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Resumo

Este trabalho teve como objetivo modelar o comportamento térmico de uma sala de aula. Vários

sensores instalados na sala foram utilizados para obter dados relevantes. Foram também utilizados

dados meteorológicos da estação presente na universidade. Estes dados foram tratados e utilizados

para a criação de 2 modelos de sala de aula.

O primeiro modelo baseou-se em equações diferenciais que modelam a transferência de calor entre

a sala e o ambiente envolvente. Utilizou a analogia entre componentes térmicos e elétricos para a

criação das equações diferenciais.

O segundo modelo baseou-se no uso de redes neuronais. A estrutura foi testada com dados pas-

sados existentes e foi feita validação dos resultados. Foram abordadas várias particularidades do uso

de redes neuronais neste contexto, bem como a influência no resultado final.

Obtiveram-se bons resultados na previsão de temperatura. O Modelo Teórico obteve um erro médio

de 0.057oC. O Modelo de Redes Neuronais obteve um erro médio de 0.049oC. Futuros trabalhos podem

utilizar este modelos como base para melhoramentos e para o controlo da temperatura da sala.

Palavras-chave: Redes Neuronais, Previsão, Temperatura, Transmissão de Calor
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Abstract

The purpose of this work is to model the thermal behavior of a classroom. It will use various sensors

installed in the classroom to gather relevant data. It will also use meteorological data gathered from the

station that is present on the university campus. It will preprocess this data and use it to develop thermal

models of the classroom.

The First type of models were based on differential equations that model heat transfer between the

room and the envelope. It used the analogy between thermal and electrical components to derive the

differential equations.

The Second type of models were based on Neural Networks. The structure was based on past data

and validate with a different set of data. Certain particularities of the workings of neural networks are

discussed and it is considered how they affect the final result.

Good results were obtained in terms of temperature forecasting. The Theoretical models obtained

a Root Mean Squared Error of 0.057oC. The Neural Network models obtained a Room Mean Squared

Error of 0.049oC. Future work can use these models as a basis for future improvement and control of

the room temperature.

Keywords: Thermal Modelling, Neural Networks, Temperature Forecasting
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Chapter 1

Introduction

1.1 Motivation

In a world where energy needs and consumption are of the utmost importance, there is a need to

efficiently provide comfort with the least energy use. Reducing the use of energy has significant impact

on the environment and on the living conditions of millions of people. With this in mind, the development

of systems capable of automating and improving how Human society functions is in demand, with bigger

and more complex environments being created every day. The first step in improving the living conditions

of people is to understand the environment in which they are inserted. Knowing this, it is easier to find

where improvements can be made. In the context of energy management in buildings, understanding

the behaviour patterns and preferences of the occupants can lead to a more efficient climatization and

higher productivity and enjoyment.

The present work is inserted in this context - trying to improve the comfort inside a classroom, where

a majority of young people in the developed world stay most of their time. Their comfort can affect their

performance and state of mind, sometimes being very detrimental to their health. Using systems that

are easily implementable, with a small cost and capable of being generalized for different configurations

of classrooms, but have a net positive impact on the occupants is a step in the right direction when trying

to improve the use of energy.

1.2 Background

With the advent of the internet, more people are able to learn, easily find previous work and to

publish new studies about the most varied topics. Nowadays, with the need for efficient energy use to

fight climate change, more studies are being published and more examples of efficient use of energy

aided by accurate prediction of indoor temperature are being presented. The efficient use of energy for

climatization in buildings reduces the need for more power plants and reduces the economic cost of said

climatization.

In 2013, Mateo et al. [1] explored the usage of machine learning techniques for indoor temperature
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prediction and compared them to classical techniques. The data was simulated from a real Building and

the several different rooms were considered for analysis. It was found out that Multi Layer Perceptron

with a Non Linear Autoregressive with Exogenous input (MLP-NARX) was able to performe better than

a classical autoregressive model with exogenous input. (ARX) It achieved predictions errors of 0.11oC

Mean Average Error, and was able to achieve a better performance than all the other models tested

except for the month of February. It shows the power of non-linear approximators for temperature pre-

diction - they can find relations between the data that might not be evident to the human eye and use

them to perform better. Zamora-Martı́nez et al. [2] also explored the usage of machine learning tech-

niques for usage in temperature forecasting, achieving a good result, although the used data was limted

to 1 month.

An important contribution was made by Santos [3]. He designed the model for a 3 story building us-

ing two different techniques - Non Linear Stochastic Differential Equations, in the form of a State Space

Model, and a Takagi-Sugeno Fuzzy Model - and implemented a novel technique known as Economic

Model Predictive Control. After being designed, the models were proved to accurately model the be-

haviour of the Building and achieved a very high performance in temperature prediction and simulation.

The control method implemented was able to reduce the energy consumption and the heating and cool-

ing cost of the building, without compromising the comfort and the quality of the building environment.

This dissertation will be one of the ones closely followed in the current document, as it presents the

information clearly and describes in a great detail the steps taken create the models.

In order to better implement and facilitate the use of indoor temperature forecasting, Monteiro et al.

[4] explored the cost of developing a model that takes information from various sensors in an Internet

of Things (IoT) paradigm. It was shown that it is indeed feasible and that it can be an improvement in

the general implementation of these techniques in other situations. The IoT paradigm would be used by

Oom [5], Esteves [6], Lopes [7]. Oom [5] explored the design of a temperature and lighting model for a

classroom. It was shown that the common assumption of a lump model for the temperature inside the

classroom might hide perceptual differences. It also simulated the room for a fixed number of students

and found out that the temperature easily achieves an uncomfortable level for students. Esteves [6]

developed an occupation model for the same room as Oom [5], and tested a control strategy for the

window blinds and the lights inside the room. It showed an improvement over the normal usage, which

varies from class to class. It also took into account the outside weather to know the viability of opening

the windows in different weather conditions.

