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Resumo

Comparam-se métodos de cálculo de movimentos induzidos pelas ondas em catamarans, com o ob-

jectivo especı́fico de avaliar como modelam a interação entre cascos. Aplicam-se três programas, rep-

resentando o caso de não interação, o caso de interação bidimensional e por fim o caso de interação

tridimensional, num total de 7 formas de cascos de catamarans encontrados na literatura. O primeiro

caso é obtido utilizando resultados do método das faixas através de um código desenvolvido no CEN-

TEC no IST, ao qual foram incluı́dos os termos dos extremos. O caso de interação bidimensional é

resultante de um código desenvolvido por Centeno et al. (2000), baseado na teoria das faixas e em que

os coeficientes hidrodinâmicos são calculados usando simetria dos cascos. Este código inclui o método

de escoamento cruzado para inclusão dos efeitos viscosos nos movimentos. Para comparação o caso

de interação tridimensional é obtido através do método dos painéis com fontes de Rankine, implemen-

tado no programa comercial Wasim da DNV-GL. Os resultados experimentais são comparados com os

calculados pelos métodos através das funções transferência. A incerteza dos modelos numéricos é

avaliada através de um modelo independente da frequência. Considerando as variáveis relevantes do

problema, um estudo da correlação linear entre estas e os resultados da raiz do erro quadrático médio.

Modelos de erros dependentes da frequência são criados com o resultado das correlações encon-

tradas e comuns a todos os métodos. Os resultados indicam a relevância da interação hidrodinâmica e

correlação com o número de Froude, sendo o método tridimensional o mais satisfatório.

Palavras-chave: catamaran; interação; método das faixas; método dos painéis Rankine;

Modelo de erro
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Abstract

Different methods to compute wave induced motion of catamarans are compared, with the special ob-

jective to evaluate how hydrodynamic hull interaction is modelled. Three numerical implementations,

representing the no-interaction scheme, two-dimensional interaction and a three-dimensional interac-

tion scheme, are applied in a total of 7 different hull forms of catamarans found in the literature. The

first case is accomplished by post-processing of a strip theory method implemented in an in-house

code developed at CENTEC in IST with additional end-terms inclusion. The two-dimensional interac-

tion scheme results are obtained by a similar in-house code based on strip theory method, where the

hydrodynamic coefficients are computed using symmetric demi-hulls. This code includes an empiri-

cal method, cross-flow for inclusion of viscous effects. For comparison it is included results using a

commercial three-dimensional Rankine panel method, Wasim from DNV-GL. Motion results comparison

between experimental and computed ones is done using transfer functions and Root Mean Square Error

(RMSE). The uncertainty in numerical errors is evaluated using a frequency independent model error.

Considering the relevant variables of the problem a linear correlations study is accomplished using the

RMSE. A frequency dependent model error is studied using the best correlations found. Results indicate

relevance of interaction schemes and strong dependence on Froude number, however better results are

obtained using the three-dimensional interaction scheme.

Keywords: catamaran, interaction, strip theory, Rankine panel method, model error.
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Coordinate systems
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Chapter 1

Introduction

1.1 Motivation

The understanding of ship motions is today considered to have been developed to the stage of engi-

neering accuracy. Even with relatively simple methods from the 70’s, such as strip theory, that has been

proven and widely used in computations of ship motions due to waves in a seaway, especially for single

hulls. Other aspect of this advanced subject, ship motions, is the amount of methods existing to perform

such computations, from thin theory, strip theories, three dimensional methods linear and non-linear

based on potential theory, until recently CFD (computer fluid dynamics) that allow inclusion of viscosity.

Compilations on such methods can be found in books and notes like, Fonseca (2009), Bertram (2012)

and Faltinsen (2005). Nowadays it is the concern of general scientific community the comparison and

evaluation of different methods. Comparing the results and the quality of the outcomes, sometimes re-

garding specific methods or conditions like linearity of solutions, or even general achievements in such

computations are of most use for readers that are interested in the final ability to perform design op-

timisations regarding seakeeping criteria, Bunnik et al. (2010), Watanabe and Guedes Soares (1999),

Dhavalikar (2011), Nestegard et al. (2008) and Temarel et al. (2016)

The study of ship motions in early stages of the project has been assumed as a benefit for the

industry. This has led the researchers to investigate the motions of ships and create theories that can

predict them with a good level of accuracy. This type of approaches to the project stage is based on

the need to have a ship that can fully complete the task inherent to it. This is of higher importance

when the type of vessel is somehow different or has extreme characteristics. These vessels such as

fast ships, passenger ships, navy, investigation and others, have more parameters in account to make

their operation successful or not. These type of ships are more likely to have discrepancies in the

theoretical, numerical calculations and experiments. There are many factors that can influence these

differences and also theories that try to overcome the problems. For the case of a multi-hull vessel such

as the catamaran, considerations can be more elaborated. Catamaran’s designs have been evolving

rapidly and their ability to be a fast passenger transportation vessel is widely accepted, Faltinsen (2005).

Two from the most important characteristics being fast vessels, namely faster then mono-hulls; and
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the two demi-hulls configuration. Being fast is in itself an important aspect to have in consideration

when performing hydrodynamic computations, which can be tackled in many different ways discussed

along this work. Regarding being a vessel with two demi-hulls imposes a very important consideration

for the type of methods to use in such computations because the interaction between hulls can play

an important role. Prediction of motions on multi-hull vessels considering interaction of hulls have been

needed since applications of strip theories in these cases, Jones (1972), Lee et al. (1973) and Van’t Veer

(1998a). This aspect together with high speeds, extreme characteristics of catamaran vessels, restrain

the precision of results using simplified or commonly used theories of single hulls. Solutions to the

interaction modelling can be found, from no-interaction to the fully three-dimensional wave problem

case. In particular one publication developed at Instituto Superiror Técnico serves as starting point,

Centeno et al. (2000), where a solution for the problem includes a cross-flow approach in a strip theory

method. The implementation of that theory was available for this specific work being needed some

revalidation after corrections were done, which were executed by Professor José Miguel Rodrigues at

the time lecturing at the Institute.

Computations of seakeeping abilities of vessels need to have acceptable precision, since those ves-

sels will carry persons on-board and/or need to perform operations of risk. To do this, different methods

need to be studied, considering its different results and quantifying its level of precision. With the com-

piled information, processes can be defined and implementation of criteria in design stages of vessels

regarding seakeeping can be done. Following this stages, found in single hull cases, this work fits in

the comparison and evaluation of existing methods but for the case of multi-hull vessels. In sum, we will

be comparing and evaluating different existing methods of seakeeping computations for vessels, with

special focus on multi-hull.

1.2 Objectives and Outline

The focus of this work is a type of vessel that has peculiar characteristics, catamarans, even so those can

be of a kind that is not contemplated in here. The catamarans on which this work is dedicated are twin-

hull vessels, meaning that each of the hulls are completely symmetric and therefore demi-hulls. Many

other types of catamarans exist from asymmetric hulls, wave piercing and SWATH (Small Waterplane

Area Twin Hull), each one with it’s own characteristics.

Catamarans are nowadays designed for a range of speed that place them in the category of semi-

displacement vessels, they sail somewhere between being on their still waterline level and a planning

condition, where the floating force is largely due to a lifting force produced by their speed trough the

water. Being so, trim and sink due to dynamic condition is somehow important in computations regarding

resistance and seakeeping. The demi-hulls of catamaran have different relations in dimensions from the

single-hulls, being slender and in most cases having constant beam aft of mid-ship, ending typically in

wet transoms with less draught then the midship section.

Inclusion of interaction between demi-hulls of catamarans can be significant for precision of results.

Being available the work from Centeno et al. (2000), which includes a two dimensional approach, the
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Figure 1.1: SWATH catamaran concept (left); Wave piercing catamaran concept (right), Faltinsen (2005).

study on this matter is a continuation on previous intern studies of the department. In seakeeping

predictions advances, discussed at the beginning of this dissertation Chapter 2 ”Previous works done in

the field”, several methods are explored and discussed with the objective of selecting the most relevant

ones. Along side this selection, other important aspects such as improvements and post processing

empirical methods are discussed. Namely interaction, end terms and inclusion of viscous effects in the

computations until experimental work found for validation.

1.2.1 Numerical methods

In order to acquire results from the different methods, numerical computations are performed using a set

methods available for this work. An in-house software, Fonseca built in FORTRAN, that uses strip theory

based on Salvesen et al. (1970), from which results are subjected to post-processing, using MATLAB,

in order to include end terms and a no-interaction scheme for catamaran transversal modes of motion.

A two-dimensional interaction scheme is computed using CatCenteno, from Centeno et al. (2000). The

software is based on the same strip theory as the previous but includes already ability to perform com-

putations with end terms, more than that it also allows to apply an empirical method called ”cross-flow”.

This method tries to include effects of viscosity in the motion results of fast vessels. The interaction

effect is two-dimensional due to the computation of two-dimensional hydrodynamic coefficients of twin

hulls placed side by side. As referred before the code was revised by the department. The software is

build in FORTRAN and the use of MATLAB is extensive in the treatment of results. The third method is a

three-dimensional scheme of a commercial software from DNV-GL. The package is called HydroD and

in it the code used to perform computations is Wasim, a 3D Rankine panel method based code. This

code among other features includes three-dimensional interactions between demi-hulls and also inter-

action with the standing wave created by the ship advancing on water, relevant for fast vessels. Strip

theories solutions are solved in frequency domain, and Rankine panel method is solved in time domain,

being treated by the software to give frequency domain solutions using fast Fourier transformation. Only

linear motions are considered along this dissertation, although it has been present already for some

time possibility to compute non-linear motions, case of Wasim software. The selection of methods to
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implement in this work tries to traduce the possibilities that exist nowadays, keeping in mind that an im-

portant objective is the ability to include this type of computations in design stages. This is crucial since

nowadays trend is to be able to create automatic loops of computations optimizing designs for specific

criteria, such as seakeeping ones. An example of this will be justified by exclusion of CFD computations

for this dissertation.

1.2.2 Results and experimental data comparison

Results from computations using the relevant methods will figure the work. Computations for prediction

of ship motions are generally expressed in the form of RAO (Response Amplitude Operators), consid-

ering linear motions. The hydrodynamic coefficients of the methods will also be expressed for better

understanding. Other possible results like phase angles between excitation forces and vessel motions

will be neglected due to the amount of computations. Case studies will be used for validation of the

methods. Experimental works used for this dissertation consider head waves conditions and in less

cases bow or transversal waves, representing the availability of such experiments. The total number of

different geometries used in this work is 7, with this hulls several combinations of conditions led to a

total of 48 computations for heave, pitch and in relevant cases roll motions. For each one of this cases 3

interaction schemes, two of them with extra considerations leading to 288 RAO computations, creating

a relevant pool of data for the next treatment and further conclusions.

1.2.3 Treatment of results

Commonly the experimental data produced for validations are discussed in a qualitative way. Compar-

ison between experimental and computational results is done by overlapping curves in RAO figures.

Recent works follow a trend of quantifying these differences by the mean of errors, root squared error

for example. Performance metrics have been gaining ground as the precision of computations develops,

such case is Castiglione et al. (2011) publication which presents a V&V (Validation and Verification)

study characteristic of CFD computations. In other works when several methods are compared the

amount of results is small and only direct comparisons are possible to accomplish, Bunnik et al. (2010).

Due to the extension of this work a based on uncertainty quantification methodology is attempted, this

way trying to quantify differences and showing concise results for further conclusions. This approach

can be found for the case of single-hull vessels and has given good understanding regarding error mod-

elling and even non-linearities presence on experimental results, Guedes Soares et al. (1999). With the

objective of bringing this subject to catamaran motions results, the last work serves as base for a study

on errors. Quantifying the errors and being able to locate them in the frequency means an attempt to

understand the methods limits and their applicability.
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1.3 Outline

The work is written in 8 chapters being the first one the introduction that includes the motivation of

this work, followed by the three main components of the thesis: ”Numerical methods”, ”Results and

experimental data comparison” and ”Results treatment”. Each one of these previous components is

detailed in objectives subsection. The study on ”Previous works done in the field” is evident in Chapter

2, there, an overview of evolution and latest state-of-the-art works are explored, with focus on the case of

catamaran motions computations. Chapter 3 includes the theoretical definitions of methods used in this

work, catamaran motions computations using strip theories methods and a Rankine panel method. With

the theoretical base a study on the problematic of hulls interaction is done, Chapter 4, in this chapter

main differences in results by applying the different interaction methods are studied. ”Case studies”

Chapter 5, has the compilation of all the catamaran models used to compute motions by the different

methods and at the end includes descriptions of the software available for the work. The next two

Chapters, 6 and 7, show the obtained results, being the first one direct comparison using RAO figures,

which are showed in Appendix A. ”Study on model error” Chapter 7, has the treatment of results applying

performance metrics and uncertainty models, first a frequency independent model and then a linear

correlation study on the root mean square error that leads to a presentation of model correction factor

dependent on the model’s speeds. Finally the last Chapter 8, compiles the work here produced, including

conclusion remarks and recommendations of future directions of studies, concerning the central topic of

catamaran motions.

5



6



Chapter 2

Previous work done in the field

In this chapter previous work done in the field is revised in order to describe the present state of knowl-

edge. It is important to start with this part as a justification of the methods here used. This is done with

a brief explanation about the ship motions and how this subject evolved throughout the time. Different

theories have been created and it is important to refer some limitations inherent to them. More it is

recommended to understand the effect of those limitations in today’s ship motions studies. A generic

overview of the need to study the ship’s motions and a sequence of the most remarking development

in the direction of methods applied in this work is done. More works are discussed including those that

account for viscous effects representing the state-of-the-art at the present time. There are many meth-

ods to use when ship’s motions are to be calculated, still here the focus will be those of interest when

they include experimental validation, referent to strip theory methods, 3D Rankine panel methods and

to computational fluid dynamics (CFD).

2.1 Ship motions

Ship motions have been studied since the 18th century, maybe not in a direct way as we do today,

however since then there are publications on the evolution of seakeeping research. This first mile stone

that is available was produced by Leonhard Euler in 1749 named ”Scientia Navalis”. In those times his

study was far too mathematical, including theorems and corollaries.

A bigger need for correct calculations regarding the roll of ships appeared when the sailing ships were

substituted by the steam vessels. The sails which were a damping device regarding the roll motion, for

the sailing vessels, are replaced by steam engines. The work that marked this new era of ship motion

calculations was produced by William Froude and A. N. Kriloff at the year 1861. Quite consequently of

the development of the steam engines the pitch motion had to be considered when the vessels sailed

with head waves. In 1896 Kriloff develops work regarding this matter and later in 1898 he presents

the general six degrees of freedom theory. The works are based on the pressure field created by the

underwater part of the vessels, considering that it is not disturbed by the ship. Froude-Kriloff hypothesis

has dominated almost the works in seakeeping analysis till 1953 and is still nowadays used (Froude-
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Kriloff excitation force). Being possible to consider the vessel a rigid body the equation of motion is

written by Newton’s second law; this results in a second order differential equation with respect to the

derivative of displacement.

To correctly solve this equation experimental hydrodynamic coefficients where introduced, these co-

efficients are somehow special since they are frequency dependent. An extensive study on those coef-

ficients was done with several theories proposed. One was Lewis (1929) work, who used the conformal

mapping method to calculate the coefficients for sections oscillating. And exact solutions for the flow

around circular cylinders with forced oscillation in the free surface were found by Ursell (1949). The two

works combined provide the hydrodynamic coefficients for arbitrary sections and frequencies. A more

sophisticated method to calculate the coefficients was developed by Frank (1967). He uses pulsating

sources distributed along the hull shape. Known as Frank’s close-fit method it works for any arbitrary

body shape oscillating on the fluid surface and can be applied for multiple bodies, Lee et al. (1971). This

coefficients tend to infinity when testing the zero frequency. To correct this, is necessary to introduce

some three-dimensional effects on the formulation.

With the two-dimensional results previously described was possible to apply them in theories that are

able to predict ship’s motions. This first methods are named strip theory, and two-dimensional section

coefficients are integrated along the length of the hull. Korvin-Kroukovsky (1955) presented the appli-

cation of results from the two-dimensional to a strip theory that predicts the heave and pitch motions.

Later ,Korvin-Kroukovsky and Jacobs (1957) brings some improvements and plenty experimental vali-

dations in the latter work. Problems with these theories were the intuitive way to introduce the effects

of ship’s forward speed. Also the coupling terms did not verify the relation of symmetry, Timman and

Newman (1962). Similar strip theory was presented by Gerritsma and Beukelman (1967) but the work

of Salvesen et al. (1970) is still considered one of the more acceptable and widely used. The mathemat-

ical analysis of the last strip theory is more accurate than the one presented by Korvin-Kroukovsky and

Jacobs, simplifying the six degrees of freedom equations in a set of two coupled linear differential equa-

tions. The base assumption of the strip theories method is the linearisation of ship motions in respect

to the incident wave, meaning that the wave hight is small compared to the ship’s main dimensions.

This assumption, which allows the solution in frequency domain represents very good accuracy and

ability to include seakeeping criteria in design stages. Even so there are cases where more than the

linear solution is required, extreme responses due to large incident waves are important when other then

operability conditions can be found at the life time of a ship. To study this specific cases time domain

theories are developed being able to solve the non-linear equations resulting from the excitation forces,

Elsimillawy and Miller (1986), Xia and Wang (1997) and Fonseca and Guedes Soares (1998). There

are plenty methods that vary from the strip theory, but this last mile stone lead to developments on a

different type of vessels such as the catamaran.
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2.2 Catamaran motions

With the achievements of methods described previously, attempts to apply the same mathematical mod-

els were not successful for catamarans at the beginning. With this same models the US Navy started

the operation of USNS Hayes. This vessel faced big problems relative to the heave and pitching mo-

tions, making it not possible to operate as research vessel for the Navy, Van’t Veer (1998a). One of the

conclusions was that the wave interaction between hulls was not taken in account with the available strip

theory. This failure lead to a more exhausting research and model test related to the multi-hull vessels

and at the same time other variations of hulls types like the SWATH were incorporated in the same type

of problem.

Ohkusu (1970) presents a method to calculate the hydrodynamic coefficients for a multi-hull vessel

and applied them in the strip theory with satisfactory results. The sequence of reports published show

consideration of interference effects on floating structures shaped as cylinders without forward speed.

Calculations of the hydrodynamic coefficients and forces acting upon sets of cylinders are preformed by

experimental and a theoretical approximation, having in mind that knowing these quantities the results

can be used in strip theories calculations and even applying Lewis transformations for different forms of

hulls corresponding to catamarans. The publication presenting theoretical calculations assumes a two

dimensional interaction scheme that discard the standing waves in the vicinity of one cylinder, consider-

ing only the radiated waves in the problem. Calculations of the added mass and damping coefficients

show profound effect considering interaction in all frequency ranges. For the case of twin cylinders,

several configurations of spacing over radius, S/R, are explored with significantly different results in

the location of maximum values versus minimums of the hydrodynamic coefficients. This abrupt, but

not necessarily discontinuous changes in the curves of coefficients are due to the high waves exist-

ing in the space between the cylinders. Following this work an experimental study of a catamaran hull

form produced for the purpose was presented, Ohkusu and Takaki (1971). The hulls used are sym-

metric longitudinally and two spacings were tested. Small forward speed, Fn = 0.1 was imposed and

the response was compared with the theory discussed in his previous publication. The results shown

response peaks in heave and pitch motions due the interaction between demi-hulls, this with the reason-

able agreement between the experimental results. Observations on the experiments give notice that the

wave between demi-hulls had significant high amplitude even when the heaving motions was small. As

for the peak over-prediction is found to be related to the smaller damping force compared to the single

hulls at resonant frequency.

