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ABSTRACT 

Energy consumption forecasting of buildings plays a crucial role in making planning decisions by facility managers 

and energy providers. These decisions are used to reduce the intrinsic environmental impact of the building sector. 

Nowadays, with the imminent application of Building Energy Management Systems (BEMS) and the consequent 

increase of generated data, the use of machine learning algorithms to provide such predictions becomes a natural 

solution. In this study, four machine learning algorithms (MLP, SVM, RF, and XGB) were compared in three different 

forecasting horizons (an hour, a day, and a week) for four buildings (Civil, Central, North tower, and South tower) 

located at Instituto Superior Técnico, Lisbon, (4 algorithms x 3 forecasting horizon x 4 buildings = 48 models). In the 

development of such models, three years of hourly gathered data of each building consumption and outdoor weather 

conditions were used. Firstly, due to the missing values presented in the data, an imputation study was carried out in 

order to guarantee data temporal continuity. Afterwards, based on the energy consumption analysis of each building, 

different features were created in attempt to describe buildings’ behaviour. From the created features, different data 

sets were developed per building and forecast horizon, where a feature selection analysis supported with the use of a 

wrapper method, known as RFE, took place. With that selection, it was concluded that the most important features were 

the type of day, the lagged features, and the average cluster consumption of a typical working day. At last, an 

hyperparameter search using Bayesian optimization was conducted and the models were then used to forecast the last 

year of data. Among all the models used, SVM models outstood, showing higher accuracies in most of the forecasting 

horizons and buildings. Overall, in 93% of the forecasted days, it was achieved a MAPE error of 10.95%, 9.17%, 

10.48%, and 12.66% for Civil, Central, North tower, and South tower buildings in a week horizon forecasting, 

respectively. In addition, it was also noticeable an increasing annual error tendency when the models attempt to predict 

in greater horizons. 
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1. Introduction 

Nowadays, the buildings sector accounts with almost 40% of 

energy consumption and 36% of CO2 emissions [1]. The forms of 

energy that are predominant in this sector are electricity and 

natural gas, accounting with 10 to 15% of overall energy 

consumption [2] and growing by an average of 1.8% per year from 

2010 to 2040 [3]. It is imperative to state the need to reduce 

building excessive energy consumption, since they represent a 

significant fraction of the overall energy expenditure, which 

consequently results in high environmental impacts. Since 2006 

[4], the European Commission has been implementing energy 

efficiency measures for sustainable development, being one of the 

main objectives to reduce the annual energy consumption by 27% 

till 2030.  

One way to achieve that goal in the building sector, is to 

effectively predict its consumption, enabling the endorsement of 

diverse operating strategies to increase energy efficiency and to 

detect faults related to systems malfunction. To address this need 

over the past 50 years [5], a large number of investigations have 

been carried out to ascertain the complexity related with buildings 

energy consumption and to find out an accurate representation of 

its energy performance. Currently, building energy simulation can 

be branched into three different approaches: white box, grey box 

and black box. 

White box approaches, also known as physical models, are 

widely used in engineering and are grounded by thermodynamic 

laws, requiring many building details and surrounding 

environmental conditions as input data. Computationally they are 

very expensive, and data input requirements may, in some 
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circumstances, not be entirely fulfilled. Grey box approaches 

merge the models mentioned above with statistical modelling, 

allowing the use of simplified building information and historical 

data to perform the energy simulation. Nevertheless, they provide 

reasonable accuracy predictions with high computational cost 

depending on building information. In order to circumvent the 

shortcomings referred by the first two approaches, black box 

approach was employed. This purely data-driven approach, when 

compared with the others, is able to develop a faster and higher 

accurate consumption forecasting, based only on historical data, 

avoiding thus the need of physical building details [6]. For those 

reasons the models that characterize this approach, mainly in 

machine learning field, have been receiving particular attention in 

the past years. 

2. State of the Art 

As it is known, data-driven models, instead of using detailed 

building information to develop an energy analysis, use only 

historical and available data to learn the dynamic energy behaviour 

of the buildings and are often referred to as empirical models. 

Nowadays, due to their ability to extract useful information at low 

cost, they have been applied in diverse fields such as commerce 

[7], political campaigns [8], and medical diagnosis [9].  

The most common data-driven models used for energy 

consumption forecasting may be ramified into two fields: the 

statistical field and the machine learning field. From the statistical 

field, the models often applied were the autoregressive, integrated 

and moving average (ARIMA) and the multiple linear regression 

(MLR). On the other hand, from the machine learning field, two 

models were substantially applied, specifically, artificial neural 

networks (ANN) and support vector machines (SVM), and another 

one least used named as ensemble model.  

The statistical models that have been frequently used to 

predict building energy consumption are generally regression 

models [10]. Statistical regression techniques find relationships 

between the different variables through mathematical formulations 

to predict a specific target. Several investigations took advantage 

of this approach to address diverse challenges in the analysis of 

building energy behaviour, for example, to predict energy used 

through simplified variables, foresee building energy index, and 

estimate significant energy parameters for analysis [5]. From 

regression models, there are at least two models that are mandatory 

to emphasize, the MLR and the ARIMA. The latter was 

specifically created to handle and correlate time series data for 

prediction. Examples of its applicability in short term building 

energy prediction may be found in [11]-[14]. Although these 

models are easy to develop and use, they lack on flexibility in 

coping with the nonlinearity often found in building energy 

consumption. In consequence of that, the statistical approach 

presents poorer prediction accuracy, which limits its applicability, 

when compared with machine learning models, examples of that 

may be seen in [15]-[17]. 

