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Resumo

Inspirados em ideias apresentadas por Kazdan-Warner em [KW75b], e fazendo algumas correções

à literatura, provamos nesta tese que um 3-toro, T 3, não possui uma métrica de curvatura escalar não-

negativa – o caso tridimensional da Conjectura de Geroch, já generalizado para dimensões arbitrárias

por Schoen-Yau [SY79] e Gromov-Lawson [GL80]. Para tal, partimos da suposição de que existe um

2-toro mı́nimo em T 3 e recorremos a argumentos geométricos para concluir que tal suposição impõe

restrições nas métricas possı́veis para a variedade, nomeadamente em relação à curvatura escalar.

Recorrendo à Teoria Geométrica da Medida, demonstramos que existe um 2-toro mı́nimo homologi-

camente não trivial, providenciando tanto os resultados de existência e regularidade, e concluı́mos que

a suposição anteriormente mencionada é verificada.

Finalmente, relacionamos o teorema principal da tese com um resultado famoso da Teoria da Rela-

tividade - o Teorema da Massa Positiva.

Palavras-chave: Conjetura de Geroch, Toro Mı́nimo, Curvatura Escalar, Corrente Rec-

tificável, Teorema da Massa Positiva.
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Abstract

Inspired by ideas presented by Kazdan-Warner in [KW75b], while making some corrections to the

literature, we prove in this thesis that a 3-torus, T 3, does not admit a metric with non-negative scalar

curvature - the three-dimensional case of the Geroch Conjecture, already generalized to arbitrary dimen-

sions by Schoen-Yau [SY79] and Gromov-Lawson [GL80]. To do so, we start with the assumption that

there is a minimal 2-torus in T 3 and we use geometric arguments to conclude that such an assumption

imposes constraints on the possible metrics for the manifold, namely regarding the scalar curvature.

Using Geometric Measure Theory, we show that there is a minimal homologically non-trivial 2-torus,

providing both the results of existence and regularity, and we conclude that the previously mentioned

assumption indeed holds.

Finally, we relate the main theorem of this thesis with a famous result of Relativity - the Positive Mass

Theorem.

Keywords: Geroch’s Conjecture, minimal torus, scalar curvature, rectifiable current, Positive

Mass Theorem.
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Chapter 1

Background

This chapter serves as a brief presentation of general definitons and preliminary tools that will be

used. If the reader is familiar with the basic ideas of Real Analysis (as presented in [RF10]) and Dif-

ferential Geometry (mainly in [GN14]), this chapter can be skipped. To those unfamiliar with these

statements, a warning is in order: these results will not be proven here, since they are outside the scope

of the objective of this thesis, and this is not meant to be a thorough introduction.

1.1 Measure Theory

Definition 1.1.1 (Measure). A (outer) measure µ on Rn is a non-negative function on all subsets of Rn

that is countably subadditive, i.e.

A ⊂
⋃
Ai =⇒ µ(A) ≤

∑
µ(Ai).

A set A ⊂ Rn is said to be µ-measurable if, for all E ⊂ Rn, we have µ(E) = µ(AC ∩ E) + µ(A ∩ E).

The class of measurable sets is a σ-algebra – closed under complementation, countable union and

countable intersection. The smallest σ-algebra containing all open sets is the σ-algebra of Borel sets.

Definition 1.1.2 (Borel regular). A measure µ is said to be Borel regular if Borel sets are measurable

and every subset of Rn is contained in a Borel set of the same measure.

The Lebesgue measure, Ln, is the unique Borel regular, translation invariant measure on Rn, such

that the unit cube [0, 1]n has measure 1.

Definition 1.1.3 (Restriction of a measure to a set). Let E ⊂ Rn and µ be a measure on Rn. The

restriction of µ to E, µ E, is defined as

(µ E)(A) = µ(E ∩A).

Definition 1.1.4 (Densities). Let µ be a measure on Rn. For 1 ≤ m ≤ n and a ∈ Rn, we define the
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m-dimensional density of µ at a, Θm(µ, a), by

Θm(µ, a) = lim
r→0

µ (Bn(a, r))

αmrm
,

where αm is the Lebesgue measure of the closed unit ball Bm in Rm.

Now, let A ⊂ Rn. For 1 ≤ m ≤ n and a ∈ Rn, we define the m-dimensional density of A at a with

respect to the measure µ, Θm(A, a), by

Θm(A, a) = lim
r→0

µ (A ∩Bn(a, r))

αmrm
.

Definition 1.1.5 (Lipschitz function). A function f : Rm → Rn is Lipschitz if there exists C > 0 such that

for x, y ∈ Rm

|f(x) − f(y)| ≤ C|x− y|.

The smallest constant C is called the Lipschitz constant and is denoted by Lip f .

A useful result about Lipschitz functions is that they can be approximated in a strong sense by C1

functions. By strong sense it is meant that they coincide except in a set of small measure. This will allow

the substitution of Lipschitz functions for C1 diffeomorphisms later on.

Proposition 1. Let A ⊂ Rm and f : A→ Rn be a Lipschitz function. Given ε > 0, there is a C1 function

g : Rm → Rn such that

Lm {x ∈ A : f(x) 6= g(x)} ≤ ε.

We will also use this section to present some tools and objects from Topology that will provide the

building blocks for Differential Geometry.

Definition 1.1.6 (Topology). LetX be a nonempty set. A topology T forX is a collection of open subsets

of X such that

1. both X and ∅ are open;

2. the intersection of any finite collection of open sets is open;

3. the union of any collection of open sets is open.

A space equipped with the previous structure is designated a topological space. However, we want

our spaces to behave in an appropriate manner, hence we require further properties to be satisfied.

Definition 1.1.7 (Hausdorff Space). Let M be a topological space. Then, M is Hausdorff if for each pair

of distinct points p1, p2 ∈M , there exist open neighborhoods V1,V2 of p1 and p2, respectively, such that

V1 ∩ V2 = ∅.

Definition 1.1.8 (Topological Manifold). Consider a topological space M satisfying the following proper-

ties:
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1. M is Hausdorff;

2. for each p ∈M , there is a neighbourhood V of p homeomorphic to an open subset U ⊂ Rn;

3. M satisfies the second countability axiom, i.e. it has a countable basis for its topology.

Then, M is called a n-dimensional topological manifold.

1.2 Differential Geometry

Let us start by definying the basic object of study of Differential Geometry – a differentiable manifold.

Definition 1.2.1 (Smooth Manifold). A smooth manifold is a (n-dimensional) topological manifold M with

a family of parameterizations φα : Uα →M defined on open sets Uα ⊂ Rn, such that:

1. the coordinate neighborhoods cover M , that is,
⋃
φα(Uα) = M ;

2. for each pair α, β such that

W := φα(Uα) ∩ φβ(Uβ) 6= ∅

the transition maps

φ−1
α ◦ φβ : φ−1

β (W )→ φ−1
α (W ) and φ−1

β ◦ φα : φ−1
α (W )→ φ−1

β (W )

are C∞;

3. the family {(φα, Uα)} is maximal regarding to 1. and 2..

Let M be a smooth, n-dimensional manifold and recall that for p ∈ M one has the set of vectors

tangent to M at p , TpM , the n-dimensional tangent space.

Definition 1.2.2 (Wedge Product). Given u1, u2, v1, v2 vectors in TpM , define the wedge product as the

operation satisfying:

1. (multilinear) (cu1)∧ v1 = c(u1 ∧ v1) = u1 ∧ (cv1) and (u1 + v1)∧ (u2 + v2) = (u1 ∧ u2) + (u1 ∧ v2) +

(v1 ∧ u2) + (v1 ∧ v2);

2. (alternating) u1 ∧ v1 = −v1 ∧ u1.

If {e1, ..., en} is a basis for TpM , then the corresponding space of m-vectors, given by linear combi-

nations of {ei1 ∧ ... ∧ eim : i1 < ... < im}, is denoted by Λm(TpM) and has dimension
(
n
m

)
. A m-vector v

is said to be simple if it can be written as a single wedge product.

Now, recall that we also have a dual space to TpM called the cotangent space toM at p, and denoted

by T ∗pM , which is the set of covectors. Analogously to Λm(TpM), one can define its dual, Λm(TpM),

which is the space of linear combinations of
{
e∗i1 ∧ ... ∧ e

∗
im

: i1 < ... < im
}

, where {e∗1, ..., e∗n} is a basis

for T ∗pM .

3



Definition 1.2.3 (Differential Form). A differential m-form is a smooth map ω : M → Λm(T ∗M) that to

each p ∈M assigns an element ωp ∈ Λm(T ∗pM).

One should also recall the uses these forms have, as they provide the natural objects of integration,

as well as providing an orientation to the manifold, if orientable (equivalent to the existence of a volume

form – non-vanishing n-dimensional form on M ).

In particular, let Rn be the ambient space. We denote by Dm the set of differential forms with

compact support, whose dual will be of use later on. Recall also that we define the pullback, f∗ω, of a

m-differential form ω ∈ Dm by a C∞ map f as

(f∗ω)p (X1, . . . , Xm) = ωf(p)(dfp(X1), . . . , dfp(Xm)),

where X1 . . . , Xm ∈ TpRn.