Other of the very first works published, is by Jones (1972). In this work the simplified theory is

applied to roll motion and the strip theory is adapted to the SWATH catamaran type for heave and pitch

motions. As conclusions the author mentions over prediction of motion for the scenario of a higher ship’s

speed, even that the resonance frequency is well predicted using the ratio between wave length and

ship’s length. The possible solutions for the major problem of failure to predict the catamaran motions

started with Lee et al. (1973). They mention three-dimensional influences regarding the hull spacing and

viscous effects already assuming the catamaran as a fast vessel. The work presents conclusions about
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displacement multi-hull and SWATH type of catamarans. By applying a strip theory approximation to

calculate the hydrodynamic coefficients to include on the motion equations, the conclusions are similar

to the previous works having results with a over-shoot in the motions response, noting that for the case

of the SWATH type of catamaran the discrepancies are substantial, Lee et al. (1973).

Even being a study for the SWATH type of vessel, multiple remarks have to be done to the work

completed by Lee and Curphey (1977). In this work discussions about the importance of viscous effects

on the motions and correct formulation of the full three-dimensional problem are presented. One of the

characteristics of this work is the guide to use of cross-flow method justified by the typical shape of the

SWATH vessels. Lifting theory combined with strip theory led to good analytical results. The inclusion

of viscous effects by the cross-flow approach is also present in the three-dimensional methods. Works

like Chan (1993) and Fang et al. (1996) show some results even that the case of study is the SWATH

type of catamaran. The three-dimensional linearised potential theory is applied including the effects

between sections of the hull and taking account the end terms which are significant at low frequencies.

By representing the mean wetted hull surface by an oscillating source distribution along the hull surface,

it is concluded that discrepancies can be caused by not taking in account interaction between the steady

and unsteady wave potentials while having forward speed. This can be solved by the use of a more

correct formulation of the problem, that include viscous effects on the ship motions. The cross-flow

method, witch is originally an adaptation from the simplified aerodynamic theory, Thwaites (1960), is a

well tested way to include the effects of viscosity in ship motions. Even for the mono-hull case it has

given better results compared with experimental data, works like Fonseca and Guedes Soares (2000)

for vertical motion on container vessel and Begovic et al. (2002) and a later comparison work Arribas

and Fernández (2006) show that the inclusion of the viscous effects is useful in the calculation of mono-

hull ship-motions. This approach by the cross-flow to include the viscous effects can be applied to the

strip theory, by an iterative method that introduced the new damping and added mass coefficient and

recalculates the ship’s motions till an accepted convergence is found in the results. Centeno et al. (2000)

work presents this combination and with this formulation the results possible to compute are very well

in agreement with the present necessities, fast calculations and simple implementation for an earlier

stage of the ship design. Being the target of this work the multi-hull type of vessel the inclusion of

viscous effects and the interaction between the hulls seam to be needed for more correct results with

the necessary quickness of application.

Trying to solve the problematic of the three-dimension effects on the multi-hulls applications with

the strip theory by van’t Veer and Siregar (1995), shown that the strip theory is less realistic when the

forward speed increases. In sequence the use of a three-dimensional panel method is presented in van’t

Veer (1997), in witch the interaction effects are included automatically Peng (2001). Regarding the three

dimensional aspect of the catamaran motion problem there are several works of interest, but they are of

some complexity level for the fast calculations required in the naval industry, specially in the preliminary

design stage. Some works as, Hudson et al. (1995), Van’t Veer (1998a), Varyani et al. (2000), Peng

(2001) and Fang and Chan (2004) show an interest of research with this type of formulation and still

compared with two-dimensional or directly with experimental tests.
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Using the fundamental equations of Navier-Stokes the problem will be solved in all variables. Solvers

that implement these equations are constructed with all the parameters of the problem into them, this

means that with a solver of this type the solution of the problem will have in it the free surface water

elevation (kelvin wake) and boundary layer. Applications of Reynolds averaged Navier-Stokes (RANS)

methods in seakeeping and manoeuvring problems represent a new approach in numerical methods

which implies the effects of viscosity and turbulence in the flow equations. The work of Castiglione et al.

(2011) presents CFD results for a high speed multi-hull with rigorous verification and validation. Results

using unsteady Reynolds-Average Navier-Stokes (U-RANS) are compared with experimental data and

strip theory, for heave and pitch motions. The amount of computations present in the work are small

due to the method applied. The comparison of results is done with a two-dimensional fast strip theory

Faltinsen and Zhao (1991), that includes the interference effects, Hermundstad et al. (1999), and the

experimental results of the hull in study. In both cases fully three-dimensional and U-RANS methods,

the computational effort is very high or the methods are difficult to implement, even for the case of

mono-hulls that do not have the problem with the interference effects.

11



12



Chapter 3

Theoretical background

In this chapter the theoretical formulations on which the numerical applications are based are introduced.

From the ship motions mathematical problem that starts with the regular wave theory passing to the

rigid body motion equations of a ship. Two different methods are used in this work, strip theory with and

without interaction, and three-dimensional Rankine panel method. For each one the base theoretical

assumptions are here described. Some variances of specific cases such as cross-flow method are

also included and commented in this chapter. Regarding the numerical and software considerations the

reader will be provided with relevant information later in Chapter 5.

3.1 Coordinate systems

To define the mathematical problem a set of referential axis where the object is placed has to be defined.

Two Cartesian referential can be set, one that is fixed to the Earth referential, O0(x, y, z) and other

that is fixed to the object with forward speed U , O(x, y, z). With the first one, wave definition can be

done and the second will be mainly referent to the motions of ships in study. The surface waves can

be considered as linear superposition of harmonic components, and the next part defines the simple

harmonic component that will be applied to the problem. This using the first referential, O0(x, y, z) that is

placed with the origin at undisturbed surface of the ocean. The z axis direction is directed upwards and

x axis is positive in the direction of wave propagation. Figure 3.1 is taken form Journee and Adegeest

(2003) and shows the wave definitions on referential O0(x, y, z).

Figure 3.1: Harmonic wave definitions, Journee and Adegeest (2003)
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The wave is shaped as sinusoidal function and the distance between highest point, crest, or the

lower point, trough, to the undisturbed water surface is the wave amplitude ζa. In any other point of the

wave its amplitude can be calculated and is denoted by ζ(x, t). The λ refers to wave length and if the

”time history” is taken then T is the period of the wave. In here the depth of sea bed is represented as

h, but for this work it will be considered tending to infinite as the problem is for deep waters case. With

this definitions the relations of interest that can be calculated are the conversion to the sine or cosine

angular arguments.

kλ = 2π ⇔ k =
2π

λ
(3.1)

ωT = 2π ⇔ ω =
2π

T
(3.2)

Where ω is the wave frequency in rad/s and if divided by the wave number, k in rad/m, it gives the

wave velocity c , with this the mathematical description of the water elevation due to the existence of an

harmonic wave can be translated to the following cosine Equation 3.4,

c =
ω

k
=
λ

T
(3.3)

ζ = ζa cos(ωt− kx) (3.4)

For the ship that is exited by the wave the following coordinate system, O(x, y, z) is located in a way that

the x-y plan is coincident with the undisturbed surface of the water and z axe passing by the longitudinal

centre of gravity. The six degrees of freedom are represented in the following figure 3.2. The linear

motions of the ship are surge ξ1 along the x axis, sway ξ2 along the y axis, and heave ξ3 along the z axis.

For the rotational motions of the ship that are around the axes of the right handed coordinate system

they are, roll ξ4 around the x axis, pitch ξ5 around the y axis and yaw ξ6 around z axis.

Figure 3.2: Catamaran coordinate system and the six degrees of freedom, Centeno et al. (2000)

The ship forward speed in relation with the incident wave direction, β, can be written in the coordinate

system of the ship itself O(x, y, z), this due to the encounter frequency.

ωe = ω − kU cosβ (3.5)
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The direction of the wave propagation is then,

xO = Ut cosβ + x cosβ + ysinβ (3.6)

resulting the wave elevation in the ship’s referential O(x, y, z),

ζ = ζa cos(ωet− kx cosβ − ky sinβ) (3.7)

3.2 Ship equations of motion

As stated before the ship is modelled as a rigid body that now is subjected to excitation forces from the

incident waves, resulting from those motions can be expressed in the equations for all the six degrees of

freedom. From the dynamic equilibrium applying the second law of Newton the following equation can

be written.

6∑
k=1

[(Mjk +Ajk)ξ̈k +Bjk ξ̇k + Cjkξk] = FEj , j = 1, 2, ..., 6 (3.8)

(Ajk ξ̈k), refers to the force (moment) component in the j-direction because of the motion in k-

direction.

• Mjk - matrix of mass for the ship,

• Ajk Bjk - added mass and damping coefficient

• Cjk - restoring coefficients from the hydrostatic part of the forces

• FEj - the external forces in the k node of motion.

The hull has lateral symmetry, about the x, z plane, and that the centre of gravity is located at (0, 0, zg)

the generalized mass matrix is,

Mjk =



M 0 0 0 Mzg 0

0 M 0 −Mzg 0 0

0 0 M 0 0 0

0 −Mzg 0 I44 0 −I46
Mzg 0 0 0 I55 0

0 0 0 −I46 0 I66


(3.9)

In the matrix, M stands for the mass of ship and Ijk for the mass moment of inertia in the j, k node.

If the j, k are different then is the product of mass inertial moment. The only one that appears is the

product between 4th and 6th node of motion, this tends to zero if the ship presents strong symmetry

along the y, z plane, in general terms it is comparatively smaller than the mass inertial moments. Since

the origin of the referential system is usually taken on the water line plane the other diagonal, mass
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times the vertical hight of gravity terms will not become zero. The moments of inertia can also be written

in radius of gyration form.

Ijk = Mr2jk (3.10)

The added mass and damping coefficients matrices also become simplified due to the symmetry of

ship.

Ajk (or Bjk) =



A11 0 A13 0 A15 0

0 A22 0 A24 0 A26

A31 0 A33 0 A34 0

0 A42 0 A44 0 A46

A51 0 A53 0 I55 0

0 A62 0 A64 0 A66


(3.11)

as for the restoring coefficients they are from the hydrostatic properties of the ship.

Fk = −Ckjξj

C35 = C53 = −ρg
∫∫

Awl

xds

C33 = 2ρg

∫
Awl

ds = ρgAwl

C55 = ρg∇GMl

C44 = ρg∇GMt

(3.12)

Due to the symmetry of the ship that results in non diagonal matrices for the hydrodynamic coeffi-

cients, coupled motions can be treated separately. For the heave and pitch, nodes of motion heave and

pitch the coupled equation is,

(M +A33)ξ̈3 +B33ξ̇3 + C33ξ3 +A35ξ̈5 +B35ξ̇5 + C35ξ5 = FE3 (3.13)

A53ξ̈3 +B53ξ̇3 + C53ξ3 + (I55 +A55)ξ̈5 +B55ξ̇5 + C53ξ5 = FE5 (3.14)

And for the other degrees of motion the roll, sway and yaw the motions equation is,

(A22 +M)ξ̈2 +B22ξ̇2 + (A24 −Mzg)ξ̈4 +B24ξ̇4 +A26ξ̈6 +B26ξ̇6 = FE2 (3.15)

(A42 −Mzg)ξ̈2 +B42ξ̇2 + (A44 + I44)ξ̈4 +B44ξ̇4 + C44ξ4 + (A46 − I46)ξ̈6 +B46ξ̇6 = FE4 (3.16)

A62ξ̈2 +B62ξ̇2 + (A64 + I46)ξ̈4 +B64ξ̇4 +B64ξ4 + (A66 + I66)ξ̈6 +B66ξ̇6 = FE6 (3.17)

In here the surge motion is not treated, there are formulations that creates approximations in order

to have the surge motions solved but when using strip theory, two dimensional approach, the effects of

a section do not interfere with the section next to it.
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3.3 Strip Theory

Strip theory methods do not take in account longitudinal interaction between transversal strips. Being

possible to have the bi-dimensional hydrodynamic coefficients for each strip considered to be an infinite

cylinder. These values can be integrated longitudinally and total hydrodynamic coefficients values are

obtained for the ship.

Figure 3.3: Strip Theory representation, Journee and Adegeest (2003)

For each strip the hydrodynamic coefficients and the forces are calculated using linearised potential

flow theory as wave making, without forward speed. The next step is to follow the method to integrate

these sectional values in other to obtain the total ones that will be included in the equation of motion.

3.3.1 Strip theory hydrodynamic coefficients

The hydrodynamic coefficients from each section are then integrated along the length of ship. To do this

the formulation present in the work Salvesen et al. (1970) is demonstrated. First the heave and pitch

hydrodynamic coefficients that are frequency dependent,

A33(ω) =

∫
a33dξ −

U

ω2
bA33

B33(ω) =

∫
b33dξ + UaA33

(3.18)

A35(ω) = −
∫
ξa33dξ −

U

ω2
B0

33 +
U

ω2
xAb

A
33 −

U2

ω2
aA33

B35(ω) = −
∫
ξb33dξ + UA0

53 − UxAaA33 −
U2

ω2
bA33

(3.19)

A53(ω) = −
∫
ξa33dξ +

U

ω2
B0

33 +
U

ω2
xAb

A
33

B53(ω) = −
∫
ξb33dξ − UA0

33 − UxAaA33
(3.20)

A55(ω) =

∫
ξ2a33dξ +

U2

ω2
A0

33 −
U

ω2
x2Ab

A
33 +

U2

ω2
xAa

A
33

B55(ω) =

∫
ξ2b33dξ +

U2

ω2
B0

33 + Ux2Aa
A
33 +

U2

ω2
xAb

A
33

(3.21)
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The two-dimensional sectional coefficients are for added mass, a33 and for damping, b33 from the

heave motion. The notation A0
33 and B0

33 are the speed dependent part of the coefficients. The xA is the

longitudinal coordinate of the most aft section of the ship where aA33 and bA33 coefficients are calculated,

these are the so called end-terms, that exist for ships that have a submerged transom.

A22(ω) =

∫
a22dξ −

U

ω2
bA22

B22(ω) =

∫
b22dξ + UaA22

(3.22)

A24(ω) = A42(ω) =

∫
a24dξ −

U

ω2
bA24

B24(ω) = B42(ω) =

∫
b24dξ + UaA24

(3.23)

A26(ω) =

∫
ξa22dξ +

U

ω2
B0

22 −
U

ω2
xAb

A
22 +

U2

ω2
aA22

B26(ω) =

∫
ξb22dξ − UA0

22 + UxAa
A
22 +

U2

ω2
bA22

(3.24)

A44(ω) =

∫
a44dξ −

U

ω2
bA44

B44(ω) =

∫
b44dξ + UaA22 +B44∗

(3.25)

A46(ω) =

∫
ξa24dξ +

U

ω2
B0

24 −
U

ω2
xAb

A
24 +

U2

ω2
aA24

B46(ω) =

∫
ξb24dξ − UA0

24 + UxAa
A
24 +

U2

ω2
bA24

(3.26)

A62(ω) =

∫
ξa22dξ −

U

ω2
B0

22 −
U

ω2
xAb

A
22

B62(ω) =

∫
ξb22dξ + UA0

22 + UxAa
A
22

(3.27)

A64(ω) =

∫
ξa24dξ −

U

ω2
B0

24 −
U

ω2
xAb

A
24

B64(ω) =

∫
ξb24dξ + UA0

24 + UxAa
A
24

(3.28)

A66(ω) =

∫
ξ2a22dξ +

U2

ω2
A0

22 −
U

ω2
x2Ab

A
22 +

U2

ω2
xAa

A
22

B66(ω) =

∫
ξ2b22dξ +

U2

ω2
B0

22 + UxAa
A
22 +

U2

ω2
xAb

A
22

(3.29)

In this set of equations the a22 and b22 are the sectional added mass and damping coefficient for sway

motion. a44 b44 are the coefficients for the roll motion, in equation 3.25 the B44∗ stands for the inclusion

of a viscous roll parameter that gives an extra damping factor to the motion. The coupled terms are a24

and b24 for the sway and roll motions. The same as for the heave and pitch coefficients the designation
A stands for the two dimensional coefficient of the most aft section of the ship, and 0 is for the speed

dependent coefficients.

The mathematical explication is given in the work of Salvesen et al. (1970), and therefore not pre-

sented here. A remark that is to be done is regarding the end terms that appear in the coefficients

calculations. These terms are from a vectorial transformations present in Ogilvie and Tuck (1969) and

uses the two-dimensional coefficients of the most aft section of the hull. To calculate the two-dimensional

sectional coefficients the use of Frank’s close-fit method, Frank (1967), is applied to the catamaran demi-

hull, further considerations regarding the interaction problem that is possible to include in this phase of

the calculations are explicit in chapter 4.
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3.3.2 Exciting forces

The incident wave potential can be written in the complex form.

Φw =
igζa
ω

ekze−ik(x cos β+y sin β) (3.30)

Due to restraining the ship advancing in the incident waves, incident and diffracted potentials can be

separated resulting in the forces as the following equation,

Fj = FWj + FDj (3.31)

where the incident wave forces will lead to the Froude-Kriloff force and moment. This force is caused by

the unsteady pressure created by the undisturbed waves that the ship encounters. The diffraction force

and moment is due to the ship changing the pressure field, condition that exists due to restraining the

ship to it’s average position,

FDj = ρ

∫∫
S

nj(iωe + U
∂

∂x
)Φdds (3.32)

FWj = ρi

∫∫
S

nj(ω − kU cosβ)Φwds (3.33)

that can be reduced to.

FWj = ρiω

∫∫
S

njΦwds (3.34)

Applying the Stokes theorem the force is expanded to a contour integration,

FDj = ρ

∫∫
S

(iωenj + Umj)Φdds+ ρU

∫
CA

njΦddl (3.35)

the sectional Froude-Krylov force,

fj(x) = ige−ikx cos β

∫
Cx

Nje
kze−iky sin βdl, j = 2, 3, 4 (3.36)

the sectional diffraction force is

φD = ψDζae
−ikx cos β

hj(x) = iωee
−ikx cos β

∫
Cx

NjψDdl, j = 2, 3, 4
(3.37)

The integration along the ship length gives the exciting force and moment that can now be written.

Fj = ρζa

∫
L

(fj + hj)dξ + ρζa
U

iωe
hAj , j = 2, 3, 4

F5 = −ρζa
∫
L

[x(f3 + h3)dξ +
U

iωe
h3]dξ − ρζa

U

iωe
xAh

A
3

F6 = ρζa

∫
L

[x(f2 + h2)dξ − U

iωe
h2]dξ − ρζa

U

iωe
xAh

A
2

(3.38)

To obtain te two dimensional hydrodynamic coefficients the method used is the Frank’s close fit. This

19



formulation is based largely from the theory manual of software VERES, Fathi and Hoff (2004).

Regarding the two dimensional potential solution used in the radiated and diffraction forces the

method here commented is the Frank’s close fit. It will be stated that both strip theory software used in

for this work compute using this method, Centeno et al. (2000) and Fonseca and Guedes Soares (1998).

This method calculates the coefficients by a distribution of sources over the mean wetted surface of

the ship. Satisfying the boundary conditions Green functions are applied to represent the unit strength

sources that satisfy the potentials. The density of the sources are unknown functions to be determined

by applying the kinematic surface boundary condition on the submerged part of the cross section with

infinite length.

To note that this method has associated to it, irregular frequencies, which are uniqueness solutions,

especially in the very high frequency range. This can be overcome by introducing an extra segment

on the average waterline. The full formulation is presented in some published works. Of interest is the

original one, Frank (1967) and an explanation is present in Journee and Adegeest (2003).

