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Abstract

The purpose of this work is to model the thermal behavior of a classroom. It will use various sensors
installed in the classroom to gather relevant data. It will also use meteorological data gathered from
the station that is present on the university campus. It will preprocess this data and use it to develop
thermal models of the classroom. The First type of models were based on differential equations that
model heat transfer between the room and the envelope. It used the analogy between thermal and
electrical components to derive the differential equations. The Second type of models were based on
Neural Networks. The structure was based on past data and validate with a different set of data.
Certain particularities of the workings of neural networks are discussed and it is considered how they
affect the final result. Good results were obtained in terms of temperature forecasting. The Theoretical
models obtained a Root Mean Squared Error of 0.057oC. The Neural Network models obtained a Room
Mean Squared Error of 0.147oC. However, neither model was able to simulate the thermal of the room
independently. Future work can use these models as a basis for future improvement and control of the
room temperature.
Keywords: Thermal Modelling, Neural Networks, Temperature Forecasting

1. Introduction
1.1. Motivation

Energy needs and consumption are of the utmost
importance nowadays. There is a need to reduce the
waste of energy, so that the need for energy produc-
tion diminishes. One of the ways to reduce energy
waste is to employ techniques that change ho energy
is reduced without compromising the functions that
are dependent on that same energy. One of the im-
portant uses of energy is for providing comfort in
buildings, maintaining comfortable conditions for
people to work. The present work will be focus-
ing on the modelling part of the thermal comfort
in a building, more specifically, a classroom. It will
try to develop a model to accurately simulate the
thermal behaviour of the room, serving as a basis
for the development of a control system.

1.2. Background

Previous work has been done on this topic, from in-
door temperature forecasting [9, 15], to model de-
velopment and control implementation [12, 10, 8].
Mateo et al.[9] used Multi Layer Perceptron - Non
Linear Autoregressive Model with Exogenous Net-
work (MLP-NARX) to forecast the indoor tem-
perature with a Mean Average Error (MAE) of
0.11oC, performing better than other classical mod-

els. Zamora-Mart́ınez et al. [15] also explored the
use of machine learning techniques for usage in tem-
perature forecasting, achieving good results despite
the limited used data. Filipe [12] developed a state
space model based on non linear stochastic differ-
ential equations that achieved a very good perfor-
mance in forecasting indoor room temperature. A
Takagi-Sugeno fuzzy model was also developed in
order to represent the system in control simulations.
The control technique used was very successful in
maintaining the room temperature in between com-
fortable levels, while also reducing the use of energy
in order to maintain the comfort. Oom [10] and Es-
teves [2] developed models to control the window
blinds and the lights of a classroom. These models
served as a basis for the development of the model
in this work. Lopes [8] used neural networks in or-
der to forecast and control the temperature in sev-
eral classrooms, achieving a good result in terms of
forecasting and in reduction of energy cost.

2. Case Study
2.1. Room Description

The classroom studied is located on Instituto Su-
perior Técnico in Lisbon. It is located on the Civil
Engineering Building and faces the north tower and
a courtyard. It has two adjacent rooms on the front
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(a) Outside View of the room

(b) Inside Location of the room

Figure 1: Room Location

and back, with a corridor opposite the window.

The classroom has a maximum number of 50 stu-
dents. There is a projector in the front close to the
window. It has two sliding windows that can only
be operated by someone inside the room. The win-
dow blinds and the lights can be controlled by an
automated system.

2.2. Database Description

There are various sensors inside the room that
collect environmental data. It measures tempera-
ture, humidity, CO2 concentration, Lux, and con-
centration of unidentified particulates. The data
is measured every five minutes. There is also a
Wifi repeater that can provide the number of users
connected to it. The measured amount can be
higher than the capacity of the room, so the biggest
amount that was considered was 45, because the at-
tendance very rarely achieves the maximum. There
is some error when taking this into consideration be-
cause the Wifi repeater connects to user from other
rooms, but it is the only way to gather data of this
kind. The attendance provided by the School Sys-
tem is not trustworthy because there are no checks
to see if a student really attended that class. Stu-
dents can frequent other classes without explicitly
changing their schedules. There is a meteorological
station in the University that measures the outside

temperature and solar radiation. These values are
also measured in five minute intervals. The radi-
ation measured is the global horizontal radiation -
it was measured against two clear-sky models [3, 5]
during a cloudless day and the results align very
closely, as seen in figure 2.
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Figure 2: Comparison between the measured Radi-
ation and Predicted GHI by Clear-sky models

In order to take into account the different compo-
nents of radiation in the model - Direct Solar Irradi-
ation and Diffuse Horizontal Irradiation - the ERBS
model [1] implemented in pvlib [4] was tested. It
was compared to the model DIRINDEX [11], shown
in figure 3, in order to choose which model was used.