Definition 1.2.4 (Mass norm, Comass norm). Assuming that there exists an inner product on TpM ,

naturally extended to Λm(TpM) and Λm(T ∗pM), define the mass norm ‖v‖ and comass norm ‖ω‖∗,

respectively, as

‖ω‖∗ = sup {| 〈v, ω〉 | : v unit, simple m-vector} ,

‖v‖ = sup {| 〈v, ω〉 | : ‖ω‖∗ = 1},

such that they are dual to each other.

More generally speaking, one can define tensors on a vector space V . A (covariant) k-tensor on V

is a multilinear function T defined on V × ... × V (k times V ). The set of all covariant k-tensors is itself

a vector space and is denoted by T k(V ∗). Analogously, we can define a contravariant m-tensor on the

dual vector space V ∗, which then gives us the space T m(V ) of contravariant tensors.

In general, we have

Definition 1.2.5 (Tensor Field). A (k,m)-tensor field is a map that, to each point p ∈M , assigns a tensor

T ∈ T k,m(T ∗pM,TpM).

Some examples of such tensor fields are:

1. A vector field X is a (0, 1)-tensor field, in other words, a contravariant 1-tensor field.

2. A differential form is nothing more than an alternating covariant m-tensor field on M .

One particularly useful tensor field is the following.

Definition 1.2.6 (Riemannian Metric). A Riemmanian metric g on a smooth manifold M is a covariant

2-tensor field satisfying:

1. (symmetric) g(u, v) = g(v, u) for any u, v ∈ TpM ;

2. (positive-definite) g(u, u) > 0 for all u ∈ TpM − {0}.

4



Therefore, a Riemannian metric is a smooth assignment of an inner product to each TpM . A smooth

manifold M equipped with a Riemannian metric g is called a Riemannian manifold, and the pairing is

denoted by (M, g). Such objects are the subject of Riemannian Geometry.

One of the most important tools of Riemannian Geometry is the Gauss-Bonnet theorem, which con-

nects assertions about curvature (geometry of the surface) and the Euler characteristic (topology of the

surface), and will be used later on. Recall also that, for two-dimensional manifolds, the scalar curvature

is twice the Gaussian curvature.

Theorem 1 (Gauss-Bonnet). Let (M, g) be an oriented, compact 2-dimensional manifold with Gauss

curvature K, and let X be a vector field in M with isolated singularities p1, p2, ..., pk. Then∫
M
K = 2π

∑k
i=1 Ipi = 2πχ(M),

where χ(M) denotes the Euler characteristic of M , and Ipi is the index of X at pi.

5
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Chapter 2

Positive Scalar Curvature

Given a 3-dimensional torus, T 3, and assuming that it admits a 2-dimensional stable minimizing torus

T 2, we will prove in this chapter a weak version of the 3-dimensional case of the Geroch Conjecture, i.e.

that the scalar curvature of T 3 cannot be positive. To do so, we deduce the relation between the scalar

curvatures of the ambient manifold and of the miminal 2-torus. For subsequent computations, Einstein’s

notation will be used and we will denote the parameter t by the coordinate index 0, following [Nat21].

2.1 Gauss’ Lemma

Lemma 1. Let (M, g) be a Riemannian manifold and S ⊂ M a hypersurface with unit normal vector

field η. The hypersurfaces St, obtained from S by moving a distance t along the geodesics with initial

condition η, orthogonal to S, remain orthogonal to the geodesics.

Proof. Let us start by defining Gaussian normal coordinates (which will be used later on). For each

p ∈ S, let γ be the geodesic starting at p with initial tangent vector ηp, and let (x1, x2, ..., xn−1) be local

coordinates in S parameterizing p. Moving along γ by a parameter t gives us, for a small neighbourhood

of p, a coordinate chart (t, x1, x2, ..., xn−1) called Gaussian normal coordinates.

We claim that the geodesics remain orthognal to the hypersurfaces St defined by the level sets of t.

Clearly, for t = 0 we ”remain in” S, therefore we have orthogonality. Now, let ∂i be the coordinate basis

fields for i = 1, ..., n− 1, and recall that such fields commute. Then,

∂t 〈∂t, ∂i〉 = 〈∇∂t∂t, ∂i〉+ 〈∂t, ∇∂t∂i〉

= 〈∂t, ∇∂t∂i〉 = 〈∂t, ∇∂i∂t〉

=
1

2
∂i 〈∂t, ∂t〉

= 0,

7



since the normalization g(η, η) = 〈∂t, ∂t〉 = 1 is preserved by parallel transport and, by the geodesic

equation, ∇∂t∂t = 0.

We then have that 〈∂t, ∂i〉 is independent of t, and consequently, given that it vanishes on the hyper-

surface S, it remains zero.

2.2 Ricci and Scalar Curvature in Gauss Coordinates

Suppose there is a Riemannian metric in T 3 given in the Gauss lemma form, i.e.

g = dt2 + hij(t, x)dxidxj ,

such that the level sets of t are Riemannian manifolds themselves, with an induced metric h(t) =

hijdx
idxj and a second fundamental form given by

K(t) =
1

2

∂hij
∂t

dxidxj .

Proposition 2. The scalar curvatures of T 3 and its hypersurfaces are related by the equation:

R = R̄− 2
∂

∂t
Ki
i − (Ki

i )
2 −KijK

ij , (2.1)

where R, R̄ are the scalar curvatures of T 3 and its hypersurfaces, respectively.

Proof. The result in this theorem follows from some simple computations. In this metric, the Christoffel

symbols are:

Γ0
ij =

1

2
gl0
{
∂gjl
∂xi

+
∂gli
∂xj
− ∂gij
∂xl

}
=

1

2

{
∂gj0
∂xi

+
∂g0i

∂xj
− ∂hij

∂t

}
= −1

2

∂hij
∂t

= −Kij ;

Γijk =
1

2
gli
{
∂gkl
∂xj

+
∂glj
∂xk

− ∂gjk
∂xl

}
=

1

2
g0i

{
∂gk0

∂xj
+
∂g0j

∂xk
− ∂gjk

∂t

}
+

1

2
hli
{
∂hkl
∂xj

+
∂hlj
∂xk

− ∂hjk
∂xl

}
= 0 + Γ̄ijk

= Γ̄ijk;

8



where Γ̄ijk are the Christoffel symbols of the induced metric h, and also:

Γi0j =
1

2
gli
{
∂gjl
∂t

+
∂gl0
∂xk

− ∂g0j

∂xl

}
= 0 +

1

2
hli
{
∂gjl
∂t

+ 0

}
= hli

1

2

∂hjl
∂t

= hliKjl

= Ki
j ;

Γi00 =
1

2
gli
{
∂g0l

∂t
+
∂gl0
∂t
− ∂g00

∂xl

}
= 0;

Γ0
0j =

1

2
gl0
{
∂gjl
∂t

+
∂gl0
∂xj

− ∂g0j

∂xl

}
= 0.

Given the previous Christoffel symbols, it is now possible to compute the Riemannian curvature

tensor coefficients and, consequently, the Ricci tensor coefficients. Firstly, for the Riemann tensor we

have:

Rj0i0 = Γl00Γjil − Γli0Γj0l +
∂Γj00

∂xi
− ∂Γji0

∂t

= −Kl
iK

j
l −

∂

∂t
Ki
j

= − ∂

∂t
Ki
j −Kish

slhlrK
rj

= − ∂

∂t
Ki
j −KilK

lj ;

R0
i0j = ΓrijΓ

0
0r − Γr0jΓ

0
ir +

∂Γ0
ij

∂t
−
∂Γ0

0j

∂xi

= −∂Kij

∂t
− Γl0jΓ

0
il − Γ0

0jΓ
0
i0

= −∂Kij

∂t
+Kl

jKil;

Rsij0 = Γli0Γsjl − Γlj0Γsil +
∂Γsi0
∂xj

−
∂Γsj0
∂xi

= Kl
i Γ̄
s
jl −Kl

jΓ̄
s
il +

∂Ks
i

∂xj
−
∂Ks

j

∂xi
−
∂Ks

j

∂xi

−Kl
jΓ̄
s
il +Ks

l Γ̄lij −Ks
l Γ̄lij +

∂Ks
i

∂xj
+Kl

i Γ̄
s
jl

= −∇̄iKs
j + ∇̄jKs

i ;

Rsijk = ΓrikΓsjr − ΓrjkΓsir +
∂Γsik
∂xj

−
∂Γsjk
∂xi

=
∂Γ̄sik
∂xj

−
∂Γ̄sjk
∂xi

+ Γ̄likΓ̄sjl − Γ̄ljkΓ̄sil

+ Γ0
ikΓsj0 − Γ0

jkΓsi0

= R̄sijk −Ks
jKik +Ks

iKjk,

9



where R̄sijk are the components for the Riemann curvature tensor of the induced metric h. Now, for the

Ricci tensor components, we derive:

R00 = Ri0i0 = −∂tKi
i −KijK

ij ;

Ri0 = Rjij0 = −∇̄iKj
j + ∇̄jKj

i ;

Rij = R0
i0j +Rlilj = −∂Kij

∂t
+Kl

jKil + R̄lilj −Kl
lKij +Kl

iKlj .