Machine learning is an interdisciplinary field based on 

statistics and optimized mathematics techniques which gives 

computer systems the ability to learn and improve performance on 

a given task, being only fed with data without the need to be 

explicitly programmed [18].  Within machine learning models, 

ANNs have been particularly popular and applied to forecast 

buildings energy consumption [10]. In 2005, Gonzales and 

Zamarreno [19], used a feedback ANN model developed in [20] 

to predict next hour consumption of an institutional building. In 

2009, Yokoyama [21] used an optimization method known as 

modal trimming [22], instead of the typical gradient descendent in 

ANN backpropagation stage, to predict the cooling load of a 

service building. In 2016, Chae et al. [23] when forecasting a day 

a-head energy consumption of a service building, tested the 

applicability of an ANN with Bayesian optimization to improve 

model generalization. To input relevant data to the model it was 

used a feature extraction technique by means of an ensemble 

machine learning algorithm, known as random forest (RF). The 

study revealed a decreased in the forecast error as the number of 

weeks of data available for training increased. Right after ANN, 

the SVM model was the second used algorithm to predict energy 

consumption, and although the widely used of ANN, in some of 

the cases SVM model outperformed it. An example of that was 

done in 2009 by Li et al. [24], which conducted a study comparing 

the traditional ANN with an SVM model, to predict one hour a-

head cooling load of an office building, in China. The SVM model 

used radial basis function kernel and revealed higher accuracy than 

the traditional ANN. In the same year, the same type of conclusion 

was achieved when performed in another office building by 

Xuemei et al. [25].  

In addition, new and advanced techniques were also used in 

this field. Known as ensemble model they were introduced in 1990 

[26]. This kind of models uses multiple learning algorithms to 

obtain a better accuracy performance than that could be obtained 

from any of the constituent learning algorithms [27]. When the 

models used are the same it is named as Homogeneous ensemble 

modelling, on contrary when they use different models to predict 

it is named as Heterogeneous ensemble modelling. Both groups 

have been used to forecast the building energy consumption, some 

examples of the ones applied for short term prediction are 

mentioned below. Fan et al. [28], used a homogeneous model to 

predict half-hourly a-head energy consumption of an institutional 

building, in Singapore. The forecasting ensemble model used was 

a weighted SVM model with nu-SVM and epsilon-SVM. On the 

other way, Xiao et al. [29], used a heterogenous ensemble model 

by combining eight different predictive models, to forecast a day 

a-head building energy consumption. Furthermore, in the 

homogeneous universe, the ensemble models may use two types 

of learning procedure which characterizes the order that each 

model is trained, namely, bagging and boosting. In bagging each 

model learns with a random subset of training data in a parallel 

way, e.g. random forest (RF). On the other hand, in boosting each 

model learns from mistakes made by the previous model in a 

sequential way, e.g. extreme gradient boosting (XGB). Both 

random forest and extreme gradient boosting algorithms have been 

recently used in building energy consumption prediction [30]-[32]. 

One of the reasons that encourage the application of them is the 

previously used of their based model, decision trees (DT) 

algorithm, in the field [10]. A comparison between each type of 

most used model may be seen in Table 2.1. 

In this study the two single models (SVM and MLP) and two 

ensemble models (XGB and RF) were compared on their 

forecasting potentialities. 
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Table 2.1 - Brief comparison of machine learning models used in 

building energy consumption [33] 

Models ANN SVM Ensemble 

Advantages Solve 

complex 

nonlinear 

problems; 

In general, 

better 

performance 

prediction 

than SVR 

Good balance 

between 

prediction 

accuracy and 

calculation 

speed; 

Few parameters 

need to be 

determined 

Best prediction 

accuracy and 

stability 

Disadvantages Many 

parameters 

need to be 

determined 

 Kernel function 

is crucial and 

difficult to be 

determined 

 Difficult to 

implement 

Computational 

Speed 

Medium 

speed 

Medium Speed Low speed 

Accuracy Good Average Best 

 

3. Study case 

3.1. Building introduction and energy analysis 

In the scope of this study, four different buildings were 

analyzed, specifically, Civil, Central, North tower, and South 

tower buildings, located at Alameda campus of Instituto Superior 

Técnico (IST), Lisbon.  

To distinguish the different consumptions patterns, each 

building was evaluated in monthly, weekly and daily temporal 

granularities with the data acquired from the previous year of the 

forecast, 2017. To conduct this analysis, two different tools were 

used: boxplots and an unsupervised machine learning algorithm, 

known as k-means. 

Monthly Analysis 

It was shown from the last energy audits [34], that the main 

forms of energy use to fulfil their needs are natural gas and 

electricity. Electricity covers all the demands as regards to 

lighting, computers, plug-in devices, catering, common systems 

and laboratories facilities. In addition, natural gas is mainly used 

for spaces under concession and certain laboratories facilities. 

