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We study the non-equilibrium dynamics of one-dimensional quantum systems, generated by ran-
dom unitary circuits, i.e. random unitary gates acting on nearest neighbour bonds. While studying
different circuit models, including those formed by Haar-distributed unitaries and Clifford gates,
we focus on circuits proxy to random free fermion evolution. In particular, we quantify informa-
tion scrambling in the form of operator spreading for random free fermion dynamics and study
the crossover from integrable-like to chaotic dynamics within random circuits. We present an ex-
act calculation of time-ordered and out-of-time-ordered correlators measuring operator spreading
for free fermion dynamics. Within this, we consider three distinct cases: the random circuit with
spatio-temporal disorder (i) with and (ii) without particle number conservation and (iii) the particle
non-conserving case with purely temporal disorder. In all three cases, temporal disorder causes
diffusive operator spreading and ∼

√
t entanglement growth. This is in sharp contrast to Anderson

localization for the case of static disorder and to the ballistic behaviour observed in both the clean
case of Hamiltonian evolution and in fully random unitary quantum circuits. Moreover, we perform
a numerical study of the entangling properties of different circuits, with emphasis on the entangle-
ment entropy. This numerical analysis is extended to studying the effects of adding occasional non
free fermion gates (i.e. intruders) amidst free fermion circuits. We observe that this leads the initial
integrable-like dynamics to become chaotic and obtain bounds on the number of intruders needed
to reach the chaotic regime, which is extensive with system size.

Keywords: Random unitary circuits, out-of-time-order correlator (OTOC), diffusive operator spreading,
entanglement, quantum chaos

I. INTRODUCTION

In nature, out-of-equilibrium phenomena are the rule
and, in classical dynamics, they have been widely de-
scribed using the theory of dynamical systems. In quan-
tum physics though, the focus has been on the equi-
librium properties of physical systems while their non-
equilibrium dynamics has remained largely unaddressed.
Nowadays, to understand the nature of quantum dynam-
ics in many-body interacting systems far from equilib-
rium is precisely one of the central issues in physics.

Away from equilibrium, phenomena increase in com-
plexity such that traditional many-body tools like mean-
field and perturbative techniques do not apply. Removed
from the sanctuary of linear response theory, one must of-
ten resort to numerical simulations, but the exponential
scaling of Hilbert space dimension typically limits these
to small system sizes. Even so, huge progress has been
made over recent years driven partly by experiments on
quantum simulators [1–4], numerical developments and
occasional exact calculations. Much of this progress is
associated to studying thermalization and many-body lo-
calization in quenched systems [5–9]. Moreover, the in-
terest in features of non-equilibrium dynamics such as en-
tanglement growth and information scrambling extends
to the fields of quantum technologies and information −
where the real time manipulation of interacting quan-
tum systems is necessary to implement a quantum com-
puter and entanglement manipulation is the underlying
resource in designing efficient quantum algorithms [10] −
and to high-energy physics − when studying the scram-
bling of information in black holes [11–13].

Random unitary circuits arise as one of the simplest

and most flexible models that capture universal features
in many-body dynamics, and have been intensively stud-
ied in the last few years [14–19] By mimicking time evo-
lution by applying local random unitary gates to some
underlying degrees of freedom, these allow the study of
the interplay between unitarity and locality in the ab-
sence of symmetries and conservation laws. Due to the
lack of much structure, these models should provide a
coarse-grained description of local unitary dynamics, in-
dependent of the system’s microscopic details. Although
Hamiltonian dynamics and energy conservation are sac-
rificed, averaging over random unitary circuits respecting
the symmetries of some Hamiltonian system is expected
to produce results extendible to the Hamiltonian system
itself. Furthermore, these circuits provide an ideal setting
to perform both numerical and theoretical calculations
of measures of information spreading and entanglement
which characterize out-of-equilibrium time evolution.
Operator spreading and OTOC. In such circuit mod-
els, the spreading of operators can be measured by the
degree to which spatially separated local operators com-
mute after time evolution:

C(r, t) ≡ 1
2tr
(
ρ [O0(t),Or]† [O0(t),Or]

)
, (1)

where Or is an operator localized at position r [4, 12,
13, 15–22]. The importance attached to the OTOC in
random unitary circuits is that it is thought to pro-
vide a tractable instance of the physics of non-integrable
many-body interacting systems, tied to thermalization
and the scrambling of quantum information. Expand-
ing C = C1 − C2 results in a time ordered correlator
C1(r, t) = 〈O2

0(t)O2
r〉 (TOC) and an out-of-time-ordered
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correlator C2(r, t) = 〈O0(t)OrO0(t)Or〉 (OTOC), which
behaves non-trivially. The OTOC is known to exhibit
ballistic spreading and KPZ growth at the light cone in-
terface in the simplest variant of random circuit models
[15, 16] and the dynamics can be mapped to a biased
random walk. In the presence of a conserved charge, this
picture is modified owing to the diffusion of the conserved
charges [17, 18]. Thus, one finds there is a ballistic front
that itself spreads diffusively.

In addition, an exponential growth of the OTOC with
a Lyapunov type exponent is thought to signal chaos [22].
Studies of information scrambling in black holes have
established an upper bound for this exponent [12, 13],
which is saturated in black holes and chaotic systems
such as the Sachdev-Ye-Kitaev (SYK) model [23, 24].
Entanglement entropy. Another strength of random
unitary circuits is in capturing entanglement growth and
its saturation. Entanglement corresponds to quantum
correlations without a classical counterpart. An isolated
bipartition of a quantum system into subsystems A and
Ā is entangled if it cannot be written as a product state
|ψ〉 = |φA〉 ⊗ |ϕĀ〉, i.e. its subsystems are not inde-
pendent. This is often measured by the entanglement
entropy (EE), i.e. the von Neumann entropy of the re-
duced density matrix ρA, S = − tr(ρA log ρA). This is
zero if A is in a pure state and higher than zero if the
state is mixed. In particular, the entanglement entropy of
half of the system for |ψ〉 averaged over all random pure
state is SPage = L log(2)/2 − 1/2 (in the large L limit,
with L the system size and dimHA = 2L/2) [25], which is
lower than the maximum allowed Smax = L log(2)/2. For
integrable (free or interacting) 1D systems and rational
conformal field theories, the linear entanglement growth
following a quench (i.e. the entanglement tsunami) can
be understood in terms of spreading quasiparticles [26].
In numerical simulations using random unitary circuits
[14] it was observed that this linear growth prior to satu-
ration to SPage is common to chaotic systems, for which
the quasiparticle explanation does not hold. Instead, the
EE is given by the surface of the minimal space-time
membrane separating the two subsystems.