The use of Artificial Neural Networks for temperature prediction and simulation were also used by

Lopes [7]. He used the data from various rooms in the Civil Engineering Building of the University to

develop several models, and implemented control strategies that improved the thermal comfort of the

rooms. The models achieved a very good result, and the control strategy implemented showed marked

improvement in the comfort of the room and the energy cost.
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1.3 Objectives

This work aimed to model the heat dynamics in a classroom in order to improve the thermal comfort

of the students that attend classes. It aimed to use the window blinds system already implemented

in the room to regulate the temperature by automating how much heat is transferred by the sunlight.

This is particularly important in the Spring and Summer, when the ambient temperature rises to an

uncomfortable level, only to be worsened by the influence of sunlight. Given that these rooms don’t

have active ventilation by way of air conditioning, the only way to actively and remotely influence the

temperature of the room is to change the position of the window blinds.

This work will use the sensors setup inside the classroom to know the real-time conditions of the

room and to predict the future temperature. It will use meteorological data gathered by the university

and presented on its website to know the conditions of the environment. Finally, the Wifi data gathered

by the receiver present inside the room will facilitate the access to student presence data. The system

will aim to use all the gathered data, transform it for use and develop a model of the classroom. It

aims to use only the existing material, in order to find the viability of said systems. The work integrated

real time measurement of data from the room and the environment. It also used wifi data provided

by the University’s systems management webite. It was done in python, an open source programming

language, using already implemented toolboxes to do the calculations and validation of the results. It

also used

The work will be developed with the use of an open source programming language and toolbox, so

that it can be used without the need for paid license. It can also be implemented on small computers like

Raspberry Pi, which can then be implemented in the modelled classroom and other rooms similar to it.

1.4 Thesis Outline

This dissertation is divided into 6 chapters: The present chapter will establish the reason for the work,

as well as its importance and the work previously done in this area. It will also outline what work will be

done and how it will be done. The second chapter will present the data that was gathered by the various

sensors, as well as what was done in order to prepare this data for usage. It will include the description

of the classroom and the environment which surrounds it. The third chapter will describe the phyical

modelling technique that was used. It will explain the preliminary work needed to develop the model and

the results that were obtained. The forth chapter will describe the data driven modelling technique used.

It will explain how the model works conceptually and how it will work in this specific case. Finally, the

fifth chapter will globally evaluate the performance of the various models and recommend future work

that can be developed to improve upon this work already done.
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Chapter 2

Case Study

This Chapter will describe the room that is being modelled, as well as all the preprocessing that was

necessary to transform the raw data collected into workable data. The room will be fully described in

2.1. The sensor data will be analysed in 2.2.1, with the meteorological data being analysed in 2.2.2.

2.1 Room Description

The classroom is located on the first floor of the Civil Engineering Building. It faces eastward with

its window towards a courtyard with high trees, as well as the North Tower building to the East and the

Central Building to the South-east. It has two adjacent rooms on the front and back, with a corridor

opposite the window as shown in figure 2.1.

(a) Outside view of Room due North

Figure 2.1: Room Location
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(b) Inside Location of Room

Figure 2.1: Room Location

The classroom has a maximum capacity of 50 students in normal classes, with 25 being the maxi-

mum when an exam is occurring. It has a projector screen in the front close to the window. It has two

sliding windows that can only be operated by someone inside the room. There is an automated control

system installed that is able to lower the 2 window blinds independently of each other, with an extra 2

positions for hybrid coverage of the window - more light entering from the top portion with the bottom

being more opaque to light and vice-versa. The lighting system can also be controlled by the automated

system, turning on the lights on the right or left side of the room independently.

Figure 2.2: Room Configuration. Retrieved from Inês Pestana[5]
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2.2 Database Description

2.2.1 Room Sensor Data

The classroom has a sensor which collects various data - temperature, humidity, carbon dioxide

concentration, volatile organic compound, lux and unidentified compounds data. The sensor has a

sample time of approximately 5 minutes and saves the measured data for various days. The measured

data can be accessed starting from the most recent measurement and going backwards in time. Since

the log is not permanent and old data will be erased, a script was written to access and save the previous

days data every day. This data was aggregated and analysed afterwards.

Figure 2.3: Example of data collected in 15 minutes

In figure 2.3 the Temperature is in oC, the CO2, Volatile Organic Compounds (VOCS) and PCPM10

and PCPM25 (other compounds) are presented in parts per million (ppm); the humidity in %; and the

Lux in Lux.

Wifi Data

The room has a Wifi emitter that logs the amount of users that are connected to it. However, the

students in the other rooms will also connect to it, masking the real amount of students inside the

modelled room. Based on attendance patterns it was decided to hard cap the data at 45 students,

10% less than the maximum of 50 students. Lower values were taken as indicating the real amount

of students inside the room. This approximation introduces some error due to students outside the

room connecting to the Wifi. The other attendance data available is based on students enrolled in that

specific class. This data might be used as a first estimate of attendance but knowing that there is

nothing to guarantee that a specific student attends the class they enrolled in, it might have a bigger

error compared to the Wifi data.

