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ABSTRACT 

Energy consumption forecasting of buildings plays a crucial role in making planning decisions by facility 

managers and energy providers. These decisions are used to reduce the intrinsic environmental impact 

of the building sector. Nowadays, with the imminent application of Building Energy Management Sys-

tems (BEMS) and the consequent increase of generated data, the use of machine learning algorithms 

to provide such predictions becomes a natural solution. In this study, four machine learning algorithms 

(MLP, SVM, RF, and XGB) were compared in three different forecasting horizons (an hour, a day, and 

a week) for four buildings (Civil, Central, North tower, and South tower) located at Instituto Superior 

Técnico, Lisbon (4 algorithms x 3 forecasting horizon x 4 buildings = 48 models). In the development of 

such models, three years of hourly gathered data of each building consumption and outdoor weather 

conditions were used. Firstly, due to the missing values presented in the data, an imputation study was 

carried out in order to guarantee data temporal continuity. Afterwards, based on the energy consump-

tion analysis of each building, different features were created in attempt to describe buildings’ behav-

iour. From the created features, different data sets were developed per building and forecast horizon, 

where a feature selection analysis supported with the use of a wrapper method, known as RFE, took 

place. With that selection, it was concluded that the most important features were the type of day, 

the lagged features, and the average cluster consumption of a typical working day. At last, an hyperpa-

rameter search using Bayesian optimization was conducted and the models were then used to forecast 

the last year of data. Among all the models used, SVM models outstood, showing higher accuracies in 

most of the forecasting horizons and buildings. Overall, in 93% of the forecasted days, it was achieved 

a MAPE error of 10.95%, 9.17%, 10.48%, and 12.66% for Civil, Central, North tower, and South tower 

buildings in a week horizon forecasting, respectively. In addition, it was also noticeable an increasing 

annual error tendency when the models attempt to predict in greater horizons. 

Key-words: energy, building consumption, forecast, machine learning  
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RESUMO 

A previsão do consumo energético dos edifícios representa uma ferramenta essencial para o planea-

mento e adopção de diferentes estratégias energéticas por parte dos gestores e fornecedores de ener-

gia dos edifícios, a fim de reduzir o impacto ambiental existente no sector. Actualmente, a aplicação 

de sistemas de gestão energética em edifícios e o consequente aumento da quantidade de dados ge-

rados, leva ao uso de modelos orientados por dados, maioritariamente de modelos de machine lear-

ning, para obter a previsão do seu consumo. Neste estudo, quatro algoritmos de machine learning 

(MLP, SVM, RF e XGB) foram utilizados e comparados em três horizontes temporais diferentes (uma 

hora, um dia e uma semana) na previsão do consumo energético de quadro edifícios (Civil, Central, 

Torre sul e Torre norte) localizados no campus da Alameda do Instituto Superior Técnico, Lisboa, (4 

algoritmos x 3 horizontes de previsão x 4 edifícios = 48 modelos). Para o desenvolvimento de cada 

modelo, três anos de dados horários das condições atmosféricas e do consumo de cada edifício foram 

disponibilizados. Primeiramente, devido à falha de valores apresentada nos dados, foi realizado um 

estudo de imputação com o objectivo de garantir a continuidade temporal. De seguida, com base na 

análise do consumo energético de cada edifício foram criadas diferentes variáveis com a finalidade de 

descrever o comportamento de cada edifício. A partir das variáveis criadas foram desenvolvidos dife-

rentes data sets por edifício e horizonte de previsão, onde foi posteriormente utilizado um método 

recursivo de eliminação de variáveis como apoio à selecção das variáveis mais importantes de cada 

data set. Desta selecção três variáveis foram consideradas indispensáveis para a realização da previsão, 

tais como: o tipo de dia, o consumo da hora, do dia e da semana anterior à altura da previsão; e ainda 

a média diária de um conjunto de dias típicos de trabalho. Ultimamente, foi aplicado um algoritmo de 

optimização bayesiana para a selecção dos hiperparâmetros de cada modelo e a previsão foi então 

realizada para o último ano disponibilizado. Entre todos os modelos utilizados, o modelo SVM desta-

cou-se, apresentando os melhores resultados na maioria dos edifícios e horizontes de previsão. Num 

âmbito geral, em 93% dos dias previstos, os edifícios de Civil, de Central, da Torre Norte e da Torre Sul, 

obtiveram erros médios absolutos percentuais de 10.95%, 9.17%, 10.48% e 12.66% para um horizonte 

temporal de uma semana, respectivamente. Foi também observada uma tendência crescente do erro 

anual para previsões com um maior horizonte temporal.   

Palavras-chave: energia, consumo de edifícios, previsão, machine learning  
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Chapter 1 

 

Introduction 

 

1.1 Motivation  

Over the last decades, technological and social advancements have enlarged humankind capability to 

have better living conditions, which lead to an increase of overall average human lifespan and resulted 

in a current world population of over than 7 billion, expected to achieve around 10 billion by 2050 [1]. 

Due to this rapidly population growth and people’s tendency to move to urbanized areas, the city’s 

ability to full-fill every inhabitant’s needs, is considered to be one of the twenty-first century biggest 

challenges [2]. Cities are responsible for providing services in terms of, transportation, healthcare, 

safety, education, water supply, and most importantly, energy. According to European Commission, 

nowadays in Europe, cities accommodate around 75% of the population, being liable for about 70% of 

the global energy consumption and CO2 emissions [3]. 

This large energy consumption can be divided in three main sectors: industrial, transportation, and 

buildings [4]. Nowadays, the buildings sector, as reported in Figure 1.1, accounts with almost 40% of 

energy consumption and 36% of CO2 emissions [5]. 

 

Figure 1.1 - Energy consumption, percentage per sector – EU-28 – 2014 [6] 

The buildings sector can be split into two different types of buildings, residential and non-residential. 

The latter group, often referred to as the services sector consists of businesses institutions and organ-

izations that are distinguished by the services that provide, such as hospitals, universities, hotels, and 

restaurants. The forms of energy that are predominant in this sector are electricity and natural gas 

(used for space heating, water heating, lighting, cooking, and cooling) accounting with 10 to 15% of 

the overall energy consumption [6] and growing by an average of 1.8% per year from 2010 to 2040 [4]. 
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It is imperative to state the need to reduce building excessive energy consumption, since they repre-

sent a significant fraction of the overall energy expenditure, which consequently results in high envi-

ronmental impacts.  

Since 2006 [7], the European Commission has been implementing energy efficiency measures for sus-

tainable development, being one of the main objectives to reduce the annual energy consumption by 

27% till 2030.  

In order to achieve that goal, in the building sector, it is essential to know, that in Europe, not only 35% 

of the buildings are over 50 years old, but around 75% are energy inefficient [5]. One way to improve 

energy performance of existing buildings is to effectively predict its consumption, enabling the en-

dorsement of diverse operating strategies to increase energy efficiency and to detect faults related to 

systems malfunction. 

Buildings energy behaviour is influenced by several factors, such as atmospheric conditions, building 

construction and consequent thermal properties, occupancy, lighting and other systems, in particular, 

heating, ventilating and air conditioning (HVAC) systems. These last two factors are responsible for 

approximately 50% of the services sector electricity expenditure [8]. As a result of this wide range of 

influenceable factors, the building system becomes inevitably complex, hampering the task of per-

forming a fast and accurate consumption forecasting. 

To address this need over the past 50 years [9], a large number of investigations have been carried out 

to ascertain the complexity related with buildings energy consumption and to find out an accurate 

representation of its energy performance. Currently, building energy simulation can be branched into 

three different approaches: white box, grey box and black box. The approaches names are related to 

the insight that the user has about what the model is doing, being the white box the clearest one. In 

Table 1.1 a summary of the comparison between the different approaches mentioned is provided. 

Table 1.1 - Summary of comparison of different approaches for the analysis of buildings’ energy consumption [10] 

 

White box approaches, also known as physical models, are widely used in engineering and are 

grounded by thermodynamic laws, requiring many building details and surrounding environmental 

conditions as input data. Computationally they are very expensive, and data input requirements may, 

Type of 
Approach 

 Input data Model and Software 
Execu-
tion 

Computa-
tional Cost 

Accuracy 

White box 
Detailed 
Simulation 

Detailed Physics In-
formation 

DOE-2, EnergyPlus, TRYSYS, ESP-r Hard High High 

Simplified 
Simulation 

Degree day method, Temperature fre-
quency method, Residential load fac-
tor method 

Easy Low Reasonable 

Grey box  
Physics Information 
and Historical Data 

RC network Hard High Reasonable 

Black box  
Historical Data 

ANNs, SVM, statistics regression 
(ARIMA), cluster 

Hard 
Low, ex-
cept SVM 
 

High, expect 
regression 
models 
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in some circumstances, not be entirely fulfilled. Lately, these approaches have been simplified to re-

duce the computational cost, although they are error-prone and usually overestimate the energy ex-

penditure of buildings [11]–[13]. 

Grey box approaches merge the models mentioned above with statistical modelling, allowing the use 

of simplified building information and historical data to perform the energy simulation. Nevertheless, 

they provide reasonable accuracy predictions with high computational cost depending on building in-

formation [14]–[16]. 

In order to circumvent the shortcomings referred by the first two approaches, black box approach was 

employed. This purely data-driven approach, when compared with the others, is able to develop a 

faster and higher accurate consumption forecasting, based only on historical data, avoiding thus the 

need of physical building details [17]. For those reasons the models that characterize this approach, 

mainly in machine learning field, have been receiving particular attention in the past years. 

1.2 Objectives 

This study aims to develop and compare four machine learning models (ANN(MLP), SVM, RF, and XGB) 

in three different forecasting horizons (an hour, a day, and a week) for four buildings (Civil, Central, 

North tower, and South tower) located at Alameda campus of Instituto Superior Técnico, Lisbon. In the 

development of such models, three years of hourly gathered data of each building consumption and 

outdoor weather conditions was used. From the three years, the first two (2014 and 2017) were used 

for the training stage and to perform different strategies in order to enhance each of the models, and 

the last year (2018) was used to test the capabilities of each of the developed models. 

1.3 Contributions 

From this study, four contributions may be stood out: 

▪ An imputation study for this study dataset was developed. 

▪ Adaptation for the first time of XGB model to forecast building energy consumption in hourly 
granularity.  

▪ Development of forecasting models in three different horizons for four buildings located at 
Alameda campus, IST, Lisbon. 

▪ The code developed along this study is publicly available in [18]. 

1.4 Structure of the thesis 

This work was organized in five main chapters: 

▪ State of the Art - A literature review of studies done prior to this work, their achievements and 
conclusions. It was also supplied a brief explanation about the machine learning algorithms 
used, as well as, the complementary models and the evaluation error metrics. 
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▪ Study Case - This chapter gives an introduction and an energy analysis of the different buildings 
used to test the chosen machine learning algorithms.  

▪ Methodology - It intends to clear and explain every strategy employed to achieve the 
objectives of this work. 

▪ Results - This chapter presents a detailed analysis about the results obtained in all the 
strategies adopted. The final forecasted results per building and time horizon were also 
displayed and commented. 

▪ Conclusions - This final chapter gives a reflection about the results by understanding each 
models’ prediction and limitations. Future recommendations were also given to about any 
future work. 
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Chapter 2 

 

State of the Art 

2.1 Concept of Intelligent Energy Management 

The disruptive technologies of the twenty-first century have forced the replacement of conventional 

power grids, that are ill-suited for the needs of today’s electricity sector, to smart grids. The core of 

this technology allows bidirectional communication that has the potential to optimize the linkages be-

tween energy supply and demand through digital information [19]. Among the technologies that can 

benefit from smart grids capabilities, Building Energy Management System (BEMS) is a primary candi-

date since a vast majority of the potential customers are buildings. 

BEMS emerged due to the increased awareness of the environmental impact of energy use and gen-

eration in the sector. This system combines hardware and software solutions to improve energy man-

agement by converging the data gathered from existing sensors throughout the building into a cen-

tralized control. This centralized control is then responsible for the real-time monitoring of the diverse 

existent components of the building, providing detailed reports and recommendations for further en-

ergy and cost improvements without compromising efficiency and comfort of its users. 

However, this type of systems contribute to better energy use polities, their performance frequently 

lacks the expectations, mostly due to the incapability of finding a suboptimal operation spot when 

handling with extensive amounts of continuously changing data, caused by the dynamic and uncertain 

of indoor and outdoor conditions [20].  

To overcome the vast amount of generated data, the use of data-driven models to support BEMS 

seems like a natural solution. A recent study stated [21], that the inclusion of those models in BEMS 

would allow up to 22% of energy savings in the European building sector by 2028. This might be ex-

plained by their capability of providing diverse tools, such as anomaly detection and consumption fore-

casting, to strength decision making towards reducing energy expenditure. A framework of BEMS sup-

ported by data-driven models is shown in Figure 2.1. 

This dissertation goal is to study the applicability of data-driven models, in one of the diverse tools that 

enhance energy use, specifically building energy consumption forecasting. 
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Figure 2.1 - Framework of BEMS supported by data-driven models [20] 

2.2 Forecasting Data-Driven Models 

As it is known, data-driven models, instead of using detailed building information to develop an energy 

analysis, use only historical and available data to learn the dynamic energy behaviour of the buildings 

and are often referred to as empirical models. Nowadays, due to their ability to extract useful infor-

mation at low cost, they have been applied in diverse fields such as commerce [22], political campaigns 

[23], and medical diagnosis [24]. 

The most common data-driven models used for energy consumption forecasting may be ramified into 

two fields: the statistical field and the machine learning field. From the statistical field, the models 

often applied were the autoregressive, integrated and moving average (ARIMA) and the multiple linear 

regression (MLR). On the other hand, from the machine learning field, two models were substantially 

applied, specifically, artificial neural networks (ANN) and support vector machines (SVM), and another 

one least used named as ensemble model, Figure 2.2. 

 

Figure 2.2 - Summary of data-driven models used to predict building energy consumption 



 

7 

 

These models methodology may be briefly divided into four main sequential steps: 

1. Data acquisition - performed by sensors and meters, this step is responsible for gathering the 

necessary data to feed the models (input and output data). In most case scenarios, the 

accuracy of the models increases when the data is well collected and related with the nature 

of the desired output [25]; 

2. Data pre-processing - includes all the measures applied to the acquired data that aimed the 

quality, consistency and appropriate format to feed in the model. It may include processes 

such as erase the presence of noisy and missing data, interpolation, and normalization; 

3. Model training - is a requirement in the development of data-driven models and its where 

the model learns and estimates parameters from the input data to enhance the prediction; 

4. Model testing - is when the model predictions are compared with the output data intended 

for testing, this comparison is made through standard error metrics. 

Furthermore, it is necessary to specify the temporal granularity of the forecast, which not only influ-

ences the input data and data pre-processing, but also the error tolerance and accuracy of models. It 

can be divided into three groups [25]: 

▪ Long term: from one year to ten years forecast. Typically used for planning new infrastructures; 

▪ Medium term: from monthly to annual forecast, mostly used for an efficient operation 
planning and maintenance of energy systems; 

▪ Short term: hourly, daily or weekly forecast. Frequently used to adjust the energy demand and 
supply to the grid, as well as to ensure the expected performance of the different power 
systems. 

In this dissertation, the energy consumption forecasting is framed in the short-term granularity, there-

fore all the revised literature focuses only on that granularity. 

2.2.1 Statistical Models 

The statistical models that have been frequently used to predict building energy consumption are gen-

erally regression models [26]. Statistical regression techniques find relationships between the different 

variables through mathematical formulations to predict a specific target. Several investigations, took 

advantage of this approach to address diverse challenges in the analysis of building energy behaviour, 

for example, to predict energy used through simplified variables, foresee building energy index, and 

estimate significant energy parameters for analysis [9].  

From regression models, there are at least two models that are mandatory to emphasize, the MLR and 

the ARIMA. The latter was specifically created to handle and correlate time series data for prediction. 

Examples of its applicability in short term building energy prediction may be found in [27]–[30]. 

Although these models are easy to develop and use, they lack on flexibility in coping with the nonline-

arity often found in building energy consumption. In consequence of that, the statistical approach pre-

sents poorer prediction accuracy, which limits its applicability, when compared with machine learning 

models. For example, in 2011, Penya et al. [31], compared two statistical models, ARIMA and auto-

regressive (AR), with an ANN, to forecast the consumption of an institutional building, in Bilbao. The 

machine learning model reached higher accuracy values than both statistical models. The same con-

clusion was achieved, in a university in Girona, 2015, by Massana et al. [32] when comparing an MLR 
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with two machine learning models (ANN and SVM). Moreover, in [33], the same machine learning 

models outperformed ARIMA in the energy prediction of an office building. 

Nevertheless, in 2016, an ANN and a statistical approach was used to predict the energy consumption 

of two of the buildings tested in this work. The study concluded an overall improvement of about 10% 

when using ANN instead of the statistical model [34]. 