Figure 3: Comparison Between Dirindex and ERBS
DNI Values

As it can be seen on figure 3, the DIRINDEX
values have a very large spike in the first measure-
ment in the morning and the last measurement in
the afternoon, far exceeding the expected clearsky
value. During the rest of the day it matches the
ERBS model with slight differences. With this in
mind, the ERBS model was chosen.

All this data needed to be preprocessed in or-
der to be used in the development of the models.
It contained missing data, duplicate measurements,
misalignment between the time series and some de-
gree of noise. In order to fix these problems, several
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techniques were used. Firstly, the duplicate mea-
surements were removed, in order to get only 1 mea-
surement for a specific time - all sets of data had this
problem. Secondly, the missing data was imputed
by way of a zero order hold. Thirdly, the data was
passed through a Savitsky-Golay filter [13] in order
to smooth the measurements. This type of filter has
been widely used since its invention in signal and
data analysis. Because the room temperature data
had more measurements than the rest of the data
for the same time span, it was put through a spline
with the same polynomial degree of the Savitsky-
golay filter - so that no more smoothing was done,
and compressed to the desired size. The difference
in length was small in the first place, occurring spo-
radically and only with 1 or 2 more measurements
than the theoretical maximum for one day.

3. Physical Model
3.1. Model Development
The physical model developed was a grey box model
- it uses heat transfer phenomenon equations in or-
der to create the structure of the model and mea-
sured data to estimate the value of its parameters.
The basis for the creation of the models were the
one dimensional heat conduction shown by equation
1 and the newton’s law of cooling,shown by equa-
tion 2. Dude to the low temperature value of the
air, the emissive power of the room was not consid-
ered. The solar radiation considered was the one
mentioned in 2.

q′′ = −kA∇T = −k
(
∂T

∂x

)
(1)

qs = hA (Ts − T∞) (2)

Several Simplification were applied when mod-
elling the system:

(1) - The room temperature was considered to be
uniform in the whole room.

(2) - Only the solar radiation was considered when
dealing with radiative energy transfer. The val-
ues used were the ones obtained in 2.

(3) - The students were considered as heat sources
with constant power output.

(4) - The thermal properties were considered to be
constant.

(5) - Convection through the windows and door
was not considered due to the unavailability of
data to quantify its influence on the thermal
evolution of the system.

(6) - Passive Infiltration was considered initially
but the estimated values were very small.
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Figure 4: RC Equivalent Circuit for the 1 State
model

(7) - Since there is no sensor to measure the posi-
tion of the window blinds they were considered
to be open at all times.

Two models were obtained after applying these
simplifications - a 1 State model equation 3, which
considers the corridor temperature as constant, and
a 2 State model equation 4 that estimates both the
room and the corridor temperature. The differential
equations that characterize the model were derived
with the aid of the analogy that exists between elet-
rical and thermal systems, shown in figure 1

Table 1: Resistor-Capacitor Circuit Equivalent
Components

Parameter Eletrical Thermal
Potential V T

Current I Q̇
Resitance R Rt

Capacitance C Ct

Ci
dTi
dt

=
1

Rds
Φdsu1 +

1

Rdh
Φdhu2+

1

Ria
(Ta − Ti) +

1

Ric
(Tc − Ti) +

Φstudents + σi
dwi

dt

(3)

In the equation, wi represents the standard
Wiener process, with σi representing the diffusion
term for the process state; Ti is the state variable,
the one that is to be predicted and controlled; u1
and u2 are the control variables, which change how
much the radiation heats the room; Φds is the DNI
and Φdh is the DHI.
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Figure 5: RC Equivalent Circuit for the 2 State
model