2.2.2 Meteorological Data

The University has a meteorological station installed in the South Tower Building. The measured

data can be accessed with the internet in [8]. It measures ambient and sensible temperature - in oC,

as well as solar radiation - in W/m2, relative humidity, precipitation - in mm/hr and barometric pressure

- in mbar, with a sampling time of approximately 5 minutes. It can measure wind direction and speed,

although there is no available wind speed data, only direction.

From the data itself it is not clear which radiation component is being measured so it was tested

against two clear-sky models - Haurwitz [9] and Simplified Solis [10] - to see if it was Global Horizontal
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Irradiation (GHI) - measured on a horizontal sensor, Direct Normal Irradiation (DNI) - only the direct

solar component of the radiation, or Diffuse Horizontal Irradiation - only the diffuse component of the

radiation. Since the normal pattern of radiation is similar to a normal distribution on a cloudless day, the

first day of August was chosen for the comparison, as shown in figure 2.4.

00:00 05:33:20 11:06:40 16:40 22:13:20
Time

0

200

400

600

800

1000

W
/m

2

Measured vs Clearsky Model Radiation
Measured Radiation
Haurwitz Model
Simplified Solis Model

Figure 2.4: Comparison between the measured Radiation and Predicted GHI by Clear-sky models

As it can be seen on figure 2.4, the measured data closely aligns with the prediction made by the

Haurwitz model [9], so it can be assumed that the radiation being measured is the GHI. In order to use

this data in the models it needs to be decoupled into DHI and DNI, which affect the room differently

during the day. The DNI will only affect the room during the morning until around midday due to the

rooms orientation, as described in 2.1, while the DHI will affect the room during the whole day. Although

the high trees and buildings on the outside will obstruct the DNI and affect the DHI, this effect is hard to

quantify without a radiation sensor outside the room and will not be taken into account when developing

the models in the following chapters.

In order to obtain the values of DNI and DHI, the ERBS Model [11] implemented in pvlib [12] was

used. It takes into account the measured GHI and the solar zenith, as well as the date in which the

measurements were made. Another model, DIRINDEX [13], was explored, but there were very high

values of radiation in the first and last measurement - it only measures values when there is sunlight.

The comparison is shown in figure 2.5.
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Figure 2.5: Comparison Between DIRINDEX and ERBS DNI Values

The final value of DNI is obtained after taking into account the direction that the window faces.

This value was calculated using the RC Building Simulator toolbox [14], which takes into account the

geographical coordinates of the room, as well as the orientation of the window.

2.2.3 Data Preprocessing

All the data that was collected contained impurities - misalignment between time series, missing data,

duplicate measurements and some degree of noise. In order to fix these impurities, several techniques

were used. Firstly, the duplicate measurements were removed, in order to get only 1 measurement for

a specific time - all sets of data had this problem. Secondly, the missing data was imputed by way of a

zero order hold. Thirdly, the data was passed through a Savitsky-Golay filter [15] in order to smooth the

measurements. This type of filter has been widely used since its invention in signal and data analysis.

Because the room temperature data had more measurements than the rest of the data for the same time

span, it was put through a spline with the same polynomial degree of the Savitsky-golay filter - so that

no more smoothing was done, and compressed to the desired size. The difference in length was small

in the first place, occurring sporadically and only with 1 or 2 more measurements than the theoretical

maximum for one day.
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Chapter 3

Physical Model

This Chapter will describe the modelling process that was used to develop the grey-box model. The

physical phenomenons that are important to the development of this model will be described in 3.1. The

modelling process and considerations will be discussed in 3.2, with the full results of the modelling being

presented in 3.3.

3.1 Grey Box Modelling

There are three types of models that can be developed when trying to model physical phenomenons

- White Box, Grey Box and Black Box models. White Box models are characterized by being fully defined

by theoretical equations and quantities, making them the easiest to explain and perhaps comprehend,

although they can become very complex very easily - in this specific case there are multiple factors

that can influence the thermal behaviour of the room, with Computational Fluid Dynamics (CFD) being

very hard to implement and validate with the existing data. Grey box models are developed taking

into account the theoretical equations that describe the dynamics of the model, with the constants that

characterize de behaviour of the system being derived from real data that has been collected. This type

of model is explainable and reduces the necessary complexity of the model by making simplifications to

the phenomenons present, making them easier to develop and test. Finally, black box models only take

into account the existing data and are very difficult to explain due to the nature of the modelling process

- the relationship found between the various phenomenons is not based on any explicit physical notion.

A very appropriate example of this type of model are Artificial Neural Networks, which can successfully

model a process and achieve very good results, but are completely opaque when trying to understand

how they work [16].

The model that is going to be developed is going to be grey-box model because the complexity of the

heat dynamics is very high when considering multiple heat sources - students inside the room - inside a

fluid, as well as the heat exchange between the room and the corridor or the outside environment.

The thermal behaviour of the room can be described by the three ways of heat transfer - conduction,

convection and radiation. Each of these has a very important impact in the thermal behaviour of the
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room, and each need to be considered individually when trying to model their impact in the room.

3.1.1 Heat Conduction

The simplest way that heat can be transferred is by conduction. Given a temperature gradient in a

stationary medium heat will flow from the hottest point to the coldest. It can be described by Fourier’s

Law which is given by equation 3.1, where q′′ is the heat flux, k is the thermal conductivity of the medium

and T (x, y, z) is the Temperature field in the medium.

q′′ = −k∇T = −k
(
i
∂T

∂x
+ j

∂T

∂y
+ k

∂T

∂z

)
(3.1)

This equation will be applied to the various walls that are present in the room, as well as the window.