Consequently, as it is noticeable from the studies reviewed in this section, there is a visible outperfor-

mance of the machine learning over the statistical approaches, with that in mind, the following section 

will be focus on machine learning models. 

2.2.2 Machine Learning Models 

Machine learning is an interdisciplinary field based on statistics and optimized mathematics techniques 

which gives computer systems the ability to learn and improve performance on a given task, being only 

fed with data without the need to be explicitly programmed [35]. 

This field may be divided into two categories: 

Supervised Learning is used when the input data that feeds the model has the corresponding solution, 

output data. The objective of this category is to learn a mapping function (𝑓) from the input (𝑋) to the 

output data (𝑌), that is 𝑌 =  𝑓(𝑋). This type of learning can be organized according to the desired 

output: 

▪ Regression: the output data is quantitative, consisting of real values, which may be integers or 
floating points. An example of that can be found in this study primary objective, where the 
desired output is the buildings’ energy consumption predicted values; 

▪ Classification: unlike regression, the output data is qualitative, consisting of discrete or 
categorial variables, that are pre-established by the user. For example, a model which classifies 
a day type as weekday or weekend based on is daily consumption. 

Unsupervised Learning is applied when only the input data is available, and the goal is to reveal hidden 

structures or patterns in data. It is branched into: 

▪ Clustering: the data is divided into clusters, e.g. k-means; 

▪ Density estimation: aims to estimate the distribution of the data in some space; 

▪ Dimensionality reduction: maps the data into a lower-dimensional space, frequently used for 
simplification, e.g. principal component analysis (PCA) and t-distributed stochastic neighbour 
embedding (t-SNE). 

There is also another category, known as reinforcement learning, that will not be discussed once is 
outside the scope of this project. 

Therefore, as mention earlier, being our primary objective the prediction of energy consumption, the 

main machine learning models presented in the following section are within the supervised regression 

learning category. 
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Artificial Neural Networks (ANN) 

Artificial neural networks model is a non-linear supervised learning algorithm inspired by the biological 

neural network that constitutes animal brains. Analogous to biological neurons, ANN uses intercon-

nected artificial neurons - called processing units - that are grouped in layers. Where, each connection 

is associated with a numerical value designated by weight, each processing unit has an activation func-

tion, and by mathematical convention, each layer has a bias term that stores the value of +1. Typically, 

three distinguished parameters are used to define a neural network: the architecture, the learning 

process of weights updating, and the activation function which converts the weighted processing units 

input into its output. Figure 2.3 shows a schematic diagram of an ANN, also known as multilayer per-

ceptron (MLP), with one hidden layer. 

 

Figure 2.3 - Schematic diagram of one hidden layer ANN architecture [36] 

Within artificial neural networks universe, there are several architectural typologies that have been 

developed to overcome diverse type of problems. Nowadays, it may be ramified into recurrent and 

feedforward neural networks. In recurrent neural networks, the connections can be made between all 

neurons, while in feedforward neural networks the connections propagate unidirectionally from layer 

to layer, preventing that in the same layer the output of one neuron does not influence the output of 

another neuron. 

Within machine learning models, ANNs have been particularly popular and applied to forecast build-

ings energy consumption [26]. In 2005, Gonzales and Zamarreno [37], used a feedback ANN model 

developed in [38] to predict next hour consumption of an institutional building, concluding that in-

creasing the number neurons is not directly proportional to better predictions.  

In the following year, Karatasou et al. [39] study the applicability of statistical techniques, such as hy-

pothesis tests, information criteria, and cross-validation, described in [40], to distinguish the most rel-

evant features and useful hidden layers. The ANN model improved is accuracy with this procedure for 

a day and an hour horizon forecasting.  
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Then in 2009, Yokoyama [41] used an optimization method known as modal trimming [42], instead of 

the typical gradient descendent in ANN backpropagation stage, to predict the cooling load of a service 

building. The method used yield better results than the typical ANN.  

Furthermore, in 2011, Guillermo et al. [43], predicted a day a-head energy consumption of an institu-

tional building, in Valencia. To predict the total consumption forecast it was used a distinct ANN for 

each of buildings end-use energy and an adequate selection of the training data set to simplify the 

ANN architecture. This selection had the goal to elect the most similar days to the one to forecast 

through two parameters: the labor activity parameter that characterizes the occupancy patterns and 

the temperature coefficient to define the weather conditions. The use of those parameters yielded 

better predictions over the usage of the entire data set. Seeking for better results, in [44], was intro-

duced a temperature curve model to enhance the training data set selection, nevertheless no signifi-

cant improvements were achieved. 

After that, in 2014, Mena et al. [45], applied one hidden layer ANN model to forecast an hour a-head 

electric consumption of a bioclimatic building, in Spain. For the input data selection, two free model 

analytical tools were used: correlation and mutual information. The application of these tools yield 

better results than the usage of the all the available input data. 

In 2015, at least two researches concerning the short term energy consumption forecasting using ANN 

were disclosed. Firstly, by Platon et al. [46], in the comparison of an ANN with a case-based reasoning 

algorithm (CBR) for 1 to 6 hours a-head prediction of an institutional building. In this study the ANN 

stood out with better accuracy values. Additionally, in order to reduce the computational cost associ-

ated with the vast amount of input data, a principal component analysis (PCA) was successfully imple-

mented without compromising the forecast accuracy. After that, Li et al. [47], appealed for the appli-

cation of evolutionary algorithms to data-driven models by using an ANN with an improved particle 

swarm optimization (iPSO) instead of the default gradient based method. The optimized model was 

more effective than the traditional ANN algorithm in the prediction of an hour a-head consumption of 

two institutional buildings. From this study, it was also concluded that for online predictions, the iPSO 

is more suitable tan the genetic algorithm (GA), due to its rapid convergence on searching the optimal 

solution.  

In the following year, Chae et al. [48], when forecasting a day a-head energy consumption of a service 

building, tested the applicability of an ANN with Bayesian optimization to improve model generaliza-

tion. To input relevant data to the model it was used a feature extraction technique by means of an 

ensemble machine learning algorithm, known as random forest (RF). The study revealed a decreased 

in the forecast error as the number of weeks of data available for training increased.  

Lately, in 2018, Li et al. [49] used another evolutionary algorithm called teaching learning based opti-

mization (TLBO) to improve an ANN learning process. The model was compared with the previously 

used methods in [47] for the same buildings, and presented superior results, in terms of computational 

speed and accuracy. 

Support Vector Machines (SVM) 

The SVM model is a supervised machine learning technique, well known for its robustness and accu-

racy, even when the data required for the learning process is reduced and arbitrarily structured. Due 

to its ability to solve nonlinear classification and regression problems through the use of a kernel 
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function, its application has become increasingly common in both research and industry fields since it 

was first implemented in 1995 [50]. 

The main objective of the regression SVM model is to determine the function whose measured output 

data deviation does not exceed the error term (predefined) for each of the input data combinations. 

In the context of nonlinear regressions, data is transformed by a function called kernel, which maps 

input data into a higher dimensionality space, where linear regression is later applied. Although this 

mapping results in a lack of transparency of what is going on within the model, it deals with the non-

linearity often encountered in complex problems. There are three types of kernel functions: linear, 

polynomial, and radial. The main challenge of this algorithm is the selection of kernel function and its 

parameters according to the nature of the problem since they greatly affect is performance. For this 

reason, optimization techniques such as evolutionary algorithms are often used [51]. In the following 

paragraphs, some application examples of SVM in building consumption forecasting are shown. 

Li et al. [52], in 2009, conducted a study comparing the traditional ANN with an SVM model, to predict 

an hour a-head cooling load of an office building, in China. The SVM model used radial basis function 

kernel and revealed higher accuracy than the traditional ANN. In the same year, the same type of con-

clusion was achieved when performed in another office building by Xuemei et al. [53]. The research 

compared another strand of SVM model, denominated by least square support vector machine (LS-

SVM), with a traditional ANN. The new model showed better generalization performance and accuracy 

in four different error metrics. In 2010, Li et al. [54] improved is previous work [52] by using a combi-

nation of two different algorithms: simulated annealing (SA) and PSO to select SVM parameters. 

Furthermore, in 2015, Fu et al. [55] presented a study using an SVM to predict the next day electrical 

consumption for different public buildings. Four months of data were used. SVM model results have 

transcendent in accuracy over ARIMA, decision trees (DT) and ANN. That same year, Massana et al. 

[32] tested diverse models, such as MLR, MLP and SVM to predict an hour a-head energy consumption. 

SVM model outstood among the others, presenting the best trade-off accuracy/computational cost 

only using the actual building occupancy and the outside temperature, as input variables. It was also 

possible to conclude that the use of building interior conditions as input did not improve the model 

performance when HVAC operation conditions were predefined. 

Ensemble Models 

Ensemble models, as a more advanced technique, was introduced in 1990 [56]. In machine learning, is 

defined as an approach that uses multiple learning algorithms to obtain a better accuracy performance 

than that could be obtained from any of the constituent learning algorithms [57]. In addition, in a 

regression scenario, the objective function of the combined models is to minimize the overall predic-

tion error of the ensemble model. With that in mind, to each of the constituent models is assign a 

weight based on its accuracy. Hence, the one with the highest weight presents the least prediction 

error. 

Based on the selection of the models, ensemble models can be ramified into two groups [58]:  

▪ Homogeneous - is characterized by using the same learning algorithm on different subsets of 
the training set; 

▪ Heterogeneous - uses diverse learning algorithms that are trained with the same data set. 
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Both groups have been used to forecast the building energy consumption, some examples of their 

application for short term prediction are mentioned below. 

Fan et al. [51], used a homogeneous model to predict half-hourly a-head energy consumption of an 

institutional building, in Singapore. The forecasting ensemble model used was a weighted SVM model 

with nu-SVM and epsilon-SVM. It was also done a comparison between three different evolutionary 

algorithms, such as GA, PSO and differential evolution (DE) to determine the weights of each SVM 

model. The evolutionary algorithm that best suited the problem was DE. On the other way, Xiao et al. 

[59] used a heterogenous ensemble model by combining eight different predictive models, to forecast 

a day a-head building energy consumption. The weight of each model in the final prediction where 

optimize using a GA. The research concludes that the accuracy of the ensemble model is evidently 

better than any of the individual models. 

Furthermore, in the homogeneous universe, the ensemble models may use two types of learning pro-

cedure which characterizes the order that each model is trained, namely, bagging and boosting. In 

bagging each model learns with a random subset of training data in a parallel way, e.g. random forest 

(RF). On the other hand, in boosting each model learns from mistakes made by the previous model in 

a sequential way, e.g. extreme gradient boosting (XGB). 

Both random forest and extreme gradient boosting algorithms have been recently used in building 

energy consumption prediction [60]–[62]. One of the reasons that encourage their application was the 

previously used of their based model, named as decision tree (DT), in the field [26]. 

Decision Tree is a supervised machine learning algorithm that builds a regression model in the form of 

a tree structure. Basically, it breaks down the data set into smaller and smaller subsets while at the 

same time an associated tree is incrementally growing. The final result is a tree with decision nodes 

and leaf nodes. A decision node has two or more branches, and a leaf node represents a decision. The 

topmost decision node in a tree corresponds to the best predictor named as root node. A schematic 

diagram of a decision tree is shown in Figure 2.4. 

 

Figure 2.4 - Schematic diagram of a decision tree 

Random Forest is an ensemble machine learning algorithm that uses bagging in many individual deci-

sion trees and afterwards with each decision tree prediction, its selected a final candidate based on a 

majority vote, Figure 2.5. 
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Figure 2.5 - Schematic diagram of Random Forest [63] 

The application of this ensemble method can be found in [60], where Ahmad et al., compared the 

performance of the traditional ANN with RF, for predicting the hourly HVAC energy consumption of a 

hotel in Madrid, Spain. As a result, ANN performed slightly better than RF. However, the ease of tuning 

and modelling in ensemble models stood out against the ANN, since both models had comparable 

predictive accuracies. 

Additionally, Wang et al. [61] used RF, regression tree (RT), and SVM, to forecast the hourly electricity 

usage of two institutional buildings, in USA. The prediction performances of RF, measured by a perfor-

mance index, were 14-25% and 5-5.5% better than RF and SVM, respectively. Apart from RF outper-

formance, it was also concluded that the most influential input data varies depending on the semester 

where the prediction was performed. 

RF prediction performed, measured by a performance index, were 14-25% and 5-5.5% better than RT 

and SVM, respectively. Apart from RF outperformance, it was also concluded that the most influential 

input data vary depending on the semester where the prediction is performed. 

Extreme Gradient Boosting is an ensemble machine learning algorithm, that uses boosting with indi-

vidual decision trees. With boosting the algorithm learns from previous mistakes, using the residual 

error directly, as illustrated in Figure 2.6. Afterwards, the prediction is made by simply adding up all 

tree’s predictions. 

 

Figure 2.6 - Schematic diagram of Extreme Gradient Boosting [63] 
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This algorithm has been only used recently in this field, by Robinson et al. [62], to predict the distribu-

tion of energy intensities in cities, based on existing service buildings energy consumption. However, 

this study is not directly enclosed in this dissertation goal, it shows that XGB outperformed four other 

machine learning algorithms, such as RF, linear regression, and ANN.  

Summary 

In the previous sections, a detailed review of the latest machine learning algorithms application in 

short term building energy forecast was made. In this section, an overview of each model performance 

and input data selection will be considered.  

In general, ANN provide accurate results in the presence of complex nonlinear problems with accepta-

ble computational time, as can be seen in [37], [39], [43], [45]–[49], where MAPE results, do not exceed 

8.38% and 13.39% for one hour and a day ahead forecast, respectively. Similarly, SVM achieved great 

prediction results, when applied individually such as, in [55] and [32], with MAPE values around 0.06% 

and 15.2% for one hour and a day a-head forecast, respectively, it is mandatory to recall that in [55] 

the real hourly occupancy rate was one of the input variables, which may be the reason of such good 

results. 

In terms of ensemble models, they have provided interesting results in [51], [59]–[61], obtaining MAPE 

values below, 4%, 7.75%, and 4.6%, for half-hour, one hour, and a day a-head forecast. Although it is 

important to mention, the variability of data inputs and building characteristics between researches. 

A brief comparison between the models can be seen in Table 2.1. 

Table 2.1 - Brief comparison of machine learning models used in building energy consumption [58] 

Models ANN SVM Ensemble 

Advantages - Solve complex nonlinear 
problems 
- In general, better perfor-
mance prediction than SVM 

- Good balance between predic-
tion accuracy and calculation 
speed 
- Few parameters need to be 
determined 

- Best prediction accu-
racy and stability 

Disadvantages - Many parameters need to 
be determined 

- Kernel function is crucial and 
difficult to be determined 

- Difficult to implement 

Computational 

Speed 

Medium speed Medium Speed Low speed 

Accuracy Good Average Best 

 

Additionally, it is worth to mention, the increase use of other techniques in the studies reviewed, like 

statistical and evolutionary algorithms, to optimize performance (computational time and accuracy). 

The main use of evolutionary algorithms, such as PSO, GA and DE, are incident in the learning process 

and model parameters selection, examples of it may be found in [47] [49] [54], which revealed better 

results, in comparison with models without it. Apart from the evolutionary algorithms a Bayesian op-

timization was also used to elect the best parameters in [48]. 

Furthermore, statistical analysis, such as mutual information and correlation [45], was often used in 

the input data selection stage that appears to be one of the major tasks, since the performance of the 

models is highly dependable of the right selection of the input variables. The input variables chosen in 

each of the reviewed papers may be seen in Table 2.2. 
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Based on Table 2.2, the following conclusions can be made: 

▪ Since nearly all the studies were predicting one hour or a day a-head building energy 
consumption, most of them use different ranges of previous hours or days of its own 
consumption. Which normally gives better accuracy prediction considering that works as a 
‘guideline’ for the corresponding model; 

▪ Among all the weather conditions, temperature and solar radiation are of great importance to 
this type of forecasting, followed by relative humidity. The other variables do not manifest 
great use in the revised studies, except in [47] and [49] where it was used a particle component 
analysis (PCA) with two components, to reduce the dimensionality of all available weather 
conditions; 

▪ As regards of indoor conditions, the most significant input used is building occupancy that 
yields best accuracy values among all the studies: in [47] and [49] for ANN; and in [55] for SVM. 
Most of the times, occupancy is not available for service buildings, although it is of great use 
once energy consumption is highly related to building daily inhabitants and their habits; 

▪ In terms of calendar data, inputs such as hour and day type are used in most of the studies, 
followed by weekday that is often used. The reason why hour and weekday are selected is due 
to the consumption seasonality that may be found within daily and weekly time intervals. 
Additionally, day type is chosen because of the disparities between workday and non-workday 
daily consumption patterns. 