3.4 Rankine panel method

Rankine panel method theoretical formulation can be found in the literature, Kring (1994), or with practi-

cal examples in Bertram (2012). In this text only the base considerations are included specially regard-

ing the linearisation of the boundary conditions and boundary integral formulations characteristic of the

method. From Kring, the linearisation of the problem is summarized, starting with a decomposition of

the potentials in basis Φ, local, φ, and memory, ϕ.

Ψ(~x, t) = Φ(~x) + φ(~x, t) + ϕ(~x, t) (3.39)

The memory flow is governed by an initial boundary value problem in which the memory potential

represents the solutions of the steady, radiated, and, if present scattered wave patterns. The basis flow

provides the linearisation and the local flow provides the forcing for unsteady motion. Considering the

dominant basis condition component, Φ, and a perturbation correction memory, ϕ, the linear form of the

kinematic and dynamic free surface conditions reduce to the form,

∂ζ

∂t
− ( ~W −∇Φ) · ∇ζ =

∂2Φ

∂t2
ζ +

∂ϕ

∂z
(3.40)

∂ϕ

∂t
− ( ~W −∇Φ) · ∇ϕ = −gζ + [ ~W · ∇Φ− 1

2
∇Φ · ∇Φ] (3.41)

applied on z = 0, where is the ~W mean translational velocity of the ship. A decomposition of the per-

turbation potential into instantaneous and memory components as indicated in equation 3.39 generates

better and stable form in the integral equation of motions. Decomposition of the incident, radiated and

diffracted wave disturbances. The linear radiation body boundary conditions become,
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∂ϕ

∂n
=

6∑
i=1

(
dξj
dt

+ ξjmj) on SB (3.42)

applied to the mean wetted surface of the hull. Here the m-terms, mj , provide a coupling between

the steady basis flow and the unsteady ship motion.

~m = (~n∇)∇Φ (3.43)

The diffraction body boundary condition merely states that the normal velocity of the sum of the

incident and diffraction velocity potentials vanishes over the hull mean position. The Laplace equation is

enforced in the fluid domain by a distribution of Rankine sources and dipoles over the free surface and

wetted hull surface. Application of Green’s second identity leads to a boundary integral formulation for

the perturbation potential,

2πϕ(~x)−
∫∫

SF∪SB

∂ϕ(~x′)

∂n
G(~x′; ~x)dx′ +

∫∫
SF∪SB

ϕ(~x′)
∂G(~x′; ~x)

∂n
dx′ = 0 (3.44)

Where G(~x′; ~x) = 1/|~x − ~x′| is the Rankine source potential, SF is the mean position of the free

surface, and SB is the mean position of the hull. Many ways to implement the transom effects in the

mathematical formulations, the Consideration in here present are the ones indicated in Kring (1994),

since it is the base of software in this work used, Wasim linear (SWAN1). Having correlation to the lifting

flow theory the conditions imposed at the stern of the hull are called Kutta conditions. This because, if

the stern is well designed, the detachment of flow happens at the trailing edge. Due to this consideration

the boundary conditions are imposed at the aft position, location of the transom stern, A. Along the stern

flow detachment line, where free surface conditions are applied.

∂ϕ

∂z
= −∂ζT

∂t
+ ( ~W −∇Φ) · ∇ζA +

∂2Φ

∂z2
ζA +

∂φ

∂z
on (x, y, z) = (xA, yA, 0) (3.45)

∂

∂t
− ( ~W −∇Φ) · ∇)(φ+ ϕ) = −gζA + [ ~W · ∇Φ− 1

2
∇Φ · ∇Φ] on (x, y, z) = (xA, yA, 0) (3.46)

With the first, dynamic condition the total pressure at the trailing edge is equal to the atmospheric

pressure. The second, kinematic condition ensures the continuity of the pressure along the detaching

streamline. As indicated in Kring (1994), a two dimensional example of this is found in Schmidt (1981).
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Chapter 4

Modelling hulls interaction

To consider the interaction effect for motion computations of catamarans three levels of numerical im-

plementations are used, considering the base case of no-interaction to the two-dimensional interactions

scheme and finally a three-dimensional. The relevance of interaction schemes may differ from the con-

ditions that vessels are subjected to, as it will be discussed a no-interaction method can be valid for a

combination of speed, heading and hull spacing. However a two-dimensional interaction scheme can

be very precise at low speeds situations or no forward speed. The last method is way more complete,

and it is used in this work as a comparison for the motions results. Due to the availability of commercial

program, Wasim, only the strip theory based methods are discussed in the present chapter.

Figure 4.1: Interaction schemes, van’t Veer and Siregar (1995)

Considering the two-dimensional interaction scheme, with the radiated waves travelling traversal to

the hulls centre lines like the first case shown in Figure 4.1, it is possible to predict in a simple way the

interaction relevance and limit. Following formulation from van’t Veer and Siregar (1995) for the condition

in which the radiated wave from one hull interacts with the other hull is as in Equation 4.1.

τ =
U

Vp
=

U

λe/Te
=
Uke
ωe

=
Uωe
g

(4.1)
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When τ is greater then the relation between length and inner hull distance L/H, the wave generated at

the bow of one demi-hull does not interact with the other demi-hull, since it will pass behind the most aft

section of it. Such is the case of last example shown in Figure 4.1. Likewise the limit frequency where

this interaction occurs for a certain forward speed is deducted by the Equation 4.2.

ωe >
L

H
· g
U

(4.2)

4.1 Catamaran without interaction using strip theory

In order to represent the base scheme of a catamaran the no-interference case is included in this work.

Because the following study will consider other than 180 degrees of headings a general form is shown

for heave, pitch and roll motions. Considering the demi-hulls independent, wave loads can be calculated

for each demi-hull and then transformed to the case of catamaran. To do so it is required that the two

hulls are equal and that the centre lines of each one is at a constant distance from each other, S = 2yT .

Figure 4.2: Catamaran without interaction, Journee and Adegeest (2003)

In general if the catamaran is subjected only to head waves the result is exactly the same as only one

of the demi-hulls was considered, but this changes if the heading is different from β = 180◦ . When pre-

dicting roll motion it can be possible to consider the catamaran in total as a single-hull case, which is ap-

plicable to small hull spacing configurations, such is discussed in Bulian et al. (2008). Other formulation

that is widely adopted and more versatile regarding hull spacings considers roll motion of catamarans a

function of each demi-hull heave motion, with the demi-hulls rigidly connected. This formulation leads

to a characteristic difference in the results, due to the phase of excitation on each demi-hull. Excitation

forces are in different phases on each demi-hull and in some frequencies, heading and hull spacing the

difference in phase can be 180 degrees, resulting in very low or even no-exciting forces at all. This is

used in the present work when post processing the results from Fonseca motion results and it is based

on strip theory explicit in 3.3, which is modified to obtain a general formulation for the case of a cata-

maran. Such type of implementations can found in texts like Journee and Adegeest (2003) or Faltinsen

(2005).

For mass matrix referent to the twin hull ship comes that the mass is simply the double, and therefore

the connecting platform mass isn’t included. The inertial mass moments are computed using data like

the radii of gyration, with especial attention when considering the roll motion. Since catamaran’s beam
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over all are substantially bigger then a single-hull ship and the masses are located further away from

the catamaran centre line. In this transformation the mass moment of inertia I46 is not considered, re-

gardless that for catamarans this can actually have significance, Faltinsen (2005). For the hydrodynamic

coefficients they are as the mass consideration, simply the double. But when modelling rotational mo-

tions, roll and yaw some considerations have to be done. Because this dissertation refers only to heave,

pitch and roll motion only the equations for those modes of motions are shown next.

(2M + 2A33)ξ̈3 + 2B33ξ̇3 + 2C33ξ3 + 2A35ξ̈5 + 2B35ξ̇5 + 2C35ξ5 = FCat3 (4.3)

2A53ξ̈3 + 2B53ξ̇3 + 2C53ξ3 + (2I55 + 2A55)ξ̈5 + 2B55ξ̇5 + 2C53ξ5 = FCat5 (4.4)

(2A42 − 2Mzg)ξ̈2 + 2B42ξ̇2+

(2A44 + 2y2TA33 + ICat44 )ξ̈4 + (2B44 + 2y2TB33)ξ̇4 + (2C44 + 2y2TC33)ξ4+

(2A46 − ICat46 )ξ̈6 + 2B46ξ̇6 = FCat4 + yTF
Cat
3

(4.5)

Regarding the roll motion it is possible to see the effect of heave coefficients in Equation 4.5, where

it is added a term in the form 2y2T · that multiplies by the heave added mass, damping and restoring

coefficients. The terms that include Cat are calculated regarding catamaran specific case, inertia and

exciting forces that are discussed next. For the excitation forces and moments other consideration has

to be modelled. Considering each one of the demi-hulls separately, starboard and port side, the exciting

forces have the same absolute value. However since the demi-hulls are apart of a distance S and

with other values of β than 180◦ , the phase experienced by each demi-hull will differ. Therefore the

excitation forces have to be added considering the phase angles. Based on a local referential system it

is possible to write the incident wave potential, Equation 3.30, felt by one demi-hull at the time with origin

in y′ = (0,±yT , 0).

Φw =
igζa
ω

ekze−ik(x cos β±y′ sin β)(cos(kyT sin(β))− i sin(kyT sin(β))) (4.6)

Equation 4.6 can be considered for the port side demi-hull with a different signal since the local

origin is placed on the other side of the ship’s referential system. Adding both starboard and port side in

excitation forces equations leads to Equations 4.7, 4.8 and 4.9 for heave, pitch and roll modes of motion.

For roll motion case the total moment is the sum of both local roll excitations forces felt by each demi-hull

and the moment created by the heave excitation force of each demi-hull.

FCat3 eiωet = 2FE3 cos(kyT sinβ)eiωet (4.7)

FCat5 eiωet = 2FE5 cos(kyT sinβ)eiωet (4.8)

FCat4 eiωet = [2(FE4 cos(kyT sinβ − iyTFE3 sin(kyT sinβ))]eiωet (4.9)
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4.2 Two dimensional hull interaction using strip theory

Other way to consider interaction between the demi-hulls of a catamaran is accomplished at the com-

putation stage of added mass and damping coefficients. This is the case of Centeno et al. (2000) work,

where the radiated waves from one demi-hull interfere with the other hull and vis-versa. The way this is

accomplished is by creating the symmetry of catamaran in the input file and computing the side-by-side

hulls hydrodynamic coefficients using Frank’s close fit. Because the demi-hulls are placed at yT distance

from the symmetry plan-xz, the solutions for sources placed around the surface have effects of the sym-

metric result. When including this in a strip theory method, the calculation of coefficients dictates that

the radiation problem from one strip affects only the corresponding strip on the other demi-hull. There-

fore it is considered a two-dimensional interaction scheme, just like the strip theory method that does

not include effects from strip located forward of the one being calculated. Results of this method were

studied by Ohkusu (1970) and Wang and Wahab (1971) with an analytical solutions, and for the case

of a stopped catamaran the hydrodynamic coefficients are computed with high precision compared to

experimental results.

Figure 4.3: Added mass of twin cylinders in Heave motion.

Figure 4.4: Damping coefficient of twin cylinders in Heave motion.
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In Figures 4.3 and 4.4, added mass and damping coefficients calculated using CatCenteno and

compared with results from Ohkusu (1970) and Wang and Wahab (1971). Two configurations of hull

spacing are used, D/R = 3 and D/R = 6, where D is in this case the distance between centre lines

of the cylinders and R their radius under water. The length of experimented cylinders is L = 2.29m and

the volume of a demi-hull ∇ = 83.54m3. The non-dimensional coefficients, Ajk and Bjk, are obtained

by dividing the added mass by the twin cylinders mass, LρπR2, and the damping coefficient by the

mass times incident wave frequency, LρπR2ω. Results that are interesting in this interaction scheme,

implemented in CatCenteno, are the modelling of resonance frequencies caused by the standing wave

between the demi-hulls. This will depend on the space between cylinders and are shown in the added

mass curves. The negative values obtained for the added mass are very characteristic of this interaction,

representing very well the location in frequency where the standing-wave phenomenon happens. This

standing-wave is also associated with a quick decrease of the damping coefficient showing a peak and

then a close to zero value at the same frequency as the added mass abrupt change.

Considering the heave motion case, the natural frequency of the body can be calculated by Equation

4.10, for the twin cylinders case this results in the non-dimensional value kR = 0.64.

ωn3 =

√
ρgAwl
2Mass

(4.10)

Still in Figure 4.3 showing added mass for heave curves, it is possible to observe negative values for

the low frequencies which differ from hull spacing configuration. To predict the frequencies at which this

happens, van’t Veer and Siregar (1995) indicates a formula that calculating the natural frequency of the

water column moving together with the model.

ω =

√
ρgAc

ρ∇c +Ac33
≈

√
gH

HT + πH2
2 (4.11)

In Equation 4.11 the volume of water column that is between the hulls is expressed as∇c and the added

mass can be approximated by the half mass of a cylinder with diameterH. As for the restoring coefficient

it is the area between cylinders at water line level. The result, kRD/R=3 = 0.72 and kRD/R=6 = 0.39

from this approximation fits very well with the first abrupt changes in Figure 4.3. Other ways to predict

this resonance peaks exist, Faltinsen (2005) shows such calculations using Molin (1999) method, which

calculates the piston mode resonance based on the approach of moon pools resonance frequency. The

main difference is that one considers a two-dimensional source problem, Molin, and van’t Veer derives

Equation 4.11 from the natural frequency of an equivalent water mass representing the standing wave.

This way to model the interaction between demi-hulls has a big limitation regarding the applicability

for big Froude numbers, meaning higher forward speed. But considering low Froude numbers it can give

very good results, such results are shown in a comparison using the model from Ohkusu and Takaki

(1971). The model with length L = 4m is subjected to experiments with head waves at a Fn = 0.1,

being study two hull spacing configurations, S/T = 3 (TW1) and S/T = 5 (TW2). In the published work,

Ohkusu and Takaki (1971) a very complete description of the data is available and therefore not totally
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presented here, where the results from interaction are meaningful for this work.

Figure 4.5: Heave and pitch responses, Ohkusu models TW1 and TW2 at Fn = 0.1

Figure 4.5 shows RAO results for the two cases with different spacings. The results of two-dimensional

interaction scheme fits with the experimental ones, by having the peaks at same locations and with sim-

ilar values. The peak on heave motion response exists due to the results expressed in previous Figures,

4.3 and 4.4. The distance between hulls, S is different for the configurations meaning different char-

acteristic frequencies, using equation 4.11, for TW1 model that has the smaller distance between the

demi-hulls this characteristic frequency comes at λ/L = 0.5, while for the bigger spacing configuration

the frequency is lower appearing at λ/L = 0.95. The second does not agree with the peak in heave

motion but the shift in frequency exists. This means that the resonance frequency is a combination

of both factors, where the standing wave phenomena looses relevance with increased forward speed.

Considering this, placing both the frequencies near each other creates a considerable peak in the heave

motion at low Froude numbers.

Before the next results are discussed an introduction on cross-flow empirical method is done, it

is included in the software used for two-dimensional interaction scheme CatCenteno. The complete

formulation of the method applied to the catamaran case can be found in Centeno et al. (2000), and here

only the base considerations are presented for the understanding of results further to obtain. This way

to include viscous effects on the ship’s motions is applicable to the case of strip theories computations

and uses a set of two empirical coefficients, αl and CD. Accordingly with Thwaites (1960) the side force

due to viscous lift and cross-flow drag on a body with length dAp is expressed as Equation 4.12.

F =
1

2
ρV dAp sinα(αl|U cosα|+ CD|V sinα|) (4.12)

In Equation 4.12, α is the angle of attack of the body, V is the relative fluid velocity, Ap is the projected

area, αl and CD are the lift and drag coefficients respectively. If the body has a harmonic oscillatory

motion of small amplitude like the hull of a ship with constant forward speed the expression can be
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written for the j node of motion.

F̂j =
1

2
ρAj(U

2αlαj(x) + CDνj(x)|νj(x)|) j = 1, 2, 3 (4.13)

αj is the angle of attack of the flow, U is the forward speed of the ship, νj is the relative fluid velocity

with respect to the body in j node of motion, Aj is the projected area of the body in j direction. The

coefficients αl and CD depend on the geometrical characteristics of the body, mode of motion and

frequency. They are usually determined experimentally, but according to Lee and Curphey (1977) the

angle αl is about 0.07 and the drag coefficient, CD is from 0.4 to 0.7. However in this work and for all

computations regarding this method, the values are set to recommended one by Centeno et al. (2000),

αl = 0.07 and CD = 0.01. Writing the relative velocities of the water particles on each strip of the

demi-hulls, it is possible to decompose the resulting equations by the terms multiplying ship’s velocity

and displacement for each mode of motion, ξ̇k and ξk respectively. This leads the solution to an iterative

method that seeks convergence in the result. Final equations have the following form and can be added

to the 6DOF equations system, like in equations 4.14 and 4.15.

F̂j =

6∑
k=2

(B̂jk ξ̇k + Ĉjkξk)− FVj , j = 2, 3, ...6 (4.14)

6∑
k=1

[−ω2(Mjk +Ajk) + iω(Bjk + B̂jk) + (Cjk + Ĉjk)]ξk = Fwj + F dj + F vj (4.15)

With this method the next results show the effect of forward speed in two-dimensional interaction

scheme when including of viscous effects in the motions results. The model here tested is the Wigley

hull form, a mathematical description of the hull allows authors with greater possibility of repetition and

therefore a more accurate way to validate results form software. The description of this hull can be found

in publication van’t Veer and Siregar (1995), where numerical implementation is similar CatCenteno

software.

Note that the increase in forward speed will make the generated waves sweep back until the wake

of the vessel. Meaning that the wave which was generated by a section of the ship will interfere with a

section located more aft of the other demi-hull, as the second case in Figure 4.1 illustrates. This means

that a three-dimensional approach will be more correct.

Table 4.1: Wigley single hull characteristics and catamaran configurations

Wigley single hull WH1 WH2

L[m] 2.5 S/B 2.10 3.140

B[m] 0.357 H[m] 0.39 0.764

T [m] 0.139 B[m] 1.11 1.480

∆[kg] 69.5 Fn 0.3 0.45
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Figure 4.6: Wigley, WH1 heave (left) and pitch (right) response.

Figure 4.7: Wigley, WH2 heave (left) and pitch (right) response.

In Table 4.1, the main values of the catamaran configuration are shown and the results of RAO

computations can be found in Figures 4.6 and 4.7. Results form experiments and computations from

van’t Veer and CatCenteno are shown, being possible to see the big impact that inclusion of viscous

effects has on the results. Inclusion of this method, cross-flow, brings the overly predicted peaks due to

the interaction of hulls to reasonable values as the computations indicate. This is especially the case

for low Froude number, where the hull spacing is small and closer to practical values seen in actual

catamarans. For WH2 the same does not apply, the response shows errors with two different peaks that

do not fit in the experiments. In this case the inclusion of viscous effects is not able to improve the results.

Interestingly CatCenteno results are highly similar to van’t Veer computations, with the problem that may

be due to the exaggerated hull spacing and possibly errors in numerical implementation. Regarding the

limit of interaction by Equation 4.1, where it expresses the frequency at which it stops to occur, it can be

derived in a different form. With the objective of using the frequency domain experimented, it is possible

to compute the percentage of demi-hull that is subjected by radiated waves from the other demi-hull.

With the frequencies ranging from ω1 = 3rad/s the lowest and ω20 = 5.85rad/s interaction results are

expressed in Table 4.2.
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τ =
Uωe
g

=
L

H

xst/L = 1− τ H
L

(4.16)

Table 4.2: Wigley interaction

WH1 WH2

L/H 3.33 2.23

xst/Lω1 83% 57%

xst/Lω20 59% no interaction

In the first case represented in Figure 4.6 at the lower frequency 83% of the hulls suffer from the

waves radiated by the other hull, as for the highest frequency this values lowers to 59%, adding to

this higher frequencies means less impact on the motions amplitude and therefore losing relevance.