Besides that, HVAC system works differently in two groups of 

buildings: Central  and Civil buildings, operate only with 

electricity in cooling and heating season; On the other hand, North 

and South tower buildings, use electricity and natural gas for 

heating and cooling seasons, respectively.  

The latter statement may be seen in the monthly analysis of 

Figure 3.1. In both towers the consumption fluctuations along the 

year are characteristic of the different types of energy form used. 

As regards to Civil and Central buildings, the stable consumption 

curve along the year is substantiated by the main use of electricity. 

Weekly Analysis 

In each building there is a 7 days cycle pattern that repeats 

almost through the whole year, as it is represented in Figure 3.2. 

As expected, most of the buildings’ energy use occurs during 

weekdays since it is when the majority of buildings’ activities take 

place. During the weekend, there is an abrupt fall in energy 

consumption, although Saturday energy use is slightly higher than 

Sunday. 

 

Figure 3.1 - Monthly boxplot energy consumption of each 

building. 

 

Figure 3.2 - Weekly boxplot energy consumption of each building 

Daily Analysis 

In hourly analysis, each building was evaluated individually to 

simplify the visualization and gathered each different daily 

consumption curve characteristics. In this paper, Civil building 

was used as role model, further information of the other buildings 

analysis is given in [35]. The application of k-means algorithm for 

the daily analysis is shown in Figure 3.3. To complement the 

analysis,  

Table 3.1 shows each cluster type of day percentage. 

 

Figure 3.3 - Civil building daily consumption patterns defined by 

k-means algorithm (k=3) 

Table 3.1 - Civil building day type percentage of each daily 

consumption patterns defined by k-means algorithm (k=3) 

Day type (%) k = 0 k = 1 k = 2 

workday 100 3.1 98.1 

holiday 0 11 1.9 

weekend and summer 

break 
0 85.9 0 

heating season 55.8 47.7 43.9 

cooling season 44.2 52.3 56.1 

 

Based on Figure 3.3 and  



4 

 

Table 3.1, the following may be concluded: 

- In general, the daily energy patterns are not influenced by 

heating and cooling seasons as referred earlier in monthly analysis, 

since every cluster has around 50% of the days in each season. 

- k=0 and k=2 - consisting mainly of working days represent 

two typical mean workday consumption patterns. Between both 

clusters, k=0 consists only of working days, achieving a higher 

mean energy consumption pattern than k=1. 

- k=1 - includes holidays, summer break days and weekends, 

being the latter predominant. The mean consumption is nearly 

stationary with a slightly higher expenditure during daytime 

mostly due to Saturday opening hours and the 24 hours studying 

area. 

4. Methodology 

After knowing the main characteristics of Civil building, the 

present chapter will demonstrate the methodology behind the 

development of this study main goal: the energy consumption 

prediction of each building in three different forecasting horizons 

(1 hour, 1 day, and 1 week). Which may be divided in the 

following steps: 

1. Data Treatment 

2. Feature Generation 

3. Models Selection 

4. Feature Selection  

5. Hyperparameter Optimization 

6. Forecasting 

To conduct each step, a programming language, known as 

python was used [38]. 

4.1. Data Treatment 

The data set available in this study may be grouped into two 

different categories. The first category, named as the energy 

consumption data (ECD), contains values of each building energy 

consumption, collected at 1-hour intervals for 3 years (2014, 2017, 

and 2018). The second category, denoted as weather conditions 

data (WCD), includes the outdoor weather conditions, such as 

temperature, relative humidity, and solar radiation. This category 

was also hourly gathered during the same years by an existent 

weather station in Alameda campus. 

In real-world data sets where data is collected through sensors 

and electric meters, is often found incomplete, imprecise and noisy 

values. To proceed to the model development, it is mandatory to 

acknowledge and handle that uncertainty. For that, the following 

sequential steps were employed: 

1. Frequency Preservation; 

2. Outliers; 

3. Data Imputation Study; 

4. Creation of different data sets 

Frequency Preservation 

In the first step, since the data is time dependent, an hourly 

frequency preservation was done to keep the data set continuity. 

Therefore, every missing or repeated hour, were added or deleted, 

respectively, creating a missing value row if needed.  

Outliers 

       In the second step, an outlier detection was performed in ECD. 

An outlier is an abnormal data value that considerably diverges 

from the rest of the data points in the same feature, their inclusion 

may affect negatively the predictive model accuracy. For that, a 

statistical metric, named as z-score was employed to detect the 

outliers, using (|𝜎| ≥  4). 

As a consequence of the first two steps, the number of missing 

values increased. To proceed to the following step, it is mandatory 

to quantify those values, Table 4.1. 

Table 4.1- Data set of the available features and their total 

missing values and percentage 

Data sets Available Features 
Missing Values Consecutive 

missing values (%) Total 

BCD 

Civil 157 148 

Central 4 1 

North tower 83 76 

South tower 95 88 

WCD All features 2357 1165 

 

Data Imputation Study 

The third step focuses on the type of imputation applied to fill 

the missing values encounter in the data set, Table 4.1. In this work 

data set the main percentage of missing values was found in WCD. 