The typical linear entanglement growth prior to sat-
uration meets some exceptions. In the presence of con-
served charges, there is evidence that the Rényi entropy
S(2) = − log trρ2

A grows diffusively with ∼
√
t, being

qualitatively different from the linear growth of the von
Neumann entropy [19, 27, 28]. In many-body localized
(MBL) systems, the EE grows logarithmically: S ∼ log t
[29, 30]. While for clean free fermion systems the quasi-
particle picture and ensuing entanglement tsunami hold
[26], for noisy free fermions there is evidence of diffu-
sive growth, S ∼

√
t [14, 31, 32]. Further evidence of

the peculiar diffusive dynamical features of noisy free
fermions is observed in the large deviation statistics of
quantum expectation values and correlation functions
[33, 34] and in the magnetization dynamics of the trans-
verse field Ising model that maps to a free fermion prob-
lem [31, 35, 36].

Quantum chaos. Quantities such as the OTOC and
entanglement measures should be able to distinguish be-
tween chaotic (usually highly correlated interacting sys-
tems) or non-chaotic (i.e. integrable) systems. However,
for quantum systems, chaos is ill-defined; some notions
of integrability are associated to classical chaos, includ-
ing the amount of conserved quantities present and the
existence of analytical solutions [37]. Without a stan-
dard definition, chaos is typically identified by observ-
ables serving as probes: e.g. the statistics of energy level
spacings is conjectured to be Wigner-Dyson (W-D) dis-
tributed for chaotic systems and Poisson distributed for
integrable-like systems.

Within the framework of random unitary circuits, the
concepts of circuit complexity and pseudorandomness re-
late to chaos. The complexity of random circuits is mea-
sured by the notion of t-design, i.e. a subset of the uni-
tary group U(N) that replicates the statistics of the first
tth moments of the Haar measure [38], i.e. the set X of
N ×N unitary matrices is a t-design if

1
|X|

∑
U∈X

U⊗t ⊗ (U?)⊗t =
∫

U(N)
U⊗t ⊗ (U?)⊗tdU, (2)

with dU the Haar measure. In essence, a t-design identi-
fies to what extent an ensemble of operators behaves like
the uniform distribution on the unitary group. Chaotic
systems such as black holes [11] can be well described
by random models, revealing a strong connection be-
tween chaos and randomness. Furthermore, OTOCs are
both a measure of chaos and circuit complexity: 2t-point
OTOCs are probes of t-designs [39]. Analogously, Rényi
entropies averaged over designs of the same order are sat-
urated to the expected chaotic value [40]. These quanti-
ties should help clarifying the gap existing between com-
plete randomization (∞-design) and scrambling: the first
implies the latter but the contrary is not true, and the
latter should signal chaos.

Despite the great progress in the field of quantum dy-
namics, a systematic understanding of non-equilibrium
phenomena is still lacking. In this work, we use random
unitary circuits as toy models for the dynamics of differ-
ent classes of circuits. We mainly study free fermion (FF)
circuits, which first appeared as classically simulatable
matchgate circuits [41], later identified as a model of free
fermions in 1D [42]. Specifically, we establish through an
exact calculation the diffusive behavior of C(r, t) for three
distinct instances of FF evolution (Section III): a parti-
cle conserving spatio-temporal random circuit (C-ST), its
generalization to a non particle conserving process (NC-
ST), and a spatially homogeneous case where randomness
appears only in the time direction (NC-T). We also re-
fer to numerical results for a non-conserving circuit with
quenched spatial disorder (NC-S) that Anderson local-
izes. Besides, we review the entangling properties of not
only FF circuits, but also of Haar-distributed or generic
unitary (GU) and Clifford (CL) circuits (Section IV).
While GU circuits mimic universal/chaotic dynamics, FF
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and CL circuits are integrable-like, with the latter repro-
ducing some features of chaotic dynamics while being
classically simulatable. Finally, we obtain new results on
the doping of FF circuits and the resulting crossover from
integrable-like to chaotic dynamics, estimating bounds
for the number of intruders necessary to reach chaos (Sec-
tion V).

II. METHODS

Our system consists of a chain of L qubits (i.e.
dimHlocal = d = 2) realized either as spins-1/2 for GU
and CL dynamics or spinless fermions for FF dynamics,
evolved by applying a random unitary circuit. For GU,
CL and doped FF dynamics, we must work in the many-
body basis, explicitly evolving the wave function with a
2L×2L circuit (built out of d2×d2 unitaries). From this,
we construct the 2L/2 × 2L/2 reduced density matrix ρA
by tracing out half of the system we then diagonalize and
then we use it to compute several observables. The ex-
ponential scaling of dimH = 2L/2 limits our numerical
simulations to L ≤ 16. However, being non-interacting,
free fermions can also be described in the single parti-
cle basis such that the mean value of quadratic observ-
ables O = 1/2A†OA is given by 〈O(t)〉 = −1/2 tr(Oχ(t))
(in particular, S(t) = − tr(χ(t) logχ(t))) with A =
(a0, . . . , aL−1, a

†
0, . . . , a

†
L−1)T the Nambu vector. That

is, observables can be computed from the knowledge of
the 2L × 2L correlation matrix χ(t) = e−iHtχeiHt with
χ = 〈AA†〉, which we evolve with a 2L × 2L random
circuit constructed from local 2d × 2d gates. This poly-
nomial scaling with L allows us to probe much higher
Ls. Let us specify the initial states, the unitaries used to
built each circuit and the process of doping a circuit.
Initial state. The system is initialized in a product state
|ψ0〉⊗ · · ·⊗ |ψL−1〉. For FF dynamics, we have |Ψ1〉 with
each |ψj〉 randomly chosen to be either |0〉 or |1〉 such

 