Noting that Kl
iKlj = Kirh

rlhlsK
s
j = Kl

jKil we conclude that

Rij = R̄ij −
∂Kij

∂t
+ 2Kl

jKil −Kl
lKij .

Before computing the relationship between the scalar curvatures of the ambient manifold and of the

level sets of t, we need to compute the time derivative of the inverse induced metric. Recalling that

Kj
i = Γj0i = hjlKli and also that Kij =

1

2

∂hij
∂t

, we then have

Kij = hjlKi
l = hjlhikKlk

=
1

2
hjlhik

∂hlk
∂t

=

=
1

2
hjl
{
∂(hikhlk)

∂t
− hlk

∂hik

∂t

}
=

1

2
hjl∂tδ

i
l −

1

2
hjlhlk

∂hik

∂t

= −1

2
δjk
∂hik

∂t

= −1

2

∂hij

∂t
,

which consequently gives us

∂hij

∂t
= −2Kij . (2.2)

For the scalar curvature, it follows from definition and the previous computations that

R = R00 + 2g0iR0i + hijRij =

= −∂tKi
i −KijK

ij + 0 + hij
{
R̄ij −

∂Kij

∂t
+ 2Kl

jKil −Kl
lKij

}
= −∂tKi

i −KijK
ij + R̄− hij ∂Kij

∂t
+ 2hijKl

jKil − hijKl
lKij

= −∂tKi
i −KijK

ij + R̄− ∂(hijKij)

∂t
+Kij

∂hij

∂t
+ 2KilKil −Kl

lK
i
i .

However, due to (2.2), we then have that

R = −2∂tK
i
i −KijK

ij + R̄− 2KijK
ij + 2KijKij − (Ki

i )
2,

10



and so

R = R̄− 2
∂

∂t
Ki
i − (Ki

i )
2 −KijK

ij .

2.3 Minimizing Condition

The objective of this section is to use (2.1) to prove a weaker version of the 3-dimensional Geroch

conjecture, thus concluding the goal of the chapter. Essentiallly, we want to prove that a metric with

positive scalar curvature is incompatible with the asssumption of a stable, minimal T 2.

Theorem 2. Suppose T 3 admits a stable area minimizing 2-torus T 2. Then, T 3 does not admit a metric

g of positive scalar curvature.

Proof. Assume that there exists a area minimizing 2-torus T 2, in the 3-torus T 3, with an induced met-

ric given by Gauss coordinates and volume form given by σ =
√

det(h)dx1 ∧ dx2, and recall that for

any matrix-valued function M we have the identity ∂t det(M) = det(M) tr(M−1∂tM). Computing the

formulas for the first and second variation of the volume form we obtain:

∂

∂t
σ =

∂
√

det(hij)

∂t
dx1 ∧ dx2 =

=
1

2
det(hij)

1√
det(hij)

(hij
∂hij
∂t

)dx1 ∧ dx2

=
√

det(hij)h
ijKijdx

1 ∧ dx2

= Ki
iσ.

∂2

∂t2
σ =

∂

∂t
(Ki

iσ)

=
∂Ki

i

∂t
σ +Ki

i

∂

∂t
σ

=

{
∂Ki

i

∂t
+ (Ki

i )
2

}
σ.

By rewriting equation (2.1), we see that

∂

∂t
Ki
i =

1

2

{
R̄−R− (Ki

i )
2 −KijK

ij
}
,

hence we arrive at the following formula for the second variation of the volume form:

∂2

∂t2
σ =

1

2

{
R̄−R− (Ki

i )
2 −KijK

ij
}
σ + (Ki

i )
2σ

=
1

2

{
R̄−R+ (Ki

i )
2 −KijK

ij
}
σ.

By the previous area minimizing assumption, since the first variation has to vanish, we conclude from

11



the first formula that
∫
T 2 K

i
iσ = 0. In fact, more is true, as it is well known that Ki

i = 0 pointwise for

minimal surfaces. Now, assuming that the 2-torus is a stable minimizer, the second variation has to be

non-negative, which in turn gives us

1

2

∫
T 2

{
R̄−R+ (Ki

i )
2 −KijK

ij
}
σ ≥ 0,

and given that Ki
i = 0, we conclude that

1

2

∫
T 2

{
R̄−R−KijK

ij
}
σ ≥ 0.

Furthermore, by the Gauss-Bonnet theorem, since the torus T 2 is a 2-dimensional, oriented and

compact Riemannian manifold such that its Euler Characteristic is zero, χ(T 2) = 0, we have that

∫
T 2

R̄ = 0.

Consequently,

−1

2

∫
T 2

R+KijK
ij ≥ 0⇔

∫
T 2

R+KijK
ij ≤ 0.

Note that KijK
ij is a sum of squares, hence positive. Therefore, if the 3-torus T 3 admits an area

minimizing 2-torus, T 2, there is no metric on the 3-torus with positive scalar curvature.

12



Chapter 3

Non-Negative Scalar Curvature

Following results and ideas from [KW75b], through pointwise conformal deformations of a given

metric, we will show that the only metric with non-negative scalar curvature on T 3 is the flat metric,

which is the 3-dimensional case of the Geroch Conjecture.

3.1 Scalar Curvature of Conformal Deformation

First, in order to provide some backgroung to the operator used in [KW75a], some computations are

mandatory. Given a smooth, positive function u : T 3 → R, we will consider the following conformal

deformation of (T 3, g):

g̃ = u4g.

Now, for the result of this section.

Proposition 3. The scalar curvature R̃ of g̃ is related to the curvature R of g by the equation:

u5R̃ = −8∆u+Ru. (3.1)

Proof. Again, computing the Christoffel symbols for this new metric, we have

13



Γ̃kij =
1

2
g̃lk
{
∂g̃jl
∂xi

+
∂g̃li
∂xj
− ∂g̃ij
∂xl

}
=

1

2u4
glk
{
∂(u4gjl)

∂xi
+
∂(u4gli)

∂xj
− ∂(u4gij)

∂xl

}
=

1

2
glk
{
∂gjl
∂xi

+
∂gli
∂xj
− ∂gij
∂xl

}
+

1

2u4
glk
{
∂u4

∂xi
gjl +

∂u4

∂xj
gli −

∂u4

∂xl
gij

}
=

= Γkij +
4

2u4
glku3

{
∂u

∂xi
gjl +

∂u

∂xj
gli −

∂u

∂xl
gij

}
= Γkij + 2glk

{
∂iu

u
gjl +

∂ju

u
gli −

∂lu

u
gij

}
=

= Γkij + 2
{
∂i(ln(u))gkj + ∂j(ln(u))gki − ∂k(ln(u))gij

}
.

For notation purposes, define Dk
ij = Γ̃kij − Γkij . Then, the coefficients of the Riemann curvature for

this new conformal metric are

R̃sijk = Γ̃rikΓ̃sjr − Γ̃rjkΓ̃sir +
∂Γ̃sik
∂xj

−
∂Γ̃sjk
∂xi

= (Γrik +Dr
ik)(Γsjr +Ds

jr)− (Γrjk +Dr
jk)(Γsir +Ds

ir) +
∂(Γsik +Ds

ik)

∂xj
−
∂(Γsjk +Ds

jk)

∂xi
=

= ΓrikΓsjr − ΓrjkΓsir +
∂Γsik
∂xj

−
∂Γsjk
∂xi

+
∂Ds

ik

∂xj
−
∂Ds

jk

∂xi

+ ΓrikD
s
jr + ΓsjrD

r
ik − ΓrjkD

s
ir − ΓsirD

r
jk +Dr

ikD
s
jr −Dr

jkD
s
ir =

= Rsijk +
∂Ds

ik

∂xj
−
∂Ds

jk

∂xi
+ ΓrikD

s
jr + ΓsjrD

r
ik − ΓrjkD

s
ir − ΓsirD

r
jk +Dr

ikD
s
jr −Dr

jkD
s
ir.

Now, we compute the components of the Ricci curvature tensor. First, note that

∇iDl
jk = ∇iΓ̃ljk −∇iΓljk =

= ∂iΓ̃
l
jk + Γ̃limΓ̃mjk − Γ̃mij Γ̃

l
mk − Γ̃ljkΓ̃mik

− ∂iΓljk − ΓlimΓmjk + ΓmijΓ
l
mk + ΓljkΓmik =

= ∂iD
l
jk + (Γlim +Dl

im)(Γmjk +Dm
jk)− (Γmij +Dm

ij )(Γlmk +Dl
mk)

− (Γljk +Dl
jk)(Γmik +Dm

ik)− ΓlimΓmjk + ΓmijΓ
l
mk + ΓljkΓmik =

= ∂iD
l
jk + ΓlimD

m
jk +Dl

imΓmjk − ΓmijD
l
mk − ΓlmkD

m
ij + ΓljkD

m
ik + ΓmikD

l
jk

+Dl
imD

m
jk −Dm

ijD
l
mk −Dl

jkD
m
ik,
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hence, while being careful to both add and subtract the necessary components, we see that

R̃ij = Rkikj + ∂kD
k
ij − ∂iDk

kj + ΓrijD
k
kr + ΓkkrD

r
ij − ΓrkjD

k
ir − ΓkirD

r
kj +Dr

ijD
k
kr −Dr

kjD
k
ir =

=
{

(∂kD
k
ij + ΓkkrD

r
ij + ΓrijD

k
kr)− ΓrkiD

k
rj − ΓkrjD

r
ki − ΓkijD

r
kj − ΓrkjD

k
ij +Dr

ijD
k
kj −Dr

kiD
k
rj −Dk

ijD
r
kj

}
−
{

(∂iD
k
kj + ΓrkjD

k
ir + ΓkirD

r
kj)− ΓrkiD

k
rj − ΓkrjD

r
ki − ΓkijD

r
kj − ΓrkjD

k
ij +Dr

kjD
k
ij −Dr

kiD
k
rj −Dk

kjD
r
ij

}
+Dr

ijD
k
kr −Dr

kjD
k
ir =

= Rij +∇kDk
ik −∇iDk

kj +Dr
ijD

k
kr −Dr

kjD
k
ir.

