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Abstract—One of the principal challenges of the 21st century is
the prevention, diagnosis and treatment of oncological diseases.
To study the dominant risk factors, it is common to rely on
patient survival data. These data sets are often associated with
the genetic expression of the individual, suffering the curse of
dimensionality. Methods such as LASSO and Elastic Net have
proven to be efficient in dealing with problems with the same
characteristics. However, these sometimes result in relatively
complex models that might not be biologically significant. As a
solution, this thesis presents a methodology that best restricts
the solution space, favouring the most relevant genes taking
into account public datasets, from the The Cancer Genome
Atlas (TCGA). It is considered a network of relations between
proteins to explore a new method of regularisation, based on
measures of centrality, namely degree and betweenness. With the
restriction presented, solutions are obtained which, in general,
consider genes that are biologically more interesting, having a
strong presence in several oncological investigations. The results
indicate that the proposed methodology results in simpler models
with better results. Besides, it allows obtaining genes that are
not yet associated with the type of cancer under study but
manifest themselves as potential biomarker candidates to take
into account. The application of this methodology in several
datasets with the same characteristics together with a greater
scientific validation could lead to the determination of new
significant genes in the study of the expression of several types of
cancer. Furthermore, it leads to the construction of simple and
more robust models.

Index Terms—Cox Regression, Regularisation, Networks, Gene
Expression, Proteins.

I. INTRODUCTION

Over the years the scientific knowledge has been reached
through a well defined scientific process. To bring new dis-
coveries to the scientific community, one needs to generate
hypotheses that will go over tests and then are rejected, ac-
cepted or readjusted. This process is still an effective method.
However, without the invention of the computers, a bottleneck
would be reached due to the complexity of the new hypothesis
yet to be presented. Scientists might spend a lifetime creating
and testing some few hypotheses, while a computer could test
some thousands of hypothesis in less than a second. Machine
learning is the origin of this change.

A wide range of industries and companies are focused on
finding new ways to predict future events based on collected
data (big data). Industries, such as energy and the health-
care, use machine learning models to increase their profits
by reducing waste and provide better services to patients by
improving their treatment processes.

The number of biological databases is increasing exponen-
tially, therefore, machine learning is here to stay and is the
bioinformatics’ challenge to take the best knowledge they can
out of the provided data. There is a vast quantity of useful

information that needs to be handled and structured, enhancing
the role of bioinformatics. However, dealing with such datasets
presents significant computational challenges. There are many
clinical trials based on a time-to-event endpoint, frequently
considering survival analysis. Some interesting work has been
developed using machine learning techniques on survival data
in order to better estimate the risk of a given patient. These
types of studies are having a significant impact on clinical
trials, allowing better diagnosis and understanding of the main
factors associated with the increase of the individual’s risk.

Even though many genes have already been studied and doc-
umented, modelling their behaviour concerning gene expres-
sion to predict the individual risk and cancer development is
still difficult to accomplish. With machine learning algorithms,
reasonably good models have been obtained. Nevertheless,
there are some problems due to the dataset dimension: the
number of features significantly outcomes the number of
individuals in the study. This often leads to overfitted models
and for that cases feature selection techniques have been
developed [1, 2]. Even though the results are promising, the
over-fit problem might persist. To undertake this problem,
Zhang et al. and Verı́ssimo et al. proposed to further constraint
the solution space, based on rich networks that model relations
between genes [3, 4].

Taking profit from previous works developed by other spe-
cialists, this thesis project purposes a new procedure to mea-
sure the gene importance based on a protein-protein interaction
network. Using this information to promote a confined solution
space is an encouragement to access a more generalised model
with genes selected that have great biological relevance and,
ultimately, can be associated with cancer investigations.

The used network is from the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) database [5], being
necessary to explore the best metrics to extract meaningful
knowledge out of it. The exploration and comparison between
the main centrality metrics over this network to define the pro-
tein’s importance is, therefore, one of this project ambitions.

Moreover, after defining the protein relevance, the relation
between the genes responsible for their creation and presence
in cancer studies will be analysed. The usage of this informa-
tion as a penalisation over the solution space will hopefully
result in a simpler model with less but more relevant variables
selected with results that are, at least, as good as the ones
obtained with the known techniques. This study also hopes
to validate the usage of STRING datasets for this type of
approaches, motivating others to use it on future works.
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II. THEORETICAL BACKGROUND

A particular case regarding clinical analysis is the survival
data analysis, meaning the study of the time between entering
a study (or other baseline condition) and experiencing a
subsequent event of interest. This type of datasets is possible
to analyse and shape through the Cox Proportional Hazard
Model (Cox PH Model) [6].

More specifically, the problem in analysis concerns cancer
patients having their gene expression information, which is
attached to the dimensionality curse. In this type of scenarios,
getting generalised models is extremely difficult due to the
large number of variables to be considered in the final model
and few observations to sustain the model’s hypothesis. There
have been many different techniques applied to work on this
problem, some with promising results [1, 2].