FIG. 1. Quantum circuit acting on L sites (horizontal axis).
At each time step (vertical axis), unitaries ur,r+1 are chosen
randomly from some set and applied to neighbouring sites r
and r + 1. At integer and half-integer time steps, these are
respectively applied to even (2R, 2R + 1) and odd (2R, 2R +
1) pairs of sites, with R = 0, . . . , L/2 − 1. Due to periodic
boundary conditions, the sites are modulo L.

that the system is half-filled, i.e.
∑L−1
j=0 nj =

∑L−1
j=0 (σzj +

1)/2 = L/2, with nj the particle number at site j and
σz the Pauli operator. For GU and CL dynamics, the
initial state is |Ψ2〉 with |ψj〉 = cos θj |0〉 + eiφj sin θj |1〉
(j = 0, . . . , L− 1), with θj and φj random real numbers
in [0, 2π). In the single particle picture for FF, we work
instead with the correlation matrix initialized in χ =
diag (1 − n1, . . . , 1 − nL, n1, . . . , nL) with (n1, . . . , nL) a
random array of 0 and 1 such that

∑L−1
j=0 nj = L/2.

Random unitary circuits. The unitary circuit acts on
a chain of L sites (r = 0, ..., L− 1) and periodic bound-
ary conditions as a discrete time protocol, following the
brick wall pattern shown in Fig. 1. In the many-body
picture, a time step corresponds to the action of the uni-
tary operation U = UevenUodd, obtained by the successive
application of the half-steps Ueven =

⊗L/2−1
R=0 U2R,2R+1

and Uodd =
⊗L/2−1

R=0 U2R−1,2R. Here, Ur,r+1 is a random
unitary acting nontrivially on the local 4-dimensional
Hilbert space of sites r and r+1. Random unitary circuits
built using two-site unitaries respecting different symme-
tries lead to different dynamics: GU, CL and FF (which
includes NC-ST, C-ST, NC-T and NC-S). For GU evolu-
tion, Ur,r+1 are sampled over U(4) according to the Haar-
measure [14], which can be done using Python’s algo-
rithm scrip.stats.unitary_group.rvs(N) [43]. The
Clifford group is generated by {CNOTL,H,P} [44], i.e.
the two-site controlled NOT gate, CNOTL (which flips
the second bit if the first one is 1), the single-site
Hadamard, H (a rotation of π on the Bloch sphere
around the (1, 0, 1) axis), and the single-site phase gate,
P (which adds a phase eiπ/4 if the bit is 1). Thus, for
CL evolution we consider Ur,r+1 = C · (B ⊗ A), with
A and B randomly chosen from {12,H,P} and C from
{14,CNOTL,CNOTR} (to increase the generation of en-
tanglement, we included the CNOT with the control bit
on the right, i.e. CNOTR).

For FF dynamics, the evolution operator must leave
invariant the algebra of single-particle fermionic cre-
ation and annihilation operators (a†r and ar) [41,
42], i.e. U†r,r+1ArUr,r+1 = ur,r+1Ar, where Ar =
(ar, ar+1, a

†
r, a
†
r+1)T and ur,r+1 is a 4× 4 unitary matrix

respecting particle-hole (PH) symmetry, i.e. τ1uTr,r+1τ1 =
u†r,r+1, with τ1 a Pauli matrix acting on Nambu space.
These single-particle operators obeying PH symme-
try can be realized as ur,r+1 = V †OV , with V =
1/
√

2
(

1 1
−i1 i1

)
and O a Haar-distributed orthogonal ma-

trix, which can be obtained using Python’s algorithm
scipy.stats.unitary_ortho.rvs(4) [43]. The gates
can be translated to the many body Ur,r+1 [41, 42] using
the Wigner-Jordan transformation [45]. While for NC-
ST each ur,r+1 is randomly generated, for NC-T at each
time step the same unitary is applied to all pairs of sites,
i.e. ur,r+1 = u, and for C-ST ur,r+1 = vr,r+1 ⊕ v∗r,r+1,
with vr,r+1 a 2× 2 Haar-distributed unitary matrix.
Doping. Doping is understood as the application of oc-
casional gates belonging to a different set (i.e. intruder
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FIG. 2. Starting from an initial product state, the main FF
circuits U,U ′, . . . built using two-site unitaries, as shown in
Fig. 1, are interleaved with two-site intruders UI , U ′I , . . . ap-
plied to randomly chosen pairs of sites. The main circuits
have enough depth ∆t such that the system stabilizes (i.e. S
plateaus) before applying the next intruder

gates) amidst some underlying dynamics. In particular,
an initial state is evolved by applying a random quan-
tum circuit with depth ∆t (i.e. with ∆t bilayers) built as
usual with two-site FF gates; after the system stabilizes,
a two-site non free fermion gate is applied to a randomly
chosen pair of sites. This procedure is repeated NI times,
as seen in Fig. 2. We average over several realizations.

We consider as intruders: random Haar-distributed
unitary gates ∈ U(4) (GU) and a fixed CL gate given
by CNOTL · (H⊗ 12) (CL). In the spirit of studying the
simplest extension of FF to an interacting model, we also
consider ZZr,r+1 = exp(−iπ4σ

z
r⊗σzr+1) (ZZπ/4 intruders),

which account for terms of the type a†rara
†
r+1ar+1. Be-

sides, we consider the particle number conserving case
analogous to FF circuits (CFF) injected with GU in-
truders. Conserving GU (CGU) unitaries are UC =
eiq0⊕Q1⊕eiq2 , with q0 and q2 random numbers in [0, 2π)
and Q1 a Haar-distributed 2× 2 unitary matrix.

The different types of dynamics are labelled as ‘main
circuit : intruders’, e.g. FF : GU stands for FF circuits
doped with GU gates. Occasionally, we identify the ini-
tial state through a subscript, e.g. FF|Ψ1〉.