Table 2.2 - Distribution of the selected input variables among the studies reviewed 

Models ANN SVM Ensemble 

Energy Consumption 

Building previous energy con-

sumption 

[37], [43], [45], [46], [47], [49] [53], [55] [59] 

Weather conditions 

Dry-bulb outdoor tempera-

ture 

[37], [39], [43], [45], [46], [48], 
[47], [49] 

[52], [53], [54], [55] [60], [61], [59] 

Relative humidity [46], [48], [47], [49] [52], [54], [55] [60], [61] 

Solar radiation [39], [45], [47], [49] [52] , [54], [55] [61] 

Dew point Temperature  [53] [60] 

Wind speed [47], [49]  [60], [61] 

Barometric pressure   [61] 

Precipitation   [61] 

Indoor Conditions 

Building occupancy [39], [47], [49] [55] [60], [61] 

Temperature [46]   

Other building components 

(e.g. HVAC) 

[46], [48]   

Calendar Data 

Hour [37], [39], [45], [47], [49] [55] [61] 

Weekday [39], [48] [55] [61] 

Month  [55]  

Day type (working/non-work-

ing) 

[37], [43], [45], [48] [53], [55] [61] 
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From this point forward, the input variables that feed the models, are going to be referred as features, 

which is a term normally used in the machine learning field.  

2.3 Complementary Models 

To complement this study literature, it is mandatory to talk about other models that may have an 

important role in the performance of regression machine learning algorithms, mention in section 2.2.2 

The complementary models can be grouped according to their functionality: 

Data imputation - is when a model is used to impute missing values that, in the absence of it are lost. 
This type of procedure is applied in circumstances where the available data has a large amount of 
unknown values which may affect drastically the regression machine learning model performance.  

This process can be done by several statistical or machine learning methods. The challenge remains in 
choosing the one that best fits the type of missing data. These methods can be applied in two distinct 
approaches, univariate or multivariate. The univariate approach is when a chosen method uses only 
the feature with the missing data to proceed to the imputation. Alternatively, in a multivariate 
approach, the use of other features is allowed, which in a data set where the features are related with 
each other, results in enhanced imputation predictions. The data imputation models presented below 
are within the multivariate approach. 

▪ Multivariate imputation by chained equations (MICE) - as a classical approach for data 
imputation, basically works by filling the missing data multiple times. This is known as multiple 
imputation technique which although more computational expensive, performs better than 
single imputation as it measures the uncertainty of the missing values more accurately. The 
chained equations approach can be very flexible handling with different types of missing 
features in the same data set. This model can be broken down into four main steps. 

In the first step, a simple mean imputation is temporarily performed in every unknown value 
of the data set. Afterwards, in the second step, one of the features mean imputation values 
are set back to missing. Thirdly, the values from the feature chosen in second step work as the 
dependent variable in a regression model and all other features as independent. The 
regression model can be linear or logistic depending respectively on the chosen feature data 
type, numerical or categorical. In the fourth step, the values obtained from that regression are 
imputed, filling any unknown value of the chosen feature. In the following step, the cycle from 
the second step through the fourth is repeated for each feature, completing one iteration. The 
number of iterations may be pre-established by the user. At the end, each feature missing 
values have been replaced by the predictions of the performed regression models [64]. 

▪ Miss Forest (MF) - imputes missing values using the multiple imputation technique referred in 
MICE, but now with the RF model mentioned in 2.2.2. 

By default, the model starts by imputing missing values in the feature with the smallest 
number of unknown values, denoted as the candidate feature. Afterwards, any missing value 
of the remaining non-candidate features are filled by the mean or the mode, when it is a 
quantitative or a qualitative feature, respectively. With all the data set completed it proceeds 
to the next step that is characterized by the application of the RF. In this step the non-
candidate features work as input data to the model and the candidate feature as output. The 
predicted values from the model are then used to replace the unknown values in the candidate 
feature. Following this, the imputer moves to the next candidate that is chosen with the same 
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criteria as before (feature with lowest number of missing values). The process repeats itself 
for each feature with missing values, until absence of missing data [65]. 

The latter model, shown outperforming results in diverse types of data sets when compared with the 
classical approach, MICE [65]. 

Data aggregation - the model presented here is in the scope of unsupervised clustering machine learn-

ing models referred in 2.2.2, and as said before, has the aim of grouping data points with similar char-

acteristics. 

▪ K-means - is used to group similar data points and discover underlying patterns. To achieve 
this objective, k-means looks for a fixed number of clusters (𝑘) in a dataset, predefined. The 𝑘 
number, refers to the number of centroids, that represent the centre of each cluster. This 
algorithm identifies centre 𝑘 number of centroids, and then allocates each data point to the 
nearest cluster through reducing the in-cluster sum of squares, keeping the cluster as small as 
possible. The learning process is performed iteratively to optimise the location of the chosen 
centroids, Figure 2.7. The algorithm will terminate if the iterations are maximized or if the 
centroids stop moving. 

 

Figure 2.7 - Example of k-means clustering - with k = 3 [72] 

To enhance this algorithm performance, it may be used a silhouette score and t-SNE algorithm 

mention in 2.2.2. 

The silhouette score is a measure that quantifies how close each value in a cluster is to the 

values in its neighboring clusters. It is an elegant way to find out the optimum number of 𝑘 

during k-means clustering. This score lies in a range of [-1, 1]. A score of -1 indicates that the 

value is close to its neighboring cluster than to the cluster it is assigned to. Contrarily, if the 

score is +1 the value is far away from its neighboring cluster and extremely close to the cluster 

it belongs. In addition, if the score lies in-between the range, 0, it means that the value is at 

the boundary of the distance between the two clusters. Therefore, the higher the score the 

better is the cluster configuration. In order to get the best configuration possible, the algo-

rithm is executed multiple times with different values of 𝑘. The one that provides the closest 

silhouette score to +1, is selected. 

Additionally, the t-SNE algorithm may be used as a tool to visualize the distribution of the prior 

selected 𝑘 from the silhouette score. This unsupervised dimensionality reduction algorithm 

has the ability of mapping high-dimensional space into a lower-dimensional order, this is done 

by calculating conditional probabilities between each space. The result of the algorithm sup-

ports the decision of the 𝑘 clusters by creating a single map that reveals the structure of the 

analysed data. 
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2.4 Error Metrics 

A crucial part of every data analysis project is the use of the proper error metrics to evaluate each 

model used. Several performances measure may be used in the forecasting of energy consumption, 

although the ones used in this work were selected based on the most frequently applied in the re-

viewed literature [26]. Therefore, the three error metrics used were: the coefficient of variation of the 

root mean square error (CV(RMSE)) (2.1), the mean absolute percentage error (MAPE) (2.2), and the 

mean absolute error (MAE) (2.3). 
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Where  is the predicted energy consumption at time point 𝑖, 𝑦
𝑡𝑟𝑢𝑒

 is the actual energy con-

sumption at time point 𝑖, 𝑦
𝑡𝑟𝑢𝑒

 is the average energy consumption, and 𝑛 is the total number of data 

points in the dataset. 

From all the error metrics, CV(RMSE) was the most used evaluation measure in most of the studies 

performed. This may be explained by the fact that it is one of the performance evaluation measures 

recommended by the ASHRAE for this type of problems evaluation and also due to its comparison 

capabilities between different buildings, achieved by the normalization of the energy consumption 

prediction error with the average energy consumption.  
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Chapter 3 

 

Study Case 

3.1 Building Introduction 

In the scope of this study, four buildings from Alameda campus of Instituto Superior Técnico (IST), 

Lisbon, were analyzed, namely, Civil, Central, North tower, and South tower buildings. In Figure 3.1 is 

illustrates a map of Alameda campus where is enumerated the location of each building.  

 

Figure 3.1 - Alameda campus, IST, Lisbon 

Each building, as an independent system, has its own characteristics and main features, due to that 

each building was analyzed individually. In a way to simplify these analyses, it is mandatory to identify 

the patterns that dynamically affect building’s energy consumption. These patterns may rely on key 

factors that at first sight are critical to energy use, such as occupancy, weather conditions and struc-

tural characteristics. 
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The stochastic behaviour of the occupants through their presence and activities in the building, influ-

ences energy consumption, not only passively by their metabolic heat produced, but also actively by 

their energy use (e.g. use of hot water, electrical appliances, lighting, and building openings) which 

results in an increase of internal heat gains and energy consumption, respectively.  

Additionally, weather conditions parameters, such as outdoor temperature, relative humidity, and so-

lar radiation are also important factors that may impact building’s indoor thermal comfort and subse-

quently its inhabitants, mostly due to their annual variation. Thermal comfort can be reached through 

the proper use of the HVAC system, which is one of the major contributors in terms of energy use [8]. 

Furthermore, buildings’ structure characteristics is another factor that may affect the indoor environ-

ment and consequently, energy consumption. Diverse type of structures and construction materials 

impact negatively or positively buildings’ overall thermal properties. In a well-conceived building, its 

structure is used as an energy storage medium that supports building thermal management, by adapt-

ing to the various weather conditions scenarios. 

To distinguish the different patterns caused by the earlier mention factors, each building energy con-

sumption was evaluated in monthly, weekly and daily temporal granularities, with the data acquired 

from the previous year of the forecast, 2017. To conduct this visualization analysis, two different tools 

were used: boxplots and the k-means algorithm presented in 2.3. 

3.2 Buildings Overview 

3.2.1 Main Characteristics 

From the four buildings presented earlier, it is possible to distinguish certain similarities since they are 

all institutional facilities, and also several particularities once the range of requirements of energy use 

in university campus is quite vast.  

It was shown from the last energy audits [73], that the main forms of energy use to fulfil their needs 

are natural gas and electricity. Electricity covers all the demands as regards to lighting, computers, 

plug-in devices, catering, common systems and laboratories facilities. In addition, natural gas is mainly 

used for spaces under concession and certain laboratories facilities. Besides that, HVAC system in each 

building, operates with different forms of energy in order to supply heating and cooling loads, in cool-

ing season (May, June, July, August, September, and October) and heating season (rest of the months), 

respectively. Central and Civil building use electricity in both heating and cooling seasons, while South 

and North Tower use natural gas and electricity for cooling and heating seasons, respectively. It is also 

important to referred that a significant part of each building is designed for educational purposes in-

cluding: classrooms, amphitheaters, laboratories, and other facilities; the remaining area is used for 

spaces under concession, except for Civil building that also has a data center. 

Besides their similarities, they have different structures. Civil building, with a total floor area of 25.152 

𝑚2, consists of 7 floors, of which 3 are underground (03, 02, and 01), and 4 aboveground (0, 1, 2, and 

3). Central building, with a total floor area of 10.991 𝑚2, has 4 floors, concretely, 01 (underground), 0, 

1, and 2. North tower and South tower have symmetrical structures, with a total area of 10.100 

𝑚2 each, consisting on 16 floors, where 5 are underground (from 03 to 1 level), and the rest are raised 
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(from 2 till 12 level). Among the 16 levels, 4 are used only for technical purposes, namely, 03, 2, 3, and 

12 floors. They also have different operating hours. Civil building is open during the week from 7 am 

till 9 pm and on Saturday from 7 am to 5 pm, despite that, in floor 0, it has a study area which is open 

24 hours a day. Central building opens from 7 am to 9 pm on weekdays and from 7 am to 5 pm on 

Saturdays. North tower and South tower also have the same operation schedule, ranging from 7 am 

to 8 pm during weekdays and being publicly closed on Saturdays. In Table 3.1 it is shown a summary 

of each building main characteristics. 

Table 3.1 - Summary of each building characteristics 

 

3.2.2 Energy Consumption Analysis 

Monthly Analysis 

For this analysis, the yearly energy consumption of the weekdays was divided in daytime (from 8 am 

till 8 pm) and nighttime (from 9 pm till 7 am), Figure 3.2 and Figure 3.3, respectively. In addition, it is 

also presented a boxplot for each building, without any filter applied, Figure 3.4. 

 

Figure 3.2 - Monthly mean weekdays energy consumption of each building, during the day (from 8 am till 8 pm) 

In general, during the daytime, Figure 3.2, it is possible to see a higher mean consumption tendency, 

during the cooling season  when compared with heating season. This tendency is highly related to 

Building Civil Central North Tower South Tower 

HVAC energy 
use 

Cooling season Electricity Electricity Natural Gas Natural Gas 

Heating season Electricity Electricity Electricity Electricity 

Total floor area (𝑚2) 25.152 10.991 10.100 10.100 

Total floors 7 4 16 16 

Operation 
Schedule 

Weekdays 7am-9pm 7am-10:30pm 7am-8pm 7am-8pm 

Saturday 7am-5pm 7am-3:30pm - - 

24 hours 
spaces 

Data center No Yes No No 

Study area Yes No No No 
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HVAC system energy use to maintain the indoor thermal comfort, in the presence of more adverse 

conditions, which occurs in summer. Although there is an exception of this tendency, in August, that 

shows the lowest mean energy consumption when compared with the rest of the months during the 

year, caused by the two weeks summer break of all campus facilities, evident in Figure 3.4. Moreover, 

it is noticeable that North and South tower are more exposed to the outside conditions than Central 

and Civil buildings, achieving higher mean consumptions in cooling season, this is mostly due to the 

thermal properties of the glazed facades that surround both towers, which are more vulnerable to 

solar energy. In both towers it is also perceptible that the consumption fluctuation follows the 

maximum and minimum temperature variations along the year. This consumption curve is 

characteristic of buildings using natural gas and electricity for cooling and heating seasons, respectively. 

On contrary, Civil and Central building, present a more stable consumption curve which is 

substantiated by the main use of electricity. These patterns are more clear represented in Figure 3.4. 

Additionally, besides the existent structure symmetry between North and South tower, their con-

sumption is distinct, being South tower the higher energy expenditure, Figure 3.2. One of the reasons 

that may be related to this expenditure is the type of existing research facilities that are mainly used 

for chemistry purposes with equipment that requires larger amounts of energy. 

 

Figure 3.3 - Monthly mean weekdays energy consumption of each building, during the night (from 9 pm till 7 am) 

During nighttime, Figure 3.3, two main behaviours are visible. In Civil building, the existence of a study 

area open 24 hours a day, creates a pattern with higher mean consumption in the months correspond-

ing to the two semesters and evaluation periods, e.g. in 1º semester evaluation period, in January, that 

reveals a high mean energy expenditure. On the other hand, it is also clear that Central building has 

the largest mean consumption among the other buildings, which may be justified by the 24 hours op-

erating data center. 



 

23 

 

 

Figure 3.4 - Monthly boxplot energy consumption of each building 

Weekly Analysis 

In each building there is a 7 days cycle pattern that repeats almost through the whole year, as it is 

represented by the weekly boxplots in Figure 3.5. As expected, most of the buildings’ energy use occurs 

during weekdays since it is when the majority of buildings’ activities take place. It is also noticeable a 

slight decrease in energy expenditure in the last weekday, Friday, probably due to the arriving of week-

end and people’s tendency to leave earlier. During the weekend, there is an abrupt fall in energy con-

sumption, although Saturday energy use is slightly higher than Sunday, due to weekend opening hours, 

scheduled in Table 3.1. Nevertheless, this pattern can be altered by local or national holidays that 

consequently may reduce buildings’ occupancy rate resulting in less energy expenditure. 

 

Figure 3.5 - Weekly boxplot energy consumption of each building 
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Hourly Analysis 

In hourly analysis, each building was evaluated individually to simplify the visualization and gathered 

each different daily consumption curve characteristics.  

To recognize the different daily consumption patterns, it was used the clustering algorithm, mention 

in 2.3. In this context, the algorithm groups the most similar days, based on the chosen number of 

clusters (𝑘). To identify the right 𝑘, a range between 2 to 15 clusters was tested via the silhouette score, 

Figure 3.6, and the one selected was posteriorly represented by the t-SNE algorithm in a lower-dimen-

sional space attached to the correspondent building daily consumption patterns, Figure 3.7. 

 

Figure 3.6 - Silhouette score of different number of clusters by building 

From the silhouette scores, Figure 3.6, most of scores were indicating the use of two clusters per build-

ing, although in the scope of this analysis the evaluation started at 𝑘=3, in attempt to distinguish a 

typical non-working day and a typical working day during cooling and heating season. With that in mind, 

Civil and Central building maintain the k=3, once for both it was the next highest score. As regard to 

both towers, the selection of 𝑘 was controversial. For North tower, despite that the highest score may 

be found with 4 clusters, it was chosen 3, since the use of more clusters identify mostly the hour shift-

ing patterns, giving no additional information for this analysis. On contrary, for South tower, it was 

adopted 𝑘=4, since all the clusters represent distinct patterns, regardless the slightest lower score. 

After this selection, the hourly mean consumption of each cluster was highlighted and a table with the 

percentage of days included in each cluster are distinguished by type and season, leaving all prepared 

to evaluate each building daily patterns. 