Considering each term on the right-hand side, and recalling that ∇kg = 0 and ∇j ln(u) = ∂j ln(u), we

have:

∇iDk
kj = 2∇i

[
∂k(ln(u))gkj + ∂j(ln(u))gkk − ∂k(ln(u))gjk

]
=

= 2
{
∇i(∂j lnu) +∇i(∂j ln(u))gkk −∇i(∂j ln(u))

}
= 6∇i(∂j ln(u)).

∇kDk
ij = 2∇k

[
∂i(ln(u))gkj + ∂j(ln(u))gki − ∂k(ln(u))gij

]
=

= 2
[
gkj∇k(∂i ln(u)) + gki∇k(∂j ln(u))−∇k(∂k ln(u))gij

]
=

= 2
[
∇j(∂i ln(u)) +∇i(∂j ln(u))−∇k(∂kln(u))gij

]
= 4∇i(∂j ln(u))− 2∆ ln(u)gij .

Dr
ijD

k
kr = 4

[
∂i(ln(u))grj + ∂j(ln(u))gri − ∂r(ln(u))gij

] [
∂k(ln(u))gkr + ∂r(ln(u))gkk − ∂k(ln(u))gkr

]
=

= 12
[
∂i(ln(u))grj + ∂j(ln(u))gri − ∂r(ln(u))gij

]
∂r(ln(u)) =

= 12
[
∂i(ln(u))∂j(ln(u)) + ∂j(ln(u))∂i(ln(u))− | grad(ln(u))|2gij

]
=

= 24∂i(ln(u))∂j(ln(u))− 12| grad(ln(u))|2gij .

Dr
kjD

k
ir = 4

[
∂k(ln(u))grj + ∂j(ln(u))grk − ∂r(ln(u))gkj

] [
∂i(ln(u))gkr + ∂r(ln(u))gki − ∂k(ln(u))gir

]
=

= 4∂k(ln(u))
{
grj g

k
r∂i(ln(u)) + grj g

k
i ∂r(ln(u))− grj gir∂k(ln(u))

}
+ 4∂j(ln(u))

{
grkg

k
r∂i(ln(u)) + grkg

k
i ∂r(ln(u))− grkgir∂k(ln(u))

}
− 4∂r(ln(u))

{
gkjg

k
r∂i(ln(u)) + gkjg

k
i ∂r(ln(u))− gkjgir∂k(ln(u))

}
=

= 4
{
∂j(ln(u))∂i(ln(u)) + ∂j(ln(u))∂i(ln(u)) + 3∂j(ln(u))∂i(ln(u))− 2∂k(ln(u))∂k(ln(u))gij

}
=

= 20∂i(ln(u))∂j(ln(u))− 8| grad(ln(u))|2gij .
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Therefore, the Ricci coefficients are

R̃ij = Rkikj −∇iDk
kj +∇kDr

ik +Dr
ijD

k
kr −Dr

kjD
k
ir

= Rij + 4∇i(∂j ln(u))− 2∆ ln(u)gij − 6∇i(∂j ln(u)) + 24∂i(ln(u))∂j(ln(u))

− 12| grad(ln(u))|2gij − 20∂i(ln(u))∂j(ln(u)) + 8| grad(ln(u))|2gij =

= Rij − 2∇i(∂j ln(u))− 2∆ ln(u)gij + 4∂i(ln(u))∂j(ln(u))− 4| grad(ln(u))|2gij .

Given the previous Ricci coefficients, we can now compute the scalar curvature of the conformally

related metric. However, as the equation (3.1) suggests, we want to work with the function u and not

with ln(u), hence

| grad(ln(u))|2 = ∂k ln(u)∂k ln(u) =
∂ku

u

∂ku

u
=
| grad(u)|2

u2
,

and also

∆(ln(u)) = ∇k(
∂ku

u
) = ∂k(

1

u
)∂ju+

1

u
∇k(∂ku) = −| grad(u)|2

u2
+

∆u

u
.

Therefore, the scalar curvature is

R̃ =
1

u4
gij
{
Rij − 2∇i(∂j ln(u))− 2∆ ln(u)gij + 4∂i(ln(u))∂j(ln(u))− 4| grad(ln(u))|2gij

}
=

=
1

u4
R− 2

u4
∇j∇j(ln(u))− 6

u4
∆ ln(u) +

4

u4
∂j(ln(u))∂j(ln(u))− 12

u4
| grad(ln(u))|2 =

=
1

u4
R− 8

u4
∆ ln(u)− 8

u4
| grad(ln(u))|2 =

=
1

u4
R− 8

u5
∆u+

8

u6
| grad(u)|2 − 8

u6
| grad(u)|2 =

=
1

u4
R− 8

u5
∆u.

Finally, multiplying both sides by u5, we arrive at (3.1).

3.2 Zero Scalar Curvature

Using the same notation as in [KW75b], consider now the elliptic differential operator given by Lgu ≡

−8∆u+ Ru = R̃u5. Since T 3 is a compact manifold, we can take λ1(g) as the lowest eigenvalue of the

operator with a corresponding positive eigenfunction ψ. Consider also the following two lemmas.

Lemma 2. Let M be a compact and connected manifold, with dim(M) ≥ 3. Then, M admits a metric

pointwise conformal to g with positive (zero, or negative) scalar curvature if and only if λ1(g) > 0 (λ1(g) =

0, or λ1(g) < 0, respectively).

Proof. Let R̄ be the scalar curvature of the metric ḡ pointwise conformal to g with conformal factor the

eigenfunction ψ corresponding to the first eigenvector, and let

〈u, v〉L2 =

∫
M

uv
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be the L2 the inner product on C∞(M) . Then,

Lgψ = R̄ψ5 =⇒ 〈Lgψ, ψ〉L2 =
〈
R̄ψ5, ψ

〉
L2 =⇒

〈λ1(g)ψ, ψ〉L2 =
〈
R̄ψ5, ψ

〉
L2 =⇒

λ1(g) 〈ψ, ψ〉L2 =
〈
R̄ψ5, ψ

〉
L2 ,

which gives us the ”only if” part.

For the other implication, let λ1(g) be the first eigenvalue as previously stated. Rewriting the equation,

we see that

Lgψ = λ1(g)ψ ⇐⇒ Lgψ = λ1(g)ψ−4ψ5

which gives a conformal metric ḡ = ψ4g with scalar curvature R̄ = λ1(g)ψ−4, whose sign depends only

on λ1(g).

Lemma 3. Let M be a compact manifold that does not admit a metric with positive scalar curvature.

Then, any metric with zero scalar curvature must have zero Ricci curvature.

Proof. Let g be a metric with zero scalar curvature, Rg = 0. Then, by the previous lemma, λ1(g) = 0.

Suppose also that the associated Ricci curvature, S, is not zero and, for notation purposes, write gt =

g(t) = g − tS, Lt = Lg(t), and λ1(t) = λ1(g(t)) for t sufficiently small.

Considering the normalized eigenfunction, we have the equation Ltψ(t) = λ1(t)ψ(t) and, differenti-

ating both sides with respect to t, we get

∂t(Ltψ(t)) = ∂t(λ1(t)ψ(t)) ⇐⇒

L′tψ(t) + Ltψ
′(t) = λ′1(t)ψ(t) + λ1(t)ψ′(t).

Now, taking the inner product (defined in the previous Lemma) with ψ(t), since the eigenfunction is

normalized, we see that

〈L′tψ(t), ψ(t)〉L2 + 〈Ltψ′(t), ψ(t)〉L2 = 〈λ′1(t)ψ(t), ψ(t)〉L2 + 〈λ1(t)ψ′(t), ψ(t)〉L2 ⇐⇒

〈L′tψ(t), ψ(t)〉L2 + 〈Ltψ′(t)− λ1(t)ψ′(t), ψ(t)〉L2 = λ′1(t) 〈ψ(t), ψ(t)〉L2 ⇐⇒

〈L′tψ(t), ψ(t)〉L2 + 〈(Lt − λ1(t))ψ′(t), ψ(t)〉L2 = λ′1(t),

which, at t = 0 is:

〈L′0ψ(0), ψ(0)〉L2 + 〈(L0 − λ1(0))ψ′(0), ψ(0)〉L2 = λ′1(0).