Considering now the second configuration where the results are presented in Figure 4.7, it is shown that

the limit of validity for two-dimensional interference is reached. Table 4.3 shows the water column natural

frequency and the incident wave characteristic frequencies for both models. The Last one is calculated

considering λ/2 = H and the results are expressed as λ/L.

Once applying two-dimensional interference scheme the motions will show the same type of peaks

as if the Froude number was smaller, for the same frequency intervals. To change these peaks the

cross-flow method is applied. This brings down the over-prediction of ship’s motion, as it can be seen

from the figures modifying peak amplitudes and bringing them closer to experimental results from van’t

Veer and Siregar (1995). Other aspect regarding cross-flow method, is that it changed the restoring

coefficients from the original strip theory and it can shift the frequency at which the resonance occurs.

Table 4.3: Wigley models frequencies.

Characteristic frequencies WH1 WH2

ωc[rad/s] 1.13 1.86

λ/L 2.04 1.05
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Chapter 5

Case studies

Experimental works have been used for validation of theories and computations on the subject, the

number of these regarding the problem with catamaran is less then the amount for the single hull type

of vessels, Guedes Soares et al. (1999). It is common that the experimental works are produced for the

verification and validation of numerical methods, being associated with works of numerical implementa-

tions and direct comparison between results. In this work the collection of experimental works is found

in the literature in the form of publish reports or articles with the objective to expand the pool of data

available over the theme.

As the information included in previous works and studies is sometimes insufficient, assumptions

need to be done in the scope of this work. This is a task that is preformed cautiously, matching and

representing the original works whenever possible. The important data that such works should present

can be found in ITTC Recommendations and Guidelines, pro (2017). International Towing Tank Confer-

ence is a voluntary association that establishes conducts for the maritime hydrodynamic performance of

ships, test facilities and numerical experiments. For this case aspects like the following are of importance

when data is being collected,

• Scale, model dimensions and shape.

• Ratios of model to tank dimensions which can limit the interaction of ship’s waves with the basin

walls.

• Hull configurations and loading conditions, which have to be scaled traducing the hull shape char-

acteristics.

• Mass of the model characteristics, representing the location of centre of gravity and inertial radii of

gyration.

• Speeds and headings, being the speed needed to be scaled properly trough the Froude number

by the assumption of gravitational forces importance.

• Wave characteristics, that for the motions studies has to be scaled maintaining the linearity as-

sumption for the results.
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• Towing and restraining device characteristics affecting the degrees of freedom model and the

possible errors in the results due to applied forces by the towing device.

From the above list of items that indicate important parameters to be explicit for numerical comparisons,

some are in truth difficult to replicate. A common practice is to represent the model shape in the form of

transversal line plans, sometimes the offset table is present in the report which is preferable. In some

works the lines plan is somehow not clarifying, the representation of bow shape requires a longitudinal

projection of the lines plan which is omitted in most of the cases. Even with this data available it is most

likely that the impression of the document is old and/or distorted, this problems can be very significant

since the study of ship motions is largely connected with the interaction of hull shape with the tank

environment. The same type of issue is found in way results are expressed, for motion studies the

RAO’s are commonly used but this is sometimes only presented in the form of graphics. Requiring

careful reading and data collection from the reader in order to minimize errors. Other important aspect

is the uncertainty associated with the evaluation of the experimental results, more recent experimental

studies on the motion of ships are introducing this aspect in the publish data Bouscasse et al. (2013).

This is of importance for the validation studies in numerical studies, the need to understand the value

of experimental data and also the error mitigation trough instruments will possibly define a more reliable

result to compare.

5.1 Experimental data

For this work the experimental data collected derived from published data regarding computations for

catamaran motions. In the text can be found specifications on the experimental methodologies, concise

information is found in Table 5.1. About the models data Table 5.2 shows dimension relations and for

their mass Table 5.3 has the needed values considering the motion studies. Hull geometry definition

can be found in the literature from which the data is taken, this will be explicit when the experimental

conditions are commented.

Table 5.1: Experimental set-up characteristics

Model Local Basin LxBxD [m] Propulsion Free motions Fn range Headings [◦]

NPL SITT 60 x 3.7 x 1.8 Carriage Heave and Pitch 0.2, 0.53, 0.8 180

MARINTEK MARIN 152 x 30 x 5 Propeller Heave, Pitch and Roll 0.49, 0.66 180, 150, 90

DELFT372 DSHL 145 x 4.2 x 2.6 Carriage Heave and Pitch 0.3, 0.45, 0.6, 0.75 180

DELFT372 MARIN 100 x 24 x 2.5 Water jet All 0.3, 0.6, 0.75 180, 195, 225

El Pardo CEHIPAR 152 x 30 x 5 Carriage Heave, Pitch and Roll 0, 0.2, 0.4, 0.6 180, 165, 150

VOSPER HLUG 77 x 4.6 x 2.7 Carriage Heave and Pitch 0, 0.25, 0.625, 0.75 180
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Table 5.2: Model hulls characteristics

Model S/L L L/B B/T L/∇3 Cb Cwl LCB% LCF%

NPL4b 0.20 & 0.40 1.60 9.00 2.00 7.40 0.40 0.77 -6.34 -8.24

NPL5b 0.20 & 0.40 1.60 11.00 2.00 8.50 0.40 0.77 -6.34 -8.24

NPL6b 0.20 & 0.40 2.10 13.10 2.00 9.50 0.40 0.77 -6.34 -8.23

MARINTEK 0.20 3.78 14.15 1.33 7.49 0.50 0.81 -6.34 -8.57

DELFT 372 0.23 3.00 12.50 1.60 8.53 0.40 0.76 -2.70 -8.56

El Pardo 0.20 4.30 15.93 1.93 9.60 0.55 0.78 -7.86 -9.04

VOSPER 0.20 & 0.29 2.05 12.98 1.86 7.65 0.70 0.87 -10.14 -5.87

Table 5.3: Model mass.

Model ∆[kg] LCG(AP )[m] KG[m] rx[m] ry[m] rz[m]

NPL4b 20.22 0.70 0.13 ... 0.40 0.40

NPL5b 13.34 0.70 0.11 ... 0.40 0.40

NPL6b 21.60 0.96 0.12 ... 0.53 0.53

MARINTEK 203.00 1.65 0.35 0.38 1.03 1.09

DELFT 372 (HW) 87.07 1.41 0.34 0.53 0.78 0.75

DELFT 372 (OW) 87.07 1.41 0.28 0.39 0.81 0.93

El Pardo 184.10 1.85 0.37 0.50 1.15 1.15

VOSPER 39.46 0.83 0.06 ... 0.51 0.52

MARINTEK (1992) and Hermundstad(1999): In the sequence of a new numerical strip wise method

to calculate motions of fast displacement vessels, Faltinsen and Zhao (1991) a experimental work, is

published in order to validate the global loads on the case of catamarans. Using this 2.5D theory other

work is published, Faltinsen et al. (1992), where the motions and global loads of a model are tested in

the Ocean Environment Laboratory of MARINTEK. The model was subjected to regular wave system

with incident angles of 90 and 45 degrees, studying the most severe conditions for the global loads on

the connecting deck of a catamaran. The model was self propelled set with an auto-pilot system to keep

the relative heading to the waves. The system used had a significant signal lag time, used for the control

system, which traduced in a variation of the heading thought run time. Regarding the motion results

heave, pitch and roll motions are presented in RAO graphics, lacking some refinement in the resonance

peak. On the same Laboratory, MARINTEK, a variance of the previous model was extensively tested

by Hermundstad (1995), the variations included a tunnel stern for accommodation of the propeller and

shaft on each demi-hull and the spacing S was different. The same type of automation in the control

of model speed and direction was used. As for the tests conditions, they were made for still water

condition, regular waves and transient. For the present work the accessible publication, Hermundstad

et al. (1999) includes experimental results of four regular wave conditions. Combination of two Froude

numbers, Fn = 0.49 and Fn = 0.66 and three directions, β = 180, 150, 90 degrees, with frequencies well

scattered around the natural frequencies generated a very good set of results in the form of RAO’s for

heave pitch and roll. Linearity in the results is assumed by having the 2ζ/λ between 0.0067 and 0.02 for
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long waves and 0.02 and 0.03 for shorter waves.

NPL round bilge series (1995): A report of experiments with NPL round bilge series, Wellicome

et al. (1995) describes the seakeeping properties of catamarans for three geometrical similar hull forms.

This work is the continuation on studies of NPL series hull forms, that started with calm water resistance

tests. It is referred that the importance of hull forms saekeeping abilities, since nowadays operation

speeds have increased. The tests were performed in the Southampton Institute test tank (SITT). The

program related the longitudinal degrees of freedom of catamaran and single hull cases. Test were for

head waves systems with incident wave angle of 180 degrees. Froude numbers were set between 0.2

and 0.8, with encounter frequencies ranging from 6 to 16 rad/s. Although it is not presented as data in the

report there is a brief consideration on the wave height, stating that it had some degree of variation with

frequency. The measured quantities are the model motions, the root mean square (RMS) accelerations

and motions as it is used for irregular waves criteria in design. The added resistance due to waves is

also measured and since information in previous works was available for calm water tests these last

were not performed. Three hull forms are used, 4b, 5b and 6b. These models have symmetrical round

bilges and include wet transom sterns, representing under water forms of catamarans in service or under

construction at the time. They were also fitted with turbulent flow stimulator at the bow in form of strip

studs. The towing point was placed at the location of centre gravity, longitudinal and vertical, the last was

fixed as relation to draught of each model, 1.5 draught above base line. Due to the weight displacement

balance of the model 6b this had a bigger length dimension then the others. The hull forms in the report

are presented in transversal lines plans lacking the bow definition, which is defined by a single point

intersecting the water line. Other data like dimensions and mass characteristics are present in the form

of tables. The results obtained by the experimental work is presented in the form of graphics which were

handled with extreme caution for data acquisition.

DELFT372 (1998): In the sequence of studies for PhD thesis of Mr. Riaan van’t Veer, Van’t Veer

(1998a), the author performed a series of tests to a catamaran hull form designed in DELFT University

of Technology for the purpose. Two different tests are preformed in distinct towing tank facilities, the

initial one was performed in Delft Ship Hydrodynamic Laboratory (DSHl) considering only head waves,

and the second one in Seakeeping basin at MARIN (Maritime Research Institute in Wageningen, The

Netherlands), with three different headings, Van’t Veer (1998b) and Van’t Veer (1998c). The main pur-

poses of the tests were to evaluate the resistance measurements including trim and sinkage, steady

wave pattern, heave and pitch motions in head waves with free motion results and forces oscillations

test in order to evaluate the hydrodynamic coefficients and finally wave forces measurements. The

second report for the same project aimed for the measurement of resistance including trim, sinkage

and motions tests in regular waves with oblique headings. The design of this model followed the ratios

of overall dimensions on common practice for catamaran designs, lacking only the effective submerge

transom stern. This feature was not totally possible to execute due to the need of installing a water jet

propulsion system later on the second report. Due to the different experimental set-ups, the mass char-

acteristics of the models are different. Because the oblique wave tests were performed with the model

loaded with all the instruments for data acquisition. In both of the reports hull geometry is well defined
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in the form of geometric plan and also with the offset table of the hull. Results are expressed either in

tabular form and in graphic form which facilitates the collection of data.

P2 El Pardo (1999): Other used publication for the study of catamaran motions computations is

experimental work referent to Guedes Soares et al. (1999). The work produced by the authors focused

on the heave, pitch and roll motions of a model catamaran produced for the experiments. The motion

results considered the effect of headings and speed of the model and some derived responses were cal-

culated, such as vertical accelerations and mean added resistance in waves. The tests were executed in

the Laboratory of ship Dynamics of El Pardo Model Basin (CEHIPAR) in Madrid. A complete description

of the test facilities is found in the published document, indicating the type of wave making system and

procedures in the reception of instrumentation signals. The tests focused on the linear responses of the

model using waves with characteristics of small wave sloop, kζa. Value that varied from 0.06 for short

waves and 0.01 for long waves. The speed range of Froude numbers is between 0 and 0.6 being the

variation of heading studied for the design speed which meets Froude number equal to 0.4. The model

used was build in FRP (fibre reinforced plastic) to a scale of 1:10, it is a wave piercing type that was

experimented with a third bow placed in front. When impact loads were found in the appendage tests

are repeated without it. The mass inertias were adjusted for the values on Table 5.3. The motions of

catamaran model were measured by a non-contact optical tracking system, the incoming wave hight

was measured by a capacitive wave probe placed forward of the model and two load cell at the towing

bar in order to acquire added resistance values. The experimental results represented as RAO, regard-

ing heave, shown resonance peak at a non-dimensional frequency of ω
√
L/g = 2.5, corresponding to

λ/L = 1. For pitch this is seen at a λ/L = 1.4. Both responses tend to decrease with the increasing

angle of incident wave. The numerical model of the hull was available for the work. Not being possible to

model the entire bow shape of the model due to the numerical implementation of one code, CatCenteno,

the bow is altered to a single point intersecting the water line. As the hull shape the motions results were

available in numerical form.

VOSPER (2001): Connected with the validation of CatCenteno code is an experimental work study-

ing the influence of hull spacing on catamarans, Centeno et al. (2001). The experiments were performed

at the Hydrodynamic Laboratory at the University of Glasgow (HLUG) with the purpose of study heave

and pitch for two different spacings between the catamaran demi-hulls. The experimental program con-

sisted in the study of heave and pitch motions with incident wave angle of 180 degrees and a range

of Froude number between 0 and 0.75. The model used in this work had the hull form of VOSPER

international, Incecik et al. (1991), with different draft and hull spacing. The catamaran was designed as

a passenger platform with a ship’s length target of L = 43.5 meters. The hulls are set with two different

spacings, 40 and 60 centimetres between the demi-hulls centre line, corresponding to the abbreviation

V40 and V60 respectively. Important characteristics o the demi-hull shape is the hard shine and wet

transom stern. The numerical model of the demi-hull shape and the needed values for the mass inertial

values were available in the form of input for the code CatCenteno. Being later scaled and treated for

other software used in this work.
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5.2 Software used

Regarding the numerical computations, three different available software are used. Availability was

given to the author of this work and their characteristics are connected with the objective of increasing

the understanding on interaction effects. The main characteristics of each software is presented in table

5.4.

Table 5.4: General specifications of the software.

Acronym: Fonseca CatCenteno Wasim

Reference: Fonseca and Guedes Soares (1998) Centeno et al. (2000) Kring (1994)

Method: Strip Theory Strip Theory Rankine panel method

Domain: Frequency Frequency Time & Fourier

Linearity: Linear Linear Linear & Non-linear

Transom terms: No Yes Kutta conditions

Multi-hull: No Two-dimensional Three-dimensional

User-face: Input file Input file Graphical, command line

Fonseca: A frequency domain strip theory code which is the linear version of the time-domain soft-

ware presented in Fonseca and Guedes Soares (1998), is used to perform computations for the base

case. The transformation to catamaran case is done by computing the demi-hull motions as a single hull

case and then post-processing the results to represent the catamaran motions, implying no interaction

between the demi-hulls. The software, Fonseca, was provided by the department CENTEC University

of Lisbon. It’s calculations are based on the strip theory from Salvesen et al. (1970). To acquire the

two-dimensional sectional added masses, damping coefficients and diffractions forces the Frank’s close

fit method is applied. This linear version is not published and validated as the non-linear version from

Fonseca and Guedes Soares (1998), but it has been widely used in intern computational works and

lectures. Post-processing of results from this code include the transformation from single hull motion re-

sults to catamaran, modifying the hydrodynamic coefficients and solving the equation of motion. Other

computation done is the inclusion of end-terms, this is possible since there are two-dimensional sec-

tional outputs with damping and added mass coefficients together with sectional diffraction forces. The

equations and considerations are present in the Chapter 4.

CatCenteno: A step in the interaction scheme is done by including computations of motions using

a two-dimensional interaction scheme. Centeno et al. (2000) have developed a software that is based

on strip theory method. The work aimed for motions computations on catamaran vessels. On top of the

interaction feature the author included cross-flow method in order to account for viscous effects. The

software uses Frank’s close fit to calculate the hydrodynamic coefficients. The interaction method is

coded in a way that the diffraction problem of one demi-hull affects the other demi-hull directly on the

same longitudinal coordinate. To do so, one of the demi-hulls is created in the input file with the central

axis away from the central line of the catamaran. With sectional shapes along the length of the ship,

hydrodynamic coefficients and exciting forces are calculated and then integrated using the strip theory of

Salvesen et al. (1970). The inclusion of the cross flow method in the computations leads to an iterative
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process that seeks convergence in the motion response, this method as a very good applicability in the

SWATH type of ships and here is applied to the catamaran type, Lee et al. (1973).

Wasim: In the effort of including a fully three-dimensional interaction study for catamarans, a state-

of-the-art method is used. WASIM software is already used in classification societies as an everyday

motions computations tool in a very wide range of cases, Nestegard et al. (2008). This software is

originated from a cooperation between DNV and MIT starting in beginning of the 90’s, its basic im-

plementation had two stages of evolution, SWAN1 and SWAN2. From its beginning the software was

applied to practical applications in the new-building activities. Nowadays it is included in a package

provided by DNV-GL called HydroD - SESAM. Within this, analysis can be done for either stationary

floating structures or with forward speed. For the case of this work only the Wasim package was used,

Veritas (2011). Based on potential flow theory the program uses a three-dimensional Rankine panel

method creating a fully three-dimensional solution. The panels are located in the hull surface and the

ship’s surrounding free surface, generated by an included program for the purpose. The specifications of

theory and numerical implementations schemes are well described in the reference, Kring et al. (1997).

In this work the reader is guided to several other important publications about the specifications of used

methods. Being important for the comparison the main features of WASIM are briefly described.

The solution of equations is done in the time domain, being needed to post process the results

using a fast Fourier transform to build the RAO’s. The radiation to infinite condition is satisfied by a

numerical beach on the free surface. The beach has the ability to treat the zero speed case and the

critical frequency problem (τ = 0.25), when the radiated wave travels at the same speed as the ship).

The panel method implies the use of Boundary Element Method (BEM), and WASIM has the peculiarity

of using B-splines for the velocity potentials which satisfy the continuity of value and first derivative

across panels. Other feature of the program is to enforce the continuity of velocity potentials and free

surface elevation across grid patches on the free surface. The program requires a stability caution when

preparing the simulation. This is dependent in terms of ship speed, ship’s length, panel size, aspect ratio

of the panels and time-step size. Because of the last the time required for the computations is affected

strongly. The information that allows this subject to be correctly modelled is found in Veritas (2011).

The hull shapes can be introduced in the program either in the form of structural elements (.FEM) or

simply by sections description (.PLN). The last was enough for the study necessities, providing a good

correlation to the strip theory methods. The mass model, as it is called in the program, is introduced

using the user system of coordinates which are defined in the shape input file. With the difference that

for the inertias input uses the radii of gyration.

Because the user interface of Wasim, the ability to implement a sequential computation for all the

models was not attempted, even that it may be possible to do using the command line. For the case of

strip theory based software this was accomplished, mainly because it only uses input files in the form of

.DAT. The total time to compute all the cases considered with Fonseca and CatCenteno was significantly

smaller than the time needed to perform the same with Wasim.
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Table 5.5: Programs limitations in hull shape definition.

Acronym Input type
Number of

sections

Points number

per section

Longitudinal

coordinates
Stems definition

Fonseca sectional points 40 20 Yes Bow & Stern

CatCenteno sectional points 40 20 No Bow

Wasim sectional patches + FEM 200 200 Yes Curves

From the above Table 5.5, there are two differences that had an important influence in modelling

of hulls geometries. Both of the strip theory codes require that the bow is modelled by a single point,

intersection between the bow stem and mean water line. This limits the type of hull forms possible to

include in the calculations, specially if the bow is of a not conventional form, as bulbous or wave piercing.