Recently, the idea of using networks to analyse biological
behaviour has been proposed, and exciting results have been
achieved when using this information on regression models [3,
4]. Based on those approachs, it will be shown how to use
the protein-protein interaction network and select a centrality
measure to penalise the solution space further.

A. Survival Analysis and Cox Regression
Survival datasets are meant to study the period between the

time an individual joins the study and the time the event of
interest is observed. The analysis over this type of dataset
is frequently used over medical data to access the relationship
of explanatory variables to survival time and estimate/compare
survivor functions [7].

Typically, survival data is composed by the calculated
features and the survival time or time-to-event. Given that it
is frequent to have the individual survival time is unknown,
survival analysis has to deal with these cases. This type of ob-
servations is called censored data and the datasets also include
a variable that specifies if it is an event occurrence or censored
data. To properly analyse these incomplete observations, the
Kaplan-Meier curves are often considered [8], a powerful tool
to deal with differing survival times. To validate the separation
between different survival curves it is also considered log rank
test.

To model this type of curves, the Cox PH Model [6]
is frequently considered since it has proven to be more
robust [9]. Considering the usual survival analysis framework
with ((xxx1, y1, δ1), ..., (xxxn, yn, δn)), where n is equal to the
number of individuals in the study, xxxi is the gene expression
profile and yi is the observed time, being the time of failure
if δi is 1 or right-censoring if δ is 0. As in regression, xxx′i
is a vector of potential predictors (xi1, xi2, ..., xip), in this
case, considering p genes. The Cox model assumes a semi-
parametric from for the hazard

hi (t) = h0 (t) exxx
′
iβββ , (1)

where hi(t) is the hazard for patient i at time t, h0(t) is an
unspecified baseline hazard, and βββ represents the regression
coefficients, being a fixed, length p vector. The β vector is
obtained by maximising the Cox log-partial likelihood

l (β) =
n∑
i=1

δi

(
xxx′iβββ − log

(
n∑

j:yj≥yi

ex
xx′jβββ

))
. (2)

Note that this formula assumes that failure time t is unique,
t1 < t2... < tn. To estimate the baseline hazard, h0(t), the
Breslow estimator is commonly used [10], defined as

ĥ0(t) =
1∑n

i=1 e
xxx′iβββ

. (3)

The partial likelihood and the Breslow estimator are induced
by the total log-likelihood given by

l (βββ, h0) =

n∑
i=1

−exxx
′
iβββH0 (ti) + δi

(
log (h0 (ti)) + xxx′iβββ

)
, (4)

with

H0 (ti) =
∑
tk≤ti

h0 (tk) . (5)

The inference of the optimal regression coefficients is then
computed by maximizing the total log-likelihood. Moreover,
with the definition of the βββ vector and h0(t), the patients’
hazard relative risk can be computed according to the Eq. 1.

B. Networks Properties

The presented method strongly focus on the analyse of a
big and complex network. When dealing with networks, it
is common to consider the a graph framework having G :=
(V,E), with V denoting the set of nodes, and E the weighted
interaction between them. It is a structure used in many fields
of knowledge, describing relationships between entities. When
dealing with networks, due to the amount of information to
store, their size is often huge, being necessary to use centrality
metrics, to extract relevant information. The presented analysis
and metrics focus only on undirected graphs.

1) Degree Centrality: Focusing on the connections be-
tween two nodes in a graph, there can be two different
types of graphs: weighted and unweighted. When dealing with
unweighted networks, the degree of a node di is the number
of nodes adjancent to it. The degree formula is given by

di =
P∑
j=1

aij , (6)

with P equal to the total number of nodes, aij = 1 if node
i and j are connected and aij = 0 otherwise. To work
with weighted networks, extensions of the Eq. (6) have been
proposed. The weighted degree formula is defined as

Di =

P∑
j=1

sij , (7)

where sij corresponds to the weight of the edge.
For both presented metrics, the nodes with high degree value

are called the hubs and are normally in the path between many
other nodes with lower degree value.
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2) Betweenness Centrality: Considering the node yi, the
betweenness is the frequency of the presence of the node yi
in the shortest paths between every two vertices (yj ,yk) in the
network, with i 6= j 6= k [11]. It is, therefore, given by

Bi =

P∑
j=1
j 6=i

P∑
k=j+1

gjk (yi)

gjk
, (8)

with gjk equal to the number of shortest paths between node
yj and yk, and gjk(yi) as the number of shortest paths between
yj and yi with node yi present.

This metric is significant because it gives the idea of the
“flow” through the vertices in the network, catching some
important nodes in the networks that the degree metric cannot
detect.

3) Closeness Centrality: For a specific node yi, the close-
ness centrality value corresponds to the inverse of the sum of
shortest paths to every node yj in the network with i 6= j [12].
It is given by

C−1
i =

P∑
j 6=i

gij , (9)

having gij as the distance of the shortest path between node
yi and yj .

