move backwards, simply close
the A1 and A2 pins, by calling the digitalWrite(PIN, HIGH)
function on them and the digitalWrite(PIN, LOW) on pins A0
and A3. To modulate the speed, it is only necessary to call the
analogWrite(PIN, SPEED) function to pins 5 and 6. To test
the component and to learn how to interact with it in an Ar-
duino environment, the example program Run Test.ino was
used [16, 2].

IMPLEMENTATION

Laboratory Guide 0
The first laboratory guide is an introductory guide that serves
as assembly instructions for the Alphabot2-Ar. It includes a
description, with photographs, of every component present in
the box of the mobile robot. It features a diagram of the com-
ponents present in both the Alphabot2-Base and Alphabot2-
Ar PCBs. It also features a diagram of the components of the
Arduino UNO Plus board. After introducing all the compo-
nents, assembly instructions with pictures are given. After the
instructions, pictures of the assembled robot are shown. In the
end of the guide, there are some safety recommendations for
the students to mind when dealing with this robot and when
assembling and removing components. Also included in the
guide are some references used when the compilation of the
guide was made.

Laboratory Guide 1
The laboratory guide 1 is the first full-length laboratory guide
that the students will have to complete. In this lab, students

make use of the 5 infrared line sensors to make the robot fol-
low a black line, placed over a white surface. Before the ac-
tual work, they are given a theoretical introduction to the con-
cepts needed to have the robot follow the line. A file contain-
ing the base code is provided, upon which the work should
be developed. The theoretical introduction approaches how
the ADC works and how to access it (Since the 5 IR line
detecting sensors are connected to the ADC), data normal-
ization (where they are introduced to the sensor calibration),
weighted average and the PID algorithm (which allows stu-
dents to calculate the speed to provide to each wheel in order
for the robot to recenter itself to the line in the smoothest way
possible). The practical work revolves around implementing
incomplete or missing functions from the provided base code
file (calibrate(), readLine() and pidAlgorithm()). It is also
asked to the students to fine tune the PID algorithm constant
parameters. Afterwards, two theoretical questions are asked,
one regarding the main loop function and the process behind
the calculation for the final speed value for each of the motors
and the other one regarding the readADC(address) function,
how the access to theADC works, what each of the for loops
does, how is the address value being decomposed into binary
and sent to the ADC and how the value received is being
composed into an integer.

Laboratory Guide 2
The second complete laboratory guide that the students are
presented with is the laboratory guide 2. After having the
robot successfully go around the racetrack, it is now asked to
the students to prevent the robot from colliding into obstacles
that may be present in the track. The robot should decrease
its speed as it closes into the obstacle and if it gets too close
to the obstacle, make a complete stop. To do this, students
will use the ultrasonic sensor and infrared obstacle detect-
ing sensors to prevent the robot from crashing into obstacles
that are in front of it. The ultrasonic sensor should make the
robot slow down once an object is detected that is closer to the
robot than a predefined threshold distance. The two infrared
obstacle detecting sensors, located at the front of the robot,
should stop the robot when they detect an obstacle. For this
work to be carried on, a theoretical introduction is given, once
again. The theoretical introduction approaches I2C commu-
nications (necessary since the 2 IR obstacle detecting sensors
are connected to the Arduino via the I/O expander, that is
connected to the Arduino board via an I2C bus and commu-
nicates via the I2C communication protocol), how the I/O
expander works and how distance calculation is made (using
the digitalWrite and pulseIn functions). The practical work
revolves around implementing incomplete or missing func-
tions from the provided base code file (obstacleDetectedIn-
fraRed(), distanceMeasureUltraSound() and loop()). After-
wards, some theoretical questions are asked. The first regard-
ing the minimum speed value for the robot to move and why
is that value different than 0. The second one regards the fact
that there are potentiometers for the infrared sensors and why
do the sensors react differently to obstacles, at the same dis-
tance, when the potentiometers’ value is changed. The third
one asks if it is possible, with the robot assembled as is, to
measure distances using the infrared obstacle detecting sen-



sors and to explain the reasoning. The next two questions
require some practical work, as they ask students to present
the values (SPEED, KP, KI and KD) that correspond to the
maximum stable speed at which the robot can navigate the
track, while also being able to detect obstacles and reducing
speed before crashing into the obstacle. The other question
asks to present the value that corresponds to the lowest possi-
ble distance at which the robot still can reduce its speed and
have the infrared sensors stop the robot completely before it
crashes into the obstacle, for different presented speeds.