Fonseca code requires the longitudinal location of the sections, and both the bow and stern have to be

defined with a singular point. Because longitudinal position of sections can be defined the previous

problem, when modelling the bow shape, can be improved. For the case of CatCenteno the sectional

description of the models starts with a single point at the bow. From this point the code will split the ship’s

length in constant spaced sections. The number of sections has to be the number of shaped sections

plus one for the bow point. Which does not allow a very precise hull form definition. This problem was

found for El Pardo catamaran, it’s wave piercing bow was not modelled in any of the three programs.

Differently, Wasim allows the user to create a curve that defines the stems shapes and therefore it allows

such types of bows and others. In this software the sections are introduced in sequences that generates

patches representing the hull surface. Because of this the types of hull forms possible to create are

incredibility big, from SWATH to Trimarans and others. For the Wasim three-dimensional panel method

the geometry definition had firstly considered the stability issue. Because it is in time domain, time

step has to be defined and for the case of high speed cases this is strongly defined by the stability of

integration methods. Keeping the solve process stable for this cases means that the time step used

is already small enough and therefore accuracy of solution is obtained. Stability is connected with the

panel size and Froude number at which the ship is sailing defining the minimum time step to be used. In

result of this the grid definition lengthwise has a high impact in the computation time. In Veritas (2011) a

complete description regarding this topic can be found.

Figure 5.1: Example of Wasim panels, VOSPER V40.
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A brief study on the grid convergence was done in order to better understand the possible results

and implications of grid differences. The main objectives are to have convergence in the results, keep

the time of computations acceptable and finally have some degree of correlation to the strip methods

software used by the geometry definition. Using DELFT 372 model scaled to 30 meters in length, the

number of longitudinal panels is set to 30. With such number of panels the time step at the highest

Froude number, Fn = 0.75, has to be set in tstep = 0.02s. In terms of transversal number of panels the

influence in computational time is not so significant, setting a base case of 10 panels in each side of

the demi-hull. With this base case the time of computation, for 10 frequencies is of tcomp. = 750s, at

the highest Froude number. If the number of panels lengthwise is increased to 40, 1.3 times more, the

results take 3.73 times more to be obtained, this with an increase of 3% in precision on the results. The

increase of time due to the grid refinement are significantly more then the gain in precision, at least for

lengthwise refinement. For the transversal number of panels the values in table 5.6 where used, noting

that Fonseca and Wasim inputs only define half of the demi-hull, CatCenteno on the other hand defines

points all around the sections of one demi-hull.

Table 5.6: Hull geometry discretization used.

Acronym
Number of

sections

Number of Points

per section

End

terms

Fonseca 40 16 Yes & No

CatCenteno 39 18 Yes

Wasim (Panels) 30 to 40 12 Kutta Condition
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Chapter 6

RAO computations

In this Chapter the computational results which are plotted in the form of RAO’s (Appendix: A) are dis-

cussed. Response Amplitude Operators are displayed in non-dimensional form, and due to the objective

of study catamaran motions with a large amount of computations phase angles are not displayed. Non-

dimensional axis for displacement movements such as heave, are obtained by dividing the amplitude

of motion by the wave amplitude in the vertical direction. Rotational motions such as pitch and roll are

further divided by the wave number k = ω2/g, witch times the wave amplitude give the wave slope kζ.

Frequencies can either be non-dimensional when in the form of wave length ratio over the ship’s length,

λ/L, or by the ITTC recommendation ,ω
√
L/g, which is the one used in this work. The first one is com-

mon practice when presenting longitudinal motions for head waves, since it better gives an idea of what

it should look like in such conditions. In the above case the considered wave frequency is the incident

wave frequency and not the encounter.

The computations follow experimental works commented in Chapter 5.1. In an experimental environ-

ment ships have reduced dimensions for practicality. The case for numerical computations is somehow

different, it is possible to scale the models to the target dimensions of the catamarans. This improves

computational precision by reducing numerical errors provident from truncation. The Table 6.1 shows

final scaled dimensions of the models and their main characteristics and in Table 6.2 the scaled values

for the mass. Considerations for scaling are either related with direct information from the publication

stating the design length target, or from the common size found in fast semi-displacement catamarans

discussed in Faltinsen (2005), stating that their length are typically between 30 and 40 meters. With this

in mind when a 1:10 scaled catamaran model was not within the target length, the scale was changed to

meet the length between perpendiculars of 40 meters. The case is found for the NLP round bilge series

that were tested with relatively small models of 1.6 and 2.1 meters long.
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Table 6.1: Scaled ship hulls dimensions.

Ship Scale L[m] T [m] Bdh[m] S[m] ∇[m3]

NPL4b 1:25 40.00 2.222 4.444 8 & 16 315.875

NPL5b 1:25 40.00 2.222 3.636 8 & 16 208.427

NPL6b 1:19 40.00 1.527 3.053 8 & 16 149.293

MARINTEK 1:10 37.78 2.012 2.670 7.530 203.000

DELFT 372 1:10 30.00 1.500 2.400 7.000 87.070

El Pardo 1:10 43.00 1.354 2.700 8.600 179.600

VOSPER 1:20 41.00 1.700 3.160 6 & 12 308.000

Table 6.2: Scaled ship mass characteristics.

Ship Scale ∆[kg] LCG[m] KG[m] GMt[m] rx[m] ry[m] rz[m]

NPL4b 1:25 323772 17.44 3.33 ... ... 10.00 10.00

NPL5b 1:25 213637 17.44 2.73 ... ... 10.00 10.00

NPL6b 1:19 153025 17.44 2.29 ... ... 10.00 10.00

MARINTEK 1:10 203000 16.50 3.52 8.35 3.80 10.30 10.90

DELFT372 (HW) 1:10 87070 14.10 3.40 ... ... 7.82 7.46

DELFT372 (OW) 1:10 87070 14.10 2.78 14.10 3.89 8.10 9.64

El Pardo 1:10 184100 18.50 3.71 16.23 5.01 11.48 11.48

VOSPER 1:20 315700 16.36 1.10 ... ... 10.88 10.44

The results are divided in longitudinal modes of motion, the larger amount of computations, and

later the transversal roll mode of motion. For each model and condition there is a figure in Appendix A

comparing all the collected results from the methods. In Table 6.3 it is shown the values of natural en-

counter frequencies and results from two different formulations for the piston mode resonance frequency

in heave, van’t Veer and Siregar (1995) and Molin (1999). In Appendix B tables with the values com-

puted for Root Mean Squared Error (RMSE) are shown. The values of interaction are calculated using

the resonance frequency for heave motion in Equation 4.16. They are expressed in Int coefficient, that

represents the length that one demi-hull is subjected to the radiated waves from the symmetric demi-

hull. The difference in natural frequency between heave and pitch are relatively small and computation

of interaction coefficient for both is unnecessary.
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Table 6.3: Natural and heave piston resonance frequencies.

Non-dimensional values, ωe

√
L/g

Natural Frequencies Piston mode

Ship Heave Pitch Roll Molin van’t Veer

NPL 4b S/L = 0.2 4.17 4.07 ... 1.06 2.26

NPL 4b S/L = 0.4 4.17 4.07 ... 1.01 1.40

NPL 5b S/L = 0.2 4.63 4.52 ... 1.44 2.15

NPL 5b S/L = 0.4 4.63 4.52 ... 1.37 1.37

NPL 6b S/L = 0.2 5.02 4.90 ... 1.88 2.07

NPL 6b S/L = 0.4 5.02 4.90 ... 1.78 1.35

MARINTEK 3.90 3.59 3.94 1.53 1.98

DELFT 372 (HW) 4.35 4.07 ... 1.91 1.85

DELFT 372 (OW) 4.35 3.93 3.97 1.91 1.85

El Pardo 4.65 4.28 4.05 2.32 0.95

VOSPER V60 3.88 3.79 ... 1.64 1.62

VOSPER V60 3.88 3.79 ... 1.69 2.10

6.1 Heave and Pitch results

The only computations that do not include wet transom effects is with the base case of no interaction,

Fonseca. The inclusion of end-terms is as written in Chapter 3.3.1. For the other interaction schemes the

use of either end-terms, for CatCenteno or kutta condition for Wasim is present in all the computations.

Speed interval of experimental works range from 0 to 0.8 Froude number. The majority of experimented

wave directions are head and bow waves, ranging from β = 180◦ to β = 150◦ , some cases are found

with β = 90 but none with following waves. Regarding the spacing between demi-hulls, Table 6.1

shows the absolute values. Especial note for the three NPL hull forms, where two different spacings are

considered, S/L = 0.20 and S/L = 0.40. As for the VOSPER these varied between S/L = 0.20 and

S/L = 0.29, the other models have values around S/L = 0.20. The results obtained from the variable

hull spacing models are interesting, especially regarding the interaction schemes implemented with the

Software used. Apart from this general tendency for different Froude numbers and headings can be

reasonable found, meaning that the comments are to the methods applied and their results comparing

to the experimental data available and not to the hull forms itself.

6.1.1 NPL round bilge

The first set of RAO figures included in the Appendix are results for NPL round bilge series tested for

head waves, the three hull forms and each with two spacings are shown in Appendix A.1, A.2 and A.3

for hulls 4b, 5b and 6b respectively. The general behaviour of the experimental response amplitude

operator for heave motion shows that for low frequencies the results start with ξ3/ζ = 1 and as the

frequency tends to higher values the response reduces to zero. This shows the consideration from
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linear response type, meaning that for long waves the ship’s movement follows the wave amplitude and

for very high frequencies the effect of short waves has less or none impact on the ship.

For heave, at lowest Froude number tested all the three hull types and configurations show a peak

near the natural frequency below the value ξ3/ζ = 1, as like the response values for all the frequency

domain. With the increase of Froude number to Fn = 0.53 the response in heave shows that the

system is under-damped near the natural frequency and therefore the peaks values are higher than 1.

The values of the response increases with the Froude number and the frequency range in which this

happens becomes larger. Due to the natural encounter frequency, these peaks in response appear for

lower non-dimensional frequencies. The peaks show higher values near the resonance frequency, since

it is predicted that the exciting forces by long crested waves are larger than for short waves. Each each

one of the three models that are tested and considering the two S/L values, differences can be noticed

on heave peak values. This due to the hulls configurations and also connected with the forward speed.

Generally the amplitude values at heave response peaks show bigger values when S/L is smaller.

However such differences are less pronounced as the Froude number increases. For the two cases,

NPL5b and NPL6b that includes tests for both spacings at Fn = 0.8, the response amplitude near the

resonance frequency is of the same magnitude. As for the case of NPL4b the highest Froude number

was not tested for configuration S/L = 0.20. Pitch amplitude resulting curves show similar tendency for

high frequencies going to zero. As for the low frequencies it is possible to note that the domain does not

allow to show results with ξ5/kζ = 1, which for higher Froude numbers will be more noticeable. For low

Froude numbers, Fn = 0.2, the pitch response curves show similar behaviour between the three types

of hulls tested. Local humps can be found around natural frequencies. For Fn = 0.53 the curves start

to show very well defined peak values that can reach relatively high numbers, ξ5/kζ = 1.45 for NPL5b

with S/L = 0.20. It is verified in those curves an additional hump that can be due to interaction between

the hulls, this at a higher frequency than the natural. At maximum Froude number tested, Fn = 0.80,

the responses show a wide range of frequencies in which the amplitude is above one. For pitch motion

non-linearities at high speeds can be very important and may present in the experimental results. With

Fn = 0.53 pitch response amplitude shows different values for the two hull spacing tested, following

the same tendency as for the heave motion lowering the values for wider configurations. The higher

frequency humps are shown for high speeds, however they tend to disappear for S/L = 0.4. Such

example of this is both NPL5b and NPL6b at Fn = 0.8.

For all the range of Froude numbers Wasim gives very good fit of the experimental data. If the

spacing is increased to S/L = 0.40 the computations using Wasim give over prediction of the peak

for higher Froude numbers, 0.53 and 0.8. However, curve tendency and location of the peak at natural

frequency are very well in agreement with experimental data. The first observation of CatCenteno results

can be done regarding the curves tendency for higher hull spacings, where RAO curves show similar

problems as van’t Veer and Siregar (1995), having exaggerated peaks and discontinuities with very low

response values. This is characteristic of the interaction scheme adopted regarding added mass and

damping coefficients curves discontinuities, showing large damping near the frequency at which there

is a discontinuity in the added mass curve. This is discussed and shown for twin cylinders in Chapter
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4.2. Regarding the code, it is believed that the software is still not robust enough and implementation

errors my be part of the cause of such results. At low Froude numbers the interaction scheme applied

in CatCenteno has good results and the inclusion of viscous effects does not show an improvement

in response values. When combination of low hull spacing with Fn = 0.53, CatCenteno gives over

prediction on resonance frequency. In these cases the inclusion of viscous effects by the cross-flow

method improves the results, giving values in agreement with experimental results. An example of this

improvement is NPL5b hull, with Froude number 0.53 and spacing S/L = 0.2. Generally the results

from Fonseca show well behavioured curves with continuity and smooth transitions in the peaks. The

results from this computations show that for low Froude numbers the interaction between hulls has to be

taken in account, since the peak at natural frequency is smaller than the experimental results. Mainly

considering heave motion, the results using Fonseca, are very good for higher Froude numbers and

for bigger spacings between hulls when including end-terms. For pitch motion the end-terms brings

response values below the experimental for smaller frequencies. These are direct consequences of

the interaction limit of catamarans demi-hulls and effect of end-terms in pitch motion. In the methods

that account for interaction the response peak show better location then when using the no-interaction

computations by Fonseca code.

6.1.2 MARINTEK

In Appendix A.4, the RAO computations for MARINTEK model are compared with experimental results,

the figures show that experimental frequency domains tested are too high, this means that the results are

in most of the cases close or equal to zero. The reasons experiments were done for are the comparison

of cross-deck loads and not only focused in motions responses. Even with the experimented frequency

domain it is possible to find a general tendency of heave response curves, starting near ξ3/ζ = 1 for

low frequencies and tending to zero at high frequencies. The Froude numbers tested are relatively high,

0.46 and 0.66, meaning that peaks are present near the resonance frequencies.

Between the two speeds and for head waves it is possible to observe in the experimental curves an

increase in the response value near the resonance frequency. ξ3/ζ = 1.4 for Fn = 0.49 and ξ3/ζ =

1.5 for Fn = 0.66, this with a change from 0.62 to 0.49 on interaction. For the fastest speed it was

experimented other heading, β = 150◦ . The result for heave response is very similar but shows a wider

peak. As for the 90◦ angle, the heave response shows a frequency where the ship’s motion is very low,

ω
√
L/g ≈ 3.8. All the pitch responses for this model show that for the smaller frequencies tested the

amplitude, ξ5/kζ is above 1. For the higher Froude number tested it is possible to observe a hump in

the response curve around ω
√
L/g ≈ 2, in both headings.

Due to the very high frequencies considered it is expected that RMSE metric is influenced by the

small values of responses. Observing table B.4, CatCenteno with viscous effects shows the best per-

formance for the head waves. If the heading is different then 180◦ , Fonseca with end-terms and Wasim

give good predictions too, with RMSE around 0.15 at 90 degree heading; and RMSE = 0.28, 0.28

(heave and pitch respectively) at 150 degrees heading. For all the Froude numbers tested over predic-
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tion can be found for all codes. Improvements by using end-terms and cross-flow for inclusion of viscous

effects are significant since the range of speed is relevantly above the assumed limit of strip theories,

Fn = 0.45. For beam waves there is an interesting result where Fonseca and Wasim show the best

results and predict very well the low response value at the high frequency.

6.1.3 Delft 372

Two different mass models were used for the calculations, one used only for head waves motion study

and the other that included oblique wave directions, β = 195, 225◦ . The second case also includes the

head wave direction but since the mass and moment of inertias are different the cases are separated.

The first four figures in annex, Appendix A.5 are RAO computations of the first case, being the rest of

RAO figures in Appendix A.5 regarding to oblique headings cases. The general behaviour of heave

response for this model at the tested conditions shows that the system is always at Froude numbers that

results in under-damped type of response curves.

The peak amplitude of heave response increases with increased froward speed and the peak also

becomes wider. For the second mass model some low frequencies are not included, which does not

allow to understand if the maximum is actually obtained at that frequency domain. Adding to the speed,

other reason why the peak shows wider is the change in heading, which is more noted by comparing

the head waves case with the β = 225◦ . Besides a wider peak, the maximum amplitude obtained

decreases. Pitch responses show the same problem regarding the frequency domain for higher speeds.

In the response curves it is possible to observe the increase of resonance peak values due to the

increase of forward speed, and a decrease when changing the headings.

For this model the general results of RMSE computations for the tested conditions show lower values

using Wasim software. When considering the inclusionof viscous effect, CatCEnteno also has relatively

low values of RMSE, however it happens mostly for the head waves cases. Values of this performance

metric range from 0.07 till 0.39 on which the lower Froude numbers are better predicted than computa-

tions at higher Froude numbers. Big influence on the oblique heading where the predictions for all the

codes decrease their precision.

Results from Wasim fit very well with the tendency and amplitude of motions for the set of Froude

numbers, from 0.3 till 0.75. For the first mass model, head waves, it is seen that the situation of higher

S/L relation and consequent over predictions in heave does not appear. CatCenteno when including the

viscous effects have very similar results in heave, since the Froude numbers that the model is subjected

to are high, bigger than 0.3. In such computations the lack of precision in the pitch motion is noticeable

starting from Fn = 0.6. Wasim gives the location of peaks in pitch response with better accuracy.

Fonseca code do follow the same tendency and can give reasonable results in heave and pitch at high

speeds, Fn = 0.6. By comparing results from non-interaction schemes and the experimental results

it is possible to see that the interaction influence in the amplitude of peaks is present at lower Froude

numbers, this more significantly for oblique headings. For the model that was subjected to oblique waves

three Froude numbers were tested, 0.3, 0.6 and 0.75. The previous situation regarding head waves can
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be found, with pitch response peak due to interaction not computed by Fonseca at the lower Froude

number. Increasing the heading of incident waves creates lower values of amplitude of motion at the

predicted frequencies. From the experimental results this feature represents a decrease from 1.65 to

1.4 (ξ3/ζ) in heave and from 1.4 to 1 (ξ5/kζ) in pitch motion considering the lower Froude number of

0.3. For higher Froude numbers such does not happen equally, the decrease of amplitude of motion is

only evident in heave and for the biggest value of β = 225◦ . Other observation is that with more oblique

headings Wasim gives very accurate results in terms of location and extension of the peak in motions

amplitude for heave and pitch, certainly regarding the interaction that is accounted with a fully three-

dimensional method. Strip theory methods locate the maximum response at slighter bigger frequencies,

this is especially for the case of pitch motion.

6.1.4 El Pardo

El Pardo model experimental tests include several headings ranging from β = 180◦ until β = 150◦ , in

Appendix A.6 RAO computations are shown for this model. Considering the case of head waves the

motion response for heave has an evolution from 0 to 0.6 Froude number. For the case of no forward

speed the figure shows that response decays with the frequency without showing any significant peak.

As the speed increases peak in heave response are computed at the natural frequencies, and when

Froude number is higher than 0.4 the response is of an under-damped system. It is noticeable too that

this resonance peak increases its amplitude with higher speeds, where for Fn = 0.4 the amplitude is

ξ3/ζ ≈ 1 and for Fn = 0.6, ξ3/ζ ≈ 2. Different headings where tested for Fn = 0.4, and the results

show a decrease in the amplitude together with a wider peak of resonance. For the pitch responses

experimental results show that the response has a very high peak of resonance for Froude number of

0.4 and 0.6, with β = 180◦ . Regarding the second hump in pitch RAO, it appears for head waves with

Fn = 0.6 and for Fn = 0.2. For Fn = 0.4 it is possible that the refinement in frequency is not fine enough

to show such behaviour. By changing the heading, results in pitch show a decrease of the amplitude at

resonance peaks.