III. OPERATOR SPREADING AND OTOC

An analytical expression for the OTOC averaged over
disorder for evolution under generic unitary circuits was
obtained by Nahum et al. in Ref. [15]. We present
equivalent analytical results for three instances of free
fermion evolution: C-ST, NC-ST and NC-T. The time-
ordered density-density correlator 〈O0(t)Or〉 becomes
trivial when averaged over temporal disorder [46], but
C(r, t), given by (1), remains non-trivial upon averag-
ing. We consider an average over separable initial states,
which is equivalent to taking ρ ∝ 1 in (1), i.e. the infinite
temperature ensemble. In the following, we shall consider
quadratic observables Or = 1/2A†OrA where Or is a lo-
cal single-particle operator. The computation of C(r, t)
for free fermions can be brought into a form where the
trace need only be performed over 2L×2Lmatrices rather
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FIG. 3. (a) and (b) Exact C1(r, t) and C2(r, t) for a sys-
tem with 100 sites, for NC-ST (and NC-T) evolution. The
black curves envelop the σ(t) and 2σ(t), with σ(t) =

√
2t

for C1 and with σ(t) =
√
t for C2. (c) Rescaled TOC (left)

and OTOC (right), i.e. C1(r, t)σ(t)/A and C2(r, t)σ(t)/A(t)
(with A the normalization), as a function of (r − µ)/σ(t) for
t ∈ {4, 50, 100} and for NC-ST (top), CS-T (middle) and
NC-T (bottom). Full lines correspond to exact calculations
(shown in (a) and (b) for NC-ST) and the color filled region
to simulations including an average over 4000 disorder real-
izations, starting from a random product state with particle
number fixed to L/2. Both collapse to the continuum limit
solution, i.e. g(r, t) = 1/(

√
2π) exp[−(r − µ)2/(2σ2(t))]. For

C1(r, t), A = 2 and σ(t) =
√

2t for all cases; for C2(r, t),
σ(t) =

√
t for all cases, A(t) = 1/(2

√
2πt) for NC-ST and

NC-T and A(t) = 2/(
√

2πt) for C-ST. The deviation µ = 1/2
centers C1 and C2 around r = 0.

than over the entire Hilbert space. One can show that the
many-body correlator can be written in terms of single-
body quantities as C(r, t) = 1/23[C1(r, t) − C2(r, t)],
where

C1(r, t) = tr
[
O2

0(t)O2
r

]
, (3)

C2(r, t) = tr [O0(t)OrO0(t)Or] , (4)

and O(t) = UO(t − 1)U†. The general relation between
the single particle and many-body TOC and OTOC is
given in Ref. [46].
Numerics of TOC and OTOC. The TOC (C1) and
OTOC (C2) may now be simulated efficiently by generat-
ing local pseudo-random gates ur,r+1, as described in Sec-
tion II, and averaging the result over many realizations
of the time evolution. Results for L = 100 are shown
in Fig. 3(c) for a symmetrized particle number operator
Or = 1/2(a†rar − ara†r) = a†rar − 1/2. In contrast to the
ballistic spreading seen in Haar-random circuits, C(r, t)
diffuses for random free fermions. This can be seen most
clearly in Fig. 3(c) where C1 σ(t)/A and C2 σ(t)/A(t) are
shown to collapse to a Gaussian with standard deviation
growing respectively with

√
2t and

√
t at multiple fixed

times, with the horizontal axis rescaled to (r − µ)/σ(t).
Both the ordinary two-time correlator C1 and the true
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out-of-time order component C2 are diffusive. The mag-
nitude of C1 is, however, much larger than that of C2 at
fixed time. These results are compatible with the ∼

√
t

early time entanglement growth observed in Section IV.
Exact calculation of C1(r, t). We now look for the ori-
gin of the diffusive behavior of C(r, t) examining C1(r, t)
and C2(r, t) in turn and proceeding analytically by com-
puting the exact averages over the random unitaries for
the NC-ST case, referring to Ref. [46] for further details.
In the single particle picture, we may denote states of
the system by |α〉 ≡ |rα, sα〉 ≡ |2Rrα + bα, sα〉, where
rα = 0, . . . , L − 1 runs over the sites, sα ∈ {p, h} la-
bels the particle-hole index; Rrα = 0, . . . , L/2 − 1 labels
the pair of sites (rα, rα + 1) and brα ∈ {0, 1} such that
rα = 2Rrα + brα . Note that the sites are acted upon by
modulo L, due to periodic boundary conditions.

Starting with C1(r, t) given by (3), we use a notation in
which operators are rendered as state vectors C1(r, t) =
tr
[
O2

0(t)O2
r

]
= 〈〈O2

r ||O2
0(t)〉〉, where ||O2

r〉〉 ≡ ||O2
r(0)〉〉,

||O2
r(t)〉〉 =

∑
αβ ||αβ〉〉

〈
α
∣∣O2

r(t)
∣∣β〉 and ||αβ〉〉 = |α〉 ⊗

〈β|T . With Or the symmetrized number operator, we get
||O2

r〉〉 =
∑
s ||r, s; r, s〉〉. For a single realization, O2

0(t +
1) = U†O2

0(t)U , which translates to ||O2
0(t+ 1)〉〉 = U†⊗

UT ||O2
0(t)〉〉. Applying one layer of the circuit, i.e. U =

UevenUodd, and averaging over multiple realizations of the
random circuit as summarized in Ref. [46] one finds

||O2
0(t+ 1)〉〉 = Ŵ1 ||O2

0(t)〉〉 (5)

Ŵ1 ≡

L/2−1∑
R=0

||φ2R〉〉 〈〈φ2R||

L/2−1∑
R=0

||φ2R−1〉〉 〈〈φ2R−1||

 ,
having introduced

||φr〉〉 ≡
1
2

∑
x∈{r,r+1}

∑
s

||x, s;x, s〉〉 . (6)

With the initial condition ||O2
0(0)〉〉 =

∑
s ||0, s; 0, s〉〉, the

time evolution of C1 is completely determined. The sub-
space spanned by ||φr〉〉 is closed under the evolution thus
respecting the particle-hole symmetry. These vectorized
operators obey 〈〈φr ‖φr′〉〉 = δr′,r + 1

2δr′,r±1, that leads
the recursion relation (5) to be simplified to〈

〈φr
∥∥∥O2

0(t+ 1)
〉〉

= 1
4

(
〈〈φr−2||+ 2 〈〈φr||+ 〈〈φr+2||

)
||O2

0(t)〉〉 . (7)

From this and the initial condition we obtain

C1 (2R, t+ 1) = C1 (2R+ 1, t+ 1)

= 1
4
(
C1 (2R− 2, t) + 2C1 (2R, t) + C1 (2R+ 2, t)

)
(8)

for t ≥ 1 and 1
2 (δR−1,0 + δR,0) for t = 0 − this ex-

act result is pictured in Fig. 3(a). This tells us that

C1(r, t) is equivalent to an average over all possible clas-
sical random walks respecting the geometry of the circuit:
tarting from C1(r, t = 0) = 2δr,0, each weight C1(r, t) is
divided among its nearest neighbours C1(r − 1, t+ 1/2)
and C1(r + 1, t+ 1/2).