As regards to Civil building, Figure 3.7, in general, the daily energy patterns are not influenced by heat-

ing and cooling seasons as referred earlier in monthly analysis, since every cluster has around 50% of 

the days in each season, as shown in Table 3.2. 
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Figure 3.7 - Civil building daily consumption patterns defined by k-means algorithm (k=3) and t-SNE distribution 

Table 3.2 - Civil building day type percentage of each daily consumption patterns defined by k-means algorithm (k=3) 

Cluster 
workday 

(%) 

holiday 

(%) 

weekend and summer break 

(%) 

heating season 

(%) 

cooling season 

(%) 

𝑘=0 100 0 0 55.8 44.2 

𝑘=1 3.1 11 85.9 47.7 52.3 

𝑘=2 98.1 1.9 0 43.9 56.1 

 

In addition and based on Figure 3.7 and Table 3.2, the following is possible to be concluded: 

▪ 𝑘 = 0 and 𝑘 = 2 - consisting mainly of working days represent two different typical workday 
consumption patterns. In terms of the highlighted average energy consumption patterns, in 
general, they start increasing at 6:30 am achieving values around 325 kWh before 12 am, 
afterwards they have a slightly consumption decrease corresponding to lunch break. During 
the afternoon the patterns are almost a morning mirror, decreasing to building base energy 
around 9 pm. Between both clusters, 𝑘 = 0 represents only working days, achieving a higher 
mean energy consumption pattern than 𝑘 = 2. The presence of holidays in the latter mention 
cluster, may be explained by the 24 hours studying area used during exams periods. 

▪ 𝑘 = 1 - includes holidays, summer break days and weekends, being the latter predominant. The 
mean consumption of those days is nearly stationary with a slightly higher expenditure during 
part of the daytime mostly due to Saturdays opening hours and the 24 hours studying area. 

Similar to the previous building, Central building has also no significant influence of heating and cooling 

seasons in daily patterns, Table 3.3. In addition, the 24 hours data center results in a building base 

energy expenditure around 130 kWh, Figure 3.8, higher than the rest of the buildings. 
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Furthermore, and based on Figure 3.8 and Table 3.3, the following is possible to be concluded: 

▪ 𝑘 = 0 and 𝑘 = 2 - like the previous building, are formed mostly by working days, with two typical 
mean consumption patterns that characterizes two groups of mainly working days. These 
patterns, start ascending at 6 am achieving a first peak at 11 am, then the consumption 
decrease till around 12 am which is when the lunchtime takes place having a roughly constant 
period during 1 hour, more obvious than the previous building. Afterwards, the average 
consumptions start rising again achieving the second peak values at 3 pm, from that point 
forward both clusters mean energy consumption decline till reach the building base energy 
consumption at 8 pm. Between both clusters, 𝑘 = 2 representing not only working days but 
also summer break days, has a mean daily consume lower than 𝑘 = 0, although the inclusion 
of those days in 𝑘 = 2 most be related by atypical opening hours during summer break for 
maintenance. 

▪ 𝑘  = 1 - is mainly formed by holidays, summer break days and weekends, being the latter 
dominant. The mean consumption curve characterizing those days is constant, similar to Civil 
building, but with a higher mean energy consumption, probably due to the 24 hours data 
center. 

 

Figure 3.8 - Central building daily consumption patterns defined by k-means algorithm (k=3) and t-SNE distribution 

Table 3.3 - Central building day type percentage of each daily consumption patterns defined by k-means algorithm (k=3) 

Cluster 
workday 

(%) 

holiday 

(%) 

weekend and summer break 

(%) 

heating season 

(%) 

cooling season 

(%) 

𝑘=0 99.3 0 0.7 48.2 51.8 

𝑘=1 2.3 12.5 85.1 46.9 53.1 

𝑘=2 100 0 0 54.7 45.3 

 
As regards to North tower it is possible to mention its influence by heating and cooling seasons as 

referred earlier in the monthly analysis, once the working day clusters, 𝑘 = 0 and 𝑘 = 2, have greater 

percentage values of cooling season and heating season days, respectively, Table 3.4. It is also notice-

able, the lack of the typical low consumption range that occurs in the previous buildings’ lunchtime. 
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Based on Figure 3.9 and Table 3.4, the following is possible to conclude: 

▪ 𝑘 = 1 - consists of working days mainly during cooling season. The mean consumption begins 
at 6 am and rapidly achieves a peak at 8 am, due to the start operation of an HVAC’s system 
component, named as chiller. Afterwards, it has a light positive slope during the day reaching 
values above 250 kWh at 3 pm, from that hour forward the energy expenditure decreases, till 
9 pm, where it catches up building base energy consumption. In this cluster of days, it is 
particularly visible the shifting hour due to the abrupt energy increase and decrease in the 
beginning and ending of the day, respectively. 

▪ 𝑘 = 2 - is mainly formed by holidays, summer break days and weekends, being the latter more 
predominant. The average consumption is again almost constant, with a slight growth during 
the day, most certainly due to Saturdays. 

▪ 𝑘 = 0 - consists mainly of working days during heating season. From the average energy 
consumption pattern, it is perceptible the overall lower consumption in comparison to 𝑘 = 1, 
this is mostly due to the less adverse weather conditions felt in winter than in summer. This 
average pattern starts at 6 am and rises to a peak at 10 am, afterwards the consumption 
fluctuations do not vary much till 4 pm, where it decays achieving the buildings base energy at 
9 pm. 

 

Figure 3.9 - North tower building daily consumption patterns defined by k-means algorithm (k=3) and t-SNE distribution 

Table 3.4 - North tower building day type percentage of each daily consumption patterns defined by k-means algorithm 

(k=3) 

Cluster 
workday 

(%) 

holiday 

(%) 

weekend and summer break 

(%) 

heating season 

(%) 

cooling season 

(%) 

𝑘=0 93.8 5.4 0.8 88.5 11.5 

𝑘=1 100 0 0 8.8 91.2 

𝑘=2 1.7 7.5 90.8 45.9 54.1 

 



 

28 

 

Similar to the previous building, South tower is also affected by heating and cooling seasons in daily 

patterns, Table 3.5. According to the monthly and weekly analysis, between both towers this building 

is the one who expends more energy and that can be clearly visible when comparing the average con-

sumption patterns between Figure 3.9 and Figure 3.10. 

 

Figure 3.10 - South tower building daily consumption patterns defined by k-means algorithm (k=4) and t-SNE distribution 

Table 3.5 - South tower building day type percentage of each daily consumption patterns defined by k-means algorithm 

(k=4) 

Cluster 
workday 

(%) 

holiday 

(%) 

weekend and summer break 

(%) 

heating season 

(%) 

cooling season 

(%) 

𝑘=0 96.2 2.3 1.5 84.7 15.3 

𝑘=1 9 9.8 81.2 49.6 50.4 

𝑘=2 100 0 0 3 97 

𝑘=3 27 8.2 64.8 24.4 75.6 

 

Based on Figure 3.10 and Table 3.5, the following is possible to conclude: 

▪ 𝑘 = 0 - consisting predominantly of working days groups most of cooling season days. The 
mean energy consumption pattern during these days has no peculiar peak, starting at 6 am 
with a soft slope leading to the maximum energy expenditure around 300 kWh at 3 pm, after 
that consumption gently decays to base building energy at 9 pm. In between, is noticeable a 
slight consumption decreases during lunchtime. 

▪ 𝑘 = 1 - clusters principally holidays, summer break days and weekends, being the latter the 
dominant day type. The average consumption curve, as expected, behaves as almost a non-
working day excepting an higher consumption happening from 9 am until 4 pm, which may be 
caused by the presence of working days in the cluster, accurately 9%.  

▪ 𝑘 = 2 - overall, is the cluster that exhibits the higher mean consumption pattern, most certainly 
due to the fact of grouping only working days during the cooling season. The mean energy 
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expenditure pattern starts rising at 6 am, and between 7 am and 8 am, ascends sharply to a 
first consumption peak, which can be again explained with the start of chillers operation. 
Subsequently, apart from the minor expenditure reductions at 9 am and 1 pm, the 
consumption keeps increasing to the higher energy peak at 3 pm which may be considered the 
time of the day where usually outside conditions are most extreme (high temperatures), 
demanding more energy of the HVAC system to counteract the situation and establish thermal 
comfort. This last peak can be also detected in North tower but not that evident. From 3 pm 
forward the energy expenditure decays, with an abrupt fall during 6 to 7 pm and reaching 
building base energy consumption at 9pm. 

▪ 𝑘 = 3 - as a similar consumption to 𝑘 = 1 group in terms of consumption, except between 9 am 
and 4 pm, where there is a slightest energy consumption increase. 
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Chapter 4 

 

Methodology 

After knowing the main characteristics of each building, the present chapter will demonstrate the 

methodology behind the development of this work to achieve its main goal: the energy consumption 

prediction of four buildings (Civil, Central, North tower, and South tower) in three different forecasting 

horizons (an hour, a day, and a week). A detailed diagram with each main step may be seen in Figure 

4.1. To conduct each step, a programming language, known as python was used [66]. 

 

 

Figure 4.1 - Methodology step-by-step diagram 
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4.1 Data Treatment 

The data set available in this work may be grouped into two different categories. The first category, 

named as the energy consumption data (ECD), contains values of each building energy consumption, 

collected at 1-hour intervals for 3 years (2014, 2017, and 2018). The second category, denoted as 

weather conditions data (WCD), includes the outdoor weather conditions, such as temperature, rela-

tive humidity, and solar radiation. This category was also hourly gathered during the same years by an 

existent weather station in Alameda campus. 

Furthermore, the real-world data sets that are gathered from sensors and electric meters, often called 

as raw data, includes incomplete, imprecise and noisy values. To proceed to the model development, 

it is mandatory to acknowledge and handle the uncertainty of it. The process that addresses these 

issues is referred in this study as data treatment and may be branched into four sequential steps: 

1. Frequency Preservation; 

2. Outliers; 

3. Data Imputation Study; 

4. Creation of different data sets. 

Frequency Preservation 

In the first step, since data is time dependent, an hourly frequency preservation was done to keep the 

data set continuity. Therefore, every missing or repeated hour, was added or deleted, respectively, 

creating a missing value row if needed.  

Outliers 

Following that, in the second step, an outlier detection was performed in ECD. An outlier is an abnor-

mal data value that considerably diverges from the rest of the data points in the same feature, their 

inclusion may affect negatively the predictive model accuracy. Although, in certain situations, an out-

lier may contain important information about a specific system behaviour. As a result of this ambiguity, 

two successive methods were applied. Firstly, a statistical metric, named as z-score was select to detect 

the outliers. This statistical metric quantifies every value of a given feature, by scoring is standard de-

viation from the mean. It is ruled by equation (4.1), where 𝜇 is the selected data mean, 𝜎 the standard 

deviation and 𝑥 the data value that is scored. 

 
 𝑧 =   (𝑥 −  𝜇)/𝜎 (4.1) 

 
After the scoring, the values that presented an absolute standard deviation above or equal four (|𝑧| ≥ 

4) were identify as outliers. Four was chosen as sigma, to guarantee that the selection of outliers was 

not too restrict. Afterwards, the second method starts by visualizing each of the days where the outli-

ers were detected. This method works as a filter, to identify if any of the previous detected values 

correspond to an unexpected spike or dip during the day. If the latter statement occurs the outlier is 

replaced by a missing value in the data set. As a result of this analysis, just three values from South 

tower were set as missing values. In Figure 4.2, it is possible to see an example of an outlier that did 

not pass in both methods.  
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Figure 4.2 - South tower energy consumption - removed outlier, at 5pm, with 𝑧 = 4 

As a consequence of the first two steps, the data set presented a greater number of missing values 

than the original one. To proceed to the following step, it is mandatory to quantify those values and 

check their distribution per feature, with that end, Table 4.1 and Figure 4.3 are displayed. It is also 

worth to mention, that from this point forward the abbreviations shown in Table 4.1 will be used to 

refer to each feature. 

Table 4.1 - Data set of the available features and their missing values 

Available Features Units Abbreviation 
Total  

values 

Missing Values 

(%) Total 

Buildings energy consumption data 

Civil 

[𝑘𝑊ℎ] 

𝑐𝑖𝑣𝑖𝑙 157 

Central 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 4 

North tower 𝑛𝑜𝑟𝑡ℎ_𝑡𝑜𝑤𝑒𝑟 83 

South tower 𝑠𝑜𝑢𝑡ℎ_𝑡𝑜𝑤𝑒𝑟 95 

Outside weather conditions data 

Temperature 
[º𝐶] 

𝑤𝑡_𝑡𝑒𝑚𝑝 

2357 

Apparent temperature 𝑤𝑡_𝑡𝑚𝑝𝑎𝑝 

Relative humidity - 𝑤𝑡_ℎ𝑟 

Mean wind speed 
[𝑚/𝑠] 

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑤𝑖𝑛𝑑𝑠𝑝𝑑 

Maximum wind gust 𝑤𝑡_𝑚𝑎𝑥_𝑤𝑖𝑛𝑑𝑔𝑢𝑠𝑡 

Mean atmospheric pressure [𝑚𝑏𝑎𝑟] 𝑤𝑡_𝑚𝑒𝑎𝑛_𝑝𝑟𝑒𝑠 

Mean solar radiation [𝑊/𝑚2] 𝑤𝑡_𝑚𝑒𝑎𝑛_𝑠𝑜𝑙𝑎𝑟𝑟𝑎𝑑 

Precipitation [𝑚𝑚/ℎ𝑟] 𝑤𝑡_𝑟𝑎𝑖𝑛_𝑑𝑎𝑦 

 

Furthermore, it is important to understand the reason why data goes missing. The major part of the 

discontinuity revealed in Figure 4.3 is due to sensors and electric meters malfunctions, although an 

exception occurred in 2018, during almost 2 months (1165 consecutive values) where it can be found 

a wide gap in the WCD. This exception is related with the waiting period between the weather station 

computer failure and the arrival of a new one. 

Data Imputation Study 

The third step focuses on the type of imputation applied to fill those missing values. As it is known, 

there is no good way of dealing with missing data, in this work data set the main percentage and re-

sulting distribution of this lack of data was found in WCD, Table 4.1 and Figure 4.3. For this reason, 
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merely adopting a strategy of dropping those values will lead to a loss of the correspondent (same 

rows) ECD. Since the latter, contains the most valuable feature of each building, its own consumption, 

it is of extreme importance not losing it. 

 

Figure 4.3 - Data set missing values distribution per feature 

To overcome this situation, a study has been conducted to measure the accuracy of different imputa-

tion strategies. Two models have been used in this study, specifically MICE and MF, mention in 2.3. 

To conduct this study, the process represented in Figure 4.4, was performed. This process was done 

separately for ECD and WCD, since both models are ruled by the multivariate approach which may lead 

to an exchange of information between each data set type and a consequent influence in the further 

performed forecasting. This process can be broken down into five main steps: 

1. From the entire data set, a selection of the maximum consecutive missing values of each 

feature was performed, denoted as target, Table 4.2. This selection was motivated by the 

increased difficulty of imputing wide ranges of missing values. 

2. The data from the year of 2014 was chosen, since it exhibits the lowest number of missing 

values, as can be seen in Figure 4.3. Any unknown value from the adopted year was dropped, 

and the rest of data was used as a baseline data set to test the different imputation models. 

3. A random generation of artificial missing data based on the target value of each feature was 

performed in the baseline data set. Regardless the randomness of this part of the process, 

when the WCD was evaluated, the gaps are generated in parallel, in attempt to replicate the 

real situation, Figure 4.3. 
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Figure 4.4 - Data imputation study step-by-step diagram 

Table 4.2 - Target of each feature - maximum consecutive missing values in 2017 and 2018 data sets 

Features Target 

𝑐𝑖𝑣𝑖𝑙  

𝑐𝑒𝑛𝑡𝑟𝑎𝑙  

𝑛𝑜𝑟𝑡ℎ_𝑡𝑜𝑤𝑒𝑟  

𝑠𝑜𝑢𝑡ℎ_𝑡𝑜𝑤𝑒𝑟  

𝑤𝑡_𝑡𝑒𝑚𝑝  

𝑤𝑡_𝑡𝑚𝑝𝑎𝑝  

𝑤𝑡_ℎ𝑟  

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑤𝑖𝑛𝑑𝑠𝑝𝑑  

𝑤𝑡_𝑚𝑎𝑥_𝑤𝑖𝑛𝑑𝑔𝑢𝑠𝑡  

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑝𝑟𝑒𝑠  

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑠𝑜𝑙𝑎𝑟𝑟𝑎𝑑  

𝑤𝑡_𝑟𝑎𝑖𝑛_𝑑𝑎𝑦  

 

4. Both models, MICE and MF, were separately applied, filling the missing values with the 

correspondent predictions.  

5. The imputed values were then compared with the real ones, stored in step 3. The evaluation 

of the models per feature was conducted using the CV(RMSE) metric, mention in 2.4. 

Afterwards, the baseline data set predictions were set back to the real values.  

6. Steps 3 to 4 were repeated for 10 cycles to ensure the diversity of the times of the year where 

the imputation was performed by each model. At the end of the cycles, the mean error was 

calculated per feature to evaluate the models applied. 
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7. A comparison of each model performance by feature was done. The RF model outperformed 

the other model in both ECD and WCD, showing superior accuracy in every feature, in terms 

of mean CV(RMSE). 