Because the wall that is separating the outside environment from the room will be considered together

with the window and with only the width as relevant dimension, the equation will assume a general form

similar to Newton’s Law of cooling given by

qx ≡ UA∆T (3.2)

which can be applied to any composite structure in general. This equation simplifies the model,

calculating a composite heat transfer instead of 2 simple ones. The result will mathematically be the

same, but the direct influence of the different members will be lost. This simplification can reduce the

amount of parameters that need to be calculated.

3.1.2 Convection

While conduction is prevalent and very important when considering a stationary medium, convection

becomes very important in mediums where there is mass movement with a temperature gradient. This

movement can be caused by the higher or lower temperature of the fluid particles - free convection, or by

an external source, with the objective of facilitating the transfer of heat from the hotter to the colder fluid

- forced convection. These phenomenons can be described by the equation 3.3 with the h representing

the free/forced convection coefficient

qs = hA (Ts − T∞) (3.3)

3.1.3 Radiation

Radiation is a very complex heat transfer phenomenon, taking into account the wave length of the

radiation, the medium through which it is being transmitted, the scattering due to that medium and the

physical characteristics of the objects that interact with it. The simplest way to describe this phenomenon

is with the equation

qrad = εσA
(
T 4
s − T 4

sur

)
(3.4)
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which adapts the Steffan Boltzman law for exchange of radiation between grey bodies, ignoring all

interactions between the radiation and the medium except for the temperature of the emitting surfaces.

In this specific case, the radiation being considered is the solar radiation that irradiates earth during

the day. This radiation can be divided into two components - direct radiation and diffuse radiation as

explained in 2.2.2. Due to the low value of heat transmitted by radiation by the air in the room itself,

because its temperature is very low, the only heat transfer by radiation that is going to be considered will

be solar radiation.

3.2 Model Development

One of the simplest and easiest to understand techniques of modelling used when modelling thermal

systems is the usage of Resistor-Capacitor equivalent circuits [17, p. 98], due to a possible analogy

between electrical components and thermals components, shown in figure 3.1, when considering a one-

dimensional approach to modelling. Using this technique, one is able to represent most of the heat

transfer phenomenons as simple thermal balance equations such as

q = UA (Ts − T∞) (3.5)

that can be put together in order to create a circuit that represents the thermal evolution of the

elements considered. Since there is only one measure of temperature inside the room, it is necessary

to consider a homogeneous medium inside the room, with its temperature rising or lowering uniformly in

all directions. This simplification reduces the precision of the model because local temperature gradients

are ignored. Nonetheless, without more sensors to measure the temperature gradients between various

locations inside the room this is the only viable way to model the system.

The following are the simplifications and assumptions that were taken into account when modelling

the system.

(1) - The room temperature was considered to be uniform in the whole room.

(2) - Only the solar radiation was considered when dealing with radiative energy transfer. The values

used were the ones obtained in 2.2.

(3) - The students were considered as heat sources with constant power output.

(4) - The thermal properties were considered to be constant.

(5) - Convection was not considered due to the unavailability of data to quantify its influence on the

thermal evolution of the system.

(6) - Passive Infiltration was considered initially but the estimated values were very small.

(7) - Since there is no sensor to measure the position of the window blinds they were considered to

be open at all times.
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Table 3.1: Resistor-Capacitor Circuit Equivalent Components

Parameter Eletrical Thermal

Potential V T

Current I Q̇

Resitance R Rt

Capacitance C Ct

Taking these simplifications into account, two models were developed. The unknown parameters in

the models were calculated using the Continuous Time Stochastic Modelling for R (CTSM-R) toolbox

[18]. This toolbox was developed at the Danish Techinical University (DTU) to estimate parameters in

continuos time stochastic state space models. It uses maximum likelihood estimator and an Extended

Kalman Filter to predict one step ahead values. It has been used successfully in [3] to estimate physical

parameters in similar problems. The two examples that are given by the DTU team are related to thermal

modelling of buildings - the first being the heat dynamics of a wall [19] and the second the heat dynamics

of the a building [20]. Although the sampling time used in the previous examples is 15 minutes, given

that the available data has a smaller sample time, it was chosen to keep the sampling time at 5 minutes.

The first model only takes into account the energy balance of the room, and is described by the

stochastic differential state-space model 3.6, represented schematically in figure 3.1.

Ci
dTi
dt

=
1

Rds
Φdsu1 +

1

Rdh
Φdhu2 +

1

Ria
(Ta − Ti) +

1

Ric
(Tc − Ti) + Φstudents + σi

dwi

dt
(3.6)

Φ��

���

Φ�ℎ

��ℎ

����

���

��

AmbientSolarInterior

��

���

Φ��������

Corridor

Figure 3.1: RC equivalent Circuit for the First Model

In the equation, wi represents the standard Wiener process, with σi representing the diffusion term

for the process state; Ti is the state variable, the one that is to be predicted and controlled; u1 and u2

are the control variables, which change how much the radiation heats the room; Φds is the DNI and Φdh

is the DHI. The second model takes into account both the energy balance in the room and the energy
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balance of the corridor. By adding another differential equation, the unknown corridor temperature is

modelled instead of being a fixed value, which is not appropriate due to the change in daily temperature.

The toolbox only takes into account the variable that is being measured when estimating parameters for

various equations, so there is no need to add measurements of the corridor temperature. It is described

by the stochastic differential state-space model 3.7, represented schematically in figure 3.2.