For this reason, merely adopting a strategy of dropping those 

values will lead to a loss of the correspondent ECD. Since the 

latter, contains the most valuable feature of each building, its own 

consumption, it is of extreme importance not losing it. 

To overcome this situation, a data imputation study, Figure 

4.1, has been conducted to measure the accuracy of different 

imputation strategies. Two models have been used in this study, 

specifically Multiple Imputation by Chained Equations (MICE) 

[36] and Miss Forest (MF) [37]. 

 

Figure 4.1 - Data imputation study step-by-step diagram 

The target in Figure 4.1, is referred to the consecutive missing 

values column in Table 4.1. 

After this study completion, although the MF model showed, 

in general, a great accuracy in each of the data set types when 

compared with MICE, the gap in WCD was still with undesirable 
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imputation values in terms of the expected seasonality and trend. 

To address this problem, a method based in an univariate approach, 

referred in this paper, as hour monthly mean (HMM), was 

developed. This method basically fills each feature independently 

with the known values from the other years, using the 

correspondent mean value of the same month and hour. A 

comparison of the two models and the new method imputation was 

done for each of WCD feature. An example of it, for outdoor 

temperature (𝑤𝑡_𝑡𝑒𝑚𝑝), can be seen in Figure 4.2. It is possible to 

conclude that although none of the imputation strategies represents 

well the actual temperature, the new method gives the daily 

seasonality and the monthly tendency needed in comparison to the 

nearly constant values imputed by the MF and MICE. 

 

Figure 4.2 - Imputation comparison example of MF, MICE, and 

HMM imputations with the true value of  the outdoor 

temperature (𝑤𝑡_𝑡𝑒𝑚𝑝). 

Creation of different data sets 

The fourth and last step, consists in the creation of three 

different data sets, that differ in the strategies adopted for the 

missing values shown in Table 4.1. 

In this step, it was introduced another technique of univariate 

imputation, named as linear interpolation. The limit applied was of 

three hours, meaning that if any of the features has three 

consecutive missing values a linear interpolation is applied 

between the value before and after the gap. 

Therefore, the first strategy common to each of the data sets, 

named as 𝑑𝑡_01, 𝑑𝑡_02, and 𝑑𝑡_03, was the three hours linear 

interpolation. After that, the three data sets differ from one to 

another as it is described below: 

- In 𝑑𝑡_01 the remaining missing values were dropped, making 

it the least influenced by imputation; 

- In 𝑑𝑡_02 was applied a MF imputation just in the ECD. This 

was done to check the relevance of the imputation only in 

building energy consumption, since their error metrics shown 

the best mean results among the other features. Afterwards, the 

rest of the missing values were dropped. 

In attempt to not losing any part of the data, the following data 

set was created: 

- In 𝑑𝑡_03 it was used the MF imputation model in ECD. After 

that, it was implemented the HMM method to the WCD, 

reasoned by the outcome shown in Figure 4.2. 

In Table 4.2, it is possible to check the different techniques 

applied in each data set and the correspondent lost rows. 

4.2 Features Generation 

In this dissertation, the new features, may be grouped 

according to what they are based on, therefore, there are three main 

categories, time dependent, calendar, and energy consumption. 

The first includes every new feature that was time dependent, the 

second group of features was based on the national and academic 

calendar, and lastly, the third group generates features that were 

based on each building own consumption. 

Table 4.2 - Summary of the imputation techniques applied per 

data set 

Data sets 𝑑𝑡_01 𝑑𝑡_02 𝑑𝑡_03 

Im
p

u
ta

ti
o

n
 

Linear Interpolation ✔ ✔ ✔ 

ECD MF ✔ ✔ 

WCD HMM ✔ 

Drop remaining missing values ✔ ✔ 

Lost rows  2590 2286 0 

 

Time 

This group of new features, was supported by the patterns 

encounter in each of the temporal partitions performed in the 

consumption analysis of 3. In attempt to offer to the forecasting 

models the possibility to distinguish those patterns three features 

were generated with integers values that differ depending on the 

temporal partition, e.g. for monthly partition integers from 1 to 12 

were set in the new feature. The three new features were named 

after each temporal partition, specifically 𝑡_𝑚𝑜𝑛𝑡ℎ, 

𝑡_𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘, and 𝑡_ℎ𝑜𝑢𝑟. 

Calendar 

In the absence of each building real occupancy data, this 

category was implemented. It basically attempts to replicate the 

real occupancy by day, with two different features. For that, each 

of the features use integer values, levels, that quantify the expected 

daily occupancy rate, being the lowest level the one that among the 

others has the smallest occupancy rate. The first one, named as 

𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦, specifies the type of day in three different levels 

(level 0 - weekends and summer break days; level 1 - holidays; 

level 2 - workdays). The second one, named as 𝑠_𝑒𝑝𝑜𝑐ℎ𝑠, uses the 

academic calendar to distinguish also three levels (level 0 - break 

period between semesters; level 1 - exams period, no classes; level 

2 - classes period). 

Energy consumption 

This category is used to create a sort of “guidelines” using each 

building consumption, to enhance the performance of the 

forecasting models. These “guidelines” can be distinguished into 

two different groups, according to the technique used to generate 

them.  