After this study completion, although the MF model showed, in general, a great accuracy in each of 

the data set types when compared with MICE, the gap in WCD was still with undesirable imputation 

values in terms of the expected seasonality and trend.  

To address this problem, a method based in the univariate approach, referred in this work as hour 

monthly mean (HMM), was developed. This method basically fills each feature independently with the 

known values from the other years, using the correspondent mean value of the same month and hour. 

For example, if a certain feature as a missing value at one day of August at 10 am, this method will use 

the mean of the other years known values of August at 10 am for the imputation. 

A comparison of the two models and the new method imputation was done for each of WCD feature. 

An example of it, for 𝑤𝑡_𝑡𝑒𝑚𝑝 feature, can be seen in Figure 4.5, where it is possible to conclude that 

although none of the imputation strategies represents well the actual temperature, the new method 

gives the daily seasonality and the monthly tendency needed in comparison to the nearly constant 

values imputed by the MF and MICE. 

 

Figure 4.5 - Imputation comparison example of MF, MICE, and HMM imputations with the true value of 𝑤𝑡_𝑡𝑒𝑚𝑝 

Creation of different data sets 

The fourth and last step, consists in the creation of three different data sets, that differ in the strategies 

adopted for the missing values shown in Figure 4.3 and Table 4.1.  

In this step, it was introduced another technique of univariate imputation, named as linear interpola-

tion. This statistical technique essentially draws a straight line between two or more known values 

filling the gap created by the missing values. Due to its simplicity is of great importance to limit the 

range of unknown values to fill in order to avoid the replacement of a possible feature pattern with a 

straight line, with no relevant information. The limit applied was of three hours, meaning that if any of 

the features has three consecutive missing values a linear interpolation is applied between the value 

before and after the gap. The target of this technique was the sudden spikes or dips identified previ-

ously as outliers. 
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Therefore, the first strategy common to each of the data sets, named as 𝑑𝑡_01, 𝑑𝑡_02, and 𝑑𝑡_03, was 

the three hours linear interpolation. After that, the three data sets differ from one to another, as it is 

described below: 

▪ In 𝑑𝑡_01 the remaining missing values were dropped, making it the least influenced by impu-

tation; 

▪ In 𝑑𝑡_02 was applied a MF imputation just in the ECD. This was done to check the relevance 

of the imputation only in building energy consumption, since their error metrics shown the 

best mean results among the other features. Afterwards, the rest of the missing values were 

dropped. 

In attempt to not losing any part of the data, the following data set was created: 

▪ In 𝑑𝑡_03 it was used the MF imputation model in ECD. After that, it was implemented the 

HMM method to the WCD, reasoned by the outcome shown in Figure 4.5. 

In Table 4.3, it is possible to check the different techniques applied in each data set and the 

correspondent lost rows

Table 4.3 - Summary of the imputation techniques applied per data set 

Data sets 

Imputation 
Drop remaining 

missing values 

Lost 

rows Linear Interpolation 
ECD  

MF 

WCD 

HMM 

𝑑𝑡_01 ✔ ✔ 2590 

𝑑𝑡_02 ✔ ✔ ✔ 2286 

𝑑𝑡_03 ✔ ✔ ✔ 0 

4.2 Feature Generation 

The feature generation step is responsible to created new features that somehow offer additional in-

formation to the machine learning models towards the enhancement of their output predictions. In 

the scope of this work, the output is the energy consumption of each building, therefore, each new 

feature most be generated in attempt to describe its behavior and particular characteristics. 

In this study, the new features, may be grouped according to what they are based on, therefore, there 

are three main categories, time, calendar, and energy consumption. The first includes every new fea-

ture that was time dependent, the second group of features was based on the national and academic 

calendar, and lastly, the third group generates features that were based on each building own con-

sumption, Figure 4.6. 

Time 

This group of new features, was supported by the patterns encounter in each of the temporal parti-

tions performed in the consumption analysis of 3.2.2. In attempt to offer to the forecasting models the 

possibility to distinguish those patterns three features were generated with integers values that differ 

depending on the temporal partition, e.g. for monthly partition, integers from 1 to 12 were set in the 

new feature. The three new features were named after each temporal partition, specifically 𝑡_𝑚𝑜𝑛𝑡ℎ, 

𝑡_𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘, and 𝑡_ℎ𝑜𝑢𝑟. 
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Figure 4.6 - New features categories 

Calendar 

In the absence of each building real occupancy data, this category was implemented. It basically at-

tempts to replicate the real occupancy by day, with two different features. For that, each of the fea-

tures use integer values, levels, that quantify the expected daily occupancy rate, being the lowest level 

the one that among the others has the smallest occupancy rate. 

The first feature, named as 𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦, specifies the type of day in three distinguished levels, defined 

as: 

▪ Level 0 - represents weekends and the two weeks yearly summer break of all campus facilities; 

▪ Level 1 - identifies the holidays that occur during the week. This level, although representing 

non-working days, in the case of an institutional buildings, their rate of occupancy is, usually, 

in-between the other two levels; 

▪ Level 2 - as the last level in 𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦 feature, represents the normal working days, where 

the occupancy rate is expected to be the highest. 

The second feature, denoted as 𝑠_𝑒𝑝𝑜𝑐ℎ𝑠, attempts to give the model information about the different 

types of occupancy occurring when there is exams, classes, and break periods during the academic 

calendar. For that, also three levels were specified:  

▪ Level 0 - corresponds again, to the lowest rate of occupancy, the break period between se-

mesters; 

▪ Level 1 - identifies the exams period, with no classes; 

▪ Level 2 - refers to the classes period of each of the academic semesters. 

 
Energy consumption 

This category was used to create a sort of “guidelines” using each building consumption, to enhance 

the performance of the forecasting models. These “guidelines” can be distinguished into two different 

groups, according to the technique used to generate them. 
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The first group used the mean daily pattern of every identified cluster in consumption daily analysis 

per building (3.2.2), to create a feature that repetitively replicates that pattern along all data set, as it 

is illustrate in Figure 4.7.  

Figure 4.7 - Civil Building cluster average feature from k=0 (in 3.2.2 daily analysis - Figure 3.7) 

Therefore, with this process the same number of features as clusters per building were generated, 

specifically, three for Civil, Central, and North tower and four for South tower. To identify each feature 

the correspondent cluster’s number (𝑘) was used as feature name suffix, e.g. for cluster 𝑘 = 0 of Civil 

building the feature name is 𝑐𝑙_𝑐𝑖𝑣𝑖𝑙_0. 

Afterwards, the second and last group of generated features, was defined considering the common 

use of lagged features in time series, referred in Table 2.2 of section 2.2.2. This new group of features 

was based in the autocorrelation applied to each building energy consumption. The autocorrelation 

was obtained using Pearson’s correlation coefficient between a chosen number of previous hours and 

the actual hour. From the latter calculations, it was concluded that all the study cases have an identical 

behaviour, therefore, Civil building autocorrelation of the previous seven days is used as role model, 

Figure 4.8. 

 

Figure 4.8 - Autocorrelation of Civil building hourly energy consumption 
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From Figure 4.8, it is visible that the three most autocorrelated periods, take place first at the previous 

hour, then a week before, and lastly at the previous day. These three periods were used to generate 

lagged features for each building. As a consequence of that, the first week of 2014 was lost. The new 

features were named using the lagged period as suffix, e.g. 𝑐𝑖𝑣𝑖𝑙_𝑙𝑎𝑔1ℎ𝑜𝑢𝑟 for civil building previous 

hour. 

To complement each of the chosen periods, it was also created three other features, that provide the 

minimum, the maximum and the average of the three hours prior to each period, through the use of 

a rolling window technique. These new features were chosen not only due to the high autocorrelation 

of the last 3 hours, but also to provide to the lagged features a certain continuity. The reason why it 

was selected a rolling window technique and not directly used the three hours prior the periods is 

based on absence of losing data. For the rolling window features name it was added a suffix to the 

lagged feature that characterizes the period that was selected from, e.g. for civil building 1 hour lagged 

rolling window maximum, 𝑐𝑖𝑣𝑖𝑙_𝑙𝑎𝑔1ℎ𝑜𝑢𝑟_𝑟𝑜𝑙𝑙𝑚𝑎𝑥. 

Nonetheless, each data set created in 4.1 was split per building and time horizon, based on the set of 

features that were available to use for each of the different forecasting horizons (an hour, a day, and 

a week) represented in Table 4.4. Where (𝑎) may be replaced by each building name. From this table, 

there was a total of 27 features for Civil, Central, and North tower buildings and 28 features for South 

tower building. 
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Table 4.4 - Set of feature per building (𝑎) and forecasting horizon for each of the data sets 

 

 

 

Data set (𝑑𝑡_01, 𝑑𝑡_02, and 𝑑𝑡_03) 

Based on Features 
1 hour horizon 

prediction 

1 day horizon 

prediction 

1 week horizon 

prediction 

Ti
m

e 
an

d
 

C
al

en
d

ar
 

𝑡_ℎ𝑜𝑢𝑟 ✔ ✔ ✔ 

𝑡_𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘 ✔ ✔ ✔ 

𝑡_𝑚𝑜𝑛𝑡ℎ ✔ ✔ ✔ 

𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦 ✔ ✔ ✔ 

𝑠_𝑒𝑝𝑜𝑐ℎ ✔ ✔ ✔ 

En
er

gy
 C

o
n

su
m

p
ti

o
n

 

C
lu

st
er

 A
ve

ra
ge

 

𝑐𝑙_(𝑎)_0 ✔ ✔ ✔ 

𝑐𝑙_(𝑎)_1 ✔ ✔ ✔ 

𝑐𝑙_(𝑎)_2 ✔ ✔ ✔ 

𝑐𝑙_(𝑎)_3 - just for South tower ✔ ✔ ✔ 

La
gg

ed
 F

ea
tu

re
s 

(𝑎)_𝑙𝑎𝑔_1ℎ𝑜𝑢𝑟 ✔ - - 

(𝑎)_𝑙𝑎𝑔_1ℎ𝑜𝑢𝑟_𝑟𝑜𝑙𝑙𝑚𝑖𝑛 ✔ - - 

(𝑎)_𝑙𝑎𝑔_1ℎ𝑜𝑢𝑟_𝑟𝑜𝑙𝑙𝑚𝑎𝑥 ✔ - - 

(𝑎)_𝑙𝑎𝑔_1𝑑𝑎𝑦 ✔ ✔ - 

(𝑎)_𝑙𝑎𝑔_1𝑑𝑎𝑦_𝑟𝑜𝑙𝑙𝑚𝑖𝑛 ✔ ✔ - 

(𝑎)_𝑙𝑎𝑔_1𝑑𝑎𝑦_𝑟𝑜𝑙𝑙𝑚𝑎𝑥 ✔ ✔ - 

(𝑎)_𝑙𝑎𝑔_1𝑑𝑎𝑦_𝑟𝑜𝑙𝑙𝑚𝑒𝑎𝑛 ✔ ✔ - 

(𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘 ✔ ✔ ✔ 

(𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘_𝑟𝑜𝑙𝑙𝑚𝑖𝑛 ✔ ✔ ✔ 

(𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘_𝑟𝑜𝑙𝑙𝑚𝑎𝑥 ✔ ✔ ✔ 

(𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘_𝑟𝑜𝑙𝑙𝑚𝑒𝑎𝑛 ✔ ✔ ✔ 

W
ea

th
er

 C
o

n
d

it
io

n
s 

D
at

a 

(W
C

D
) 

𝑤𝑡_𝑡𝑒𝑚𝑝 ✔ ✔ ✔ 

𝑤𝑡_𝑚𝑒𝑎𝑛𝑠𝑜𝑙𝑎𝑟𝑟𝑎𝑑 ✔ ✔ ✔ 

𝑤𝑡_ℎ𝑟 ✔ ✔ ✔ 

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑤𝑖𝑛𝑑𝑠𝑝𝑑  ✔ ✔ ✔ 

𝑤𝑡_𝑚𝑎𝑥_𝑤𝑖𝑛𝑑𝑔𝑢𝑠𝑡  ✔ ✔ ✔ 

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑝𝑟𝑒𝑠  ✔ ✔ ✔ 

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑠𝑜𝑙𝑎𝑟𝑟𝑎𝑑  ✔ ✔ ✔ 

𝑤𝑡_𝑟𝑎𝑖𝑛_𝑑𝑎𝑦  ✔ ✔ ✔ 
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4.3 Models Selection 

After the previous data treatment and features generation, the prerequisites were met to proceed to 

the machine learning models selection and posterior evaluation of the different data sets created in 

4.2. 

The machine learning models used, in this study, were four models: ANN(MLP), SVM, RF, and XGB. The 

first three models were given by scikit-learn [70] and the last one by XGBoost [71] python packages. In 

addition, ANN(MLP) and SVM were chosen taking into account their substance use in the literature 

reviewed (2.2). The other two models, RF and XGB, despite their insignificant usage when compared 

with the first two models in forecasting, they are emerging in the machine learning field, showing in 

recent studies, [61] and [62], better performance than the first two models. 

Furthermore, to evaluate and compared the chosen models, each created data set, was split into two 

subsets: the training and the testing set. The training set was responsible for the learning process of 

every model and the posterior comparison of the diverse strategies employed during this work. It con-

sists of the first two years of data, specifically, 2014 and 2017. The rest of the data, 2018, was used 

only to test the model’s ability to forecast, using the error metrics mention in 2.4. 

4.3.1 Data Normalization 

It is also worth to mention the need or not of data normalization, also known as feature scaling. This 

pre-processing step is used depending on the machine learning model used. It is known to be beneficial 

to some of machine learning models that are comparing features with different scales, such as k-means 

clustering, previous used in 3.2.2. In terms of the above mention models used for forecasting, the only 

ones that required data normalization to yield better predictions are the ones that are not based in 

decision trees, specifically ANN(MLP) and SVM. 

There is no obvious answer to which type of normalization should be used. One often used is defined 

by equation (4.2), that makes every feature from the training data to be confined in values from 0 to 

1. 

 
𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

𝑋 −  𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (4.2) 

 
Where, 𝑋 refers to each feature vector, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 the minimum and the maximum encounter in 

the feature vector, respectively, and 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  denotes the outcome normalized feature vector. 

4.3.2 Cross-Validation (CV) 

One of the main objectives when training a ML model is its generalization performance in the unseen 

data, known as testing set. In the opposition to the generalization, phenomenons of under and over 

fitting may occur when the model is trained, leading to poor performance on the testing set. In the 

case of under fitting the model is not suitable for the complex nature of the addressed problem being 

not capable of neither modelling the training set nor generalize to unseen data, Figure 4.9 (a). On the 

other hand, over fitting occurs when the model learns the detail and noise in the training set to the 

extent that it negatively impacts the performance of the model in the testing set, Figure 4.9 (b). 
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In the circumstances of this work, since the chosen models are robust enough to handle the non-line-

arity found in the data set, the only adverse scenario that could be found is over fitting. To overcome 

this, a cross-validation technique (CV) in the training data was used. 

 

Figure 4.9 - Example of under (a), good (b) and over (c) fitting for a polynomial regression model 

When handling with time dependent data, the standard K-fold CV technique is not suitable, once it 

naively ignores their inherent sequential nature of time. To circumvent this problem a specific time 

series technique was used, denoted in this dissertation as ts-CV. This technique splits the training data 

set, in 𝐾 folds and uses the first 𝐾 fold as training set and the 𝐾 + 1 as the testing set. The process is 

repeated successively using each time, the past values to predict future ones, guaranteeing the time 

dependency needed, as illustrated in Figure 4.10. 

Training Test - - - 

Training Training Test - - 

Training Training Training Test - 

Training Training Training Training Test 

 
Figure 4.10 - Example of a CV technique adapted for time dependent data 

Nonetheless, in this study, the ts-CV split the training set into 24 folds, despite the intrinsic 
computational expenditure. This ensured that the models for each decision making trained the data 
month by month, allowing the contribution of each month in the average error. 

4.4 Feature Selection 

The objective of this section is to select the most relevant created features, before modeling the data 

sets of each building and forecasting horizon (an hour, a day, and a week). This procedure, when 

properly applied, its known to improve the models, in terms of over fitting, accuracy, and by reducing 

the training time. The former occurs, since with less redundant features, the probability of the models 

to make decisions based on noisy or misleading data is lower and by using less data the algorithms 

reduce their complexity and train faster. 

There are three general classes of feature selection: filter, wrapper, and embedded methods. Filter 

methods apply statistical measures to assign a score to each feature, the methods are usually univari-

ate and consider each feature independently. The wrapper methods consider the selection of a set of 

features as a search problem, where different combinations of features are prepared, evaluated and 

compared with other combinations. To evaluate those combinations a machine learning model is used 
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to score each group of features based on an error metric prior established. Lastly, the embedded meth-

ods, learn which features best contribute to the accuracy of the model while the model is being created, 

which is often done by regularization methods. A detailed explanation of each class and its advantages, 

is given in [67]. 