Comparing the software used in the computations it is possible to observe that Wasim shows very

good fit in the tendency of RAO curves. CatCenteno predicts very well the peak amplitude in heave

response when including the viscous effects at high speed, Fn = 0.6 and without it at low speed Fn =

0.2. As for pitch responses the inclusion of interaction effects gives better results. The range of Froude

number that this model was subjected to does not have so high values as in the previous cases. With this,

results show that strip theories can follow the experimental values and the inclusion of improvements on

the codes, end-terms and cross-flow, do not show exaggerated differences in heave motion, matching

good with the experimental data. However in pitch the end-terms have exaggerated effect and gives

worst results.
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6.1.5 VOSPER

The final model used for computations of motions is VOSPER catamaran, shown in Appendix A.7. This

model is characteristic for the hard chine on the hull and a wet transom. This last model also includes two

different spacings tested for the same conditions, but no change in the heading keeping it at β = 180◦ .

For heave motion the lower Froude number results show that the different spacing have almost the

same amplitude for the tested frequencies. Only some discontinuity at van’t Veer piston mode frequency

for V60 model, ω
√
L/g ≈ 2.1. At a higher Froude number, Fn = 0.25, the responses show already

a peak at the resonance frequency which is smaller for the bigger spacing model V60. The same

difference in amplitudes is found for Fn = 0.625, where for both spacings the amplitudes are larger than

for Fn = 0.25. The interaction coefficients are at this case Int = 0.53 for V40 and Int = 0.29 for V60. For

the highest Froude number it is possible to observe the same effect of the increased spacing, however

it is seen that it losses significance with increased speed. For pitch motion of VOSPER catamaran the

results have the same type of sequence regarding the increasing of Froude number. But interestingly

the experimental results do not show resonance peaks as high as previous models.

Results from the different methods used show the same tendencies as for the previous, with better

correlation between experimental and computations for CatCenteno when using the cross-flow method.

Again for very high Froude numbers and bigger spacing the computations using Fonseca when including

end-terms can give good results, which is also true for pitch motion.

6.2 Roll results

For the roll motion of catamarans the main subject of study usually becomes the global loads at the

cross-deck structure. Works like Faltinsen et al. (1992) present computations comparing experimental

data on such variables. From the chosen experimental works available, only three models are subjected

to oblique waves, MARINTEK, Delft 372 and El Pardo. This is possibly justified by the difficulties in cre-

ating experimental set-ups for these cases, which are in most of the cases conducted with self propelled

models including autopilots that do not assure the same heading during the run, Hermundstad (1995)

identifies this problematic.

All the resulting RAO figures for roll motion are shown in Appendix section A.8. Starting with the

results for MARINTEK catamaran, it is possible to observe that the frequency domain tested for β = 150◦

is very high, having very low motion amplitude values. However for β = 90◦ inclusion of hydrodynamic

interaction is very important, resulting in better predictions. Computations done with no-interaction show

extreme over prediction in all the frequency domain. Also to note that due to the relatively high Froude

number, Fn = 0.49 the inclusion of viscous effects in CatCenteno improves a lot the computation results.

For the case of Delft 372 model the headings differ from 180 degrees, 15 and 45 degrees. In the

first case calculated, roll motion responses are over predicted in the lower frequencies, only when the

Froude number is high, Fn = 0.75 the computations from Wasim and Fonseca give better fitting to the

experimental results. CatCenteno at high speed shows evident errors in the computations, possible
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to observe for β = 225◦ . Peaks in characteristic frequencies show such error, which is observed at

ω
√
L/g ≈ 2.1 for Fn = 0.3 and ω

√
L/g ≈ 2.3 for Fn = 0.6. The first example, has extremely good

correlation for Wasim computations and the second with Catcenteno, but where experimental shows

a hump the computations show a trough and the opposite, Figure A.50. For the last model that was

subjected to roll motion, El Pardo, Wasim computations show very good correlation with the experimental

data. However CatCenteno follows the tendency, if viscous effects are not included. Fonseca does not

present the characteristic peak due to the interaction as expected, however it can also perform in average

value, especially at the heading of β = 165◦ .

6.3 Root mean square error

As the analysis of results uses directly some values from calculation of RMSE, it is useful to demonstrate

the average of RMSE metric. This average is computed for all the different conditions tested and only

differentiates the methods used in the motions computations. This is shown in Table 6.4, where standard

deviation is included for a better qualification of results. The result are expressed in the same units RAO

figures for each mode of motion.

Table 6.4: Mean values of Root Mean Square Error.

RMSE3 σ(RMSE3) RMSE5 σ(RMSE5) RMSE4 σ(RMSE4)

Fonseca 0.25 0.20 0.25 0.16 0.37 0.36

Fonseca+ET 0.25 0.19 0.21 0.09 0.29 0.24

CatCenteno 0.43 0.29 0.28 0.14 0.18 0.10

CatCenteno+VISCO 0.26 0.15 0.21 0.08 0.17 0.07

Wasim 0.23 0.15 0.24 0.17 0.15 0.09

In Table 6.4 it is possible to observe that Wasim gives the lower value for heave and roll motions,

RMSE3 = 0.23 and RMSE4 = 0.15. However for pitch motion the lower values are from CatCenteno

when including viscous effects, and Fonseca when including end-terms, both with RMSE5 = 0.21.

These results show correlation with the previous discussion, where result from Wasim are consistently

in agreement with experimental values, which for the case of roll motion it is shown that interaction is

important for the computations. For pitch motion case the result shows that using strip theories, generally

better agreement with experimental values is obtained. However the previous discussion shown that

this may not be true, considering the amplitude and locations of resonance peaks may crucial when

evaluating methods results. Developments on these considerations are done further in the work, when

studying model errors.

By observing the tables in Annex B, from which values where used to compute the average, is

possible to observe shaded table cells with the lower values for each tested condition. Considering the

Froude number at which the catamarans are tested and the hull spacing, which combined represent

the interaction level between the demi-hulls, conclusions can be drawn. As mentioned before the result

of interaction level, Int., is given at the natural heave frequency for each tested condition. Because of
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the two-dimensional assumption for the results, differentiation due to the headings are not included in

the discussion. To note also that the computations without forward speed gave results very close to the

experimental values, with RMSE under 0.11 for all motion results.

The method that has the larger amount of relatively good results is Wasim, using the three-dimensional

method gives a wide interval of interaction coefficients, ranging from Int. = 0 until Int. = 0.83. Con-

sidering the correspondent Froude numbers these results show the same wide range, with Fn = 0.2

until Fn = 0.8. These values show that computations using Wasim are the most reliable ones for any

condition.

Other interaction schemes using trip theory methods can also result in lower RMSE values too. It is

shown that CatCenteno accounting for viscous effects gives low RMSE values for high Froude numbers,

Fn > 0.6. Only three cases with lower Froude numbers have good result in terms of RMSE. Regarding

the interaction coefficients these range from Int. = 0.2 until Int.0.72. Indicating reduction of errors

when accounting for viscous effects giving a relatively high range of interaction at which the results are

acceptable. Good results using this method do not include hull spacing value of S/L = 4. Other cases

using two-dimensional approach without cross-flow method are shown in the tables having low RMSE,

with Int. = 0.72 until Int. = 0.81, however they are only three and at very low Froude number, Fn = 0.2.

For the case of no-interaction, using Fonseca, low RMSE values can be found when including end-

terms, such cases are for relatively high Froude numbers, from Fn = 0.53 till Fn = 0.8. In combination

with big hull spacings the interaction coefficient ranges from Int. = 0 until Int. = 0.56. Meaning that the

computations from simple strip theory can perform good when considering catamarans at high speed.

If end-terms are not included acceptable results can be found too, however the range of Froude number

becomes lower, with Fn = 0.2 until Fn = 0.6. These low speeds indicate that even when interaction is

relatively high, single hull strip theory when well implemented, can give good results
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Chapter 7

Study on model errors

Significant experimental data is presented and directly compared with computations performed by differ-

ent available methods. In this chapter the objective is post-processing of results in a performance metrics

philosophy. This tries to evaluate important aspects relating the type of simulations and influence vari-

ables though quantified parameters. Uncertainty in data is to be treated for better determination of the

information available, so a rational use of information is possible. With the study on uncertainty different

characteristics can be found on methods allowing to distinguish between systematic and random errors,

Tian et al. (2016). The commonly used performance metrics are bias (mean of the differences), MSE

(Mean Square Error) and CC (Correlation coefficient).

During the work we discuss the comparisons used to validate the numerical computations, which

were found and treated until now. The figures showing both theoretical and experimental results for

RAO’s are extremely valuable, however with the evolution of computation capabilities the fit of curves

by observation and direct discussion may not be sufficient. The precision has increased and therefore

better correlations between computations and experiments are expected if more modern and sophisti-

cated methods are used. As stated in Chapter 5.1, the available data and the methodology to collect it

contributes to variation on metrics treatment introducing uncertainty. Other aspect that is starting to be

present in the experimental reports published is the uncertainty analysis of the experimental results. A

recent example of such attention is the work of Bouscasse et al. (2013). Such considerations regarding

experimental publications are shown in Chapters 2 and 5.1. Part of this discussion is the computations

ability to represent the experimental results and with it having good correlation with the reality. Formu-

lations and other aspects related to this are found in Chapter 3. These type of considerations may be

connected to errors in failure representing and testing reality, however there are variables in the problem

that simply mean different results. These variables are related directly either with the vessel in study or

the conditions that it is subjected to. Following the work Guedes Soares et al. (1999) it is possible to

asses these ones:

• Length between perpendiculars, L - general dimension of the vessel in question, will mainly define

the range of interesting frequencies used in wave characterization, because of this it is used as

reference dimension in scaling processes.
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• Cb, relation of L/T , L/B and L/∇1/3. The first parameter defines in a simple however important

way the general nature of the hull geometry. Ratios such as L/B and L/T also translate hull ge-

ometry in transversal and longitudinal perspective respectively. This can very well have correlation

to the radiated wave problem which is included in the motions computations.

• Cwl, natural frequencies are very dependent on the water line figure in conjunction with mass

properties. The linearised equation of motion shows that the hydrostatics of a vessel is extremely

important in the form of restoring coefficients and this is highly connected with area and area

moments of the water line surface.

• Mass model considering centre of gravity location and radii of gyration lengths are important, mass

distributions are not included since no loads distribution are calculated.

Three other important variables are the type of waves, directions and speed of the vessel which com-

bined will translate in different encounter frequency. The waves here treated are regular and with small

slope, kζ, in order to keep linearity being of sinusoidal shape with defined frequency, ω, incident direction

β and of course the vessel speed in the form of Froude number, Fn.

7.1 Frequency independent model error

Several ways to model the uncertainty state clearly that experimental errors exist. However once good

correlation between a model and experimental data is found, the experimental error should have an

average deviation tending to zero. In Guedes Soares et al. (1999) several types for the uncertainty

models are introduced, unbiased, constant, linear and quadratic. It is understood that by increasing

the degree of Equation 7.2, a better fit can be found for the differences between computations and

experimental results curves. However due to limited amount of data the determination of coefficients for

polynomial model error is less significant as the degree increases.

Ĥ(ω) = φ(ω) ·H(ω) + ε(ω) (7.1)

φ(ω) = a+ bω + cω2 (7.2)

H is the theoretical values from the computations performed, φ is any model error function that multi-

plied by the theoretical predictions results gives Ĥ, the improved predictions. The random experimental

errors are represented by the inclusion of term ε. The base generalization of the uncertainty in compu-

tations can be found by assuming a constant model error, Equation 7.3. To determinate the value of a

random variable, a, the squared error resulting from application of the method in the entire frequency

domain is minimized, equation 7.5. In both of the equations is included repetition of the experiments in

same frequency, indexj , such repetitions were not found during the research for this dissertation.

Xij = aHi + εij (7.3)
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∑
i

∑
j

ε2 (7.5)

Applying Equation 7.4 to the results obtained, a set of resulting tables similar to RMSE computations

is obtained, which are included in Appendix C. For a quicker result interpretation the mean values of all

the models and test conditions are computed, keeping segregated the different methods used. This can

be found in Table 7.1 showing the mean values of the model error variable and it’s standard deviation.

Table 7.1: Mean values of frequency independent model error.

Mean values of FIME

â3 σ(â3) â5 σ(â5) â4 σ(â4)

Fonseca 0.98 0.13 0.88 0.21 0.55 0.17

Fonseca+ET 1.03 0.14 1.09 0.24 0.62 0.17

CatCenteno 0.81 0.16 0.89 0.21 0.82 0.21

CatCenteno+VISCO 0.97 0.15 1.00 0.20 1.00 0.54

Wasim 0.91 0.13 0.86 0.16 1.12 0.39

In this general view of results the method that needs less linear correction is CatCenteno when

including viscous effects, with values closer to one for a random variable. The standard deviation of

frequency independent model errors computed for pitch motion are relatively higher than for the heave

motion. For roll motion the same high standard deviation values of results can be found when using

higher order of interaction schemes, however keeping an average of satisfactory result. The conclusion

is that when including interaction in roll motion results do not need a correction but are very inconstant,

possibly due to test conditions. From these calculations an attempt to find linear correlation between the

results and variables discussed in beginning of Chapter 7 was done. However relatively small values

of correlation coefficients where obtained, therefore the use of frequency independent model error for

variables correlation comes to a stop. The next part of uncertainty study, which includes dependency on

the frequency, will be treated using RMSE results.

7.2 Frequency dependent model error

The natural choice after computing the frequency independent error is to compute the random variables,

a and b for equation 7.2, and with that the linear frequency dependent model error. However when

applying such model, the available data was not sufficient to obtain relevant values. In order to generate

a metric that is frequency dependent, a different method is used. The following formulation is based on

Model Correction Factor (MCF) method, which considers the influence of the deviation between ideal

or calculated and realistic results of any model reflecting that real situation. In this case real catamaran

motions obtained by experiments are considered as realistic results and motions computations as the

calculated values that try to predict the complexity of the real problem. The factor is simply the ratio
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between the experimental, Xi and computed, Hi values for the catamaran model, condition and that

can be frequency dependent.

MCF (ωi) =
Xi

Hi
(ωi) (7.6)

Figure 7.1 shows the results obtained when applying Equation 7.6 to every single case tested for all

the catamarans, conditions and for each frequency. This figure shows the heave and pitch MCF for all the

cases and already shows the differentiation in Froude numbers tested originated from a linear correlation

study. The dashed line at Xi

Hi
= 1 represents the computations that are equal to the experiments and

therefore no correction is needed. If MCF becomes lower than 1 then the theoretical method over-

predicts the motion at that frequency and if higher than 1 it under-predicts such result. With this type of

result it is possible to attempt to generate some differentiation by the important variables of the problem.

To do this a linear correlation study is done, which took the RMSE as the control variable to identify the

variables that most explain the deviation of the theoretical model from the experimental results.

Figure 7.1: Model correction factor for heave (Left) and pitch (right) motion at all tested conditions.

7.2.1 Linear correlation study

Linear regression models are widely used where variable means are used to generate the best linear

model dependent on two random variables. In this case the objective is to quantify the possible linearity

between multiple variables and the control variable RMSE of the motions results. This result measures

the goodness-of-fit of such linear regression model. A high correlation coefficient CC close to one im-

plies the existence of a strong linear correlation between the variables, whereas a low correlation, close

to zero, would mean the lack of a linear relationship. This method can be found in books like Ang et al.

(2007), and its formulation is implemented in MATLAB software, which is used for such computations.

In Tables 7.2, 7.3 and 7.4 the linear correlation coefficients are shown. The methods used in motions

computations are separated and five variables are chosen, β, Fn, CB , Cwl and S/L. The values in

the tables show the dependency of RMSE results and the variables, were the values above 0.50 are

highlighted. This represents the closer to linear correlations that are found.
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Table 7.2: Linear correlation coefficients, heave.

Heave motion & Root Mean Square Error

CC3 Fonseca Fonseca+ET CatCenteno CatCenteno+VISCO Wasim

β 0.34 0.34 0.21 0.27 0.09

Fn 0.59 0.53 0.75 0.61 0.64

CB -0.31 -0.33 -0.37 -0.31 -0.22

Cwl -0.28 -0.32 -0.28 -0.26 -0.13

S/L -0.17 -0.20 0.07 0.27 0.14

Table 7.3: Linear correlation coefficients, pitch.

Pitch motion & Root Mean Square Error

CC5 Fonseca Fonseca+ET CatCenteno CatCenteno+VISCO Wasim

β 0.35 0.30 0.16 0.24 0.14

Fn 0.76 0.57 0.71 0.51 0.57

CB -0.20 -0.51 -0.27 -0.34 -0.13

Cwl -0.14 -0.56 -0.15 -0.24 0.00

S/L 0.02 0.06 0.09 0.21 0.03

For heave and pitch motions it is predictable that possible correlation between results and Froude

number could exist for all methods. This is very reasonable due to the importance of such variable in

the different formulations. Strong influence of the block coefficient and the waterline coefficient in pitch

motion can be found too, in the results of strip theory when included the end-terms, but since it is not

found on the rest of methods this coefficient will not be studied.

Table 7.4: Linear correlation coefficients, roll.

Roll motion & Root Mean Square Error

CC4 Fonseca Fonseca+ET CatCenteno CatCenteno+VISCO Wasim

β -0.59 -0.53 -0.04 0.50 -0.12

Fn -0.04 -0.06 0.45 0.53 -0.04

CB 0.14 0.09 -0.21 -0.42 -0.09

Cwl 0.64 0.61 0.20 -0.28 0.33

S/L -0.33 -0.28 0.09 0.42 -0.05

Whereas in roll motion the case is significantly different, there is no case of correlation coefficients

higher than 0.50 for all the methods at the same variable. Still some conclusions can be taken from

here, heading influences the results precision for the modified strip theory Fonseca. This can be the

result from post-processing implementation. Not only the heading dictates precision but also the water

line coefficient, this is again possibly due to the method used to implement the roll of catamaran in the

single hull software Fonseca. To note that the roll motion is implemented by the heave motion on each

demi-hull.
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7.2.2 Average model correction factor

Due to the correlation study, data can be treated by differentiating the MCF in terms of Froude number.

This is done by creating 4 intervals of Froude numbers regarding the experimental data available. With

the data that is included in each Froude number interval the average of MCF within a frequency interval

is calculated and the resulting value plotted. A continuous line connects the values and figures are sep-

arated by the interaction methods relevance. Because of the end-terms at post-processing of Fonseca

results, and inclusion of viscous effects by the cross-flow at CatCenteno, thin and thick curves are in the

figures. The thick lines are the improved methods and the thin lines base methods. Because Wasim

does not include such post-processing calculations it is only shown thick lines. In all the figures there is

a horizontal line at 1 which helps to indicate if the computations are under or over-predicted.

Figure 7.2: Averaged MCF of Fonseca results for heave (left) and pitch (right).

The no-interaction results can be found in Figure 7.2, using Fonseca software. Generally under-

predicted results since the values are present largely above horizontal line. For higher speeds worst

results are obtained at high frequency and with more oscillations along the frequency domain.