The first group used the mean daily pattern of every cluster in 

consumption daily analysis per building of chapter 3. Each pattern 

was repetitively replicated along all the data set to create a new 

feature. With this process, the number of features created 

correspondent to each cluster identified, e.g. in the case of Civil 

building, 3 features were generated, named as 𝑐𝑙_𝑐𝑖𝑣𝑖𝑙_0, 

𝑐𝑙_𝑐𝑖𝑣𝑖𝑙_1, and 𝑐𝑙_𝑐𝑖𝑣𝑖𝑙_2, which represent the same clusters 

identify in Figure 3.3.  

The second and last group of features, was defined considering 

the common use of lagged features and also the high 
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autocorrelation of each building own consumption. From each 

building autocorrelation, it was observed that the three most 

autocorrelated periods take place firstly at the previous hour, then 

a week before, and as lastly at the previous day. These three 

periods were used to generate lagged features for each building. 

The new features were named using the lagged period as suffix, 

e.g. 𝑐𝑖𝑣𝑖𝑙_𝑙𝑎𝑔1ℎ𝑜𝑢𝑟 for civil building previous hour. To 

complement each of the chosen periods, it was also created three 

other features, that provide the minimum, the maximum and the 

average of the three hours prior to each period, through the use of 

a rolling window technique. For the rolling window features name 

it was added a suffix to the lagged feature that characterizes the 

period that was selected from, e.g. for civil building one hour 

lagged rolling window maximum, 𝑐𝑖𝑣𝑖𝑙_𝑙𝑎𝑔1ℎ𝑜𝑢𝑟_𝑟𝑜𝑙𝑙𝑚𝑎𝑥. 

Nonetheless, each data set created in 4.1 was split per building 

and time horizon, based on the set of features that were available 

to use for each of the different forecasting horizons (an hour, a day, 

and a week). 

4.3 Models selection 

The machine learning models used, in this study, were four 

models: ANN(MLP), SVM, RF, and XGB. The first three models 

were given by scikit-learn [39] and the last one by XGBoost [40] 

python packages. In addition, ANN(MLP) and SVM were chosen 

taking into account their substance use in the literature reviewed. 

The other two models, RF and XGB, despite their insignificant 

usage when compared with the first two models in forecasting, 

they are emerging in the machine learning field, showing in recent 

studies, [31] and [32], better performance than the first two 

models.  

Furthermore, to evaluate and compared the chosen models, 

each created data set, was split into two subsets: the training and 

the testing set. The training set was responsible for the learning 

process of every model and the posterior comparison of the diverse 

strategies employed during this work (using a time series cross-

validation technique). It consists of the first two years of data, 

specifically, 2014 and 2017. The rest of the data, 2018, was used 

only to test the model’s ability to forecast. 

4.4 Feature Selection 

The objective of this section is to select the most relevant 

created features, before modelling the data sets of each building 

and forecasting horizon (an hour, a day, and a week). This 

procedure, when properly applied, its known to improve the 

models, in terms of over fitting, accuracy, and by reducing the 

training time. 

In this dissertation it was firstly used a filter method by 

Pearson correlation, to elect the most relevant WCD features, and 

afterwards, with the remaining features, a wrapper method, named 

as recursive feature elimination (RFE), was employed using XGB 

model. 

Filter method - Pearson Correlation 

When Pearson correlation between each of WCD features and 

the corresponding buildings was employed, it was found that half 

of the available features had a correlation below 0.15 with every 

building. That features were automatically removed, since their 

lack of information about each building dynamic behaviour, 

Figure 4.3.  

As a result, the only useful features were temperature, apparent 

temperature, relative humidity, and mean solar radiation. In 

addition, the correlation between each feature was done, and as 

expected, the correlation between the almost similar features: 

temperature and apparent temperature was of 0.93. With that in 

mind, the first was elected (temperature) since it presents higher 

correlation score with every building. 

 

Figure 4.3 - Pearson correlation between WCD features 

and each building 

Wrapper Method - RFE 

The RFE uses a given external model, that assigns weights to 

each of the features. From the machine learning models selected 

in 4.3, only two models, specifically RF and XGB have an attribute 

that allows the implementation of RFE method to weight each 

feature and elect the best set of features. However, due to the 

computation expenditure of this process it was only performed by 

XGB model due to its computational speed characteristics. 

To ensure the consistency of the selection performed by the 

RFE method, each set of features selected per time horizon and 

building was visualized and discussed. After that, some features 

that were considered as important based on the knowledge 

acquired in 3.1 energy analysis were added to the RFE method 

selection, creating a new selection of features. 

Lastly, the forecasting models chosen in 4.3 were used to 

calculate the average time series cross-validation error to compare: 

the inexistence of selection, the RFE method selection, and the 

new selection. 

4.5 Hyperparameter Optimization 

Hyperparameter searching techniques when applied by trial 

and error, such as grid search and random search, may lead to an 

inefficient and time-consuming process, since they roam the given 

space of available hyperparameters values in an isolated way 

without paying attention to past results. To ease this process, 

techniques such as evolutionary algorithms and Bayesian 

optimization may be employed, as it was in [23] and [41], 

respectively. In the case of this study a Bayesian optimization 

grounded by Gaussian processes was used. To apply this technique 

a python package, named as Scikit-Optimize [42] was used. 