We claim that the operator L0 − λ1(0) is self-adjoint and, since (L0 − λ1(0))ψ(0) = 0, we arrive at

〈L′0ψ(0), ψ(0)〉L2 = λ′1(0). (3.2)

Let ∇̃, ∇ be the Levi-Civita connections of g(t) and g, respectively, and denote by C(t) the tensor
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which gives us the difference between the two connections, i.e.:

C(t,X, Y ) = (∇̃X −∇X)Y ⇐⇒ ∇iY j = ∇̃iY j − CjikY
k.

Note that at t = 0 we have ∇i = ∇̃i (or, put in another way, C(0) = 0). Furthermore, since the

connections are symmetric, our tensor C(t) is symmetric as well, and given that

∇̃kgij = ∇kgij − Cskigsj − Cskjgis ⇐⇒ 0 = ∇kgij − Cjki − Cikj ,

∇̃igjk = ∇igjk − Csijgsk − Csikgjs ⇐⇒ 0 = ∇igjk − Ckij − Cjik,

∇̃jgki = ∇jgki − Csjkgsi − Csjigks ⇐⇒ 0 = ∇kgij − Cijk − Ckji,

through algebraic manipulation of the previous equations, we arrive at the expression:

Ckij =
1

2
gks(t) {∇igjs(t) +∇jgis(t)−∇sgij(t)} . (3.3)

To compute the relation between both metric’s curvature tensors, note first that:

∇̃i∇̃jXk = ∇̃i(∇jXk + CkjsX
s)

= ∇i∇jXk + Ckis∇jXs − Csij∇sXk

+∇iCkjsXs + Ckjs∇iXs + CkilC
l
jsX

s − ClijCklsXs.

Then, for the curvature tensor we have

R̃kijsX
s =

(
∇̃i∇̃j − ∇̃i∇̃j

)
Xk = ∇i∇jXk + Ckis∇jXs − Csij∇sXk +∇iCkjsXs

+ Ckjs∇iXs + CkilC
l
jsX

s − ClijCklsXs −∇j∇iXk − Ckjs∇iXs + Csij∇sXk

−∇jCkisXs − Ckis∇jXs − CkjlClisXs + ClijC
k
lsX

s =

= (∇i∇j −∇j∇i)Xk + (∇jCkis −∇iCkjs + CkilC
l
js − CkjlClis)Xs

= (Rkijs −∇jCkis +∇iCkjs + CkilC
l
js − CkjlClis)Xs,

whence we see that

R̃kijs = Rkijs −∇jCkis +∇iCkjs + CkilC
l
js − CkjlClis. (3.4)

Now, since we are linearizing the scalar curvature, we want the derivatives, at t = 0, of the previous

formulas (3.3) and (3.4). First, recal the formula for the derivative of the inverse of a matrix, A, dependent

on a parameter t, that is
d

dt
A−1 = −A−1

(
d

dt
A

)
A−1. Then, we have

d

dt |t=0
gij(t) = −Sij

d

dt |t=0
gij(t) = −gij(0)

(
d

dt |t=0
gij(t)

)
gij(0) = Sij .
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Furthermore, we easily get from the previous computations

d

dt |t=0
Ckij(t) =

1

2

(
d

dt |t=0
gks(t)

)
{∇igjs(0) +∇jgis(0)−∇sgij(0)}

+
1

2
gks(0)

d

dt |t=0
(∇igjs(t) +∇jgis(t)−∇sgij(t)) =

= 0 +
1

2
gks
(
∇i
(
d

dt |t=0
gjs(t)

)
+∇j

(
d

dt |t=0
gis(t)

)
−∇s

(
d

dt |t=0
gij(t)

))
= −1

2
gks (∇iSjs +∇jSis −∇sSij)

= −1

2

(
∇iSkj +∇jSki −∇kSij

)
.

From C(0) = 0, we see that the derivative at t = 0 of a product of components of C, such as CkilC
l
js,

will vanish. Consequently, we obtain the following derivative for (3.4):

d

dt |t=0
Rkijs = ∇j

(
d

dt |t=0
Ckis

)
−∇i

(
d

dt |t=0
Ckjs

)
=⇒

=⇒ d

dt |t=0
Sij =

d

dt |t=0
Rkikj = ∇k

(
d

dt |t=0
Ckij

)
−∇i

(
d

dt |t=0
Ckkj

)
=

= −1

2
∇k
(
∇iSkj +∇jSki −∇kSij

)
+

1

2
∇i
(
∇kSkj +∇jSkk −∇kSkj

)
= −1

2

(
∇k∇iSkj +∇k∇jSki −∇k∇kSij −∇k∇iSkj −∇i∇jSkk +∇i∇kSkj

)
= −1

2

(
∇i∇kSkj +∇k∇jSki −∇k∇kSij −∇i∇jSkk

)
,

which is the differential for the components of the Ricci curvature tensor.

Computing now L′0 =
d

dt |t=0
(−8∆ +R) for an arbitrary function f ∈ C∞, we see that

d

dt |t=0
∆g(t)f =

d

dt |t=0
(gij(t)∇̃i (∂jf)) =

=

(
d

dt |t=0
gij(t)

)
∇i∂jf + gij

d

dt |t=0

(
∇i − Ckij

)
∂jf

= Sij (∇i∂jf)− gij d
dt |t=0

(Ckij)∂kf

= Sij (∇i∂jf) +
1

2
gij
(
∇iSkj +∇jSki −∇kSij

)
∂kf

= Sij (∇i∂jf) +∇iSik∂kf −
1

2
∇kSii∂kf,

d

dt |t=0
Rg(t) =

d

dt |t=0
(gij(t)Sij) =

=

(
d

dt |t=0
gij(t)

)
Sij + gij

(
d

dt |t=0
Sij

)
= SijSij −

1

2
gij
{
∇i∇kSkj +∇k∇jSki −∇k∇kSij −∇i∇jSkk

}
= SijSij +∇i∇iSkk −∇i∇jSij = SijSij + ∆Sjj −∇i∇jS

ij .
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Therefore, from the previous computations, we have

L′0ψ = −8Sij (∇i∂jψ)− 8∇iSij∂jψ + 4∇jSii∂jψ +
(
SijSij + ∆Sjj −∇i∇jS

ij
)
ψ,

and so, writing ψ = ψ(0), (3.2) becomes:

〈−8Sij (∇i∂jψ)− 8∇iSij∂jψ + 4∇jSii∂jψ +
(
SijSij + ∆Sjj −∇i∇jS

ij
)
ψ, ψ〉L2 = λ′1(0).

Furthermore, noting that by the assumption of the lemma, we have both R = Sii = 0 and λ1(0) =

0, then L0ψ(0) = −8∆ψ(0) = λ1(0)ψ(0) = 0 =⇒ ψ(0) = ψ is constant and, proceeding through

integration by parts to take out all the derivatives of S, we have

∫
M

−8Sij (∇i∂jψ)ψ − 8∇iSij(∂jψ)ψ + 4∇jSii(∂jψ)ψ +
(
SijSij + ∆Sjj −∇i∇jS

ij
)
ψ2

=

∫
M

SijSijψ
2 + 2

∫
M

∇jSij(∇iψ)ψ

=

∫
M

SijSijψ
2

= 〈S, ψ2S〉L2

= ψ(0)2〈S, S〉L2 .

We then conclude that

λ′1(0) = c〈S, S〉L2 > 0.

Hence, for t sufficiently small, our manifold admits a metric, ḡ = g − tS, such that λ1(ḡ) > 0. Then,

by the previous Lemma, this metric has positive scalar curvature, which contradits the very assumption

of Lemma 3. Therefore, the Ricci tensor must vanish, S = 0.

To conclude this proof, note that for any functions u, v ∈ C∞(M) we have

〈(L0 − λ1(0))u, v〉L2 =

∫
M

(−8∆u+Rgu− λ1(0)u) v

= −8

∫
M

∆u v = 8

∫
M

∂iu ∂iv

= −8

∫
u∆v = 〈u, (L0 − λ1(0)) v〉L2 ,

hence our claim that L0 − λ1(0) is self-adjoint was correct.

Given the two previous lemmas, we now have an interesting restriction to both curvature and metric

of a 3-torus allowing a stable area-minimizing T 2. From them, we get the following result.

Theorem 3. Suppose we have a 3-torus (T 3, g) that admits a stable minimal T 2, with g such that the

scalar curvature satisfies R ≥ 0. Then, g is the flat metric (and R = 0).

Proof. We concluded in the previous chapter (Theorem 2) that, if T 3 admits a stable minimal T 2, there
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is no metric with positive scalar curvature for T 3. Furthermore, note that M = T 3 is a compact 3-

dimensional manifold.

Now, suppose we have R ≥ 0. Hence, the scalar curvature vanishes on T 2, and it is either identically

zero in all of T 3 or it is positive somewhere. By Lemma 3, if the metric has zero scalar curvature

everywhere, then we must have zero Ricci curvature as well. However, given that we are working with a

3-manifold, having zero Ricci curvature implies that the Riemann curvature is also identically zero and,

consequently, g is flat.