In this dissertation it was firstly used a filter method by Pearson correlation, to elect the most relevant 

WCD features, and afterwards, with the remaining features, a wrapper method, named as recursive 

feature elimination (RFE), was employed using XGB model, Figure 4.11. 

 

Figure 4.11 - Procedures diagram of feature selection 

 

Filter method - Pearson Correlation 

When Pearson correlation between each of WCD features and the corresponding buildings was imple-

mented, it was found that half of the available features had a correlation below 0.15 with every build-

ing. That features were automatically removed, since their lack of information about each building 

dynamic behavior, as it can be seen in Figure 4.12. As a result, the only useful features were 𝑤𝑡_𝑡𝑒𝑚𝑝, 

𝑤𝑡_𝑡𝑚𝑝𝑎𝑝, 𝑤𝑡_ℎ𝑟, and 𝑤𝑡_𝑚𝑒𝑎𝑛_𝑠𝑜𝑙𝑎𝑟𝑟𝑎𝑑. 
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Figure 4.12 - Pearson correlation between WCD features and each building 

Furthermore, to check the correlation between each of the selected WCD features, a heatmap was 

done and shown in Figure 4.13.  The obvious was observed in the correlation between the almost 

similar features: 𝑤𝑡_𝑡𝑒𝑚𝑝 and 𝑤𝑡_𝑡𝑚𝑎𝑝, that accordingly to Table 4.1, represent the temperature and 

the apparent temperature, respectively. With that in mind, the first was elected since it presents higher 

correlation score with every building, Figure 4.12. 

 

Figure 4.13 - Heatmap made by Pearson correlation score between the chosen weather conditions features 

Finally, the set of WCD features were enclose with the features generated in 4.2, so the wrapper 

method could be performed. 

Wrapper method - RFE 

The RFE as a wrapper method, uses a given external model, that assigns weights to each of the features. 

First, the model is trained on the initial set of features and to each of them is attached a weight that 

ranks their importance, through an attribute embedded in the model. Afterwards, the least important 

feature is eliminated from the current data set. That process is recursively repeated on the remaining 

features, until the data set is reduced to one feature. As a result, the method supplies the cross-vali-

dation score for each of the combinations and choses the best set of features. Among the models 

selected to perform the forecasting, only two models, specifically RF and XGB had the embedded 
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attribute required to implement the RFE method. However, due to the computation expenditure of 

this process it was only performed by XGB model due to its computational speed characteristics. 

To ensure the consistency of the selection performed by the RFE method, each set of features selected 

per time horizon and building was visualized and discussed. After that, some features that were con-

sidered as important based on the knowledge acquired in 3.2.2 energy analysis were added to the RFE 

method selection, creating a new selection of features. 

Lastly, the forecasting models chosen in 4.3 were used to calculate the average of the ts-CV(CV(RMSE)) 

error to compare: the inexistence of selection process, the RFE method selection, and the new selec-

tion. Taking into account that error metric and the posterior hyperparameter optimization, a set of 

features was selected to feed each of the models per building and time horizon. 

4.5 Hyperparameter Optimization 

In machine learning algorithms there are two types of parameters: the model parameters and the 

hyperparameters. The model parameters are defined during the learning process, meaning that the 

model adapts each parameter with the objective of fitting the best way possible a given data set, e.g. 

the weights addressed to each neuron in an ANN. On contrary, the hyperparameters cannot be learned 

within the model directly, are unchangeable since the moment they are pre-defined, and play a crucial 

role in the training stage and posterior model predictions, e.g. the number of hidden layers and learn-

ing rate in an ANN.  

Therefore, since the latter parameters may be defined beforehand, is of great importance to choose 

then wisely considering the type of data that feeds the model. In addition, as it is known, a major part 

of machine learning algorithms possesses a large variety of hyperparameters, which may be translated 

in a misleading and expensive work when selected manually. To address that issue, hyperparameter 

searching techniques are usually applied. 

Hyperparameter searching techniques when applied by trial and error, such as grid search and random 

search, may lead to an inefficient and time-consuming process, since they roam the given space of 

available hyperparameters values in an isolated way without paying attention to past results. To ease 

this process, techniques such as evolutionary algorithms and Bayesian optimization may be employed, 

as it was in [48] and [54], respectively. In this work a Bayesian optimization grounded by Gaussian 

processes was used. A detailed explanation of the later technique and its advantages may be found in 

[68]. To apply this technique a python package, named as Scikit-Optimize [69] was used. 

For the Bayesian optimization an hyperparameter search space for each model was pre-defined. Since 

the models chosen for forecasting have different characteristics, their hyperparameters and conse-

quent spaces were quite different. A detailed information about the hyperparameters search space 

for each model may be seen in Table 4.5. 
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Table 4.5 - Hyperparameter search space for each of the models 

Models Search Space 

ANN(MLP) 

Hidden layers sizes 
(100); (100, 20); (100,20,20); (100,20,20,20); (40, 100, 40, 40); (40, 100, 40);  

(20, 100, 20, 20); (20, 20, 100, 20); 

Activation function ReLU, tanh 

Learning rate Adaptive, Invascalling 

Batch size 24; 48; 168; auto 

SVM 

C Logarithmic uniform distribution [0.01; 100] 

gamma Logarithmic uniform distribution [0.001; 10] 

epsilon auto; scale 

RF 

Nº of estimators Integers values from 100 to 1000 

Max. features auto; sqrt 

Min. Samples split Integers values from 2 to 40 

Min. Samples leaf Integers values from 1 to 20 

XGB 

Nº of estimators Integers values from 100 to 600 

Learning rate Logarithmic uniform distribution [0.001; 1] 

Max. depth Integers values from 1 to 30 

Subsample Logarithmic uniform distribution [0.1; 1] 

 

It is worth to mention, that the hyperparameters chosen to be search, were based on the default val-

ues that each model presents in the correspondent python package. A detailed information of each 

hyperparameter characteristic is given in [70] for ANN(MLP), SVM, and RF models, and in [71] for XGB 

model. 
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Chapter 5 

 

Results 

In this Chapter, the models chosen in 4.3, were compared and used for decision making of the diverse 

strategies adopted during the methodology. The evaluation of that strategies was performed in the 

training set, using the average error of the four models. The error metric applied for this comparison 

was the CV(RMSE) error (2.4), calculated by the ts-CV, referred in 4.3.2. 

The diverse strategies, specifically, the data imputation study and posterior data sets generation in 4.1, 

the features selection performed in 4.4, and the hyperparameter optimization of 4.5, were divided by 

sections to ease the visualization and consequent decision. After that, the last section reveals the fore-

casting results of each developed model for every building (Civil, Central, North tower, and South tower) 

and time horizon (an hour, a day, and a week). To evaluate the forecasting results the error metrics 

referred in 2.4 were used. 

5.1 Data Imputation Study 

As it was mentioned in 4.1, two multiple imputation algorithms (MICE and MF) were studied with the 

intend of filling the gaps of the original data set. This study was performed in the data set of 2014 for 

10 cycles with randomly created artificial gaps. The results for ECD and WCD may be seen in Table 5.1 

and Table 5.2, respectively. 

For the ECD the results show a clear dominance in terms of accuracy for MF algorithm. Based on that, 

this algorithm was chosen for the posterior data sets generation. For further details of both algorithms 

imputations capabilities, Civil, North tower, and South tower last cycle imputations may be seen in 

Figure 5.1, Figure 5.2, and Figure 5.3, respectively. The Central building is not displayed since only one 

missing value was imputed per cycle, according to its target defined in Table 4.1. 

Table 5.1 - Mean Error Evaluation of 10 cycles for MF and MICE algorithms in ECD, where CV(RMSE) and MAPE are pre-

sented in percentage and MAE is presented in kWh units 

Multiple Imputation model MICE MF 

Error Metrics (%) CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

𝑐𝑖𝑣𝑖𝑙  14.816 14.815 18.097 2.464 2.463 3.438 

𝑐𝑒𝑛𝑡𝑟𝑎𝑙  32.882 27.776 45.814 12.321 8.981 14.965 

𝑛𝑜𝑟𝑡ℎ_𝑡𝑜𝑤𝑒𝑟  54.383 42.506 34.338 20.132 11.969 10.661 

𝑠𝑜𝑢𝑡ℎ_𝑡𝑜𝑤𝑒𝑟  38.649 23.368 43.276 16.856 8.358 16.474 
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Figure 5.1 - Civil building last cycle imputations with MF and MICE (148 values) 

 

Figure 5.2 - North tower last cycle imputations with MF and MICE (78 values) 

 

Figure 5.3 - South tower last cycle imputations with MF and MICE (88 values) 

For the WCD, the scenario was quite different. The errors values although slightly better for MF algo-

rithm, were too high to be used in the posterior data sets generation. This performance difference 

between WCD and ECD can be explained by the fact that the WCD has a larger gap of missing values 

occurring in simultaneous for all the features to impute. Moreover, the WCD features are not as similar 

as each building consumption in the ECD. 
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Due to the poor performance found in WCD imputation, the HMM method referred in 4.1 was em-

ployed to fill the missing values for 𝑑𝑡_03. 

Table 5.2 - Mean Error Evaluation of 10 cycles for MF and MICE algorithms in WCD, where CV(RMSE) and MAPE are pre-

sented in percentage and MAE is presented in feature units (Table 4.1) 

Multiple Imputation model MICE MF 

Error Metrics (%) CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

𝑤𝑡_𝑡𝑒𝑚𝑝  53.040 46.124 7.109 26.344 22.929 3.551 

𝑤𝑡_𝑡𝑚𝑝𝑎𝑝  76.106 74.067 8.069 38.418 37.720 4.082 

𝑤𝑡_ℎ𝑟  50.559 51.309 24.879 26.281 26.797 12.723 

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑤𝑖𝑛𝑑𝑠𝑝𝑑  88.447 10317.186 5.544 44.299 5231.062 2.766 

𝑤𝑡_𝑚𝑎𝑥_𝑤𝑖𝑛𝑑𝑔𝑢𝑠𝑡  98.556 8105.362 3.393 49.377 4093.348 1.695 

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑝𝑟𝑒𝑠  1.460 1.120 11.352 0.791 0.614 6.231 

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑠𝑜𝑙𝑎𝑟𝑟𝑎𝑑  231.381 208341.775 320.780 88.130 1096.834 97.986 

𝑤𝑡_𝑟𝑎𝑖𝑛_𝑑𝑎𝑦  1013.131 182924.141 3.737 630.617 97027.176 2.028 

 

5.2 Data sets analysis 

In this analysis, the data sets generated in 4.1 were compared. To procced with it the average error of 

the four models chosen in 4.3 (ANN(MLP), SVM, RF, and XGB) in an hour, a day, and a week horizon is 

shown in Table 5.3. 

Table 5.3 - Average ts-CV(CV(RMSE)) error of the four models for each data set generated in 4.1, displayed by building and 

time horizon 

Time horizon 1 hour 1 day 1 week 

Data sets 𝑑𝑡_01 𝑑𝑡_02 𝑑𝑡_03 𝑑𝑡_01 𝑑𝑡_02 𝑑𝑡_03 𝑑𝑡_01 𝑑𝑡_02 𝑑𝑡_03 

Civil 13.388 13.800 13.383 37.543 37.490 38.975 39.248 39.605 40.453 

Central 16.358 16.430 15.738 39.693 40.185 39.433 44.438 45.173 42.383 

North tower 23.970 23.685 23.873 45.523 45.735 42.900 48.333 48.160 44.805 

South tower 24.755 24.690 24.895 39.170 39.080 38.428 41.470 41.685 40.110 

Average 19.618 19.651 19.472 40.482 40.623 39.934 43.372 43.656 41.938 

 

In general, from Table 5.3, it is possible to conclude that despite the slight error variations between 

the data sets, the one with the most accurate results was 𝑑𝑡_03. This might be explained by the ab-

sence of data lost, as mentioned in Table 4.3, which gives the models the possibility to improve their 

predictions since there is more data to learn from. 

Additionally, the use of 𝑑𝑡_03 from this point forward allowed the prediction of every hour of  2018 

year, which was one of the reasons why the data imputation study in 4.1 was conducted in first place. 
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5.3 Feature Selection Analysis 

From the RFE method, mentioned in 4.4, to each building and time horizon a set of features was se-

lected. An example of this method application for North tower building for each of the horizons data 

sets is shown in Figure 5.4. 

 

 

 

Figure 5.4 - North tower building RFE method application by XGB, for an hour (a), a day (b), and a week (c) horizon data sets 

As it is possible to see from Figure 5.4 the features that were selected for each of the time horizon 

tend to decrease in ratio when the horizon of prediction increases. In this particular case, the ratios 

were 0.76, 0.33, and 0.14, for an hour, a day, and a week, respectively.  

Apart from the fact that in an hour horizon data set there are more features than in a day or a week 

horizon, several features that were considered as important in the first data set were neglected in the 

other two. With that in mind, the creation of a new set of features supported by the RFE method 

selection and the knowledge acquired from each building energy analysis in 3.2.2 was performed. To 

ease the visualization of that the Table 5.4 was created. Where, the black check marks (✔) indicate 

the features that were selected by the RFE method using the XGB model and the red check marks (✔) 

represent the features that were added to that selection to create the new set of features, referred in 

this dissertation as new selection. 
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Table 5.4 - Features selected by the RFE method (✔) and features that were added to that selection (✔) for each building 

and time horizon. Where H, D, and W denotes an hour, a day and a week horizon, respectively. 

Buildings (𝑎) Civil Central North tower South tower Usage 

(%) Forecasting horizon data set H D W H D W H D W H D W 

𝑡_ℎ𝑜𝑢𝑟 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 33 

𝑡_𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘  ✔  ✔ ✔  ✔ ✔   ✔  50 

𝑡_𝑚𝑜𝑛𝑡ℎ  ✔         ✔  17 

𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 100 
𝑠_𝑒𝑝𝑜𝑐ℎ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 33 

𝑐𝑙_(𝑎)_0 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 100 

𝑐𝑙_(𝑎)_1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 67 

𝑐𝑙_(𝑎)_2 ✔      ✔ ✔ ✔ ✔ ✔ ✔ 25 
𝑐𝑙_(𝑎)_3 - - - - - - - - - ✔ ✔ ✔ 33 

(𝑎)_𝑙𝑎𝑔_1ℎ𝑜𝑢𝑟 ✔ - - ✔ - - ✔ - - ✔ - - 100 

(𝑎)_𝑙𝑎𝑔_1ℎ𝑜𝑢𝑟_𝑟𝑜𝑙𝑙𝑚𝑖𝑛 ✔ - - ✔ - - ✔ - - ✔ - - 100 

(𝑎)_𝑙𝑎𝑔_1ℎ𝑜𝑢𝑟_𝑟𝑜𝑙𝑙𝑚𝑎𝑥  - - ✔ - - ✔ - - ✔ - - 75 

(𝑎)_𝑙𝑎𝑔_1ℎ𝑜𝑢𝑟_𝑟𝑜𝑙𝑙𝑚𝑒𝑎𝑛  - - ✔ - -  - - ✔ - - 50 

(𝑎)_𝑙𝑎𝑔_1𝑑𝑎𝑦 ✔ ✔ - ✔ ✔ - ✔ ✔ - ✔ ✔ - 100 

(𝑎)_𝑙𝑎𝑔_1𝑑𝑎𝑦_𝑟𝑜𝑙𝑙𝑚𝑖𝑛 ✔ ✔ - ✔ ✔ - ✔ ✔ - ✔ ✔ - 86 

(𝑎)_𝑙𝑎𝑔_1𝑑𝑎𝑦_𝑟𝑜𝑙𝑙𝑚𝑎𝑥  ✔ - ✔ ✔ - ✔ ✔ -  ✔ - 50 

(𝑎)_𝑙𝑎𝑔_1𝑑𝑎𝑦_𝑟𝑜𝑙𝑙𝑚𝑒𝑎𝑛  ✔ -   - ✔ ✔ - ✔ ✔ - 38 

(𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 100 

(𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘_𝑟𝑜𝑙𝑙𝑚𝑖𝑛 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 50 

(𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘_𝑟𝑜𝑙𝑙𝑚𝑎𝑥  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔ ✔ 42 

(𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘_𝑟𝑜𝑙𝑙𝑚𝑒𝑎𝑛  ✔ ✔   ✔ ✔ ✔ ✔  ✔ ✔ 25 

𝑤𝑡_𝑡𝑒𝑚𝑝 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 33 

𝑤𝑡_𝑚𝑒𝑎𝑛_𝑠𝑜𝑙𝑎𝑟𝑟𝑎𝑑 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 42 

𝑤𝑡_ℎ𝑟 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 17 

 

Before presenting the reasons why the features checked with the red mark were added, it is important 

to acknowledge that three type of features were always included in the RFE method selection. Specif-

ically, the 𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦 , the 𝑐𝑙_(𝑎)_0 , and each different lagged feature when available 

((𝑎)_𝑙𝑎𝑔_1ℎ𝑜𝑢𝑟, (𝑎)_𝑙𝑎𝑔_1𝑑𝑎𝑦, and (𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘). For further details about the features elected 

by this method, a column with the percentage of usage was supplied in Table 5.4. 