Laboratory Guide 3
The third and final laboratory guide is the laboratory guide
3. This laboratory guide develops, once again, on the so-
lution achieved on the previous laboratory work. The goal
of this laboratory work is to have the mobile robot inter-
act with its peripherals. The list of peripherals includes the
OLED display, the buzzer, the joystick, the LEDs and the
infrared remote control. For the implementation to be well
done, the robot must go around the track with the same pre-
cision as the two previous laboratory works and the same ob-
stacle detection and avoidance capabilities from the labora-
tory guide 2, while at the same time being able to receive
commands via the joystick and the remote control and com-
municating in real time with the OLED display, the LEDs
and the buzzer. In this laboratory, the OLED display is
used to display the battery status, view distances in the dis-
tance measurement mode and display the current values for
the robot’s speed, distance, kp, ki and kd parameters. The
joystick is used to enable and disable the buzzer (similar to
a car’s horn), the distance measurement mode, the LEDs
and the display of the battery status. Finally, the infrared re-
mote control will serve for a number of purposes: change
the color of the LEDs (between red, green and blue); enable
and disable the LEDs; increase, decrease and reset the dis-
tance parameter; increase, decrease and reset the speed pa-
rameter; display the current speed, distance, kp, ki and kd
parameters; store 5 different presets for the speed, kp, ki and
kd parameters for the robot to change in real time; reset the
speed, kp, ki and kd parameters to their default values; enable
the buzzer (similar to a car’s horn); display the battery sta-
tus and enable and disable the distance measurement mode.
The theoretical introduction approaches the use of external li-
braries (Wire.h, SSD1306Ascii, Adafruit NeoPixel.h and IR-
remote.h), battery calculation procedures (both the voltage of
the batteries as well as the voltage flowing through the Ar-
duino) and the delay() and millis() Arduino functions (used in
some functions of the code solution). The practical work re-
volves around implementing incomplete or missing functions
from the provided base code file (auto-calibration and receive
commands via the joystick and the infrared remote control).
Afterwards, some theoretical questions are asked. The first
regarding the content of the calculateArduinoVoltage() func-
tion and the logic behind it. The second one regarding the fact
that some of the pins of the Arduino need the digitalWrite()
function and others the analogWrite() function and then they
are asked to explain the differences between the functions, the
pins and relate them to the concept of Pulse Width Modula-
tion [12]. The third one asks the students to compete for the

prize of best programmed and configured robot. To do this,
they should race their solutions. They may use the remote
control to alter the behavior of the robot and use whatever
speed, distance, kp, ki and kd values the team believes is best.

RESULTS
Since the laboratory guide 3 solution may be considered as
a complete platform program for use of the Alphabot2-Ar
and all its components, it made sense to evaluate this solu-
tion and this solution alone in terms of its performance. If
it behaves well, then the other two previous laboratory solu-
tions will behave well as well. If it behaves poorly on tasks
exclusive to this laboratory solution and well on the common
tasks, then the other two solutions also should behave well
on these tasks. If it performs poorly all around, then so do
the previous 2 solutions, corresponding to the solutions to the
previous 2 laboratory guides.

Evaluation Metrics
The following measuring metrics that will evaluate the solu-
tion and its effectiveness:
• Time taken to complete a lap
• Success at preventing a crash into the other robot
• Being able to complete a set of laps without derailing the
track
For the time taken to complete a lap, the evaluation will
consist on the improvement, in terms of lap time, when the
SPEED parameter is increased (and subsequently the KP, KI
and KD values are changed as well). The measurements are
made on both tracks, as to understand the solution’s ability to
perform with a consistent speed value across tracks that push
different aspects of the robot to the limit.
Then, to evaluate crash avoidance performance, the solution
must reduce its speed upon detecting an obstacle with the ul-
trasonic sensor and the robot must stop completely when the
IR obstacle detecting sensor detects any obstacle. It must
demonstrate clear efficacy at slowing down, to a complete
stop if necessary, in order to prevent the crash.
As for the other metric, which states that the robot is able to
complete a set of laps without derailing the track, the robot
must present an accurate line path, without leaving it, to be
considered appropriate. This must occur for all the speeds
tested for lap times. To do so a robot must never deviate from
the line and if it does, it must be able to find the track again
and resume the track course (for this to be possible, the de-
viation must be a small one). In the end, for the evaluation
metric of time taken to complete a lap to have a positive re-
sult, the lap times around the track must decrease as the speed
parameters increase till the theoretical PID top speed value
is reached.

Data Gathering
To gather data regarding the evaluation metrics, two designed
racetracks were used, each on a 2m x 2m white paper sheet.
For each racetrack, a set of 10 laps were run for time mea-
surements as well as another set of 10 laps for obstacle avoid-
ance. This happened for 6 different speed parameters. These
parameters include the value of the constants SPEED, KP,
KI and KD for the laboratory guide 3 code solution. For



Figure 1. Racetrack 1.