Taking the continuum limit, limt,L→∞ C1(r, t) =
lima→0 aC ′1(x = ra, τ = ta2), we recover the 1D diffusion
equation ∂τC ′1(x, τ) = ∂2

xC
′
1(x, τ) with diffusion constant

D = 1 which approximates the exact discrete evolution
very well, even for relatively small times (see Fig. 3(c)).
Exact calculation of C2(r, t). The calculation of
C2(r, t) proceeds analogously to that of C1(r, t) but is
more involved not least because the disorder average is
carried out over a product of four unitaries rather than
two in the case of C1. As before, we write the correlator
(4) in a vectorized notation

C2(r, t) = tr [O0(t)OrO0(t)Or] = 〈〈Qr||S ||Q0(t)〉〉 , (9)

with Qr ≡ Or ⊗Or fixed by the choice of observable to

||Qr〉〉 =
∑
s

||rs, rs, rs, rs〉〉 − ||rs, rs̄, rs, rs̄〉〉 , (10)

with s = p, h and the corresponding s̄ = h, p and

||Qr(t)〉〉 =
∑
αβµν

||αβµν〉〉 〈αβ |Qr(t)|µν〉 , (11)

S =
∑
αβµν

||αβµν〉〉 〈〈αβνµ|| , (12)

where ||αβµν〉〉 = |αβ〉 ⊗ 〈µν|T . The state ||Q0(t)〉〉
evolves as

||Q0(t+ 1)〉〉 = U† ⊗ U† ⊗ UT ⊗ UT ||Q0(t)〉〉 (13)

and an average is taken over different realizations even-
tually leading to the recursion relation〈〈

ΘΘ̄r,r′

∥∥∥Q0(t+ 1)
〉〉

= Ŵ2 ||Q0(t)〉〉 , (14)

Ŵ2 ≡ tr [Mr,r′Υr,r′ ] ,

Υr,r′ ≡

〈〈ΘΘ̄r−2,r′−2|| 〈〈ΘΘ̄r−2,r′ || 〈〈ΘΘ̄r−2,r′+2||
〈〈ΘΘ̄r,r′−2|| 〈〈ΘΘ̄r,r′ || 〈〈ΘΘ̄r,r′+2||
〈〈ΘΘ̄r+2,r′−2|| 〈〈ΘΘ̄r+2,r′ || 〈〈ΘΘ̄r+2,r′+2||

 ,

analogous to (7). In the above expression, Mr,r′ are
3 × 3 matrices of constant coefficients given explicitly
in Ref. [46]: there are four distinct Mr,r′ for r′ =
r, r ± 2, r ± 4 and one for all remaining r′. Also,

||ΘΘ̄r,r′〉〉 = ||Θr,r′〉〉 − ||Θ̄r,r′〉〉 , (15)

and

||Θr,r′〉〉 = 1
√
gr,r′

∑
rα∈{r,r+1}
rβ∈{r′,r′+1}

∑
sα,sβ

||αββα〉〉 , (16)

||Θ̄r,r′〉〉 = 1
√
gr,r′

∑
rα∈{r,r+1}
rβ∈{r′,r′+1}

∑
sα,sβ

||αᾱββ̄〉〉 , (17)
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with gr,r′ = N(N−δr,r′). This completely determines the
evolution of the single particle OTOC. With the initial
condition (10), one finds

C2(r, t = 0) = 2δr,0, (18)

C2(r, t = 1) = 1
18 (δr,−1 + δr,0) , (19)

and, for subsequent times, we define

Kr,r′(t) ≡
1

2
√

3

〈〈
ΘΘ̄r,r′

∥∥∥Q0(t)
〉〉
, (20)

and use (14) to get C2(2R, t+ 1) = C2(2R+ 1, t+ 1) =
tr [M2R,2R′K2R,2R′(t)] with

K2R,2R′(t) ≡

K2R−2,2R′−2 K2R−2,2R′ K2R−2,2R′+2
K2R,2R′−2 K2R,2R′ K2R,2R′+2
K2R+2,2R′−2 K2R+2,2R′ K2R+2,2R′+2

 .

(21)

The evolution thus described exactly is pictured in
Fig. 3(b) and it reproduces the numerical results seen in
Fig. 3(c). Let us highlight one important distinction be-
tween C1 and C2: while C1 is a 1D diffusive process, the
evolution of C2 is given by the diagonal of K2R,2R′(t),
which diffuses in 2D. Analogously to C1, the bulk be-
haviour of K2R,2R′(t) can be described by an average
over all possible classical random walks, but in 2D.

In the continuum limit, C2(r, t) =
lima→0 C ′2(x = ra, τ = ta2) ' fa2K ′x,x′(τ), where
K ′x,x′(τ) can be shown to obey the 2D diffusion equation
∂τK

′
x,x′(τ) =

(
∂2
x + ∂2

x′

)
K ′x,x′(τ) with initial condition

K ′x,x′(0) = 2δ(x)δ(x′) and f = 1/2 for NC-ST [46]. Note
that limt→∞ C2(r, t)/C1(r, t) = 0, i.e. for large times the
C1(r, t) dictates the leading behavior of the OTOC.
Extensions to C-ST, NC-T and NC-S. We have
shown that both C1 and C2 spread diffusively for free
fermions in 1D in the presence of spatio-temporal noise
(NC-ST). In Ref. [46] we lay out equivalent exact calcu-
lations of C1 and C2 for two further cases: C-ST which
conserves the particle number and NC-T where the uni-
tary evolution is spatially homogeneous but has tempo-
ral noise. The result is that there is diffusive spreading
in all three cases. The space translation invariance in
NC-T lifts some restrictions in the dynamics such that
C1(r, t) and C2(r, t) could arise respectively from 2D and
4D processes, but the initial diagonal observables reduce
the exact expressions to the 1D (8) and 2D (21) processes
known for NC-ST. Regarding C-ST, although the absence
of anomalous terms leads to a different exact expression
for C2, such that its normalization in the continuum limit
differs is f = 2 instead of f = 1/2, it preserves its diffu-
sive behaviour.