Consider the case of R being positive somewhere, in other words, the case where T 3 admits a non-

flat metric with non-negative scalar curvature. Take ψ̄ to be the normalized eigenfunction of Lg with the

eigenvalue λ1(g). Now, multiplying both sides by ψ̄ and taking the integral over T 3, we get

Lgψ̄ = λ1(g)ψ̄

⇐⇒ −8∆ψ̄ +Rψ̄ = λ1(g)ψ̄

=⇒ −8ψ̄∆ψ̄ +Rψ̄2 = λ1(g)ψ̄2

=⇒ −8

∫
T 3

ψ̄∆ψ̄ +

∫
T 3

Rψ̄2 = λ1(g)

∫
T 3

ψ̄2

⇐⇒ −8

∫
T 3

div
[
grad(ψ̄)

]
ψ̄ +

∫
T 3

Rψ̄2 = λ1(g).

Recalling that T 3 is a compact manifold, we now have

− 8

∫
T 3

div
[
grad(ψ̄)

]
ψ̄ +

∫
T 3

Rψ̄2 = λ1(g)

⇐⇒ −8

∫
T 3

div
[
ψ̄ grad(ψ̄)

]
+ 8

∫
T 3

| grad(ψ̄)|2 +

∫
T 3

Rψ̄2 = λ1(g)

⇐⇒ 8

∫
T 3

| grad(ψ̄)|2 +

∫
T 3

Rψ̄2 = λ1(g).

We argue that λ1(g) is positive since, on the left side, both integrals cannot be simultaneously zero.

Suppose the first integral vanishes; then grad(ψ̄) is identically zero. Therefore, the eigenfunction ψ̄ is a

positive constant and the second integral, by our assumption that R is positive somewhere, has to be

strictly positive. On the other hand, if the second integral is zero, then one has that the eigenfunction

vanishes where R > 0. However, by definition, ψ̄ can’t be zero everywhere and, consequentely, its

gradient has to be non-zero. Ergo, the first integral is stricly positive.

Given that λ1(g) > 0, by Lemma 2, T 3 admits a pointwise conformal metric g1 with positive scalar

curvature, yet such result contradicts the previous chapter and our assumption of a stable minimal 2-

torus. Therefore, we must have R = 0 and g must be the flat metric.
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Chapter 4

Existence of a Minimal 2-torus

In this chapter we will show that, in fact, there exists a stable minimal 2-torus in T 3 and, consequently,

all the previous results follow. In other words, we show that we can drop the assumption of T 3 admiting

a stable minimal torus from previous theorems.

However, to do so we require some heavier hardware – Geometric Measure Theory (GMT), mainly

following [Mor16] – whose basic notions will be presented in section 4.1. The intuiton behind the result

follows from Real Analysis: we take a set of generalized surfaces (called rectifiable currents) and, in this

set, we consider a sequence of surfaces with area decreasing to an infimum. By taking a convergent

subsequence and showing that, in fact, this limit exists and is the surface of least area, we conclude the

proof.

Now, to proceed as was described, there are some issues one must adress, in section 4.2. For

example, we must have compactness of the set of surfaces for the existence of the area-minimizing

limit. Furthermore, there is the concern about the regularity of such area-minimizing surfaces, i.e. are

these limits some undesired generalized objects or are they smooth manifolds?

By adressing these issues, in section 4.3, we derive the existence of a smooth stable minimal 2-torus

in T 3, and thus conclude the proof of the 3-dimensional case of the Geroch Conjecture.

4.1 Measures and Currents

In this section, the basic tools and notions required to prove the desired results will be introduced, in

a brief and concise manner. Let us start by defining the measure, for all subsets of Rn, that we will use

when constructing the alternative to surfaces as classical submanifolds.

Recall that the definition of the diameter of a subset S of Rn is

diam(S) = sup {|x− y| : x, y ∈ S}.

Definition 4.1.1 (Hausdorff measure). Let αm be the Lebesgue measure of the closed unit ball Bm(0, 1) ⊂

Rn. For any A ⊂ Rn, the m-dimensional Hausdorff measure is defined by
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Hm(A) = lim
δ→0

inf
A⊂

⋃
Sj

diam(Sj)≤δ

∑
αm

(
diam(Sj)

2

)2

,

where the infimum is taken over all the countable coverings {Sj} of A with diam(Sj) ≤ δ.

As δ decreases, the infimum itself is non-decreasing, and therefore the limit exists (allowing 0 ≤

Hm(A) ≤ ∞). Furthermore, this measure is Borel regular, and the n-dimensional case agrees with the

Lebesgue measure in Rn, i.e. Hn = Ln in Rn.

We present now the sets that will be the generalized surfaces of GMT. Recall the definition of Lipschitz

functions introduced earlier.

Definition 4.1.2 (Rectifiable Set). Let E ⊂ Rn. We say E is (Hm, m) rectifiable if:

1. Hm(E) <∞;

2. Hm-almost all of E is contained in
⋃

im(fi), where fi are countably many Lipschitz functions from

Rm to Rn.

Proposition 4. On the previous definition, one can substitute the Lipschitz functions byC1-diffeomorphisms

fj on compact domains with disjoint images. Moreover, the Lipschitz constants of fj and f−1
j can be

taken near 1.

Sketch of Proof. The idea is to procceed by repetition until exhaustion. Divide the domains of the Lips-

chitz functions as to assume they have at most diameter 1 and, due to Proposition 1 – Chapter 1, replace

the first Lipschitz function g by a C1 approximation f .

By taking a small portion of the domain of f so that im(f) ⊂ E and Df is approximately constant

(and small), we get injectivity of f . Through a linear transformation we get Lip g ≈ Lip g−1 ≈ 1,

and replacing the domain by a compact set we obtain 1% of im(f). Repeating the process for all the

remaining Lipschtiz functions gives us 1% of the set E, and the rest can be exhausted by repetition.

Definition 4.1.3 (Tangent Cones). Let E ⊂ Rn and a ∈ Rn. Considering the m-dimensional density

Θm(E, a) with respect to the Hausdorff measure, Hm, the tangent cone of E at a is defined by

Tan(E, a) = R+
0

[⋂
ε>0

clos

{
x− a
|x− a|

: x ∈ E, 0 < |x− a| < ε

}]
,

and the cone of approximate tangent vectors of E at a is given by

Tanm(E, a) =
⋂

Θm(E−S, a)=0

Tan(S, a).

For almost all points a in a rectifiable set E, the tangent cone Tanm(E, a) is in fact a tangent plane

[Mor16]–3.12. Moreover, an orientation of a m-dimensional rectifiable subset of A ⊂ Rn is a choice of

orientation for each Tanm(A, a). Note that every rectifiable, positive measure set has uncountably many

possible orientations.
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Recall the definition of Dm from the introduction. Its dual space, Dm, is the space of m-dimensional

currents, intuitively viewed as such by analogy with electrical currents. That is, given a differential form

ω and a oriented rectifiable set S, the action of S on ω (given by integrating a form ω over S) induces a

linear functional on smooth differential forms:

ω 7→ S(ω) =

∫
S

〈
~S(x), ω

〉
dHm,

where ~S(x) is the unit m-vector associated with the oriented tangent plane to S at x.

Generally, given an m-vector-field ~v, we would get, by duality, a current T (just not a very adequate

or interesting one) if we substituted ~S by ~v. However, this would not give us a surface in the sense we

need. It is precisely the integration over S with the orientation given by ~S that provide us with a rectifiable

current/surface.

Definition 4.1.4 (Boundary/Support of Currents). Let S ∈ Dm be a m-dimensional current.

The boundary of S is the (m− 1)-dimensional current defined by

∂S(ω) = S(dω).

The support of S is the smallest closed set C such that

supp(ω) ∩ C = ∅ ⇒ S(ω) = 0.

Definition 4.1.5 (Spaces of Currents).

1. Dm is the space of m-dimensional currents in Rn;

2. Em = {T ∈ Dm : supp(T ) is compact};

3. Rm = {T ∈ Em : T is an oriented rectifiable set with integer multiplicities and finite measure} is the

space of rectifiable currents;

4. Pm = {integral polyhedral chains} is the additive subgroup of Em generated by classicaly oriented

simplices;

5. Im = {T ∈ Rm : ∂T ∈ Rm−1} is the set of rectifiable currents T whose boundary is a rectifiable

current, the so-called integral currents.

6. Fm = {T + ∂S : T ∈ Rm, S ∈ Rm+1} is the set of integral flat chains.

The last two spaces allow us to see how well-behaved the boundary operator ∂ is.

Proposition 5. The boundary operator ∂ maps Im to Im−1 and Fm to Fm−1. Moreover, supp(∂T ) ⊂

supp(T ).

Proof. Let T ∈ Im, then (by definition) ∂T ∈ Rm−1. Furthermore, ∂(∂T ) = 0 ∈ Rm−2, hence ∂T ∈ Im−1.

25



Now, let J ∈ Fm. By definiton, J = T +∂S with T ∈ Rm and S ∈ Rm+1. Then, ∂J = ∂T with T ∈ Rm
which gives us ∂J ∈ Fm−1.

Let ω ∈ Dm−1 be a differential form such that supp(ω) ∩ supp(T ) = ∅. Consequently, supp(dω) ∩

supp(T ) = ∅ and we have

∂T (ω) = T (dω) = 0.

Therefore, supp(∂T ) ⊂ supp(T ).

Definition 4.1.6 (Mass; Flat norm). We define on the space of currents Dm the seminorms

M(T ) = sup {T (ω) : sup ‖ω(x)‖∗ ≤ 1}

and

F(T ) = inf {M(A) + M(B) : T = A+ ∂B, A ∈ Rm, B ∈ Rm+1} ,

called the mass and flat norm, respectively.