Ci
dTi
dt

=
1

Rds
Φdsu1 +

1

Rdh
Φdhu2+

1

Ria
(Ta − Ti) +

1

Ric
(Tc − Ti) +

Φstudents + σi
dwi

dt

Cc
dTc
dt

=
1

Ric
(Ti − Tc)+

1

Rca
(Ta − Tc) + σc

dwc

dt

(4a)

Similarly to the first model, σi and σc are the dif-
fusion terms for the process’ states, with wi and wc

representing standard Wiener processes. The states
are represented by Ti and Tc, while the control vari-
ables are u1 and u2; Φds is the DNI and Φdh is the
DHI.

The unknown parameters in the models were cal-
culated using the Continuous Time Stochastic Mod-
elling for R (CTSM-R) toolbox [14]. This toolbox
was developed at the Danish Techinical University
(DTU) to estimate parameters in continuos time
stochastic state space models. It uses maximum
likelihood estimator and an Extended Kalman Fil-
ter to predict one step ahead values. It has been
used successfully in [12] to estimate physical param-
eters in similar problems. The two examples that
are given by the DTU team are related to ther-
mal modelling of buildings - the first being the heat
dynamics of a wall [7] and the second the heat dy-
namics of the a building [6]. Although the sampling
time used in the previous examples is 15 minutes,
given that the available data has a smaller sample
time, it was chosen to keep the sampling time at 5
minutes.

3.2. Results

Two different sets of data were used to estimate the
parameters and validate the data. The first set of
data consists of daily data from the 1st of April to
the 22nd of June, while the second of data consisted
of daily data from the 11th to the 31st of August,
when the students are on holiday. For the Holidays,

Table 2: Estimated Parameter Values for the First Model

Parameter Value Unit Description
Tc 21.8 oC Temperature of the Corridor
Ci 12817 J/oC Thermal Capacitance of the room
Rds 0.03 1/m2 Window Resistance to Direct Solar Radiation
Rdh 0.069 1/m2 Window Resistance to Diffuse Horizontal Radiation
Ria 0.003 oC/W Thermal Resistance between the Room and the Atmosphere
Ric 0.001 oC/W Thermal Resistance between the Room and the Corridor

Table 3: First Model Performance in Various Sim-
ulation Conditions

Simulation Condition RMSE VAF
1-Step prediction 0.03 0.99
Full Simulation 1.88 0.85
Daytime Simulation 0.99 0.88

data from the 11th to the 21st was used to find
the model parameters and data from the 22nd to
the 29th was used to validate the model. For the
Classes period, data from the month of April was
used to find the parameters and data from the 1st
to the 7th of May was used to validate the model.

3.2.1 Results during the Holidays

As it can be seen on the figure 6 and on the Per-
formance table 3, this model was able to accurately
forecast the temperature 5 minute in advance, but
started deviating with a bigger forecasting window.
However, changing the values of the radiation did
not measurably change the value of the predicted
temperature. In the free simulation, the model re-
produced the overall behaviour of the room, even
if with an offset. The daytime simulation, 6c,
achieved a better result than the free simulation,
with a better forecasting performance - by design
the model corrected during night time, since the
control action would not work during nighttime.

The addition of the corridor temperature im-
proved some measures of results, but did not prove
to be better overall. It has some improvements in
the first days of the validation set, but towards the
latter days tends to overshoot when forecasting the
temperature values. This model didn’t prove to be
better than the 1 State model. It is important to
note that the thermal capacitance of the air was es-
timated to be lower than the same value for the 1
State Model, which signals that the models might
have focused on different aspects when estimating
the parameters.

Table 4: Estimated Parameter Values for the Second Model

Parameter Value Unit Description
Ci 8742 J/oC Thermal Capacitance of the room
Cc 245310 J/oC Thermal Capacitance of the Corridor
Rds 0.044088 1/m2 Window Resistance to Direct Solar Radiation
Rdh 0.081089 1/m2 Window Resistance to Diffuse Horizontal Radiation
Ria 0.0047658 oC/W Thermal Resistance between the Room and the Atmosphere
Ric 0.0022 oC/W Thermal Resistance between the Room and the Corridor
Rca 0.42757 oC/W Thermal Resistance between the Corridor and the Atmosphere
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(a) 1 Step Prediction and Error