In contrast, numerical results obtained for the tempo-
ral homogeneous case (NC-S) in Ref. [46], where even
and odd layers of random gates are fixed and applied re-
peatedly in time, show that C1 and C2 remain Anderson
localized [47], decaying exponentially around r = 0.

IV. DYNAMICS OF ENTANGLEMENT

For completeness, we characterize the growth of en-
tanglement in the different circuits (FF, CL and GU),
as measured by the entanglement entropy. Other entan-
glement measured such as the statistics of energy level
spacings (which exhibit level repulsion for chaotic, but
not for integrable-like dynamics) are shown in Ref. [46]

We start by analysing the dynamics of the von Neu-
mann entropy, S = − tr(ρA ln ρA), with ρA the reduced
density matrix of a subsystem of size L/2, starting from
an initial product state with a well defined particle num-
ber. For FF dynamics, Fig. 4(b) shows that, for all three
cases NC-ST, C-ST and NC-T, the entanglement grows
as ∼ DS

√
t for small times (with DS a time independent

constant), saturating at times tsat ∼ L2. Asymptotically
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FIG. 4. (a) Time series of the entanglement entropy divided
by the Page value S/SPage for GU (filled) and CL (dashed)
dynamics and L ∈ {4, 6, . . . , 14, 16}. In the inset, we plot
the non-rescaled S(t). The data is an average over 1000 re-
alizations (450 for L = 16), starting from a random product
state.(b) Growth of the entanglement entropy divided by the
saturation value S/SFF

∞ as a function of t/L2 for random free
fermions − NC-ST (filled), C-ST (dashed) and NC-T (inset)
− with L = 100, showing S(t) ∝
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t at the earliest times. The
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diffusive growth of the Rényi entropy S(2) has been dis-
cussed in the literature, coinciding with linear growth of
the von Neumann entropy at least in low dimensional
local Hilbert spaces in models with conserved quanti-
ties [19, 27, 48]. The random circuit free fermion model
is therefore qualitatively different to these cases. For
t� tsat, the saturation value SFF

∞ = s0L+ s1 +O(1/L),
coincides with the mean entanglement entropy of a ran-
dom Gaussian state [49–52], with s0 ' 0.193 for all the
considered free fermion processes and s1 ' 0.085 for the
NC-ST case, well below the Page value (s0 = ln 2/2 '
0.346, s1 = −1/2) obtained by averaging over the full
Hilbert space [25]. These results show that the rate of
increase of the entanglement is compatible with diffusion
of quantum information. In addition, while the satura-
tion entanglement has volume law scaling, free fermion
dynamics cannot explore the full Hilbert space.

In Fig. 4(a), despite the small L, we see the expected
initial linear growth of S(t) for evolution under GU cir-
cuits, which saturates at SPage [25]. This is replicated
using CL dynamics, with small deviations from SPage oc-
curring for small L and, overall, higher fluctuations being
present.

V. DOPED FREE FERMION CIRCUITS

Here, we propose to investigate the emergence of chaos
when doping integrable-like free fermion circuits, as de-
scribed in Section II. In particular, we study how differ-
ent observables (or probes) explore random matrix be-
haviour (in the sense that they reach the values expected
for GU circuits) as intruders are applied, which we inter-
pret as chaos. By studying the dependence of the differ-
ent probes on NI and L, we obtain bounds on the num-
ber of intruders NI needed to obtain a (good enough)
approximation of chaos. Since we are restricted to sim-
ulate small system sizes, this is done by extending the
finite size scaling analysis to the thermodynamic limit.
Probes of chaos. We see chaos ensuing as the probes
we use approach the expected values for chaotic dynamics
(obtained with GU circuits). We consider the following
probes, P : the mean and fluctuations of the entangle-
ment entropy, S = − tr(ρA log ρA), and of the 2nd Rényi
entropy, S(2) = − log tr(ρ2

A); the fluctuations of the parti-
cle number of half of the system, nhalf =

∑L/2−1
j=0 nj , and

also the mean of the ‘normalized’ ratio of level spacings
r̃, i.e. r̃n = min(sn/sn−1, sn−1/sn), with sn = en+1 − en
and en the ordered eigenvalues of − log ρA, which serves
as an effective Hamiltonian. The mean values are µ(P ) =
1/N

∑N
i=1 Pi, while the fluctuations are measured by the

variance σ2(P ) = 1
N−1

∑N
i=1 (Pi − µ(P ))2, with N the

number of points and Pi the ith point.
The extent to which these probes reach the chaotic

values can be made precise using more or less restrictive
criteria. We consider that (a good enough approximation
of) chaos is achieved when the mean measures reproduce

the values expected for GU dynamics within their typical
fluctuations, i.e. when

Fµ(#) = |µ(#)(NI , L)− µ(#GU)|
σ(#GU) ≤ O(1), (22)

with # = S or S(2); or, using the criterion of Ref. [53]
for fluctuations, when

Fσ2(#) = |σ
2(#)(NI , L)− σ2(#GU)|

σ2(#GU) ≤ O(1), (23)

with # = S, S(2) or nhalf , where the dependence of the
GU values on L is omitted.
Results. Each probe P (t) usually rises (or diminishes)
in time in well defined plateaus: after each intruder is ap-
plied, it quickly rises (or diminishes) to stabilize at some
value, as seen in Fig. 5 for µ(S) and σ2(S) for FF : GU
dynamics. Take P (NI , L) to be the value of the probe P
taken at the plateau following the injection of NI intrud-
ers for a system with L sites. This again rises (or dimin-
ishes, depending on whether P = µ(#) or P = σ2(#))
from P (0, L) to P (∞, L) with some function f(NI , L)
decaying to zero, i.e. P (NI , L) = P (∞, L) + [P (0, L) −
P (∞, L)]f(NI , L), where P (∞, L) ≈ PGU for almost all
the cases studied. Our numerical results, shown in Fig. 6
for µ(S) and µ(S(2)) for FF dynamics doped with GU
intruders (equivalent pictures for the remaining cases in
Ref. [46]), suggest that f(NI , L) ≈ e−g(L)NI , at least in
the long-time or large NI regime (in some cases, namely
CFF : CGU, some deviations occur for small NI). Fur-
thermore, at least in the range of Ls probed (apart from
deviations occurring for small L), the exponent seems
to be well approximated by g(L) ≈ βL−α, with α and
β constants dependent on the underlying dynamics and
the type of intruders. Thus, we consider