Ci
dTi
dt

=
1

Rds
Φdsu1 +

1

Rdh
Φdhu2 +

1

Ria
(Ta − Ti) +

1

Ric
(Tc − Ti) + Φstudents + σi

dwi

dt
(3.7a)

Cc
dTc
dt

=
1

Ric
(Ti − Tc) +

1

Rca
(Ta − Tc) + σc

dwc

dt
(3.7b)

Similarly to the first model, σi and σc are the diffusion terms for the process’ states, with wi and wc

representing standard Wiener processes. The states are represented by Ti and Tc, while the control

variables are u1 and u2; Φds is the DNI and Φdh is the DHI.

Φ��

���

Φ�ℎ

��ℎ

����

���

��

AmbientSolarInterior

���

Φ��������

Corridor

��

���

��

��

Ambient

Figure 3.2: RC equivalent Circuit for the Second Model

3.3 Results

Two sets of data were available to be used. The first set was composed by daily data from the 1st of

April to de 22nd of June, while the second set was comprised by data starting in the 11th until the 31st

of August. The two sets are different due to the absence of students during the month of August, when

the students are on holiday. For the Holidays, data from the 11th to the 21st was used to find the model

parameters and data from the 22nd to the 29th was used to validate the model. For the Classes period,

data from the month of April was used to find the parameters and data from the 1st to the 7th of May

was used to validate the model.
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3.3.1 Results during the Holidays

According to the class schedule and to the Wifi data there are no students in the room, so the models

will reproduce the baseline behaviour of the heat dynamics of the room. Three working behaviours were

considered in order to quantify the quality of the model that was obtained - 1-Step Prediction, where

each time step the value is corrected to the measured value; Daytime Simulation, where the model will

only simulate the behaviour between 8 am and 8 pm, following the measured data during the other half of

the day; and Full Simulation, where the model will simulated the whole week only taking into account the

initial values. The performance of the model is calculated using the Root Mean Squared Error (RMSE)

and the Variance Accounted For (VAF)

1 State Model

The parameters that best represent the training data in the 1-State Model - the room temperature -

are presented in table 3.2, with the associated simulations in figure 3.3. It can be seen on the figure

3.3a that the 1 step prediction doesn’t deviate too much from the measured data, with the biggest error

being close to 0.25oC. It is clear that in the prediction error increases during the day, when the solar

radiation first hits the room, and reduces in magnitude during the rest of the day and night. This shows

that there are dynamics which affect the model that are not being modelled. Further parametrization

of the model might be necessary in order to reduce the error and decouple it from the solar radiation

incidence. Furthermore, changing the window blinds position in order to reduce the influence of solar

radiation in the prediction results in a slightly higher error, but might not be representing the real change

that would happen in the room.

Regarding the full simulation - figure 3.3b, which would be the one used to represent the room if a

control scheme were to be implemented, it can be seen that the model follows the general dynamics of

the room, missing some faster dynamics during the day. This might be caused by changes in the window

blinds position or opening of windows, both of which affect the heat transfer to and from the room. It also

shows a variable offset, higher in the first few days of the simulation and smaller in the latter ones. The

highest difference in temperature is 4oC, with the lowest being slightly above 0oC. However, contrary

to the 1-Step Prediction, changing the window blinds position affects the room temperature by reducing

the temperature between 1oC and 2oC - compared to the simulation. Since this simulation is not being

corrected by real values, the divergence could be caused the compounding influence of the radiation on

the room temperature. After diverging in the first morning, it never recovers for the rest of the validation

set.

Finally, the daytime simulation - figure 3.3c, which would represent the real implementation of the

system, shows values of error compared in the same period of the day compared to figure 3.3b, with the

difference being the error during nightime being 0 by design. It shows an improvement of 1oC of error in

the simulation with the full solar radiation.
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Table 3.2: Estimated Parameter Values for the First Model

Parameter Value Unit Description

Tc 21.8 oC Temperature of the Corridor

Ci 12817 J/oC Thermal Capacitance of the room

Rds 0.03 1/m2 Window Resistance to Direct Solar Radiation

Rdh 0.069 1/m2 Window Resistance to Diffuse Horizontal Radiation

Ria 0.003 oC/W Thermal Resistance between the Room and the Atmosphere

Ric 0.001 oC/W Thermal Resistance between the Room and the Corridor

Table 3.3: First Model Performance in Various Simulation Conditions

Simulation Condition RMSE VAF

1-Step prediction 0.03 0.99

Full Simulation 1.88 0.85

Daytime Simulation 0.99 0.88
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(a) 1 Step Prediction and Error

(b) Full Simulation

(c) Daytime Simulation

Figure 3.3: 1 State Model Validation
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2 State Model

One suggestion presented by the creators of the CTSM-R tool is the inclusion of another state, even

if there are no measurements of the real values. As such, after consideration and testing different model

configurations, it was decided that the corridor temperature could be represented by another state in

order to try to improve the overall model performance.

Overall the results are very similar to the previous model, with improvements in some performance

measurements but not others - tables 3.3 and 3.5. It is important to note that the thermal capacitance

of the room changes drastically between the models, from 12817 to 8742, while the other common

parameters have very close values. This puts into question the value obtained because such a difference

should not exist if the model were being accurately estimated. Furthermore, the thermal capacitance of

air is close to 12000J/oC.