4.6 Error metrics 

Several performances measure may be used in the forecasting 

of energy consumption, although the ones used in this work were 

selected based on the most frequently applied in the reviewed 

literature [26]. Therefore, the two error metrics used were: the 

coefficient of variation of the root mean square error (CV(RMSE)) 

(4.1) and the mean absolute percentage error (MAPE) (4.2). 
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𝐶𝑉(𝑅𝑀𝑆𝐸)(%)

√
∑

̅
×  

 

(4.1) 

 
𝑀𝐴𝑃𝐸 (%) ∑ | | ×  (4.2) 

Where  is the predicted energy consumption at time 

point 𝑖, 𝑦
𝑡𝑟𝑢𝑒

 is the actual energy consumption at time point 𝑖, 

𝑦
𝑡𝑟𝑢𝑒

 is the average energy consumption, and 𝑛 is the total number 

of data points in the dataset. 

5. Results 

In this chapter, the models chosen in 4.3, were compared and 

used for decision making of the diverse strategies adopted during 

the methodology. The error metric applied was the CV(RMSE) 

error (4.6), calculated by the time series cross-validation in the 

training set. The diverse strategies, namely, the data imputation 

study and posterior data sets generation of 4.1 and the features 

selection performed in 4.4, were divided by sections to ease the 

visualization and consequent decision. After that, the last section 

reveals the forecasting results of each developed model for every 

building and time horizon. To evaluate the forecasting results, the 

error metrics referred in 4.6 were used, expressed in percentage. 

5.1. Data Imputation Study 

As it was mentioned in 4.1, two multiple imputation 

algorithms (MICE and MF) were studied with the intend of filling 

the gaps of the original data set. Only the results for ECD 

imputation are represented in Table 5.1, since for WCD as said 

before, it was used the HMM method, Figure 4.2. 

Table 5.1 - Mean Error Evaluation of 10 cycles for MF and 

MICE algorithms in ECD 

Buildings Civil Central North tower South tower 

MICE 
CV(RMSE) 14.82 32.88 54.38 38.65 

MAPE 14.82 27.78 42.51 23.37 

MF 
CV(RMSE) 2.46 12.32 20.13 16.86 

MAPE 2.46 8.98 11.97 8.36 

 

For the ECD the results show a clear dominance in terms of 

accuracy for MF algorithm. Based on that, this algorithm was 

chosen for the posterior data sets generation. 

5.2. Data Sets Analysis 

In this analysis, the data sets generated in 4.1 were 

compared. To procced with it the average error of the four 

models (ANN(MLP), SVM, RF, and XGB) in an hour, a 

day, and a week horizon is shown in Table 5.2. 

Table 5.2 - Average time series cross-validation of CV(RMSE) of 

the four models for each data set, displayed by building and time 

horizon 

Building Civil Central North tower South tower 

1
 h

o
u

r dt_01 13.39 16.36 23.97 24.76 

dt_02 13.80 16.43 23.69 24.69 

dt_03 13.38 15.74 23.87 24.90 

1
 

d
a y dt_01 37.54 39.69 45.52 39.17 

dt_02 37.49 40.19 45.74 39.08 

dt_03 38.98 39.43 42.90 38.43 

1
 w

ee
k dt_01 39.25 44.44 48.33 41.47 

dt_02 39.61 45.17 48.16 41.69 

dt_03 40.45 42.38 44.81 40.11 

 

It is possible to conclude that despite the slight error 

variations between the data sets, the one with the most 

accurate results was 𝑑𝑡_03. This might be explained by the 

absence of data lost, which gives the models the possibility 

to improve their predictions since there is more data to learn 

from. In addition, the use of 𝑑𝑡_03 allows the prediction of 

most of the hours of the forecasted year, one of the reasons 

why the data imputation study was conducted in the first 

place. 

5.3. Feature Selection Analysis 

From the RFE method, to each building and time horizon a set 

of features was selected. From the results obtained, it is concluded 

that for the same building, the features selected for different time 

horizons tend to decrease in ratio when the horizon of prediction 

increases, e.g. for North tower building, the ratios were 0.76, 0.33, 

and 0.14 for an hour, a day, and a week, respectively. Meaning 

that, several features that were considered as important in the hour 

horizon were neglected in the other two. With that in mind, a new 

set of features supported by the RFE method selection and the 

energy analysis was performed, as earlier mention in 4.4. 

From the RFE method selection, it is mandatory to state that 

three type of features were considered as indispensable for every 

building and time horizon: , the 𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦, the 𝑐𝑙_(𝑎)_0, and 

each different lagged feature when available ((𝑎)_𝑙𝑎𝑔_1ℎ𝑜𝑢𝑟, 

(𝑎)_𝑙𝑎𝑔_1𝑑𝑎𝑦, and (𝑎)_𝑙𝑎𝑔_1𝑤𝑒𝑒𝑘).  