From the definitions, it is clear that the flat norm topology is weaker than the mass norm topology.

Moreover, it will be shown, in the next section, that the flat norm topology is the natural topology to get

compactness. Before proceeding, let us prove some results that will be required in the next section.

Definition 4.1.7 (Push-forward of a Current). Let T ∈ Em(Rn) be a current with compact support,

ω ∈ Dm(Rp) an arbitrary m-differential form and f : Rn → Rp a C∞-map. Then, the push-forward

f∗T ∈ Dm(Rp) is defined by

(f∗T ) (ω) = T (f∗ω) ,

where f∗ω is the pullback of ω by f .

Theorem 4 ([Fed96] - 4.1.28). T ∈ Em is a rectifiable current iff given ε > 0, there exists an integral

polyhedral chain P ∈ Pm(Rv) and a Lipschitz function f : Rv → Rn such that

M(T − f∗P ) < ε,

where f∗ is the push-forward by f .

Corollary 1.

1. {T ∈ Rm : supp(T ) ⊂ Bn(0, r)} is M complete.

2. {T ∈ Fm : supp(T ) ⊂ Bn(0, r)} is F complete.

Proof. By the previous theorem, we see that the first set indeed is M complete.

For the second set, let Fi be a Cauchy sequence in {T ∈ Fm : supp(T ) ⊂ Bn(0, r)}. We can assume,

taking a subsequence if necessary, that F(Fi+1−Fi) < 2−i, and let us rewrite Fi+1−Fi = Ti +∂Si such

that M(Ti) + M(Si) < 2−i, with Ti ∈ Rm and Si ∈ Rm+1. Then

∞∑
i=2

F(Fi+1 − Fi) <∞ and
∞∑
i=2

M(Ti) + M(Si) <∞,
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and therefore, by M completeness of the first set, we get that
∑
Ti and

∑
Si converge to two rectifiable

currents, T ∈ Rm and S ∈ Rm+1, respectively. Consequently, we conclude that F = F1 +
∑
Ti+∂(

∑
Si)

and

F(F − Fj) ≤
∞∑

i=j+1

M(Ti) + M(Si)→ 0 as j →∞,

that is, we get Fi → F1 + T + ∂S ∈ Fm.

Definition 4.1.8 (General Flat norm). For any T ∈ Dm, define the more general flat norm as

F(T ) = sup {T (ω) : ω ∈ Dm, ‖ω(x)‖∗ ≤ 1, and ‖dω(x)‖∗ ≤ 1 for all x}

= min {M(A) + M(B) : T = A+ ∂B, A ∈ Em, B ∈ Em+1} .

The second equality is proved using the Hahn-Banach Theorem. It is possible to define more general

spaces of currents with this norm, and introduce the notion of normal current.

Before proceeding to the next section, let us end with a demonstration of a property of the mass M

which will be usefull later on.

Proposition 6 (Lower Semicontinuity). Given Ti, T ∈ Dm such that Ti
F−→ T , then

M(T ) ≤ lim inf M(Ti)

Proof. For the case where M(T ) is finite, take ε > 0 and choose a differential form ω ∈ Dm, with

‖ω(x)‖∗ ≤ 1, such that M(T ) ≤ T (ω) + ε. Then, taking the limit with respect with F

M(T ) ≤ T (ω) + ε = limTi(ω) + ε ≤ lim inf M(Ti) + ε.

For the case where M(T ) =∞, take ε > 0 and choose a differential form ω ∈ Dm, with ‖ω(x)‖∗ ≤ 1,

such that T (ω) > 1
ε . Then,

lim inf M(Ti) ≥ limTi(ω) >
1

ε
.

Therefore, lim inf M(Ti) =∞.

4.2 The Compactness Theorem

As previously stated, we want to work with a set S of surfaces which is compact under a natural

topology. To do so we require two theorems – the Deformation Theorem and the Closure Theorem –

from which we get the compactness of a suitable set.

Theorem 5 (Deformation Theorem). Let T ∈ Im(Rn) and ε > 0. Then, there are P ∈ Pm(Rn), Q ∈

Im (Rn) and S ∈ Im+1(Rn) such that the following conditions hold, for γ = 2n2m+2:

1. T = P +Q+ ∂S;
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2. supp(P ) ∪ supp(Q) ∪ supp(S) ⊂ {x : dist(x, supp(T )) ≤ 2nε};

3. M(P ) ≤ γ [M(T ) + εM(∂T )],

M(∂P ) ≤ γM(∂T ),

M(Q) ≤ γεM(∂T )

M(S) ≤ γεM(T ).

Corollary 2. The set S = {T ∈ Im : supp(T ) ⊂ Bn(0, c1), M(T ) ≤ c2, M(∂T ) ≤ c3} is totally bounded

under F.

Proof. By the Deformation Theorem 5 , each T ∈ S can be approximated by a polyhedral chain P , such

that M(P ) ≤ γ (c2 + εc3) and supp(P ) ⊂ Bn(0, c1 + 2nε), in a ε-grid. However, there are only finitely

many chains P , therefore S is totally bounded.

We then have totally boundedness of our set, all we are missing is completeness. Recall the definition

of Fm and that {T ∈ Fm : supp(T ) ⊂ Bn(0, r)} is F complete.

Theorem 6 (Closure Theorem).

1. Im is F-closed in Nm;

2. Im+1 = {T ∈ Rm+1 : M(∂T ) <∞};

3. Rm = {T ∈ Fm : M(T ) <∞}, consequently,

4. S = {T ∈ Im : supp(T ) ⊂ Bn(0, r), M(T ) ≤ c, M(∂T ) ≤ c} is complete under F.

Proof. Proofs of assertions 1. to 3. will be omitted, as we want to prove and use assertion 4..

Let Ti be a Cauchy sequence in S. By completeness of {T ∈ Fm : supp(T ) ⊂ Bn(0, r)}, there is a

limit T in Fm. By lower semicontinuity of mass M(T ) ≤ c and M(∂T ) ≤ c, hence we have, by 3., T ∈ Rm
and, consequently, by 2., T ∈ Im. Therefore, the limit of a Cauchy sequence in S exists in S, which gives

us completeness.

Corollary 3 (Compactness Theorem). For a closed ball K in Rn and 0 ≤ c <∞, the set

S = {T ∈ Im : supp(T ) ⊂ K, M(T ) ≤ c, M(∂T ) ≤ c} is F compact.

Proof. By Corollary 2 and the Closure Theorem (Theorem 6), the set is both totally bounded and com-

plete, hence compact.

The range of this theorem is further extended when we substitute K for a C1 compact Riemannian

submanifold of Rn. Via C1-embeddings into Euclidean space, it can then be generalized to any compact

C1 Riemannian manifold (M, g).
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4.3 Existence and Regularity of Minimal Surfaces

We can now extract a convergent subsequence from any sequence of rectifiable currents. By defining

the homology class of a rectifiable current T as the set of rectifiable currents S such that S − T = ∂X

for some rectifiable current X, we now possess the necessary framework to prove the existence of

homologically non-trivial minimizing surfaces in arbitray C1 manifolds.

Theorem 7. Let M be a compact C1-Riemannian manifold and T be a rectifiable current in M . Then,

among the currents S such that S − T = ∂X in M , there is one that minimizes area.

Proof. Take Si to be a sequence of rectifiable currents in M with decreasing areas to

inf {M(S) : S − T = ∂X, for some rectifiable current X} .

Since supp(Si) ⊂ M , by the Compactness Theorem, we have a subsequence that converges to a

rectifiable current S̄ such that, by continuity of ∂ and lower semicontinuity of M, S̄ − T = ∂X, and

M(S̄) = inf {M(S) : S − T = ∂X, for some rectifiable currentX} .

Now, if F(Si − S) is small then, by definition of the flat norm, Si − S = A+ ∂B with both the masses

M(A), M(B) small as well. Assume M is isometrically embedded in Rn, and take the minimal surface

Y1 such that its border coincides with A, i.e. ∂Y1 = A (whose existence can be deduced by similar

arguments). Since M(Y1) = M(A) is small, Y1 can be retracted onto Y in M , thus we have ∂Y = A.

Now, we have Si − S = ∂Y + ∂B which means that for each i, S and Si differ only by a boundary.

Therefore, they are on the same homology class.

As the previous result states, we now have a stable rectifiable current of least area in the homology

class of T . However, we do not know how geometrically ”well-behaved” this current is, i.e. we lack

knowledge of its regularity. To address this, we make use of a theorem by Wendell Fleming [Fle62],

whose proof is omitted, that guarantees the interior regularity for 2-dimensional currents.

Theorem 8 (Regularity for the 2-dimensional hypersurface). Any 2-dimensional, area-minimizing recti-

fiable current T in a 3-dimensional manifold M is a smooth, embedded submanifold.

Remark. It is worth mentioning that the regularity theorem holds true for (n − 1)-dimensional, volume

minimizing rectifiable currents in n-dimensional Riemannian manifolds (i.e. maintaining codimension 1)

up to n ≤ 7. For higher dimensions, singularities of geometrical nature start to occur.
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Chapter 5

Further Results

In this chapter, by combining the previous theorems we obtain our main result, the proof of the

Geroch Conjecture for the three dimensional torus. Furthermore, we also estabilish a relation between

this conjecture and a particular case of the Positive Mass Theorem [Nat21].