Regarding the working conditions, the 1-Step prediction shows error similar to the 1 State model,

with the same overall behaviour. However, the Daytime simulation overshoots the value of the room

temperature in more days and with higher error compared to the 1 State Model. The error ranges from

−2oC to 4oC, which is not good. Finally, the free Simulation captures the overall behaviour of the room,

but starts overshooting the room temperature in the last 3 days.

Table 3.4: Estimated Parameter Values for the Second Model

Parameter Value Unit Description

Ci 8742 J/oC Thermal Capacitance of the room

Cc 245310 J/oC Thermal Capacitance of the Corridor

Rds 0.044088 1/m2 Window Resistance to Direct Solar Radiation

Rdh 0.081089 1/m2 Window Resistance to Diffuse Horizontal Radiation

Ria 0.0047658 oC/W Thermal Resistance between the Room and the Atmosphere

Ric 0.0022 oC/W Thermal Resistance between the Room and the Corridor

Rca 0.42757 oC/W Thermal Resistance between the Corridor and the Atmosphere

Table 3.5: Second Model Performance in Various Simulation Conditions

Simulation Condition RMSE VAF

1-Step prediction 0.04 0.99

Full Simulation 1.54 0.59

Daytime Simulation 0.78 0.9

19



(a) 1 Step Prediction and Error

(b) Full Simulation

(c) Daytime Simulation

Figure 3.4: 2 State Model Validation
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3.3.2 Results during Classes

The critical time for usage of these models is during classes. As such, the same model struc-

ture tested above will be used to try and model the dynamics with the additional heat provided by the

students. Similarly to the previous results, the models will be evaluated in the same threee working

behavious - 1-Step Prediction, Daytime Simulation and Full Simulation.

1 State Model

The parameters that characterize this model are presented in table 3.6, with the associated simula-

tions in figure 3.5. Regarding the 1 Step Prediction, the model shows a variable error during the day

when classes are being held in the room, while predicting the behaviour outside of these moments with

low error. This is explained by the change in window blinds position, window and/or door being open,

which can greatly affect the room temperature when students are present. Like the holiday model, fur-

ther parametrization is needed in order to reduce the prediction error and improve the model. The full

simulation behaviour is where this model fails completely, with the error in temperature being as high

as 12.5oC, which is an unacceptable value. Curiously, when changing the position of the window blinds

the temperature more closely resembles the measured values, with a lower overall error, which might

suggest that the window blinds were indeed not fully opened in this week, as was considered initially.

The results are not improved in the Daytime Simulation, where the model manages to overshoot the

room temperature during some days and undershoot in others, with the error ranging from −4oC to 4oC.

Table 3.6: Estimated Parameter Values for the First Model

Parameter Value Unit Description

Tc 21.8 oC Temperature of the Corridor

Ci 45369746 J/oC Thermal Capacitance of the room

Rds 1.033132 ∗ 10−5 1/m2 Window Resistance to Direct Solar Radiation

Rdh 1.782774 ∗ 10−5 1/m2 Window Resistance to Diffuse Horizontal Radiation

Ria 2.04207 ∗ 10−6 oC/W Thermal Resistance between the Room and the Atmosphere

Ric 4.134099 ∗ 10−6 oC/W Thermal Resistance between the Room and the Corridor

Table 3.7: First Model Performance in Various Simulation Conditions

Simulation Condition RMSE VAF

1-Step prediction 0.057 0.99

Full Simulation 6.54 -1.54

Daytime Simulation 1.612 0.34
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(a) 1 Step Prediction and Error

(b) Full Simulation

(c) Daytime Simulation

Figure 3.5: 1 State Model Validation
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2 State Model

In order to improve the results of the model, the corridor temperature was added as a variable value,

similarly to the model for the holidays. The parameters that were found are presented in table 3.8,

with the respective simulations in figure 3.6. Considering the 1 Step Prediction, in figure 3.6a, it can

be seen that the prediction error is higher during classes, and varies rapidly in these situations. The

maximum error is 0.6oC but is not prevalent, with the error staying between 0.2oC and 0oC most of the

time. Regarding the Full Simulation, the room temperature barely changes, staying between 22oC and

24oC, which is a very poor result. Changing the position of the window blinds barely changes the results

as well, as the parameters that affect the radiation values reduce the value of the DNI and DHI too much.

It is effectively blocking most of the radiation heat that affects the room. Finally, the Daytime Simulation

shows that the Room is not losing more heat to the corridor and to the outside atmosphere than gaining

from radiation, with the room temperature starting to lower as soon as it starts the simulation every day.

Table 3.8: Estimated Parameter Values for the Second Model

Parameter Value Unit Description

Ci 233056.1 J/oC Thermal Capacitance of the room

Cc 273383536 J/oC Thermal Capacitance of the Corridor

Rds 8.758825 ∗ 10−3 1/m2 Window Resistance to Direct Solar Radiation

Rdh 0.02343304 1/m2 Window Resistance to Diffuse Horizontal Radiation

Ria 1.533843 ∗ 10−4 oC/W Thermal Resistance between the Room and the Atmosphere

Ric 1.007839 ∗ 10−4 oC/W Thermal Resistance between the Room and the Corridor

Rca 3.632536 ∗ 10−2 oC/W Thermal Resistance between the Corridor and the Atmosphere

Table 3.9: Second Model Performance in Various Simulation Conditions

Simulation Condition RMSE VAF

1-Step prediction 0.12 0.99

Full Simulation 2.79 0.19

Daytime Simulation 2.54 0.07
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(a) 1 Step Prediction and Error

(b) Full Simulation

(c) Daytime Simulation

Figure 3.6: 2 State Model Validation

24



Chapter 4

Data Driven Model

This chapter will describe the modelling process that was used to develop the black-box models. The

theory behind the workings of the model will be described in 4.1. The development of the models will be

described in 4.2, with the full results being presented in 4.3.