(b) Full Simulation

(c) Daytime Simulation

Figure 6: 1 State Model Validation

3.2.2 Results during Classes

The inclusion of the students inside the room dur-
ing classes worsened the results. The 1 Step Model
achieved a result of 0.057oC Room Mean Squared
Error (RMSE) for the 1 Step prediction, which is a
remarkable result. It proved to be better than the
2 State model, which achieved a rasult of 0.12oC
for the same task. The other results vary, with the
Daytime simulation with the 1 State Model achiev-
ing a better RMSE result than the 2 State model,
although where the 2 State Model predicts tempera-
ture values much lower than the ones measured, the
1 State model predicts higher temperatures than
the ones measured. The Full simulation achieved
mixed results, with the 1 State model overshoot-
ing with the temperature forecast with a RMSE

Table 5: Second Model Performance in Various
Simulation Conditions

Simulation Condition RMSE VAF
1-Step prediction 0.04 0.99
Full Simulation 1.54 0.59
Daytime Simulation 0.78 0.9

(a) 1 Step Prediction and Error

(b) Full Simulation

(c) Daytime Simulation

Figure 7: 2 State Model Validation
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of 6.54oC, compared to the 2 State Model barely
changing the forecast between 22oC and 24oC, with
a RMSE of 2.79oC. For implementation in a control
system, the 1 State Model would be a better model
to forecast the room temperature five minutes in
advance.

Table 6: Estimated Parameter Values for the First Model

Parameter Value Unit Description
Tc 21.8 oC Temperature of the Corridor
Ci 45369746 J/oC Thermal Capacitance of the room
Rds 1.033132 ∗ 10−5 1/m2 Window Resistance to Direct Solar Radiation
Rdh 1.782774 ∗ 10−5 1/m2 Window Resistance to Diffuse Horizontal Radiation
Ria 2.04207 ∗ 10−6 oC/W Thermal Resistance between the Room and the Atmosphere
Ric 4.134099 ∗ 10−6 oC/W Thermal Resistance between the Room and the Corridor

Table 7: First Model Performance in Various Sim-
ulation Conditions

Simulation Condition RMSE VAF
1-Step prediction 0.057 0.99
Full Simulation 6.54 -1.54
Daytime Simulation 1.612 0.34

Table 8: Estimated Parameter Values for the Second Model

Parameter Value Unit Description
Ci 233056.1 J/oC Thermal Capacitance of the room
Cc 273383536 J/oC Thermal Capacitance of the Corridor
Rds 8.758825 ∗ 10−3 1/m2 Window Resistance to Direct Solar Radiation
Rdh 0.02343304 1/m2 Window Resistance to Diffuse Horizontal Radiation
Ria 1.533843 ∗ 10−4 oC/W Thermal Resistance between the Room and the Atmosphere
Ric 1.007839 ∗ 10−4 oC/W Thermal Resistance between the Room and the Corridor
Rca 3.632536 ∗ 10−2 oC/W Thermal Resistance between the Corridor and the Atmosphere

Table 9: Second Model Performance in Various
Simulation Conditions

Simulation Condition RMSE VAF
1-Step prediction 0.12 0.99
Full Simulation 2.79 0.19
Daytime Simulation 2.54 0.07

4. Data Driven Model
4.1. Model Development
The first step in modelling a neural network is to
know how the different data correlates with each
other. It is also important to know how the room
temperature relates with itself, because there could
be a dependence on past values, which would help
capture the dynamics of the system. In order to
understand these relations, the autocorrelation -
shows how current values of a variable relate to
past ones -, partial autocorrelation - shows how cur-
rent values are influenced by past values, without
the values that are in between both of the analyzed
values - and pearson correlation - shows linear cor-
relation between the data.

It can be seen on figure 10 that there is a very
high correlation between the room temperature and
its past values, indicating that an autoregressive
model might be appropriate for use. Additionally,
figure 11 show that the correlation is higher in the

(a) 1 Step Prediction and Error

(b) Full Simulation

(c) Daytime Simulation

Figure 8: 1 State Model Validation

first two past values, decresing considerably on the
third one. It can be derived from this that the past
two values are more important than all other when
prediction the room temperatures.