Furthermore, the reasons that support the addition of each feature to the RFE method selection were 

the following: 

▪ 𝑡_ℎ𝑜𝑢𝑟 - due to the temporal granularity of the data and since it was always selected by the 

RFE method for the hour horizon data set of each building; 

▪ 𝑠_𝑒𝑝𝑜𝑐ℎ - mainly due to the support that provides to the 𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦 feature to address the 

stochastic behaviour of the daily inhabitants of each building, in terms of the different types 

of occupancy occurring during the different periods of the school calendar; 

▪ For the cluster average features, e.g. 𝑐𝑙_(𝑎)_0, the only ones that were added were the ones 

that exhibit the most different average consumption patterns, specifically: 𝑐𝑙_(𝑎)_0  and 

𝑐𝑙_(𝑎)_1  for Civil and Central building; 𝑐𝑙_(𝑎)_0 , 𝑐𝑙_(𝑎)_1 , and 𝑐𝑙_(𝑎)_2  for North tower 
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building; and 𝑐𝑙_(𝑎)_0, 𝑐𝑙_(𝑎)_1, 𝑐𝑙_(𝑎)_2, and 𝑐𝑙_(𝑎)_3 for South tower building. As it may be 

seen in daily consumption analysis of 3.2.2; 

▪ Lastly, the weather conditions features were added in every data set, firstly because of their 

good correlation with each building, shown in Figure 4.12, and secondly, since they are the 

only features that contain information about the exact moment of prediction. 

Afterwards, with the new selection defined, similar to what was done in 5.2, the average of the four 

models was employed to compare the inexistence of selection, the RFE method selection and the new 

selection. The results of that comparison for each building and time horizon may be viewed in Table 

5.5. 

Based on the table below, it is possible to conclude that for every building and time horizon the inex-

istence of selection had always achieved higher average error values than any of the selection per-

formed, guaranteeing with that the importance of this type of analysis.  

Table 5.5 - Average ts-CV(CV(RMSE)) error of the four models for each set of feature used (No selection, RFE method selec-

tion, and the new selection) by building and time horizon. 

Time horizon 1 hour 1 day 1 week 

Selection No sel. RFE New sel. No sel. RFE New sel. No sel. RFE New sel. 

Civil 11.799 11.350 11.459 34.524 34.038 31.074 37.095 33.231 36.180 
Central 14.765 14.385 14.316 37.172 34.302 34.030 41.018 36.823 37.125 
North tower 19.546 17.102 17.399 40.606 38.447 38.042 43.570 40.010 43.193 
South tower 21.939 19.316 19.633 34.937 34.626 34.853 37.577 35.474 37.313 

 

Moreover, it is important to state that the models which performed these average errors did not suffer 

any kind of optimization process. That being said, although for some cases there were small errors 

deviations that leaned towards the RFE method selection, this selection was not used. The reason for 

that is based on the restriction of the number of features that the models may learn from when opti-

mized. An example of that restriction occurs in the week horizon features selection for three of the 

four buildings, where just  𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦, 𝑐𝑙_(𝑎)_0, and (𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘 features were selected to per-

formed the prediction.  

So, in order to not restrict the models learning process, the new selection of features was chosen to 

feed each model for the hyperparameter optimization, despite the errors shown in Table 5.5. 

5.4 Bayesian Optimization 

To optimize every model for each building and time horizon data set a Bayesian optimization was per-

formed during 30 iterations using the hyperparameter search space define in Table 4.5. This number 

of iterations was chosen due to the implicit computational cost of each model optimization, since it 

was done for the 48 models. The hyperparameters that were chosen in that search are given in Table 

5.6. 
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Table 5.6 - Hyperparameter selection to each building and forecasting horizon using Bayesian optimization, where H, D, and W represents the hour, the day and the week horizon models. 

Buildings Civil Central North tower South tower 

Time horizon H D W H D W H D W H D W 

ANN(MLP) 
         

Hidden layers (100,20) (100,20,20) (100,20,20) (100,20) (100,20) (40,100,40,40) (40,100,40) (20,100,20,20) (100,20) (100) (100) (100,20) 

Activation function ReLU tanh ReLU ReLU ReLU ReLU ReLU tanh ReLU ReLU tanh ReLU 

Learning rate Adapt. Adapt. Invscal. Adapt. Adapt. Adapt. Invscal. Invscal. Invscal. Invscal. Invscal. Invscal. 

Batch size 24 168 auto 24 auto 24 48 24 48 168 48 168 

SVR 
            

C 13.091 0.039 0.018 100.000 0.643 4.612 6.500 0.658 0.104 15.789 3.889 1.138 

Gamma auto scale scale auto auto scale auto auto scale auto auto auto 

Epsilon 0.0095 0.0020 0.0012 0.0052 0.0019 0.0519 0.0460 0.0201 0.0131 0.0388 0.0046 0.0096 

RF 
            

Estimators 100 100 100 1000 1000 1000 158 842 1000 1000 655 100 

Max. features auto sqrt sqrt auto sqrt sqrt auto sqrt sqrt auto sqrt sqrt 

Min. samples split 14 2 2 6 20 2 6 20 2 14 2 2 

Min. samples leaf 4 20 20 5 20 20 3 16 20 5 20 18 

XGB 
            

Estimators 580 320 540 600 358 500 420 483 155 240 460 400 

Learning rate 0.024 0.029 0.007 0.025 0.049 0.023 0.017 0.019 0.100 0.085 0.031 0.015 

Max. depth 7 15 6 26 239 2 24 105 2 7 23 4 

Subsample 0.964 0.196 0.334 0.441 0.343 0.740 0.368 0.339 1 0.869 0.148 0.741 
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5.5 Forecasting 

As a result of all the previous studies completion, this section has the objective of showing the fore-

casting capabilities of the four machine learning models used for the three time horizons and the four 

buildings studied (4 x 3 x 4 = 48 models), in the test set (year of 2018). 

To better define their capabilities, this section was divided into four subsections where each one ad-

dresses one building at the time. For each of the subsections every time horizon was presented with 

the correspondent forecasting models’ errors, referred in 2.4. For every time horizon the best fore-

casting model was selected, and its monthly errors were shown. Based on the monthly errors, two 

weeks, one from the best and another one from the worst month, were graphically visualized against 

the true energy consumption. To ensure this work consistency the CV(RMSE) error metric was once 

again used to elect the best forecasting model per time horizon and building. 

Furthermore, the error metrics for each type of day were also displayed for the best forecasting models 

prior elected. The type of days included in this analysis were workdays, holidays, summer break days 

and weekends. In addition, to somehow show models potentialities an atypical week is shown for each 

of the buildings. 

5.5.1 Civil Building 

In Civil building, for every time horizon the forecasting results did not exceed an CV(RMSE) error of 

16.75%, which according to Table 5.7 was achieved in a week horizon prediction by XGB model. Ac-

cording to that, it is noticeable an increasing error tendency when the models attempt to predict in 

greater horizons, e.g. the RF model obtained CV(RMSE) errors of 7.14%, 12.18%, and 14.29% for an 

hour, a day, and a week horizon predictions, respectively. It may also be concluded that all the models 

tend to adapt easily when predicting an hour a-head consumption, achieving similar prediction accu-

racies, on contrary to what occurs in a day and a week a-head predictions, where the best model was 

easily selected. 

Table 5.7 - Annual results for Civil building forecast for an hour, a day, and a week horizon, where CV(RMSE) and MAPE are 

presented in percentage and MAE is presented in kWh units 

Models 
1 hour 1 day 1 week 

CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

MLP 6.93 5.04 8.90 13.42 10.94 17.33 16.65 12.50 22.11 

SVM 6.32 4.22 7.86 11.09 7.69 13.97 14.00 10.10 18.10 

RF 7.14 4.44 8.42 12.18 8.63 15.06 14.29 10.75 18.61 

XGB 6.52 4.22 7.92 14.30 11.00 18.34 16.75 12.98 22.26 

 

Furthermore, from all the models used, the SVM model achieved the best annual forecasting results 

for all the horizon predictions, in the three use error metrics. Consequently, this model was used to 

check the monthly predictions accuracy for each of the horizons, Table 5.8. 
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Table 5.8 - Civil building monthly forecast results of the best models selection for each time horizon, where CV(RMSE) and 

MAPE are presented in percentage and MAE is presented in kWh units 

Months 
1 hour - SVR 1 day - SVR 1 week - SVR 

CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

January 6.93 4.45 8.48 10.85 7.54 13.34 11.29 8.15 14.92 

February 6.38 3.91 7.89 12.16 8.18 15.85 18.01 9.94 21.68 

March 6.16 4.05 7.92 10.39 7.37 13.88 12.91 9.32 17.93 

April 6.35 4.30 8.04 11.47 7.79 14.93 14.80 10.52 18.83 

May 5.93 4.10 7.55 11.10 7.25 14.04 11.53 8.29 15.63 

June 5.70 4.29 8.01 9.83 7.68 14.11 13.76 10.87 19.86 

July 5.81 4.12 7.57 8.12 5.85 10.73 9.68 7.77 13.74 

August 8.74 4.52 6.47 14.37 9.35 12.07 17.41 14.77 17.17 

September 7.30 4.41 9.20 12.77 6.93 15.84 18.97 10.79 25.25 

October 5.52 3.86 7.81 8.77 6.70 12.89 10.19 7.85 15.09 

November 5.68 4.16 8.10 10.83 8.47 15.34 11.40 9.51 17.11 

December 5.95 4.49 7.48 12.76 9.18 14.82 15.69 13.08 19.95 

 

Based on Table 5.8, the months that yielded better results were October for an hour horizon, and July 

for a day and a week horizon. This might be explained by the small daily consumption variations felt in 

those months, making the correspondent real consumption ease to predict when compared to other 

months. On the other hand, the worst case scenario was found in August for an hour and a day horizon 

prediction, and in September for a week horizon prediction. The unpredictability of these type of 

months derivates from particular events that somehow change abruptly the energy consumption of 

the building, such as the two weeks of summer break in August and the beginning of the first semester 

in September, regardless the used of the 𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦  and 𝑠_𝑒𝑝𝑜𝑐ℎ features in attempt to recognize 

this type of behaviours. After all, two weeks of July and August, were chosen to be visualized, as an 

example of the best and worst case scenarios for the all the forecasting horizons, respectively.  

In Figure 5.5, as it was expected, the hour horizon model outperforms the other time horizon models, 

even though July did not represent the highest accuracy. In general, all the time horizons achieved 

accurate results, showing slightly deviations from the true energy consumption, in more evident in 

weekdays than in weekends. 

 

Figure 5.5 - Forecasting of two weeks of July for each time horizon best model 
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For the two weeks of summer break shown in Figure 5.6, the predictions were not so good. However, 

for an hour horizon the predictions followed the true consumption almost perfectly, being the biggest 

deviation found in the first day of vacations, with an unexpected peak of energy consumption. For a 

day horizon the forecasted consumption was able to follow the building base energy consumption 

decrease along the first week of vacations, although during the day the predictions tend to replicate 

the previous day, an example of this may be seen from the fifteenth to the sixteenth day of the month. 

Lastly, the predictions performed in a week horizon were not able to adapt so easily to the building 

base energy consumption being barely above the true consumption during the night period. 

 

Figure 5.6 - Civil building forecasting of the two weeks summer break for each time horizon best model 

From the day type analysis results, in Table 5.9, it may be seen that the workdays were in most of the 

time horizons the easiest type of day to predict, which means that in 65% of the days in the three 

forecasting horizons the MAPE values were below 10%. Right after those type of days, weekends that 

account with 28% of all the days, obtained the second best predictions, displaying MAPE values below 

11%. That being said, it is possible to conclude that 93% of the days (workdays and weekends) were 

successfully forecasted in the three time horizons when compared to the remaining 7% of the days 

that included holidays and the two weeks of summer break, previously shown in Figure 5.6. 

Table 5.9 - Day type results for Civil building best models forecast of each time horizon, where CV(RMSE) and MAPE are pre-

sented in percentage and MAE is presented in kWh units 

Day type 
1 hour - SVM 1 day - SVM 1 week - SVM Day 

(%) CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

Workdays 6.01 4.45 9.70 9.89 6.93 15.72 12.79 9.16 20.59 65 

Weekends 4.89 3.35 3.79 12.52 8.07 9.15 16.00 10.95 12.19 28 

Holidays 9.24 6.46 7.99 26.24 17.59 22.02 28.17 20.86 25.01 4 

Summer break 11.52 4.47 4.91 22.77 10.68 11.74 26.16 18.16 17.14 3 

 

5.5.2 Central Building 

When predicting the energy consumption of the Central building, all the used models achieved identi-

cal error values per time horizon, Table 5.10. There were models that reached slightly higher accuracies, 

such as the SVM, XGB, and RF model for an hour, a day, and a week prediction horizon, respectively. 

In addition, from all the tested models, the highest CV(RMSE) error was, as in Civil building, observed 

for a week horizon, but now for the MLP model with a value of 13.96%. 

https://www.powerthesaurus.org/successfully/synonyms
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Table 5.10 - Annual results for Central building forecast for an hour, a day, and a week horizon, where CV(RMSE) and MAPE 

are presented in percentage and MAE is presented in kWh units. 

Models 
1 hour 1 day 1 week 

CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

MLP 5.87 3.76 7.14 11.81 8.23 14.99 13.96 9.79 18.13 

SVM 4.96 2.94 5.74 12.11 8.00 14.74 13.32 9.26 17.16 

RF 5.31 3.14 6.17 11.13 7.36 13.37 13.11 8.80 16.33 

XGB 5.09 3.12 6.05 11.07 7.76 14.04 13.63 9.44 17.33 

 

Furthermore, from the monthly analysis performed with the prior selected models, Table 5.11, it is 

clear to state that when predicting one hour a-head consumption the SVM model achieved great pre-

dictions in every month, with CV(RMSE) values below 5.47%. On the other hand, for a day and a week 

horizon the selected models faced difficulties in predicting August when compared to other months. 

After all, for the three time horizons, two weeks of May were shown in Figure 5.7 as an example of the 

best case scenario, and two weeks of August were visualized as the worst case scenario in Figure 5.8. 

Table 5.11 - Monthly results for Central building best models forecast by time horizon, where CV(RMSE) and MAPE are pre-

sented in percentage and MAE is presented in kWh units. 

Months 
1 hour - SVM 1 day - XGB 1 week - RF 

CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

January 4.80 2.93 5.71 11.99 7.76 14.52 13.66 8.26 16.35 

February 5.17 3.07 6.23 9.79 6.89 12.77 12.22 7.66 15.18 

March 5.37 2.98 6.39 10.72 7.87 14.60 12.57 8.86 17.14 

April 4.16 2.58 4.85 10.66 8.08 13.99 11.46 8.88 15.55 

May 3.68 2.35 4.44 9.80 6.87 12.48 10.12 7.74 13.39 

June 4.83 3.16 5.88 12.51 8.68 15.85 15.96 9.80 18.66 

July 4.75 3.10 5.94 10.98 8.04 14.86 11.91 9.66 17.38 

August 4.75 2.91 5.26 13.87 8.60 15.41 17.64 10.21 19.28 

September 5.44 3.12 6.73 10.06 6.69 13.59 13.17 7.23 16.73 

October 5.25 3.04 5.91 10.07 6.99 12.68 12.36 7.89 14.82 

November 5.47 3.03 6.05 10.67 7.84 13.62 10.76 8.64 14.52 

December 5.33 2.99 5.53 11.48 8.75 13.98 14.13 10.59 16.88 

 

 

Figure 5.7 - Central building forecasting of two weeks in May for each time horizon best model 
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In the two weeks of May, Figure 5.7, as expected, the hour a-head forecasting had great accuracy, 

predicting almost the true energy consumption. At the same time, in a day and a week horizon predic-

tion, the case was not the same, with a clearly decline of accuracy in some days of the week, as for 

example the twenty-third day of the month. In addition, it is also noticeable that for a day horizon 

forecasting the model tends to use the previous seen day to help in the prediction of the next one. An 

evident example of that occurs during the nighttime from fifteenth to sixteenth. It is also worth to 

mention, that this building base energy consumption is characterize by an unsteady behavior due to 

the 24 hours operating Data center, leading to less accurate predictions during nighttime when com-

pared to the other building.  

 

Figure 5.8 - Central building forecasting of the two weeks summer break for each time horizon best model 

In the case of the two weeks summer break of August, Figure 5.8, the decrease of energy consumption 

that usually occurs in this time of the year was not as expected, probably due to some maintenance 

that was performed in the 24 hours operating Data center. As a consequence of that the day and the 

week horizon predictions were affected, registering smaller building base energy consumption than 

the true consumption. On contrary, the hour horizon predictions, was not influenced by that, fitting 

the true consumption almost perfectly. 