Q(P ) ≡ Q(P (NI , L))

= P (NI , L)− P (∞, L)
P (0, L)− P (∞, L) ≈ γe

−βL−αNI , (24)
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FIG. 5. (a) Time series of the mean EE rescaled according
to [µ(S)−µ(SFF)]/[µ(SGU)−µ(SFF)] so that it varies from 0
to 1. (b) Time series of the fluctuations of the EE rescaled as
[σ2(S)−σ2(SGU)]/[σ2(SFF)−σ2(SGU)] so that it drops from 1
to 0. This is shown for FF dynamics doped with GU intruders
every ∆t = 250 (vertical lines), for L ∈ {4, 6, 8, 10, 12}. The
system is initialized in a product state and the data is an
average over 1000 realizations (4000 for L = 4).
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FIG. 6. Plateau values of µ(S) and µ(S(2)) rescaled as
Q(P ) = [P (NI , L) − P (∞, L)]/[P (0, L) − P (∞, L)], with
P = µ(S), µ(S(2)), as a function of NI/Lα up to L = 16,
where α is given in Tab. I, for FF : GU dynamics. Note that
P (∞, L) = PGU and NItot = 20. Each point associated to NI
is taken in the plateau following the application of NI gates
and is an average over 4000 realizations (3000 for L = 16).
The expression γ exp(−βL−αNI) was fitted to the data.

which drops from 1 to 0. Being an exponential law, this
suggests that the rate of decrease of P (NI , L)−P (∞, L)
depends on the fraction of the interval P (0, L)−P (∞, L)
left to undergo.Besides, it indicates that NI ∼ O(Lα)
intruders are necessary to undergo some fraction of the
transition from P (0, L) to P (∞, L). Note that this fixed
relative error is less restrictive than the conditions for
chaos (22) and (23).

For the different probes and dynamics studied, having
fixed the NI dependence in γ exp(−βL−αNI), we find
the α among integers and half-integers (and also 1/4)
that best suits the data (see Tab. I). This is done by
visual inspection of Fig. 6 and of the remaining figures
in Ref. [46].

Knowing α which controls the scaling of (24) with
L (see Tab. I), we can find bounds on NI respect-
ing the conditions for chaos (22) and (23). For
# = S and S(2), we can use (24) and [µ(#)(0, L) −
µ(#)(∞, L)]/σ(#)(∞, L) ∼ O(L) eO(L) [46] to show that

Fµ(#) = µ(#)(0, L)− µ(#)(∞, L)
σ(#)(∞, L) Q(µ(#))

∼ O(L) eO(L)e−O(L−αNI). (25)

Also, for # = S, S(2) or nhalf , since usually [P (0, L) −
P (∞, L)]/P (∞, L) ∼ eO(L) [46], it follows that

Fσ2(#) = σ2(#)(NI , L)− σ2(#)(∞, L)
σ2(#)(∞, L) Q(σ2(#))

∼ eO(L)e−O(L−αNI). (26)

Setting the exponents of the above relations to zero, we
estimate that NI ∼ O(Lα+1) gates are needed to obtain
chaos under (22) and (23). For the two cases whose ensu-
ing dynamics is generic-like but not exactly GU-valued,
i.e. CFF : CGU→ CGU and FF|Ψ1〉 : ZZπ/4→ new for
which P (∞, L) 6= PGU, this holds as the condition to
obtain the final generic-like dynamics. For example, for
FF : GU, α ∼ 1/2 such that NI ∼ O(L3/2) gates are
needed to reach GU entropy mean values.

main + intruders
µ (S) µ

(
S(2)) σ2 (S) σ2 (S(2)) σ2 (nhalf)→ ensuing dynamics

CL : T→ GU sat sat 0 0 sat
CL : GU→ GU sat sat 0 0 sat
FF : GU→ GU 1/2 1/2 1/4 1/4 1/4
FF : CL→ GU 1/2 1/2 −− −− −−

CFF : CGU→ CGU 1 1 1 1 1
FF|Ψ1〉 : ZZπ/4→ new 1 1 1/2 1/2 1
FF|Ψ2〉 : ZZπ/4→ GU 1 1 1/2 1/2 1

TABLE I. Values of α such that γ exp(−βL−αNI) fits the
data Q(P ), which rescales P to diminish from 1 to 0, as de-
fined in (24), where P is µ(S), µ(S(2)), σ2(S), σ2(S(2)) or
σ2(nhalf). This is shown for the different types of main cir-
cuit + intruders studied. This can be seen visually in Fig. 6
and in Ref. [46]. Entries with ‘−−’ correspond to cases not
studied, while ‘sat’ indicates that P (NI = 0) is already satu-
rated to P (NI →∞).

We also confirmed existing results for the doping of CL
circuits with T = diag(1, eiπ/4) and GU gates, i.e. CL : T
and CL : GU, namely that α = 0 for σ2(S) and σ2(S(2)),
such that O(L) intruders are required to obtain chaos
[53]. Moreover, in Ref. [46] we confirmed the scaling
of the mean (normalized) ratio of level spacings 〈r̃〉 [54]:
〈r̃GUE〉 − 〈r̃〉 ∝ e−βNIL. This is, in the thermodynamic
limit, a single gate leads r̃ to become W-D distributed,
which also signals a transition to a 4-design [55] but not
to chaos, which restricts the error in obtaining a 4-design
to scale with e−O(L) [53]. The behaviour of 〈r̃〉 for doped
FF circuits was also studied, and the results are presented
in Ref. [53]: 〈r̃〉 saturates after few intruders are applied
and we cannot identify its scaling with L or NI .
Discussion. The doping of FF dynamics usually leads to
chaotic dynamics, in the sense that the different measures
used become GU-valued. In the presence of conservation
laws − particle number for CFF : CGU and parity con-
servation for FF|Ψ1〉 : ZZπ/4 − the system also becomes
generic-like, but within sectors of the conserved quantity
(e.g. within sectors of fixed particle number for CGU).