4.1 Neural Network Modelling

The chosen type of black box model was an Artificial Neural Network (ANN). This type of model is

characterized by high flexibility and good usability. It takes any number of data as inputs and outputs

numerical data - regression type ANN - or categorical data - classification type ANN. It uses a math-

ematical construct known as an artificial neuron, in figure 4.1, - a function that takes values as inputs,

performs calculations with the inputs and outputs the resulting value. Neurons can be grouped in layers,

which themselves can be chained together in order to improve the result, in figure 4.2. ANN models are

usually trained with labelled data - either the value that is supposed to be the result of a calculation or

a categorical data point associated with those inputs: Image classification and Temperature forecasting

are known uses of both types of models. The training process works by updating the weights associated

with each neuron with each passage of data from input to output - an optimization algorithm is used,

together with backpropagation of the error, to change the weights in order to reduce the overall error

- difference between the output of the network and the target value. If given enough data, time and

number of neurons, ANN can approximate any continuous function, known the universal approximation

theorem [21]. The complexity of the ANN is increased given that there are many types of functions that

can be applied in the neurons, several different optimization algorithms and various hyperparameters

that characterize the optimization and learning process.

Regression type ANN, in figure 4.3, can also be further specialized to perform autoregressive tasks.

If given the its past outputs as future inputs, it can learn the time dependent pattern of the data and be

used to predict several steps forward in time. It can also be given different data as extra inputs in order

to improve the prediction and the robustness of the regressive mechanism.
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Figure 4.1: Generic Neuron, retrieved from Vieira and Sousa [22]

Figure 4.2: Generic ANN, retrieved from Mathworks [23]

Figure 4.3: Generic NARX, retrieved from Sansa and Bellaaj [24]
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4.2 Model Development

As stated in section 4.1, with enough data the ANN model can approximate any continuous function.

However, not all available data is relevant to the specific task, with some data values being extremely

important to the model and others having very little influence in the desired output. As such, the first

step taken was to analyse the data available to understand how each variable related with itself and each

other. There are several methods that can provide an insight into how the many different data variables

relate with each other and with themselves, such as autocorrelation - indicates how past values of a

variable influence the future ones, partial autocorrelation - which differs from autocorrelation because

it analyses each past timestep ignoring the influence of the other timesteps, and Pearson correlation -

indicates linear correlation between variables.

Due to the dynamic nature of a thermal system - past values affect the future values, partial and ”full”

autocorrelation were used to find out which past values are important.
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Figure 4.4: Room Temperature Autocorrelation, with lag step equal to 5 minutes
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Figure 4.5: Room Temperature Partial Autocorrelation

As we can see in figure 4.4, the thermal system has very high correlation with its past values, a
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characteristic of autoregressive systems. It can also be seen in figure 4.5 that only the first two past

values have a very strong correlation when eliminating the influence of other past values, with the third

lagged value having weak correlation. While most thermal systems can be described by first order

autoregressive models, this particular system can be described by a second order autoregressive model

- there is a sharp drop in correlation coefficient on the third lagged value.

The Pearson correlation, figure 4.6 quantifies the linear correlation between the data, and it can be

seen that the correlation between the room temperature and the two components of Radiation is low -

0.27 for DHI and 0.13 for DNI. This can be counter-intuitive because solar radiation is a very important

factor in modelling heat dynamics in buildings. Looking at how the data is distributed, in figure 4.7b and

4.7c, it can be seen that the very high frequency of values close to 0 - during night time and, in the case

of DNI, when the solar azimuth is also less than 4.8o South.

The most important data that is used is the number of students inside the room. It can be seen

that the correlation is 0.36, which means that having students inside the room is more correlated with a

higher temperature inside the room than the radiation components. Nonetheless, the correlation is, like

the DNI and DHI, influence by the high number of measurements with no students inside the room, as

seen in figure 4.7d, which reduces the correlation coefficient.

Neural network weights can be hard to constraint, and using more data that can’t be modified with

a very high correlation with the target output can cause the network to adapt the weights to give more

importance to these values instead of the ones that are going to be modified by control actions. It was

decided to only use the first lagged value of room temperature. It keeps the autoregressive nature of the

system, but leaves room for the neural network to assign more importance to the DNI, DHI and Student

data. If more lagged values were used, given that those have higher correlation with the data than the

radiation components and student occupation, as we can see by comparing the values in figure 4.6 with

the values in figure 4.5, the network would very likely reduce the importance of the radiation components

and student occupation and ultimately devolve into an almost pure autoregressive model.

Ambient Temperature Room Temperature Students DHI DNI

Ambient Temperature

Room Temperature

Students

DHI

DNI

1 0.82 0.23 0.22 0.071

0.82 1 0.36 0.27 0.13

0.23 0.36 1 0.3 -0.16

0.22 0.27 0.3 1 0.16

0.071 0.13 -0.16 0.16 1

Pearson Correlation of Selected Data

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.6: Pearson Correlation Coefficients of Available Data

Finally, neural networks can give poor results if the data is not normalized, with values with different

scales being used as is. In order to improve the performance, reduce the complexity of the calculations
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(a) Ambient Data Histogram

Figure 4.7: Data Distribution

(b) DNI Data Histogram

Figure 4.7: Data Distribution

(c) DHI Data Histogram

Figure 4.7: Data Distribution
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(d) Student Data Histogram

Figure 4.7: Data Distribution

and give the same numerical importance to all variables, all the values were normalized and scaled into

a 0 to 1 range, independently of each other, preserving the distribution.