5.1 Generalizations and Counter-examples

Theorem 9 (Geroch Conjecture). There is no metric g with positive scalar curvature, R, on the 3-torus

T 3. Furthermore, if R ≥ 0, then g is flat and R = 0.

Proof. We have already concluded that there exists a homologically non-trivial minimizing 2-torus in T 3,

which means we can relax the existence constraint of the previous theorems. Therefore, the first part of

the result follows trivially from Theorem 2 (section 2.3 - Chapter 2), and the second part from Theorem

3 (section 3.2 - Chapter 3).

Despite of working with the 3-torus, the main result of this thesis applies to other manifolds. What

was essentially used was the compactness of T 3 and the existence of a homologically non-trivial 2-torus.

Hence, this result can be generalized to other 3-dimensional manifolds, satisfying the previous proper-

ties, for example, the connected sum T 3#M with M a smooth, compact and connected 3-dimensional

manifold, for instance T 3 again. For other examples, let f : T 2 → T 2 be a orientation-preserving diffeo-

morphism. Consider the infinitely many inequivalent torus bundles (see [Hat80] for more) constructed

by taking the Cartesian product of T 2 and the unit interval I = [0, 1], and gluing the two components of

the boundary via f , that is:

M =
T 2 × I

(0, x) ∼ (1, f(x))
.

Clearly, we can apply the previous theorem to these constructions. Notice, moreover, that if f is the

identity, the resulting bundle is just the 3-torus T 3.
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To end this section, we will show that the assumptions of the theorem are in fact necessary, through

examples where the conjecture fails. Consider the manifold (R+×T 2, g), where g = dt2+(f(t))2
(
dθ2 + dϕ2

)
is the metric and f(t) is a positive function. Hence, we have the orthonormal frame

{
∂

∂t
,

1

f(t)

∂

∂θ
,

1

f(t)

∂

∂ϕ

}
,

and the dual co-frame

{dt, f(t)dθ, f(t)dϕ} .

Denoting by ωi the respective elements of the coframe, one readily sees that

dωt = 0, dωθ = f ′(t)dt ∧ dθ, and dωϕ = f ′(t)dt ∧ dϕ.

Now, let

ωθt = adt+ bdθ + cdϕ;

ωϕt = αdt+ βdθ + γdϕ;

ωϕθ = hdt+ kdθ + ldϕ.

Then, by Cartan’s first structure equation, we conclude that

f ′(t)dt ∧ dθ = ωt ∧ ωθt + dωϕ ∧ ωθϕ ⇐⇒

f ′(t)dt ∧ dθ = b dt ∧ dθ + c dt ∧ dϕ− hf(t) dt ∧ dϕ− kf(t) dθ ∧ dϕ =⇒

=⇒ b = f ′(t) ∧ c = h = k = 0;

f ′(t)dt ∧ dϕ = ωt ∧ ωϕt + dωθ ∧ ωϕθ ⇐⇒

f ′(t)dt ∧ dϕ = β dt ∧ dθ + γ dt ∧ dϕ+ lf(t) dθ ∧ dϕ− =⇒

=⇒ γ = f ′(t) ∧ β = l = 0;

0 = ωθ ∧ ωtθ + ωϕ ∧ ωtϕ ⇐⇒

0 = −f(t) {a dθ ∧ dt+ αdt ∧ dϕ} =⇒

=⇒ a = α = 0.

Therefore, we have the following connection forms:

ωθt = f ′(t)dθ =⇒ dωθt = f ′′(t)dt ∧ dθ;

ωϕt = f ′(t)dϕ =⇒ dωϕt = f ′′(t)dt ∧ dϕ;

ωϕθ = 0 =⇒ dωϕθ = 0.
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Now, be Cartan’s second structure equation we can see

Ωθt = dωθt − ω
ϕ
t ∧ ωθϕ = f ′′(t)dt ∧ dθ =

f ′′

f
ωt ∧ ωθ;

Ωϕt = dωϕt − ωθt ∧ ω
ϕ
θ = f ′′(t)dt ∧ dϕ =

f ′′

f
ωt ∧ ωϕ;

Ωϕθ = dωϕθ − ω
t
θ ∧ ω

ϕ
t = (f ′(t)dθ) ∧ (f ′(t)dϕ) =

(
f ′

f

)2

ωθ ∧ ωϕ,

from which we get the non-zero curvature tensor coefficients:

Rθtθt =
f ′′

f
,

Rϕtϕt =
f ′′

f
,

Rϕθϕθ =

(
f ′

f

)2

.

Consequently, the Ricci curvature coefficients and, subsequently, the scalar curvature are:

Rtt = Rθθtt +Rϕϕtt = −2
f ′′

f
,

Rθθ = Rttθθ +Rϕϕθθ = −f
′′

f
−
(
f ′

f

)2

,

Rϕϕ = Rttϕϕ +Rθθϕϕ = −f
′′

f
−
(
f ′

f

)2

,

R = Rtt +Rθθ +Rϕϕ =

= −2
f ′′

f
− 2

(
f ′′

f
+

(
f ′

f

)2
)

=

= − 2

f

(
2f ′′ +

(f ′)2

f

)
=

= − 2

f2

(
2ff ′′ + (f ′)2

)
.

Notice that this metric admits positive scalar curvature if

2ff ′′ + (f ′)2 < 0 ⇐⇒ f ′′ < − (f ′2)

2f
,

which is satisfied, for instance, by f(t) =
√
t. Hence, if we drop the assumption of compactness, the

theorem fails.

Next, let us consider the 3-sphere, S3. It is a compact manifold and it clearly admits a metric with

positive scalar curvature (the round metric). The theorem fails because S3 does not have a homologically

non-trivial 2-torus, something that can be easily seen given its homology groups.
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5.2 Relation with the Positive Mass Theorem

Let’s start by giving the necessary background for the Positive Mass Theorem. Obvsiously, one must

first define what mass is. To do so, we need to characterize the behaviour of the manifold at infinity, as

the appropriate definition of mass is asymtoptic.

Definition 5.2.1 (Asymptotically Flat). Let (S, g) be a 3-dimensional Riemannian manifold. We say that

(S, g) is asymptotically flat if there exists:

1. a compact subset K ⊂ S such that S \K is diffeomorphic to R3 \B1(0);

2. a chart at infinity (x1, .x2, x3) on S \K such that

|gij − δij |+ r|∂kgij |+ r2|∂k∂lgij | = O(r−p), and R = O(r−p),

for some p > 1
2 and q > 3, where δ is the Euclidean metric, r2 = (x1)2 + (x2)2 + (x3)2 and R is the

scalar curvature of g.

Definition 5.2.2 (ADM Mass). The ADM mass of an asymptotically flat Riemannian manifold (S, g) is

M = lim
r→+∞

1

16π

∫
Sr

(∂jgij − ∂igjj)
xi

r
,

where Sr is the a sphere of radius r in the chart at infinity (x1, x2, x3).

To give further context to the previous definition, the ADM mass comes from varying the Einstein-

Hilbert action, in order to have an asymptotically defined Hamiltonian (hence we need asymtotically

flat manifolds) that gives the total energy of the gravitational field. Moreover, while it is not a trivial

conclusion, the ADM mass is well-defined, i.e. it does not depend on the choice of chart at infinity

[Bar86].

Theorem 10 (Positive Mass Theorem). Let (S, g) be a complete, aymptotically flat Riemmanian 3-

manifold with non-negative scalar curvature, i.e. R ≥ 0. Then:

1. Its ADM mass is non-negative, M ≥ 0;

2. If M = 0 then (S, g) is isometric to R3 with the Euclidean metric.

Given a torus T 3, we know from Theorem 9 that there is no metric g on T 3 with positive scalar cur-

vature R. Furthermore, we know that if R ≥ 0 then we have R = 0 and g is flat. A simple consequence,

as seen in [Kaz], is:

Proposition 7. Consider the manifold (R3, g) such that

1. g is the standard Euclidean metric δ outside a compact set K;

2. Rg ≥ 0, i.e. g has non-negative scalar curvature.
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Then, g = δ everywhere.

Proof. Let d = diam(K) and take ε > 0 so that we can include the compact set K inside a cube of edge

d+ε. Identifying opposite faces results in a 3-torus that contains K and a ”bit” of the outside, maintaining

the assumptions of the proposition. We then have a 3-torus (T 3, g) whose scalar curvature is positive,

Rg ≥ 0.

However, because of Theorem 9, we know that g is flat and Rg = 0 in T 3, in particular inside the

compact set K. Hence, g is the standard Euclidean metric everywhere.

The previous proposition can be seen as a corollary of the Conjecture we proved. However, how

does it relate to the Positive Mass Theorem?

Assumption 1. is a stronger version of the asymptotically flat requirement as, in fact, the manifold

itself is already the flat Euclidean space outisde of K. Consequently, this assumption implies that the

ADM mass vanishes, M = 0. Hence, this corollary is a special case of the Positive Mass Theorem,

giving a weaker version of its rigidity statement.
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