Figure 12 shows that there is a high correlation
between the outside ambient temperature and the
room temperature. On the other hand, the correla-
tion between the DNI, DHI and Student attendance
data is low compared to the past room temperature
values. This might prove troublesome when imple-
menting the neural network because it will assign
more weight to the values that are more correlated
than the ones that are less. It can devolve into a
pure autoregressive model if care is not taken. As
such, only the first past value will be taken into
accout, because it is necessary to establish the dy-
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(a) 1 Step Prediction and Error

(b) Full Simulation

(c) Daytime Simulation

Figure 9: 2 State Model Validation
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Figure 10: Room Temperature Autocorrelation

namic nature of the model. The other past values
will not be taken into account in order to make the
network able to be more influenced by the DNI,
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Figure 11: Room Temperature Partial Autocorre-
lation
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Figure 12: Pearson Correlation Coefficients of
Available Data

DHI and student attendance data. After taking all
of this into account, the Artificial Neural Network
model chosen is a NARX network. It takes into ac-
count past values of the room temperature and the
ambient temperature, DNI, DHI and the student
attendance values.

4.2. Results

The network was trained with ordered sets of data -
16732 training samples and 7171 testing samples. It
achieved a cross validation error of 0.0068oC, with
a testing score of 0.049oC. Looking at the results
in figure 13, it can be seen that the temperature
forecasting in the next 5 minutes. It didn’t fore-
cast the highest temperatures in the first 5 days,
but managed to be very precise in the rest of the
simulation. However, changing the values of DNI
and DHI didn’t significantly change the forecast-
ing prediction. The Daytime simulation, in figure
15, shows that the network captured the overall dy-
namic of the system, although it tends to overshoot
the prediction the bigger the forecasting window.
Contrary to the 1 Step Prediction, changing the
value of the DNI and DHI changed the forecasting
value, predicting lower temperatures. It is worth
noting that in the days in the middle of the vali-
dation set, the prediction with the lower DNI and
DHI was closer to the real temperature measured,
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which might indicate that the window blinds might
have been in a lowered position.

Figure 13: 1 Step Prediction and Control of Room
Temperature

Figure 14: Daytime Simulation and Control of
Room Temperature

Figure 15: Free Simulation and Control of Room
Temperature

5. Conclusions
In this dissertation, two modelling techniques were
used to model the temperature evolution of a class-
room. These techniques were different in concept,
and were applied with different considerations. The
Physical model used known Heat Transfer phe-
nomenons in order to produce a model that could
be interpreted and understood clearly. Its param-
eters were estimated to match the predicted room

temperature with the measured room temperature.
The Data Driven model used ANN to model the
phenomenons based entirely on the available data.
Its implementation was simpler in concept, with the
only difficulty being the configuration of the model.
The data used to derive the models was measured
by sensors installed in the room and in the meteo-
rological station present in the University. Models
were used to identify some of the measured data
and to obtain data that was not measured but was
necessary to the development of the models. The
models achieved a very good performance in the 1
Step Prediction, with the 1 State model achieving
a RMSE of 0.057oC during classes and the neural
network achieving a RMSE of 0.049oC. However,
the performance was worsened when the forecasting
window was increased, although the dynamic of the
system was captured.

The deteriorating accuracy of the models my be
caused by some of the assumptions made - having
no window blinds sensor to know in which position
the window blinds were during the measurements
increases the difficulty because there is no reason-
able justification to assume one position instead of
another. Having this data would be very important
in improving the parameter estimation and mod-
elling, reducing one of the uncertainties that was
detrimental to the model development. While some
of the models were able to reasonably predicgt the
behaviousof the room, the faster dynamis associ-
ated with the presence of students - opening and
closing of the door to the corridor and the opening
and closing of the windows - were not reproduced
by the models. Other aspect that can be improved
with further investigation and development is the
implementation of a known control action for dif-
ferent periods of time in order to gather data con-
taining the information that was missing in this im-
plementation. However, this specific action would
deteriorate the comfort quality of the working area
and disturb the calsses that would be attended in
the room. It is suggested to do a sensibility analysis
of the model parameters that were obtained for the
theoretical models. These results obtained can be
a stepping stone for further development and im-
provement of the comfort quality of the room.
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