In the left side of Figure 7.2, which corresponds to the heave motion MCF, the lower Froude numbers

interval, Fn = [0 : 0.2], show very close to 1 values until ω
√
L/g ≈ 2.5. After this frequency and closer to

ω
√
L/g ≈ 3 a peak is shown in the result, this is close to the natural encounter frequencies of the models

tested. Because this method does not include interaction between the hulls it shows under-predicted

of results. For the second Froude numbers interval, Fn =]0.2 : 0.4], the peak is located at a lower

non-dimensional frequency and the under-prediction is slightly bigger starting from ω
√
L/g ≈ 2.25 and

until the end of frequency domain. Higher Froude numbers and high frequencies, results in high MCF

values, which can be because the low amplitude results experimented. Because this MCF is a relation,

any difference from zero is amplified largely showing very high values. For lower frequencies the results

may be interpreted as before, where the first curves peak can be found near the average encounter

resonance frequency. For the two intervals this peaks show smaller values of MFC representing better

predictions. Due to the increased speed it is expected that the interaction has less relevance and

because of that the no-interaction scheme can predict better the results. The inclusion of end-terms

is noticeable at the higher Froude numbers intervals. The results in this case are not beneficial at the
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peaks, and only gives better MCF at low and high frequency intervals. Since Fonseca’s method does not

take in account interaction resonance, peaks are under predicted. The inclusion of end-terms traduces

in lower responses and MCF becomes higher at response peaks. Such cases are for Fn =]0.4 : 0.6]

at ω
√
L/g ≈ 2 and for Fn =]0.6 : 0.8] at ω

√
L/g ≈ 1.8. The right side of Figure7.2, the case of pitch

motions, the averaged MCF shows the same tendency of high values for higher frequency range. For low

Froude numbers intervals, high frequency results are significant, but for higher Froude numbers intervals

those results lose meaning due to the encounter frequency. This is possible to observe if considering

the line of highest Froude numbers, Fn =]0.6 : 0.8]. At low Froude numbers MCF is close to one until

about ω
√
L/g ≈ 2.5, where it starts to increase showing under-prediction of results at the resonance

frequency. Inclusion of end-terms at lower Froude numbers intervals has less effect on the MCF as seen

in RAO’s. For the other Froude numbers interval it is possible to see that the pitch MCF is relatively

good presenting an over-prediction that increases with the increase of speed. This over predictions are

spread over a wider range of frequencies and move to lower ones as the Froude numbers increase. The

results show that the inclusion of end-terms in pitch motions is not so beneficial, when including these

the MCF becomes closer to one at the resonance frequencies but loses precision for the lower range of

frequencies. For the pitch motion is understood that the interaction plays a more complex role, by having

multiple humps at the response curve which results in inconstant MCF values.

Figure 7.3: Averaged MCF of CatCenteno results for heave (left) and pitch (right).

Model correction factor values for the case of computations using CatCenteno are shown in Figure

7.3. The results when including a two-dimensional interaction scheme show different characteristics

regarding the resonance peaks, and the general behaviour of the curve is more inconstant.

For heave motion, left side of Figure 7.3, at low Froude numbers interval the MCF is very close to

one, showing some under-prediction at the higher frequencies. To note that once the Froude numbers

tested are higher, the behaviour of such method is to over-predict the resonance peaks. Because of

this, the attention is regarding the lower values of the curves as they fit better the locations of resonance

frequencies too. These locations show once more the effect of forward speed and encounter resonance

frequency, their MCF values show the over-predictions and with the increased speed they become lower

and their location at lower frequencies. When including the viscous effects on CatCenteno computations,
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the values of MCF become closer to one at the resonance frequencies. This effect is noticed only around

these frequencies and more efficient for higher Froude numbers. In pitch MCF using CatCenteno, the

curves show wider pattern of peaks and pits. The under-prediction at low frequencies is less significant

than Fonseca method, traducing an improvement in results when accounting interaction. It is seen to

that the inclusion of viscous effects improves results at higher Froude numbers by resulting in MFC

values closer to one at midrange frequencies.

Figure 7.4: Averaged MCF of Wasim results for heave (left) and pitch (right).

The last set of figures, 7.4, refers to the computations of averaged MCF for Wasim results. The

overall results are better having values closer to 1, at the relevant frequency domain. The figure shows

a slightly over-prediction of heave motion at all Froude numbers. The high speed combined with high

frequencies gives very high values of MCF and it is considered to be the same situation of close to

zero response values. In this case the location of resonance frequencies is not well observed for heave

results, but only for pitch where it is represented by lower values of the curves. This values show bigger

over-predictions with the increase of speed and become wider, ranging a bigger interval of frequencies.

With this type of study it is possible to analyse the average behaviour of the transfer functions.

Because the MCF is frequency dependent it is possible to observe the location of errors, which in these

cases are mainly located around natural encounter frequencies. The sequence of results show that

there are improvements on response values when accounting hydrodynamic interaction. In general the

heave predictions come with MCF values closer to one and with results that indicate lack of precision

at resonance frequencies. As for pitch motion, MCF figures show lack of precision of the methods,

for the strip theories it comes under-predicted and for panel method used over-predicted. Inclusion of

end-terms in Fonseca do not necessary bring better results, especially due to the lack of interaction

of the method, while viscous effects in CatCenteno do bring some improvement in results but only for

the very high Froude numbers. The location of resonance frequencies is not so easy to observe with

CatCenteno, due to wider ranges in frequency. The figures have also shown the correlation coefficient

result between the tested variables, RMSE and the ship’s speed. This difference is observed by the

amplitude and peaks locations of MCF curves, representing the resonance frequencies and differences

in motion amplitudes.
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Chapter 8

Conclusions

Computations of wave induced motions on catamarans were studied, comparing results with experi-

mental data found in the bibliography. It is understood that catamarans can have relatively complex

considerations to take into account. One of most important is the hydrodynamic interaction between

demi-hulls. To better understand the effect of hydrodynamic interaction several objectives were defined,

steps in which this work is based on. The use of several numerical methods to compute catamaran

motions was done resulting in comparison between different levels on hydrodynamic interaction. Along

the study of such methods experimental data was collected, with seven experimental hull models used

for validations a good amount of results using the methods were obtained. The methods results are

analysed and compared to the experimental data by the means of RAO figures and RMSE. With the

pool of results a further study is done, using performance metrics philosophy two types of model errors

are studied, a frequency independent and frequency dependent.

8.1 Achievements obtained

8.1.1 Software

A compilation on the existing methods to predict catamaran motions is accomplished, being established

the need to include hydrodynamic interaction between demi-hulls. Also it is noted the need to have

methods that allow fast computations, in order to include them in design stages. Namely, strip theory

based methods or three-dimensional as Rankine panel method. These methods are based on potential

flow computations, having lower times of computations than CFD methods which include viscous effects

by means of boundary layer models. With the chosen methods three levels of interaction are used; a

no-interaction using Fonseca software, two-dimensional interaction by the use of a strip theory based

software CatCenteno and the fully three-dimensional considered by Wasim commercial software. Post

processing of single-hull motions results from Fonseca is done to the twin-hull case, this because the

need compare results for catamaran motions in different headings, β 6= 180◦ . An important aspect of

strip theory software found is the ability to create automation of computations, this was accomplished

saving time and could be included in optimisation processes by seakeeping criteria. However it is also

61



possible to achieve the same with Wasim software, with a higher lever of automation and consuming

more time on computations. This was not attempted due to the lack of time for this work.

8.1.2 Interaction

Relatively to no-interaction comes the formulation of exciting forces, as discussed in Chapter 4, when

transforming form the single-hull case to twin-hull exciting forces have to consider the phase that each

demi-hull is subjected too. Equations 4.7, 4.8 and 4.9 are the result of such consideration, it may happen

that experimented frequencies are so that the outcome of exciting forces are close or equal to zero. This

no-interaction scheme is considered to be relevant in high speed cases, as the last example from Figure

4.1. The original software does not include the effect of end-terms, however in the post-processing

phase it was possible to include them creating extra results from computations.

More results are obtained with two-dimensional interaction scheme, CatCenteno software uses the

same method to compute the hydrodynamic coefficients as Fonseca, but due to hull symmetry imple-

mentation result comes as a sum of the symmetric and anti-symmetric solutions from Frank’s close fit.

The first case seen in Figure 4.1 exemplifies this case. Results from application of this method compared

to the ones found in the literature show reasonable agreement, such results are discussed and studied

in Chapter 4.2. It is found that results from this implementation are relatively precise when the models

have low speeds. Prediction of resonance frequency due to the water column motion between the demi-

hulls is justified by hydrodynamic coefficients values. For higher Froude numbers, considerations on the

interaction limit are introduced, based on two-dimensional formulation. With the result of Equation 4.16

the strange results found in Figure 4.7 are justified as limit of interaction between demi-hulls. This code

has other feature that could be included in the computations, cross-flow empiric method. Because of

this the results of this software include both options.

For fully three-dimensional, Wasim software, such computations were not performed. The possibility

to develop results on the hydrodynamic coefficients and simplified hull forms was given relatively late and

the focus remained on more realistic case studies. However this method of accounting interaction is far

more sophisticated, a schematic is found in the mid case of Figure 4.1. Besides the three-dimensional

radiation problem, other very important aspect that Wasim software includes is interaction between

standing wave pattern created around the demi-hulls and ship’s motion. Such ability is of extreme

importance for high-speed vessels, and it is possible that if such results are included in strip theory

computations the interval of applicability would be maximized.

8.1.3 Case studies

To test the numerical methods available for this work several models experimented in towing tanks

where found, description of these case studies and their implementation with software can be found in

Chapter 5. A total of 7 different geometries were tested within these some have different characteristics

which resulted in a wide range of results. The general type of model is of smooth hull’s surface and

wet-transom, because of this the models motions are computed including end-terms. Delft 372 is the
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opposite case being a model that do not present a wet-transom. Other interesting characteristic found

is the hard chine hull of VOSPER catamaran, this characteristic justified the use of cross-flow method in

Centeno et al. (2000). One of the models represented difficulty, El Pardo model has a wave piercing bow

type which could not be modelled properly using CatCenteno and Fonseca software. Wasim software

allows geometries of such type, however this model was simplified being modified excluding the wave

piercing bow. For each model here used several experimented conditions were found, this is due to the

various speeds and headings. Resulting from this conditions a total of 48 combinations are available.

Considering that each one of these combinations results in 3 different methods and in heave, pitch and

roll motions results a substantial amount of data is collected.

8.2 Results conclusion

The first part of results is referent to the direct comparison between experimental values and wave

induced motions, from this part several conclusions can be taken. The codes that showed more stable

results are Wasim and Fonseca. CatCenteno code has few validations works associated and the two-

dimensional approach has a problem regarding exaggerated spacing of demi-hulls, similar results are

found in van’t Veer and Siregar (1995). Curves resulting from computations using CatCenteno are not

smooth at peak transitions, in fact many RAO figures appear with numerical errors and may not translate

specific results of the method.

• Heave motion results are better predicted than pitch motions for catamarans. Resonance frequen-

cies are generally well predicted by the three methods however it appears to exist a limit when strip

theory based codes fail to give the same type of curve at resonance peak, Fn > 0.6. The exper-

imented peaks are wider than the predictions of strip theory codes, while Wasim show resulting

curves in better agreement.

• Pitch motions in catamarans are not so well predicted for the general cases, Wasim has the best

curve fit and interestingly Fonseca without interaction shows reasonable curves but the resonance

frequencies are not well predicted being slightly shifted to the experimented ones. Presence of

secondary humps in the responses also indicate the existence of non-linearities in this mode of

motion.

• Roll motions are less in number of computations, however it was observed that inclusion of any

type of interaction is beneficial to RAO curves results. Wasim computations show better agreement

regarding the shape of curves, and in some cases CatCenteno also show good fitting curves.

Fonseca computations, without interaction and with post-processing to compute roll motion of

twin-hulls, show well behaved curves but always with bigger values along the frequency domain.

It was found relation between good RMSE values and interaction schemes, which depended on

forward speed and hull spacing. Wasim performs with precision for the widest range of these variables.

Fonseca, being well implemented can perform good for wider hull spacings. The use of end-terms

improves the results for higher Froude numbers, meaning less interaction between hulls.
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• The above observations together with the average RMSE computed, dictate that the best method

to apply in catamaran motions studies is Wasim. However, Fonseca including end-terms can

perform good for longitudinal motions, with some discrepancies in the location of resonance fre-

quencies.

Regarding the first part of model errors study, a frequency independent model error, it is observed

that for heave motion the methods that needs less linear correction are Fonseca when including end-

terms, and CatCenteno when including viscous effects. For pitch and roll motions this type of model

demonstrates that CatCenteno with viscous effects does not need readjustment, having â5 and â4 equal

to 1 in average. Other important observation is the failure to find a linear correlation of FIME results and

the variables defined in the chapter. However when changing the control variable to RMSE an acceptable

degree of correlation with Froude number is found. However for roll motion this was not found. Although

there is some significance regarding heading and waterline coefficients on computations using Fonseca.

For CatCenteno when including end-terms, either wave angle and Froude number demonstrated some

linear relation to RMSE roll values. This results justified that a continuation of roll motions errors study

would not generate conclusive results.

• Application of a constant model error, which is not frequency dependent is not sufficient for the

case of catamaran motion computations.

Due to correlation coefficient results, intervals of Froude numbers were created and an averaged

model correction factor was applied. The results are expressed in Figures 7.2, 7.3 and 7.4 from those

it is concluded that Wasim gives better results, closer to 1, for a wider range in frequency domain. For

all the methods there are significant differences for the higher frequency domains, it is concluded that

since response amplitudes are very small or equal to zero, such frequencies are not representative in

the study.

• The relevance of Froude number is found, since frequencies at which errors are more significant

are close to natural encounter frequencies.

• Wasim gives better results, closer to 1, for a wider range in frequency domain, reflecting the general

precision of the method.

For no-interaction method, using Fonseca, it is possible to observe that inclusion of end-term may

not traduce benefits to all the Froude numbers intervals and for pitch motion results bigger corrections

are needed when including such effect. The application of an averaged MCF on CatCenteno results

show very inconstant curves along the frequency domain, crossing several time the reference value 1.

However when including viscous effects, results appear to be improved for both heave and pitch, with

special effect for higher Froude numbers intervals.

• The results using no-interaction methods for catamaran motions can perform good when compar-

ing a generic metric like RMSE. However the lack of some degree of interaction gives errors at

resonance frequencies.
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• CatCenteno only gives good results when including with cross-flow. Such empiric method could

be applied to higher level of interactions and therefore improving their results. This is possible in

Wasim by increasing the critical damping.

8.3 Future Work

As a continuation on this work there are some interesting studies that could be useful for the future,

namely:

1. A more comprehensive study on the hydrodynamic coefficients, the comparison of coefficients

was not done for the three-dimensional case. Having a more detailed analysis of the mathematical

formulations and therefore justifying the differences on motion results. Such study could be applied

on a existent catamaran hull form.

2. Since the type of vessels here studied operate at relatively high speeds, and it is known that there

are strip theory based methods that allow to obtain motion transfer functions with a wider range of

speeds. Application of fast strip theory methods in a comparison study could bring better results

when keeping the hypothesis of no-interaction. For the two-dimensional strip theory code used, it

was found that improvements can be done. The geometric definition of the hull is very simplified

and further debugging of the code is recommended.

3. The experiments data collected is largely referent to head and bow waves, in a realistic situation a

vessel will operate with other conditions, it is suggested to perform comparisons studies for wider

range of headings and modes of motion. Other limitation was the type of catamarans bows which

were modelled in a very simplistic way. A comparative study of bow types when including three-

dimensional interaction is a possible work to be done. Results of wave resistance and cross-deck

loads could be possibly included on these type of studies.

4. Due to the computational evolution and therefore ability to perform fully three-dimensional com-

putations with panel methods it may be possible to create an optimization regarding seakeeping

criteria using such tools.
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Appendix A

RAO figures

In this appendix the reader finds the graphical results for Response Amplitude Operators.

Caption of figures includes:

1. Model name

2. Froude number, Fn

3. Heading angle, β

4. Hull spacing, S/L

5. Interaction at heave natural frequency, Int = 1− τn3S/L

A.1 NPL 4b round bilge series

Figure A.1: Motion RAO, NPL 4b, Fn = 0.2, β = 180◦ , S/L = 0.2, Int = 0.83.
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Figure A.2: Motion RAO, NPL 4b, Fn = 0.2, β = 180◦ , S/L = 0.4, Int = 0.67.

Figure A.3: Motion RAO, NPL 4b, Fn = 0.53, β = 180◦ , S/L = 0.2, Int = 0.56.

Figure A.4: Motion RAO, NPL 4b, Fn = 0.53, β = 180◦ , S/L = 0.4, Int = 0.12.
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Figure A.5: Motion RAO, NPL 4b, Fn = 0.8, β = 180◦ , S/L = 0.4, NoInt.

A.2 NPL 5b round bilge series

Figure A.6: Motion RAO, NPL 5b, Fn = 0.2, β = 180◦ , S/L = 0.2, Int = 0.81.

75



Figure A.7: Motion RAO, NPL 5b, Fn = 0.2, β = 180◦ , S/L = 0.4, Int = 0.63.

Figure A.8: Motion RAO, NPL 5b, Fn = 0.53, β = 180◦ , S/L = 0.2, Int = 0.51.

Figure A.9: Motion RAO, NPL 5b, Fn = 0.53, β = 180◦ , S/L = 0.4, Int = 0.02.
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Figure A.10: Motion RAO, NPL 5b, Fn = 0.8, β = 180◦ , S/L = 0.2, Int = 0.26.

Figure A.11: Motion RAO, NPL 5b, Fn = 0.8, β = 180◦ , S/L = 0.4, NoInt.
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A.3 NPL 6b round bilge series

Figure A.12: Motion RAO, NPL 6b, Fn = 0.2, β = 180◦ , S/L = 0.2, Int = 0.80.

Figure A.13: Motion RAO, NPL 6b, Fn = 0.2, β = 180◦ , S/L = 0.4, Int = 0.60.

Figure A.14: Motion RAO, NPL 6b, Fn = 0.53, β = 180◦ , S/L = 0.2, Int = 0.47.
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Figure A.15: Motion RAO, NPL 6b, Fn = 0.53, β = 180◦ , S/L = 0.4, NoInt.

Figure A.16: Motion RAO, NPL 6b, Fn = 0.8, β = 180◦ , S/L = 0.2, Int = 0.20.

Figure A.17: Motion RAO, NPL 6b, Fn = 0.8, β = 180◦ , S/L = 0.4, NoInt.
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A.4 MARINTEK

Figure A.18: Motion RAO, MARINTEK, Fn = 0.49, β = 180◦ , S/L = 0.199, Int = 0.62.

Figure A.19: Motion RAO, MARINTEK, Fn = 0.66, β = 180◦ , S/L = 0.199, Int = 0.49.

Figure A.20: Motion RAO, MARINTEK, Fn = 0.66, β = 150◦ , S/L = 0.199, Int = 0.49.

80



Figure A.21: Motion RAO, MARINTEK, Fn = 0.49, β = 90◦ , S/L = 0.199, Int = 0.62.

A.5 DELFT 372

Figure A.22: Motion RAO, DELFT 372, Fn = 0.3, β = 180◦ , S/L = 0.233, Int = 0.70.

Figure A.23: Motion RAO, DELFT 372, Fn = 0.45, β = 180◦ , S/L = 0.233, Int = 0.54.
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Figure A.24: Motion RAO, DELFT 372, Fn = 0.6, β = 180◦ , S/L = 0.233, Int = 0.39.

Figure A.25: Heave and Pitch, DELFT 372, Fn = 0.75, β = 180◦ , S/L = 0.233, Int = 0.24.

Figure A.26: Motion RAO, DELFT 372, Fn = 0.3, β = 180◦ , S/L = 0.233, Int = 0.70.
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Figure A.27: Motion RAO, DELFT 372, Fn = 0.6, β = 180◦ , S/L = 0.233, Int = 0.39.