Furthermore, to the new selection, four type of features 

supported by the following reasons were always added: 

- 𝑡_ℎ𝑜𝑢𝑟 - due to the temporal granularity of the data and since 

it was always selected by the RFE method for the hour horizon 

data set of each building; 

- 𝑠_𝑒𝑝𝑜𝑐ℎ - mainly due to the support that provides to the 

𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦 feature to address the stochastic behaviour of the 

daily inhabitants of each building, in terms of the different 

types of occupancy occurring during the different periods of 

the school calendar; 

- For the cluster average features, e.g. 𝑐𝑙_(𝑎)_0, the only ones 

that were added were the ones that exhibit the most different 

average consumption patterns; 

- Lastly, the weather conditions features were added in every 

data set, firstly because of their good correlation with each 

building, shown in Figure 4.3, and secondly, since they are the 

only features that contain information about the exact moment 

of prediction. 

5.4. Forecasting 

As a result of all the previous studies completion, this section 

will show Civil building forecasting by the four machine learning 

models chosen in 4.3 for the three time horizons. 
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In Civil building, for every time horizon the forecasting results 

did not exceed an CV(RMSE) error of 16.75%, which according 

to Table 5.3 was achieved in a week horizon prediction by XGB 

model. According to that, it is noticeable an increasing error 

tendency when the models attempt to predict in greater horizons, 

e.g. the RF model obtained CV(RMSE) errors of 7.14%, 12.18%, 

and 14.29% for an hour, a day, and a week horizon predictions, 

respectively. It may also be concluded that all the models tend to 

adapt easily when predicting an hour a-head consumption, 

achieving similar prediction accuracies, on contrary to what occurs 

in a day and a week a-head predictions, where the best model was 

easily selected. 

Table 5.3 - Annual results for Civil building forecast for an hour, 

a day, and a week horizon 

Models MLP SVM RF XGB 

1 hour 
CV(RMSE) 6.93 6.32 7.14 6.52 

MAPE 5.04 4.22 4.44 4.22 

1 day 
CV(RMSE) 13.42 11.09 12.18 14.3 

MAPE 10.94 7.69 8.63 11 

1 week 
CV(RMSE) 16.65 14 14.29 16.75 

MAPE 12.5 10.1 10.75 12.98 

 

Furthermore, from all the models used, the SVM model 

achieved the best annual forecasting results for all the horizon 

predictions, in the three use error metrics. Consequently, this 

model was used to check the monthly predictions accuracy for 

each of the horizons, Table 5.4. 

Table 5.4 - Civil building monthly forecast results of the best 

models selection for each time horizon 

Months 
1 hour - SVR 1 day - SVR 1 week - SVR 

CV(RMSE) MAPE CV(RMSE) MAPE CV(RMSE) MAPE 

January 6.93 4.45 10.85 7.54 11.29 8.15 
February 6.38 3.91 12.16 8.18 18.01 9.94 
March 6.16 4.05 10.39 7.37 12.91 9.32 
April 6.35 4.3 11.47 7.79 14.8 10.52 
May 5.93 4.1 11.1 7.25 11.53 8.29 
June 5.7 4.29 9.83 7.68 13.76 10.87 
July 5.81 4.12 8.12 5.85 9.68 7.77 
August 8.74 4.52 14.37 9.35 17.41 14.77 
September 7.3 4.41 12.77 6.93 18.97 10.79 
October 5.52 3.86 8.77 6.7 10.19 7.85 
November 5.68 4.16 10.83 8.47 11.4 9.51 
December 5.95 4.49 12.76 9.18 15.69 13.08 

 

Based on Table 5.4, the months that yielded better results were 

October for an hour horizon, and July for a day and a week 

horizon. This might be explained by the small daily consumption 

variations felt in those months, making the correspondent real 

consumption ease to predict when compared to other months. On 

the other hand, the worst case scenario was found in August for an 

hour and a day horizon prediction, and in September for a week 

horizon prediction. The unpredictability of these type of months 

derivates from particular events that somehow change abruptly the 

energy consumption of the building, such as the two weeks of 

summer break in August and the beginning of the first semester in 

September. 

 After all, two weeks of July and August, were chosen to be 

visualized, as an example of the best and worst case scenarios for 

the all the forecasting horizons, respectively, Figure 5.1. 

 

 

Figure 5.1 - Civil building forecasting of the best two weeks 

(July) and worst two weeks (August) for each time horizon best 

model 

Table 5.5 - Day type results for Civil building best models 

forecast of each time horizon 

Day type Workday Weekends Holidays 
Summer 

break 

1 hour 
SVM 

CV(RMSE) 6.01 4.89 9.24 11.52 

MAPE 4.45 3.35 6.46 4.47 

1 day 
SVM 

CV(RMSE) 9.89 12.52 26.24 22.77 

MAPE 6.93 8.07 17.59 10.68 

1 week 
SVM 

CV(RMSE) 12.79 16.00 28.17 26.16 

MAPE 9.16 10.95 20.86 18.16 

Day (%) 65 28 4 3 

 

From the day type analysis results, in Table 5.5, it may be seen 

that the workdays were in most of the time horizons the easiest 

type of day to predict, which means that in 65% of the days in the 

three forecasting horizons the MAPE values were below 10%. 