Furthermore, in the day type results of Table 5.12, it is possible to conclude that in 93% of the days 

(workdays and weekends) the predicted consumptions did not exceed MAPE values of 3.15%, 9.31%, 

and 9.17% for an hour, a day, and a week horizons. In the remaining days the predictions of a day and 

a week horizon were not so good for the summer break, previous visualized in Figure 5.8, and for the 

4% of holidays 

Table 5.12 - Day type results for Central building best models forecast of each time horizon, where CV(RMSE) and MAPE are 

presented in percentage and MAE is presented in kWh units. 

Day type 
1 hour - SVM 1 day - XGB 1 week - RF Day 

(%) CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

Workdays 4.96 3.15 6.95 10.02 6.62 14.40 12.65 8.14 17.86 65 

Weekends 4.36 2.42 3.24 12.92 9.31 12.19 11.95 9.17 12.10 28 

Holidays 4.60 3.08 4.00 18.05 13.38 17.38 22.35 16.35 21.16 4 

Summer break 4.61 2.69 4.40 17.16 10.32 17.65 15.88 9.70 16.06 3 
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5.5.3 North tower building 

In North tower building annual results, Table 5.13, the model that represented each time horizon in 

the monthly and day type analysis was the SVM for every forecasting horizon. Moreover, in terms of 

the hour horizon prediction, it may be seen that SVM and MLP models outstood when compared with 

the other two DT based models. On the other hand, for a week horizon prediction, the SVM model 

showed higher capabilities against the other ones with improvements of above 2.5% in the CV(RMSE) 

metric. 

Table 5.13 - Annual results for North tower building forecast for an hour, a day, and a week horizon, where CV(RMSE) and 

MAPE are presented in percentage and MAE is presented in kWh units. 

Models 
1 hour 1 day 1 week 

CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

MLP 10.19 6.16 6.55 18.87 13.84 13.58 22.60 14.34 16.70 

SVM 10.16 6.66 6.74 17.34 10.92 11.80 19.96 10.98 13.74 

RF 13.77 6.74 8.38 19.86 9.63 12.36 22.44 11.31 15.02 

XGB 13.38 6.44 8.27 21.57 11.04 14.50 24.27 16.22 18.27 

 

Moreover, with the prior selected models for each of the time horizons the monthly results were 

shown in Table 5.14. From that table, it is noticeable that the best month was not common to any of 

the time horizons tested, so since the models tend to increase the error with greater horizon predic-

tions, the best month for the week horizon model, January, was selected to be visualized in Figure 5.9. 

Similar to the other buildings, the unpredictability of the two weeks summer break was also felt in the 

North tower building predictions, achieving the highest CV(RMSE) error for all the time horizons mod-

els. As a result of that, it was selected to be visualized as the worst case scenario of this building, Figure 

5.10. 

Table 5.14 - Monthly results for North tower building best models forecast by time horizon, where CV(RMSE) and MAPE are 

presented in percentage and MAE is presented in kWh units 

Months 
1 hour - SVM 1 day - SVM 1 week - SVM 

CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

January 9.32 5.93 5.31 12.91 7.65 7.00 11.30 7.09 6.60 

February 8.77 5.93 5.28 11.98 7.30 6.96 12.72 7.64 7.86 

March 7.91 5.51 5.40 11.06 7.79 7.90 15.28 7.82 9.95 

April 14.08 7.39 8.27 22.86 13.15 15.19 24.62 13.82 17.44 

May 9.41 6.22 7.04 19.50 10.59 13.67 21.91 10.45 16.58 

June 9.31 6.66 6.83 18.21 13.36 14.95 22.83 15.76 18.36 

July 8.51 6.19 6.30 14.13 11.14 12.30 14.08 10.36 12.40 

August 18.20 8.23 8.23 27.97 14.62 14.63 31.63 15.82 16.61 

September 7.74 6.13 6.42 13.87 9.86 11.58 16.99 8.88 14.31 

October 8.15 6.64 7.18 13.59 9.61 11.40 19.38 9.26 15.37 

November 8.38 6.62 6.88 15.28 10.47 12.69 17.40 9.37 13.58 

December 11.72 8.27 7.47 21.40 14.84 12.61 22.41 14.98 14.85 
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In Figure 5.9, from the two weeks chosen for the best case scenario visualization, it is possible to check 

an almost similar weekly pattern from one week to another. That being said, since the greatest fore-

casting horizon used was one week, the models could easily predict this type of behaviour. In fact, that 

constant weekly pattern might explain the highest accuracy of the week horizon model over the day 

horizon model. 

 

Figure 5.9 - North tower building forecasting of two weeks in January for each time horizon best model 

From Figure 5.10, it is noticeable that in North tower building, the true energy consumption from the 

two weeks of summer break, did not fluctuate as much as in the Civil and Central building. For that 

reason, the day and week horizon models had achieved better predictions results in terms of the MAE 

metric than in the other two buildings, e.g. for the best week horizon model of Civil, Central, and North 

tower building, the MAE was 25.25%, 19.28%, and 16.61%, respectively. In addition, for the hour hori-

zon model the predictions were not as good as in the other buildings. 

 

Figure 5.10 - North tower building forecasting of the two weeks summer break for each time horizon best model 

From the day type results, Table 5.15, similar to the previous buildings, for all the horizons forecasted 

the models achieved greater accuracies when predicting the workdays and the weekends over the 

atypical days such as holidays and summer break days. Guaranteeing a MAPE below 16% for 93% of 

the days.  
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Table 5.15 - Day type results for North tower building best models forecast of each time horizon, where CV(RMSE) and 

MAPE are presented in percentage and MAE is presented in kWh units 

Day type 
1 hour - SVM 1 day - SVM 1 week - SVM Day 

(%) CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

Workdays 8.86 5.45 7.55 14.30 7.84 12.48 17.67 10.26 16.57 65 

Weekends 16.15 9.12 4.98 30.94 15.93 9.19 25.17 10.48 6.43 28 

Holidays 15.38 10.32 7.05 46.16 31.04 20.89 39.96 26.59 18.38 4 

Summer break 13.96 6.91 4.46 31.60 16.35 12.12 37.95 16.84 13.31 3 

 

5.5.4 South tower building 

As last, in South tower building, the models that offered the most accurate annual results in the 

CV(RMSE) metric, Table 5.16, were the MLP for an hour horizon prediction and the XGB for a day and 

a week horizon prediction. It is also worth to refer the small deviations that occur in all the models 

results per time horizon prediction, which lead to the fact that none of the models selected presents 

the best results in the other two metrics (MAPE and MAE). 

Table 5.16 - Annual results for South tower building forecast for an hour, a day, and a week horizon, where CV(RMSE) and 

MAPE are presented in percentage and MAE is presented in kWh units 

Models 
1 hour 1 day 1 week 

CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

MLP 15.82 7.02 13.33 21.01 11.92 20.89 23.81 12.59 23.33 

SVM 16.11 7.24 13.29 21.06 9.00 18.11 23.68 10.62 21.42 

RF 17.76 6.15 12.93 21.80 9.43 18.75 23.14 10.21 20.82 

XGB 16.53 6.08 12.59 20.81 10.01 19.50 22.31 11.28 21.50 

 

Furthermore, from the prior selected models the monthly errors were displayed in Table 5.17. Accord-

ing to that, it is noticeable that the months which achieved higher prediction values belong to the 

heating season, specifically, March, February, and November for an hour, a day, and a week horizon 

prediction. On the other hand, the cooling season included the lowest accurate months, being August 

the worst case scenario. That being said, the two weeks that were chosen to be visualized were from 

November and August.  
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Table 5.17 - Monthly results for South tower building best models forecast by time horizon, where CV(RMSE) and MAPE are 

presented in percentage and MAE is presented in kWh units 

Months 
1 hour - MLP 1 day - XGB 1 week - XGB 

CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

January 6.40 4.70 6.85 10.45 6.77 9.90 13.12 8.59 12.88 

February 5.96 4.48 6.85 10.03 6.51 10.32 11.45 7.44 11.81 

March 5.74 4.03 6.29 15.08 8.16 14.60 13.68 8.42 13.53 

April 11.02 5.47 9.47 13.99 7.69 12.97 13.92 8.75 13.80 

May 11.41 5.95 11.26 14.42 8.41 15.53 14.38 8.39 15.13 

June 17.20 7.47 15.61 21.45 11.61 22.57 24.73 13.26 27.05 

July 17.86 8.15 18.48 19.09 9.54 21.93 19.64 9.61 22.12 

August 23.56 12.34 21.86 34.21 17.62 34.29 37.41 22.48 41.46 

September 23.37 11.97 27.59 28.79 14.25 38.88 30.58 14.39 40.88 

October 15.21 8.55 18.74 21.58 12.35 28.12 22.76 14.46 31.98 

November 8.90 5.74 9.92 12.43 8.82 13.89 10.87 8.05 12.64 

December 7.67 5.47 7.39 13.99 8.35 11.42 18.78 11.46 15.33 

 

In one of the best month of South tower building prediction, Figure 5.11, it this possible to encounter 

the same kind of constant weekly pattern found in North tower building best case scenario example, 

in Figure 5.9. As a consequence of that pattern the week horizon model was more precise than the day 

horizon model, which might be explained by the importance that each model gives to the features that 

it is provided with. In this particular case, since the week horizon model just has the consumption from 

one week before the prediction, its decision of what might be the next forecasting value is more af-

fected by it, in comparison with the day horizon model, which has the day and the week before the 

actual prediction. 

 

Figure 5.11 - South tower forecasting of two weeks of November for each time horizon best model 

In the two weeks of summer break, visualized in Figure 5.12, the predictions results are somehow 

similar to what was observed in the North tower building, Figure 5.10. Although the true consumption 

was quite different, with sudden peaks of energy during the weekends and almost three times more 

the mean energy consumption during the daytime of the days of the week. 
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Figure 5.12 - South tower building forecasting of the two weeks summer break for each time horizon best model 

Once again, from Table 5.18, the two types of day that yield better results in most of the horizon mod-

els, was the workday followed by the weekends, which together account with 93% of all the days fore-

casted and achieved MAPE values inferior to 12.7%. 

Table 5.18 - Day type results for South tower building best models forecast of each time horizon, where CV(RMSE) and 

MAPE are presented in percentage and MAE is presented in kWh units. 

Day type 
1 hour - MLP 1 day - XGB 1 week - XGB Day 

(%) CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE CV(RMSE) MAPE MAE 

Workdays 13.00 6.33 14.06 17.75 8.19 19.85 19.70 9.71 22.57 65 

Weekends 26.08 7.96 11.21 29.17 11.77 16.19 29.40 12.66 16.81 28 

Holidays 29.37 13.31 22.87 40.10 19.47 36.03 38.46 20.40 37.04 4 

Summer break 14.36 8.63 10.61 29.76 17.73 21.68 31.09 17.90 22.11 3 

 

5.5.5 Complementary Visualization of Atypical Weeks 

In addition to what was former analysed, two atypical weeks were visualized for each of the buildings 

in order to understand the models’ ability to adapt. One of the weeks corresponds to the carnival 

period and the other one to the last week of the year, where holidays (Christmas and New Year) took 

place. The choice of these two weeks was supported by the degree of difficulty that is added from one 

week to another. The first being the easiest to predict with just one holiday, Figure 5.13, and the sec-

ond being the hardest with three different holidays, Figure 5.14. 

For the carnival week starting at twelfth of February, Figure 5.13, it may be seen that the behave of 

each forecasting horizon model in most of the buildings was satisfactory. Which means, that the 

𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦 feature for the holiday on the thirteenth day of the month worked as expected, decreasing 

buildings energy consumption in a presence of an holiday, in the day and week horizon models that 

did not had any reference about the previous hour consumption.  
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Figure 5.13 - Carnival week predictions for each building and time horizon best model 

On the other hand, in the last week of the year, Figure 5.14, the presence of more holidays creates an 

extra stochastic behaviour of each buildings occupants, leading to poor predictions in most of the 

buildings for the day and week horizon models. Among all the building, South tower building was the 

worst one achieving absurd consumptions during the Christmas day. 

 

 

Figure 5.14 - Last week of the year predictions for each building and time horizon best model 
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Chapter 6 

 

Conclusions 

In this work, four machine learning models (MLP, SVM, RF, and XGB) were compared in three different 

forecasting horizons (an hour, a day, and a week) for four main buildings (Civil, Central, North tower, 

and South tower) located at Instituto Superior Técnico, Lisbon, giving a total of 48 models developed. 

To conduct this study, two types of hourly collected data (WCD and ECD) for three years (2014, 2017, 

and 2018) were used. In order to create the right conditions for each forecasting model development, 

the available data was first treated and then analysed. 

In the first stage, a data imputation study was performed, concluding that from the two multiple im-

putation algorithms used (MICE and MF), the one that achieved greater results was the MF algorithm, 

which was successfully applied in each building consumption data incompleteness (ECD). However, in 

the presence of simultaneous wide gaps of missing values, which occurred in WCD, this algorithm was 

not able to supply the tendency and seasonality intrinsic to the type of variable that was being filled. 

For that reason, a single imputation method created with that propose (HMM) was employed, guar-

anteeing with that the necessary dynamic of the imputed variable.  

In the second stage of this work, each building energy consumption was analysed and several features 

were created in an attempt to better define the buildings’ behaviour. With all the features generated, 

a feature selection analysis via the RFE method took place to understand the importance of each fea-

ture. From that analysis, it was concluded that three type of features were indispensable in every 

building and forecasting horizon data set, specifically, the day type, the lagged features (one hour, one 

day, and one week), and the cluster average consumption of the larger group of days of each building 

from the year of 2017. In addition, it was also noticeable that the used of this method was too restrict 

in the feature selection process, which might be explained by the use of the clusters average consump-

tion features that were generated from one of the years where this method was applied (training set), 

influencing with that the importance of each feature and the consequent selection. To overcome that 

situation, a new selection supported by the RFE method selection was employed. 

Furthermore, after the hyperparameter optimization and the forecast results obtained, it was con-

cluded that, even though all the models developed did not show larger error variations when predict-

ing the same building consumption and forecasting horizon, SVM model outstood, achieving the most 

accurate results in the majority of the predictions performed. One of the reasons which might explain 

this situation is supported by the small number of hyperparameters that this model has, leading it to 

reach its full potential faster and more easily than any other model used in this work. Moreover, the 

second most accurate model was XGB, performing the best prediction in three of the cases, followed 
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by the MLP and RF that achieved the highest accuracy value in one case each. Considering the best 

models’ selection, in most of the buildings and forecasting horizons it was found that August was the 

hardest month to predict, due to the intrinsic unpredictability of two summer break weeks of all Ala-

meda’s campus facilities. On the other hand, in 93% of the predicted days, which accounts with work-

ing days (65%) and weekends (28%) the buildings achieved a MAPE error of 10.95%, 9.17%, 10.48%, 

and 12.66% for Civil, Central, North tower, and South tower buildings in a week horizon prediction. In 

addition to that, an increasing annual error tendency was noticeable, when the models attempt to 

predict in greater horizons. 

Finally, using the CV(RMSE) metric to compare the different buildings predictions, it was found that in 

every forecasting horizon studied, Central building was the easiest one to predict and South tower 

building the hardest one. This might be related by the small variations of consumption found in the 

first building, against the sudden peaks and dips encounter in the latter. 

6.1 Future Work 

In this work, it was concluded that the stochastic behaviour of each building’s inhabitants is one of the 

major reasons for the variations of the energy consumption patterns. With that in mind, two solutions 

can be adopted: 

▪ The simplest one, is to perform a different day type feature for each of the buildings, since it 
was shown that different buildings have different consumption patterns in the same type of 
day; 

▪ The second solution, it only can be applied in buildings with Wi-Fi systems, with that being said, 
it basically uses each people network log in to count the online number of occupants in each 
of the buildings. 

As it is known, machine learning models are widely dependent on data and one of the limitations of 
this study was the quantity of data and the years that were available. The fact that just two years were 
available, and they were so apart from each other (2014 and 2017), it influenced the learning process 
of the algorithms to predict the year of 2018. To address that situation, the average cluster features 
were created based only on 2017 year consumptions, although further improvements may be done 
such as: 

▪ Using an attribute called warm start, that is present in a vast majority of the machine learning 
models used, like MLP and RF. This attribute allows the division of the training process. As 
future work, the learning process could be divided into two. The first stage will train in the 
2014 and 2017 years and save each model learned parameters to the next stage. The second 
stage, with the parameters already “warmed”, will use only 2017 (the year closest to the one 
to predict) to learn better the patterns that are more similar to the year to predict.  

Another future work that may be explored is supported by the fact that each model achieved similar 

error measurements. With that, an ensemble model with an evolutionary algorithm to define each 

model percentage in the final output may be employed, which, normally, leads to a generalized and 

enhanced prediction.  
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Lastly, it has been shown in several recent studies the tendency of using deep learning models to pre-

dict sequential data, such as time series. The use of those models such as long-short term memory 

(LSTM) could be beneficial, due to its intrinsic long term dependencies in recurrent architectures.  
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