Figure 2. Racetrack 2.

each SPEED value, the parameters were calculated using the
method defined in the laboratory guide 0. For each speed
value, the first 10 laps of each track were timed in order to
have an average lap time. Deviations from the track were
counted but no obstacle detection was tested. After these 10
laps, another 10 took place where times were not being mea-
sured but instead the obstacle detection and crash avoidance
systems were being evaluated, for each of the speeds. To do
this, the tracks were divided into 10 different sections and the
obstacle, consisting of a small box the size of the Alphabot2-
Ar, was placed in the middle of each section, consecutively.
Each time the robot crashed into the box was counted and
every deviation of the line was also counted. In the end the
total of deviations (that were not automatically recovered by
the robot) from the 20 laps was divided by two in order to
present an average value for 10 laps. This procedure was re-
peated on both tracks for each of the 6 speed configurations.
Between each speed parameter change, the robot was fully
recharged. The 6 speed configurations are present in Table 2.

Testing Results

Speed KP KI KD
50 0.5 0.005 6
75 0.6 0.005 6
100 0.8 0.0001 8
115 1.3 0.0005 15
120 1.3 0.0005 15
125 1.5 0.001 20

Table 2. Alphabot2-Ar speed configurations used in this work.

The following tables present the measurement results regard-
ing the metrics considered for the effectiveness of the solu-
tion, for each of the tracks. Bear in mind that, when referring
to recovered derailings, the situation considered is when the
robot is, in its entirety, not above the line and manages to re-
turn to the line. No unrecovered derailings were detected in
any of the tested speeds.

Speed Avg. Lap Time Crashes Into Box Derrailings
50 19.145s 0 0
75 12.679s 0 0
100 9.492s 0 0
115 8.755s 0 0.5
120 8.559s 0 0
125 8.497s 0 0

Table 3. Measurement results for the racetrack 1, ”8”.

Speed Avg. Lap Time Crashes Into Box Derrailings
50 30.777s 0 0
75 20.355s 0 0
100 16.203s 0 0
115 14.612s 0 0
120 14.423s 0 1.5
125 14.331s 0 2

Table 4. Measurement results for the racetrack 2, ”Professional”.

The results presented in Tables 3 and 4 contain values mea-
sured over the course of 10 laps, with the derrailing param-
eters being halved, since it was measured over 20 laps. The
configured testing speeds only go till 125, because from the
speeds 115 to 125, there was no noticeable difference in lap
times, both in racetrack 1 and 2. Due to this fact, it was
possible to conclude that the PID algorithm had reached its
speed limit when it came to the maximum speed possible to
go around the corners. This means that the speed decreased
to the same amount to go around the corners but also that, for
the straights, the PID algorithm was also reducing the speed.
This would happen because, for these high speed tests, every
tiny curve in the tape for the straight lines would be followed
by the mobile robot, causing the robot to wiggle too much
and lose stability. To prevent this, the PID algorithm would
reduce the robot’s speed so that it could go around the track
in a stable way. This also means that the speed was reduced,
in speeds 115, 120 and 125, to similar speeds all around the
track. Hence why the time results were so close between



them. For this reason, it was considered that 125 was the
maximum speed configuration to be tested. Possible higher
speed configurations can be determined and tested and could,
possibly, present a stable behavior around the track and im-
prove the lap times presented by speed 125. However, since
that was not the goal when testing the solution, that work is
proposed to be done as a future work or by the students work-
ing with the laboratory guides provided by this work. The
important thing to keep in mind is that these values are mere
examples and many more different ones can be developed and
tested. These are tested values, though. This means that these
are values that are assured to give the robot a fast, stable and
precise behavior around racetracks.

CONCLUSION
After the development of this work, several conclusions were
reached. Starting with the first one, it is believed that this
robot presents a suitable platform for educational use in a
classroom environment. The analysis made to the compo-
nents, the measured tests, the similarities between this and
other platforms used for university introductory robot class
teaching and the open-source and pedagogic nature of the
components, specially the Arduino board, make this robot the
perfect choice for the desired intent. The second conclusion
reached is the fact that the developed laboratory guides are
on par with the curriculum for theACIC course and the con-
tents taught and the way the laboratory sessions develop is
similar to the laboratory sessions and course curriculums for
robotic and embedded systems courses in reference univer-
sities. The analysis of several papers regarding how intro-
ductory robotics courses were structured in top universities
showed a deep level of similarities with not only the ACIC
course but also with the way the laboratory classes were laid
out in the laboratory guides. To contribute to this similar-
ity, there is also the fact that the laboratory guides were only
developed after the analysis of the papers, as to make sure
they followed the standard norm when it came to educational
activities to make students interact with mobile robots. Af-
ter having analyzing the achieved results, the final conclusion
reached is that the programmed solution is suitable to be used
as benchmark for evaluation and comparison reasons. It is
a solution that is ready to be used for this particular mobile
robot. This solution guarantees, after the multiple testing ses-
sions, a safe, reliable, accurate and fast functioning of the
mobile robot around racetracks, with easy to adjust parame-
ters and adaptable behavior for any track consisting in a line
drawn over a contrasting background, while interacting with
all the components of the robot.
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