Figure A.28: Motion RAO, DELFT 372, Fn = 0.75, β = 180◦ , S/L = 0.233, Int = 0.24.

Figure A.29: Motion RAO, DELFT 372, Fn = 0.3, β = 195◦ , S/L = 0.233, Int = 0.70.
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Figure A.30: Motion RAO, DELFT 372, Fn = 0.6, β = 195◦ , S/L = 0.233, Int = 0.39.

Figure A.31: Motion RAO, DELFT 372, Fn = 0.75, β = 195◦ , S/L = 0.233, Int = 0.24.

Figure A.32: Motion RAO, DELFT 372, Fn = 0.3, β = 225◦ , S/L = 0.233, Int = 0.70.
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Figure A.33: Motion RAO, DELFT 372, Fn = 0.6, β = 225◦ , S/L = 0.233, Int = 0.39.

Figure A.34: Motion RAO, DELFT 372, Fn = 0.75, β = 225◦ , S/L = 0.233, Int = 0.24.

A.6 El Pardo

Figure A.35: Motion RAO, El Pardo, Fn = 0.0, β = 180◦ , S/L = 0.2, Int = 1.
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Figure A.36: Motion RAO, El Pardo, Fn = 0.2, β = 180◦ , S/L = 0.2, Int = 0.81.

Figure A.37: Motion RAO, El Pardo, Fn = 0.4, β = 180◦ , S/L = 0.2, Int = 0.63.

Figure A.38: Motion RAO, El Pardo, Fn = 0.6, β = 180◦ , S/L = 0.2, Int = 0.44.
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Figure A.39: Motion RAO, El Pardo, Fn = 0.4, β = 165◦ , S/L = 0.2, Int = 0.63.

Figure A.40: Motion RAO, El Pardo, Fn = 0.4, β = 150◦ , S/L = 0.2, Int = 0.63.

A.7 VOSPER

Figure A.41: Motion RAO, VOSPER V40, Fn = 0.0, β = 180◦ , S/L = 0.195, Int = 1.
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Figure A.42: Motion RAO, VOSPER V60, Fn = 0.0, β = 180◦ , S/L = 0.293, Int = 1.

Figure A.43: Motion RAO, VOSPER V40, Fn = 0.25, β = 180◦ , S/L = 0.195, Int = 0.81.

Figure A.44: Motion RAO, VOSPER V60, Fn = 0.25, β = 180◦ , S/L = 0.293, Int = 0.72.
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Figure A.45: Motion RAO, VOSPER V40, Fn = 0.625, β = 180◦ , S/L = 0.195, Int = 0.53.

Figure A.46: Motion RAO, VOSPER V60, Fn = 0.625, β = 180◦ , S/L = 0.293, Int = 0.29.

Figure A.47: Motion RAO, VOSPER V40, Fn = 0.75, β = 180◦ , S/L = 0.195, Int = 0.43.
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Figure A.48: Motion RAO, VOSPER V60, Fn = 0.75, β = 180◦ , S/L = 0.293, Int = 0.15.

A.8 Roll motion RAO

Figure A.49: Motion RAO (Roll), MARINTEK, Fn = 0.66, β = 150◦ (left) and Fn = 0.49, β = 90◦ (right).

Figure A.50: Motion RAO (Roll) DELFT 372, Fn = 0.3, β = 195, 225◦ , S/L = 0.233, Int = 0.70.
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Figure A.51: Motion RAO (Roll) DELFT 372, Fn = 0.6, β = 195, 225◦ , S/L = 0.233, Int = 0.39.

Figure A.52: Motion RAO (Roll) DELFT 372, Fn = 0.75, β = 195, 225◦ , S/L = 0.233, Int = 0.24.

Figure A.53: Motion RAO (Roll), El Pardo, Fn = 0.4, β = 150◦ (left) β = 165◦ (right), S/L = 0.2,

Int = 0.63.
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Appendix B

Root mean square error tables

ej =

√√√√ 1

N

N∑
i=1

(Xi −Hi)2 (B.1)

Being Xi the experimental data, considered to be the correct one. The computations results are ex-

pressed as Hi, which differ of method. Belongs to the performance metrics widely used by authors to

quantify the error with more significance to the bigger differences since it is the squared.

B.1 Heave and Pitch motions RMSE

Table B.1: Root mean square error for heave and pitch motions, NPL 4b round bilge.

Catamaran model: NPL 4b S/L = 0.20

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.20 180 0.83 0.14 0.14 0.15 0.16 0.14 0.11 0.15 0.12 0.06 0.06

0.53 180 0.56 0.14 0.39 0.11 0.23 0.59 0.53 0.26 0.38 0.20 0.48

Catamaran model: NPL 4b S/L = 0.40

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.20 180 0.67 0.07 0.10 0.08 0.11 0.22 0.16 0.20 0.16 0.10 0.07

0.53 180 0.12 0.16 0.20 0.10 0.22 0.52 0.30 0.39 0.24 0.38 0.28

0.80 180 NoInt 0.26 0.51 0.22 0.32 0.48 0.23 0.47 0.20 0.38 0.26
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Table B.2: Root mean square error for heave and pitch motions, NPL 5b round bilge.

Catamaran model: NPL 5b S/L = 0.20

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.20 180 0.81 0.13 0.16 0.13 0.18 0.13 0.15 0.13 0.16 0.09 0.10

0.53 180 0.51 0.15 0.23 0.20 0.31 0.33 0.35 0.11 0.29 0.10 0.18

0.80 180 0.26 0.29 0.52 0.29 0.40 0.68 0.48 0.20 0.30 0.20 0.21

Catamaran model: NPL 5b S/L = 0.40

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.20 180 0.63 0.05 0.08 0.05 0.11 0.13 0.14 0.11 0.14 0.04 0.06

0.53 180 0.02 0.13 0.22 0.13 0.30 0.74 0.47 0.51 0.41 0.64 0.66

0.80 180 NoInt 0.30 0.52 0.27 0.36 0.70 0.46 0.51 0.36 0.42 0.32

Table B.3: Root mean square error for heave and pitch motions, NPL 6b round bilge.

Catamaran model: NPL 6b S/L = 0.20

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.20 180 0.80 0.05 0.10 0.05 0.11 0.09 0.11 0.08 0.11 0.07 0.07

0.53 180 0.47 0.17 0.08 0.15 0.20 0.42 0.15 0.25 0.16 0.24 0.14

0.80 180 0.20 0.19 0.45 0.19 0.23 0.54 0.32 0.14 0.12 0.32 0.26

Catamaran model: NPL 6b S/L = 40

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.20 180 0.60 0.04 0.15 0.04 0.18 0.21 0.19 0.19 0.19 0.02 0.15

0.53 180 NoInt 0.17 0.09 0.15 0.26 0.56 0.34 0.30 0.31 0.18 0.17

0.80 180 NoInt 0.21 0.27 0.20 0.24 0.71 0.52 0.31 0.25 0.38 0.25

Table B.4: Root mean square error for heave and pitch motions, MARINTEK.

Catamaran model: MARINTEK S/L = 0.20

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.49 180 0.62 0.35 0.23 0.34 0.13 0.38 0.28 0.24 0.23 0.34 0.37

0.66 180 0.49 0.46 0.24 0.41 0.21 0.62 0.42 0.35 0.31 0.60 0.69

0.66 150 0.49 0.33 0.14 0.28 0.12 1.14 0.56 0.38 0.23 0.43 0.45

0.49 90 0.62 0.15 ... 0.15 ... 0.20 ... 0.18 ... 0.15 ...
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Table B.5: Root mean square error for heave and pitch motions, Delft 372.

Catamaran model: Delft 372 S/L = 0.23

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.30 180 0.70 0.22 0.13 0.24 0.19 0.14 0.25 0.12 0.21 0.07 0.10

0.60 180 0.39 0.38 0.32 0.38 0.29 0.65 0.31 0.28 0.20 0.19 0.31

0.45 180 0.54 0.21 0.13 0.26 0.18 0.48 0.18 0.14 0.14 0.17 0.29

0.75 180 0.24 0.63 0.46 0.57 0.23 0.69 0.20 0.32 0.17 0.24 0.40

0.30 180 0.70 0.36 0.22 0.38 0.28 0.26 0.34 0.29 0.29 0.23 0.11

0.60 180 0.39 0.63 0.39 0.66 0.33 0.75 0.36 0.50 0.22 0.28 0.69

0.75 180 0.24 0.62 0.65 0.58 0.29 0.89 0.53 0.32 0.28 0.30 0.42

0.30 195 0.70 0.32 0.27 0.33 0.36 0.31 0.33 0.33 0.33 0.25 0.14

0.60 195 0.39 0.61 0.42 0.65 0.42 0.72 0.35 0.57 0.31 0.33 0.48

0.75 195 0.24 0.78 0.46 0.75 0.25 0.67 0.32 0.55 0.20 0.39 0.43

0.30 225 0.70 0.15 0.16 0.16 0.21 0.18 0.25 0.16 0.24 0.12 0.07

0.60 225 0.39 0.54 0.33 0.58 0.32 0.69 0.32 0.51 0.26 0.31 0.31

0.75 225 0.24 0.78 0.49 0.64 0.25 1.21 0.42 0.48 0.21 0.32 0.23

Table B.6: Root mean square error for heave and pitch motions, El Pardo.

Catamaran model: El Pardo S/L = 0.20

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.00 180 1.00 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.05

0.20 180 0.81 0.08 0.09 0.09 0.12 0.04 0.07 0.06 0.08 0.06 0.04

0.40 180 0.63 0.10 0.07 0.08 0.24 0.34 0.19 0.17 0.16 0.26 0.11

0.40 165 0.63 0.10 0.07 0.11 0.23 0.23 0.20 0.12 0.18 0.15 0.10

0.40 150 0.63 0.11 0.06 0.12 0.19 0.13 0.17 0.12 0.14 0.16 0.11

0.60 180 0.44 0.46 0.27 0.46 0.39 0.76 0.35 0.58 0.31 0.51 0.25
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Table B.7: Root mean square error for heave and pitch motions, Vosper.

Catamaran model: Vosper V40 S/L = 0.20

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.00 180 1.00 0.07 0.09 0.07 0.09 0.08 0.09 0.08 0.09 0.08 0.10

0.25 180 0.81 0.13 0.21 0.15 0.11 0.29 0.17 0.21 0.16 0.21 0.27

0.63 180 0.53 0.18 0.35 0.15 0.16 0.39 0.45 0.18 0.27 0.14 0.33

0.75 180 0.43 0.16 0.43 0.12 0.20 0.24 0.34 0.15 0.26 0.18 0.26

Catamaran model: Vosper V60 S/L = 0.29

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β Int e3 e5 e3 e5 e3 e5 e3 e5 e3 e5

0.00 180 1.00 0.06 0.09 0.06 0.09 0.10 0.09 0.10 0.09 0.07 0.11

0.25 180 0.72 0.12 0.17 0.15 0.08 0.10 0.18 0.12 0.16 0.11 0.24

0.63 180 0.29 0.24 0.29 0.20 0.09 0.34 0.26 0.32 0.16 0.16 0.26

0.75 180 0.15 0.16 0.30 0.11 0.18 0.28 0.22 0.27 0.17 0.16 0.19
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B.2 Roll mode of motion RMSE

Table B.8: Root mean square error for roll motion.

Catamaran model: Delft 372

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β e4 e4 e4 e4 e4

0.30 195 0.17 0.15 0.07 0.10 0.08

0.60 195 0.21 0.18 0.14 0.17 0.06

0.75 195 0.11 0.10 0.13 0.14 0.06

0.30 225 0.42 0.37 0.15 0.15 0.25

0.60 225 0.52 0.42 0.31 0.31 0.25

0.75 225 0.27 0.23 0.33 0.30 0.20

Catamaran model: MARINTEK

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β e4 e4 e4 e4 e4

0.66 150 0.39 0.31 0.14 0.14 0.14

0.49 90 1.30 0.91 0.33 0.16 0.31

Catamaran model: El Pardo

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β e4 e4 e4 e4 e4

0.40 165 0.07 0.06 0.06 0.15 0.10

0.40 150 0.26 0.20 0.13 0.11 0.08
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Appendix C

Frequency independent model error

tables

Following the formulation from 7.1 the resulting values for random variable a are obtained in each tested

model and conditions.

C.1 Heave and pitch motions FIME

Table C.1: Frequency independent model error for heave and pitch motions, NPL 4b round bilge.

Catamaran model: NPL 4b S/L = 2

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.20 180 0.96 1.04 0.95 1.15 0.94 1.14 0.94 1.16 0.92 1.06

0.53 180 0.91 0.76 0.96 1.06 0.69 0.71 0.86 0.83 0.85 0.69

Catamaran model: NPL 4b S/L = 4

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.20 180 0.87 0.99 0.86 1.12 0.65 0.98 0.68 1.00 0.83 0.98

0.53 180 0.87 0.88 0.92 1.20 0.70 0.94 0.82 1.04 0.72 0.80

0.80 180 0.91 0.72 1.06 1.18 0.91 0.98 1.03 1.09 0.79 0.84
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Table C.2: Frequency independent model error for heave and pitch motions, NPL 5b round bilge.

Catamaran model: NPL 5b S/L = 2

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.20 180 1.09 1.10 1.08 1.22 1.02 1.24 1.05 1.26 1.00 1.15

0.53 180 1.10 0.97 1.14 1.32 0.83 0.95 1.04 1.11 0.96 0.93

0.80 180 0.93 0.76 1.10 1.21 0.73 0.82 1.03 1.07 0.91 0.94

Catamaran model: NPL 5b S/L = 4

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.20 180 0.94 1.04 0.93 1.16 0.85 1.01 0.87 1.03 0.93 1.03

0.53 180 0.93 0.93 0.98 1.27 0.59 0.98 0.74 1.13 0.65 0.63

0.80 180 0.90 0.72 1.03 1.12 0.76 0.86 0.98 1.02 0.77 0.78

Table C.3: Frequency independent model error for heave and pitch motions, NPL 6b round bilge.

Catamaran model: NPL 6b S/L = 2

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.20 180 0.95 1.01 0.95 1.11 0.86 1.13 0.88 1.14 0.88 1.07

0.53 180 0.94 0.99 0.98 1.32 0.67 0.98 0.85 1.12 0.77 0.92

0.80 180 0.91 0.71 1.05 1.09 0.72 0.80 0.98 1.01 0.80 0.80

Catamaran model: NPL 6b S/L = 4

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.20 180 0.98 1.27 0.97 1.40 0.70 1.24 0.73 1.26 0.98 1.28

0.53 180 1.01 1.09 1.05 1.43 0.61 1.00 0.84 1.22 0.89 0.90

0.80 180 0.98 0.83 1.11 1.24 0.66 0.72 0.98 1.03 0.82 0.81
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Table C.4: Frequency independent model error for heave and pitch motions, MARINTEK.

Catamaran model: MARINTEK

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.49 180 0.67 0.79 0.67 0.89 0.66 0.81 0.77 0.89 0.69 0.66

0.66 180 0.67 0.77 0.70 0.83 0.61 0.65 0.75 0.74 0.61 0.50

0.66 150 0.71 0.83 0.75 0.91 0.38 0.53 0.72 0.81 0.67 0.59

0.49 90 0.90 ... 0.91 ... 0.87 ... 0.90 ... 0.91 ...

Table C.5: Frequency independent model error for heave and pitch motions, Delft 372.

Catamaran model: Delft 372

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.30 180 1.13 1.07 1.14 1.20 0.95 0.99 1.08 1.08 0.95 0.94

0.30 180 1.40 1.14 1.42 1.29 1.07 1.01 1.30 1.13 1.13 1.00

0.30 195 1.32 1.25 1.33 1.40 1.31 1.19 1.36 1.28 1.19 1.04

0.30 225 1.10 1.14 1.11 1.26 1.09 1.20 1.16 1.27 1.08 1.03

0.45 180 1.10 0.97 1.16 1.16 0.76 0.95 0.95 1.08 0.91 0.80

0.60 180 1.00 0.89 1.09 1.13 0.80 0.86 1.06 1.02 1.10 0.79

0.60 180 1.10 0.84 1.19 1.05 0.87 0.82 1.19 0.97 0.91 0.61

0.60 195 1.14 0.94 1.23 1.17 0.94 0.94 1.25 1.10 1.02 0.73

0.60 225 1.17 0.96 1.28 1.20 0.91 0.94 1.21 1.10 1.05 0.83

0.75 180 0.93 0.73 1.07 0.98 0.79 0.91 1.05 1.08 1.09 0.74

0.75 180 0.92 0.56 1.06 0.77 0.74 0.61 1.09 0.76 1.09 0.67

0.75 195 0.95 0.64 1.07 0.85 0.91 0.73 1.18 0.85 1.15 0.64

0.75 225 0.85 0.59 1.01 0.83 0.66 0.63 1.03 0.83 1.12 0.75

Table C.6: Frequency independent model error for heave and pitch motions, El Pardo.

Catamaran model: El Pardo

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.00 180 0.94 1.02 0.94 1.02 0.94 1.01 0.94 1.01 0.94 1.02

0.20 180 0.99 0.98 1.00 1.07 0.98 1.04 0.99 1.05 0.94 0.99

0.40 180 1.01 1.02 1.03 1.28 0.79 1.00 0.95 1.08 0.87 0.94

0.40 165 0.98 1.02 0.98 1.27 0.83 1.03 0.94 1.10 0.88 0.94

0.40 150 0.97 0.99 0.98 1.22 0.91 0.99 0.97 1.06 0.87 0.91

0.60 180 1.06 1.05 1.19 1.42 0.74 1.01 1.05 1.18 0.91 1.09
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Table C.7: Frequency independent model error for heave and pitch motions, Vosper.

Catamaran model: Vosper V40

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.00 180 0.93 0.85 0.93 0.85 0.94 0.85 0.94 0.85 0.95 0.83

0.25 180 0.97 0.77 1.03 0.88 0.72 0.81 0.82 0.83 0.80 0.72

0.63 180 0.91 0.73 0.92 0.99 0.67 0.69 0.84 0.84 0.87 0.75

0.75 180 0.88 0.65 0.89 0.93 0.77 0.73 0.86 0.81 0.81 0.78

Catamaran model: Vosper V60

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â3 â5 â3 â5 â3 â5 â3 â5 â3 â5

0.00 180 0.92 0.88 0.92 0.88 0.91 0.88 0.91 0.88 0.92 0.85

0.25 180 1.02 0.84 1.07 0.95 0.96 0.83 1.02 0.85 0.94 0.78

0.63 180 1.06 0.75 1.07 1.01 0.81 0.80 0.95 0.92 0.97 0.78

0.75 180 1.04 0.78 1.05 1.10 0.85 0.87 0.92 0.94 0.93 0.88
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C.2 Roll motion FIME

Table C.8: Frequency independent model error for roll motion.

Catamaran model: Delft 372

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â4 â4 â4 â4 â4

0.30 195 0.46 0.49 0.69 0.58 0.65

0.60 195 0.36 0.40 0.47 0.40 0.92

0.75 195 0.60 0.64 0.65 0.56 1.19

0.30 225 0.64 0.68 0.93 0.92 0.89

0.60 225 0.59 0.65 1.00 0.99 1.29

0.75 225 0.72 0.75 1.07 1.10 1.27

Catamaran model: MARINTEK

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â4 â4 â4 â4 â4

0.66 150 0.37 0.43 0.66 0.94 2.07

0.49 90 0.42 0.52 0.77 0.98 1.07

Catamaran model: El Pardo

Fonseca Fonseca+ET CatCen CatCen+visco Wasim

Fn β â4 â4 â4 â4 â4

0.40 165 0.89 0.98 1.16 2.35 1.05

0.40 150 0.61 0.68 0.83 1.21 0.88
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