4.3 Results

The network architecture was chosen by cross validating with an ordered split of the available data -

16732 training samples and 7171 testing samples. The parameters that were selected are presented in

the table 4.1. The solver Adam is a gradient-based optimizer created by Kingma and Ba[25] and widely

used in machine learning problems. The Activation function Rectified Linear Unit (ReLU) is describe

by the mathematical relation 4.1, which outputs the maximum value between 0 and the neuron output.

There are other activation functions, but this one avoids the problem of vanishing gradient - gradient

becomes so small that the network stops learning in the initial layers [26].

f(x) =

0, if x < 0

x, if x ≥ 0

(4.1)

Table 4.1: Chosen Hyperparameters

Number Hidden Layers 2
Neurons/Layer 4
Activation Relu
Solver Adam
Initial Learning Rate 0.001
Alpha 0.001

These parameters achieved good results in 1 step prediction - with target correction at every step.

The cross validation score was 0.0068oC, much lower than human perception. Looking at the results in

figure 4.8, it can be seen that the prediction error is very low - root mean squared error equal to 0.049oC,

which is a very good result. Nonetheless, the problem of using highly correlated data mentioned in
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section 4.2 can be observed - reducing the value of DNI and DHI barely changes the result of the

prediction, which renders the model ineffective for use in controlling the room temperature in 1 step

prediction and correction scheme. Although the real value is being used as correction in both cases, the

prediction would need to be significantly different when altering the DNI and DHI values - it is close to

0.1oC, not noticeable by humans.

On the other hand, figure 4.9 shows a marked difference in the predicted temperature when reducing

the values of DNI and DHI during the day. This figure shows the results when the model is doing a full

prediction during the day without correction between 8 am and 8 pm. During night-time the model does

1-step prediction with correction - the model will not be actively working because controlling the values

of DNI and DHI, both zero, will not affect the heat dynamics of the room - considering the model used.

This way, the model starts freely predicting at the correct value every morning, instead of having the

prediction error propagate for the whole dataset. The root mean squared error in this case is 2oC,

higher than desired.

Taking into account the result of the 1-step prediction in 4.8, it can be interpreted that the marked

difference in the predicted Room Temperature in 4.9 is due to the propagation of the prediction error.

The model also overshoots in some days when using data as is, predicting a higher Room Temperature

than measured. Finally, the full simulation of the room, in figure 4.10 shows that the network captured the

heat dynamics of the room but the propagation of the error worsens the forecasting in a worse manner

than desired.

Figure 4.8: 1 Step Prediction and Control of Room Temperature
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Figure 4.9: Daytime Prediction and Control of Room Temperature

Figure 4.10: Full Simulation and Control of Room Temperature
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Chapter 5

Conclusions

In this dissertation, two modelling techniques were used to model a classroom in order to serve

as a basis for implementation of control strategies. These techniques were different in concept and

applied with different considerations. The Physical model used known Heat Transfer phenomenons

and equations in order to produce a model that could be interpreted and understood clearly. It used

parameters estimated based on data, which was abundant, to try and make the model as accurate as

possible. The Data Driven Model, on the other hand, used an Artificial Neural Network to model the

phenomenons based entirely on the available data. Its implementation was simpler in concept, with

the only difficulty being the hyperparameters and choosing the treatment appropriate for use with the

available data.

In order to develop the model, a large quantity of data was captured by sensors inside the room

and in the environment. This data was then preprocessed using common techniques used on similar

datasets in order to facilitate its usage further on. Some data needed to be verified against model data

to try to identify what was being measured, other data needed to be generated by models based on

measurements and adapted to the problem at hand. After fixing all the irregularities and collecting the

necessary data, the models could then be developed.

While the model was able to reproduce the heat dynamics of the room, the accuracy is not high

enough. The most accurate model was the Physical model with 1 State, which achieved a Root Mean

Squared Error of 0.057oC. It achieves a poor performance when simulating the behaviour of the room

taking only into account the initial values, so it was not used to simulate the result of control actions.

Similarly, the ANN model was only accurate in predicting 5 minutes in advance, achieving an accu-

racy of 0.049oC in the validation set. It closely resembled a pure autoregressive model because changing

the values of the heat radiation did not noticeably change response of the system.

5.1 Future Work

Some likely causes of the worsening performance when the forecasting window is increase are

the assumptions that were considered when developing the model. Having no window blinds sensor
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to know in which position the window blinds were during the measurements increases the difficulty

because there is no reasonable justification to assume one position instead of another. Having this

data would be very important in improving the parameter estimation and modelling, reducing one of the

uncertainties that was very detrimental to the model development. While some of the models were able

to reasonably predict the behaviour of the room, the faster dynamics associated with the presence of

students - opening and closing of the door to the corridor and the opening and closing of the windows -

were not hard to be reproduced by the model.

Other aspect that can be improved with further investigation and development is the implementation

of a known control action for different periods of time in order to gather data containing the information

that was missing in this implementation. However, this specific action would deteriorate the comfort

quality of the working area, and disturb the classes that would be attended in the room.

Finally, a sensibility analysis could be performed in order to quantify the influence of the estimated

parameters.

The results obtained are a stepping stone for further development and improvement of the comfort

quality of the room.
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