Right after those type of days, weekends that account with 28% of 

all the days, obtained the second best predictions, displaying 

MAPE values below 11%. That being said, it is possible to 

conclude that 92% of the days (workdays and weekends) were 

successfully forecasted in the three time horizons when compared 

to the remaining 8% of days that included holidays and the two 

weeks of summer break, previously shown in Figure 5.1. 

6. Conclusions 

In this work, four machine learning models (MLP, SVM, RF, 

and XGB) were compared in three different forecasting horizons 

(an hour, a day, and a week) for four main buildings (Civil, 

Central, North tower, and South tower) located at Instituto 

Superior Técnico, Lisbon. Giving a total of 48 models developed. 

To conduct this study, two types of hourly collected data (WCD 

and ECD) for three years (2014, 2017, and 2018) was used. In 

order to create the right conditions for each forecasting model 

development, the available data was first treated and then 

analysed. 

In the first stage, a data imputation study was performed, 

concluding that from the two multiple imputation algorithms used 

(MICE and MF), the one that achieved greater results, was the MF 

algorithm, which was successfully applied in each building 

consumption data incompleteness (ECD). However, in the 

presence of simultaneous wide gaps of missing values, which 

occurred in WCD, this algorithm was not able to supply the 

tendency and seasonality intrinsic to the type of variable that was 

https://www.powerthesaurus.org/successfully/synonyms
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being filled. For that reason, a single imputation method created 

with that propose (HMM) was employed, guaranteeing with that 

the necessary dynamic of the imputed variable.  

In the second stage of this work, each building energy 

consumption was analysed, and several features were created in 

attempt to better define the buildings’ behaviour. With all the 

features generated, a feature selection analysis via the RFE method 

took place to understand the importance of each feature. From that 

analysis, it was concluded, that three type of features were 

indispensable in every building and forecasting horizon data set, 

specifically, the day type, the lagged features (one hour, one day, 

and one week), and the cluster average consumption of the larger 

group of days of each building from the year of 2017. In addition, 

it was also noticeable that the used of this method was too restrict 

in the feature selection process, which might be explained by the 

use of the clusters average consumption features that were 

generated from one of the years where this method was applied 

(training set), influencing with that the importance of each feature 

and the consequent selection. To overcome that situation a new 

selection supported by the RFE method selection was employed. 

Furthermore, after the hyperparameter optimization and the 

forecasted results obtained, it was concluded that, although, all the 

models developed did not show larger error variations when 

predicting the same building consumption and forecasting horizon, 

SVM model outstood, achieving the most accurate results in the 

majority of the predictions performed. One of the reasons which 

might explain this situation is supported by the small number of 

hyperparameters that this model has, leading to reach its full 

potential faster and easiest than any other model used in this work. 

Moreover, the second most accurate model was XGB performing 

the best prediction in three of the cases, followed by the MLP and 

RF that achieved the highest accuracy value in one case each. 

Considering the best models’ selection, in most of the buildings 

and forecasting horizons it was found that August was the hardest 

month to predict, due to the intrinsic unpredictability of two 

summer break weeks of all Alameda’s campus facilities. On the 

other hand, in 93% of the predicted days, which accounts with 

working days (65%) and weekends (28%) the buildings achieved 

an MAPE error of 10.95%, 9.17%, 10.48%, and 12.66% for Civil, 

Central, North tower, and South tower buildings in a week horizon 

prediction. In addition to that, it was noticeable an increasing 

annual error tendency when the models attempt to predict in 

greater horizons. 

Afterall, using the CV(RMSE) metric to compare the different 

buildings predictions, it was found that in every forecasting 

horizon studied, Central building was the easiest one to predict and 

South tower building the hardest one. Which might be related by 

the small variations of consumption found in the first study case, 

against the sudden peaks and dips encounter in the latter. 

6.1. Future Work 

In this work, it was concluded that the stochastic behaviour of 

each building’s inhabitants is one of the major reasons for the 

variations of the energy consumption patterns. With that in mind, 

two solutions can be adopted: 

- The simplest one, is to perform a different day type feature 

for each of the buildings, since it was shown that different 

buildings have different consumption patterns in the same type 

of day; 

- The second solution, it only can be applied in buildings with 

Wi-Fi systems, with that being said, it basically uses each 

people network log in to count the online number of occupants 

in each of the buildings.  

Another future work that may be explored is supported by the 

fact that each model achieved similar error measurements. With 

that, an ensemble model with an evolutionary algorithm to define 

each model percentage in the final output may be employed, 

which, normally, leads to a generalized and enhanced prediction.  

Lastly, it has been shown in several recent studies the tendency 

of using deep learning models to predict sequential data, such as 

time series. The use of those models such as long-short term 

memory (LSTM) could be beneficial, due to its intrinsic long-term 

dependencies in recurrent architectures. 

6.2. Contributions 

From this study, four contributions may be stood out: 

- An imputation study for this study dataset was developed; 

- Adaptation for the first time of XGB model to forecast 

building energy consumption in hourly granularity; 

- Development of forecasting models in three different 

horizons for four buildings located at Alameda campus , IST, 

Lisbon; 

- The code developed along this study is publicly available in 

[43]. 
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