The question of when chaos is reached is relative to
the criteria used. One is often satisfied with obtaining
a 4-design, within some error, which can reproduce the
most common chaotic measures. Our results suggest that
criteria (22) (used for mean values) is more restrictive
than (23) (used for fluctuations), leading to higher values
of α, as seen in Tab. I. Although µ(S(2)) and σ2(S(2))
related to conditions (22) and (23) signal 2 and 4-designs
[39, 40], respectively, and the latter is harder to achieve,
the conditions on the error of µ(S(2)) are more restrictive:
to demand the mean entropies to reach the GU value
within its typical error demands a higher NI than to
require the error in obtaining the fluctuations to scale at
most with the GU fluctuations themselves.

Besides, different probes are more or less sensitive to
chaos. In general, the mean entropies µ(S) and µ(S(2))
are not good probes of chaos: e.g. they are already sat-
urated for CL circuits due to it being a 3-design [56],
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although it fails to be chaotic. However, here we observe
that these can identify chaos when the underlying dy-
namics is FF, since SFF

∞ < SPage (FF circuits are not even
a 1-design). Moreover, the mean ratio of level spacings
for doped FF (obtained in Ref. [46]) reaches the W-D
value within very few NI (its scaling with NI or L can-
not even be identified), while the mean entropies have not
yet saturated. This questions the idea that level spacing
statistics is a better diagnosis of chaos than entanglement
entropies and further investigation is required.

VI. CONCLUSIONS

Exact results for non-equilibrium dynamical processes
are important to uncover their underlying physics and,
at the same time, are scarce due to the complexity of the
problem. In Section III, we have exactly computed the
OTOC measuring diffusive operator spreading in a ran-
dom circuit model with both number conserving (C-ST)
and non-conserving quadratic fermionic terms, with (NC-
ST) or without (NC-T) spatial disorder. This is in accor-
dance with the diffusive spreading of correlations seen to
occur in Hamiltonian models of quadratic fermions in 1D
subjected to noise [31, 34–36]. The diffusive spreading of
operators is accompanied by the diffusive growth of en-
tanglement [14, 31, 32], as confirmed in Section IV. In
the long time limit, the states resulting from FF dynam-
ics are extended with volume law entanglement but do
not explore the full Hilbert space, departing significantly
from random matrix eigenstates. This contrasts with GU
and CL circuits, which exhibit ballistic spreading of cor-
relations with entanglement approaching the Page value
asymptotically. All at once, these results strongly sug-
gest that, in Hamiltonian models of free fermions, Ander-
son localization is destroyed by the noise we have consid-
ered and that ballistic propagation, expected for spatially
homogeneous systems, becomes diffusive in the presence
of noise. Although this is known to occur, an under-
lying physical picture for such behaviour is still elusive.
We found that C(r, t) for FF in a random landscape is
analogous to a classical random walk, but further physi-
cal explanation is required, eventually along the lines of
scattering of quasi-particles produced by circuit disorder
[57]. Further study of FF dynamics doped with ZZ gates
(which ‘turn on’ low order interactions), eventually trace-
able to an interacting Hamiltonian, could help clarifying
the transition to the ballistic regime.

In the NI →∞ limit, the doping of FF circuit usually
results in chaotic dynamics. The scaling of several probes
with system size, L, and the number of intruders, NI ,
allows us to obtain bounds on the number of intruders
needed to reach chaos (under conditions (22) and (23)):
NI ∼ O(Lα+1), with α given in Tab. I for the differ-

ent dynamics. The value of α depends on the underlying
dynamics, on the type of intruders, on the probe used
and on the conditions (22) and (23) admitted as a fron-
tier to chaos. Since FF dynamics (not even a 1-design)
are further from GU than CL dynamics (a 3-design), it
is natural that higher NI is needed to drive FF to GU:
NI ∼ O(L1.25) to O(L2) instead of NI ∼ O(L). Be-
sides, when doping FF circuits, the presence of conserved
charges slows down the crossover to the final dynamics.
All at once, the number of intruders required to reach
GU is extensive with system size which should indicate
that, as one approaches the chaotic regime, the ability to
classically simulate the dynamics is lost. So far, we know
CL and FF to be integrable-like dynamics realizable with
quantum circuits. By doping non-generic quantum cir-
cuits with some number of intruder gates, we find in-
stances of intermediate dynamics between integrable-like
and chaotic dynamics. This could be useful to realize
lower order t-designs to obtain some chaotic valued mea-
sures, without the dynamics being fully chaotic.

Open questions remain regarding the doping of FF dy-
namics. The results for the bounds on NI arise from nu-
merical simulations, and should be strengthened by ex-
ploring higher system sizes (possibly up to L = 20). Be-
sides, it would be interesting to fix these bounds by quan-
tifying them as done in Ref. [53] for CL circuits, guaran-
teeing its validity in the thermodynamic limit. Another
question is: what are the good measures of chaos? Al-
though the level spacing statistics (or its normalized ra-
tion, r̃) is usually taken to be a better probe of chaos than
mean entanglement entropies, in doped FF circuits we see
instances were the contrary seems to hold. To determine
the scaling of 〈r̃〉 (does the scaling 〈r̃GUE〉−〈r̃〉 ∝ e−βNIL
valid for doped CL circuits hold for FF circuits?) and of
higher moments of r̃ should help clarifying this.

To identify chaos in a systematic and consistent man-
ner, future work should further explore its relation to
randomness and circuit complexity: chaos can be related
to a ‘high enough’ t-design, which can be probed using
the tnd Rényi entropy and 2t-point OTOCs. Along these
lines, it would be worth exploring the breaking of in-
tegrability by studying the effect of doping on the free
fermion OTOC, both numerically and analytically. This
could pass by computing the free fermion OTOC in the
many-body picture and conciliating this with the analyt-
ical picture found for generic circuits in Ref. [15], which
should become valid in the strong doping regime. It is
possible that a light-cone could emerge when adding an
intruder [54], such that we could observe the diffusive
operator spreading turning into ballistic. This scenario
(and, overall, the doping of circuits) should constitute a
good ‘laboratory’ to elucidate the diffusive and ballistic
regimes occurring respectively in noisy and interacting
fermion models.
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