It is important to take into account that this metric can only
be used in the case of a connected graph. If that is not the
case, there will be scenarios with sji = sji = ∞, meaning
the centrality is going to be zero to all nodes.

C. Cox Regularization Methods

The dimensionality curse (p� n) is a problem for Cox re-
gression models since it might lead to a degenerate behaviour.
Some regularisation methods have been presented over the
years to constrain the solution space further [1]. In recent
year, it has been proposed models that comprising network-
based regulasization techeniques, such as the Net-Cox and
DegreeCox [3, 4].

The total log-likelihood, Eq. (4) 2, is penalised based on

l(βββ, h0) =
n∑
i=1

(
−exxx

′
iβββH0(ti) + δ(log(h0(ti)) + xxx′iβββ)

)
− λP (βββ), (10)

with λ as the variable that controls how much the solution
space is constrained and P (β) as the penalisation function,
deferring according to the used method.

1) LASSO, Ridge and Elastic Net Regressions: The
LASSO is is widely used regression method fo cases with
p � n since it imposes sparsity in the solutions(well-defined
solutions), by the usage of the L1 norm penalty [1]. The Ridge
regression, on the other hand, considers the L2 penalty, which
leads to unclear solutions. Nevertheless, it is still model as it
handles correlated coefficients better. Based on these models
strengths, the Elastic Net method was created. The LASSO
and Ridge regression formulas are joint in a single one having
α as a controller between L1 and L2 penalties, given a fixed
λ, given by

λPα (β) = λ

(
α

p∑
i=1

|βi|+
1

2
(1− α)

p∑
i=1

β2
i

)
. (11)

2) Net-Cox Regression: Zhang et al. proposed a method
based on gene relation networks, a network constraint to
the Cox model was developed, considering both L2 norm
and graph-based constraint. Given a normalised graph weight
matrix SSS, it is assumed that related genes should be assigned
similar coefficients by respecting the cost term

ΨΨΨ (β) =
1

2

p∑
i,j=1

Sij (βi − βj)2 = β′ (III −SSS)β = β′LLLβ. (12)

This consideration encourages smoothness among the re-
gression coefficients in the network, having, for any pair of
genes connected by an edge, a cost proportional to both the
difference in the network and the edge weight. Aiming for
regularising the uncertainty of the network an additional L2

norm constraint is added to ΨΨΨ(β). With α as the parameter
adjusting between the L2 norm and the “Lagrangian-norm”
constraints, the penalisation function is rewritten as

λPα (βββ) = (1− α)β′Lββ′Lββ′Lβ + α|βββ|2 =
1

2
λβββ′ ((1− α)LLL+ αIII)βββ. (13)

3) DegreeCox Regression: In the sequence of the work
presented by Zhang et al., Verı́ssimo et al. proposed the
DegreeCox [4]. This method considers the same networks as
the Net-Cox, yet, the penalisation on the regression coefficients
is based on a centrality measure. More precisely, it considers
the degree centrality measure for each regression coefficients
in the obtained networks. This constraint is given by

Υ(β) =

p∑
i=1

β2
i dii = β′DDDβ, (14)

where DDD is a diagonal matrix with D−1ii =
∑p
j=1 Sij , i.e., the

inverse of the vertex weighted degree.
That means the regression coefficients will be further pe-

nalised if they are associated with low degree values. This
penalisation method was built on the assumption that nodes
with high degree level will have a strong influence in the
network, being, therefore, less penalised.

D. STRING Dataset, BioMart and TCGA

Each protein-coding gene is responsible for creating pro-
teins needed for the good function of the organism, uncovering
a strong relationship between them. For that reason, a protein
relation network is considered. The network under study is
from the STRING, a well-documented and updated collection
of data, featuring known and predicted protein interactions for
more than two thousand organisms, and nearly ten million pro-
teins. “The interactions include direct (physical) and indirect
(functional) associations, stemmed from computational predic-
tion, from knowledge transfer between organisms, and from
interactions aggregated from other (primary) databases” [5].

Given the strong relation between proteins synthesis and
genes, many studies focusing this relation were developed and
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published. Base on those type of relations between biological
entities, the BiomaRt package have been developed, allowing
the “access to large amounts of data in a uniform way” [13].
The presented package collects and relates the information
stored in rich public datasets, for instance, the Ensembl,
allowing the mapping between structures at the cell level.
These relations are complex and constantly updated, making
the BiomaRt functions crucial for bioinformatics to establish
the relationship between proteins and genes.

The dataset considered for training and test the proposed
method is extracted from the TCGA, a collaboration between
the National Cancer Institute and National Human Genome
Research Institute, that has generated comprehensive, multi-
dimensional maps of the key genomic changes in 33 types of
cancer so far and comprise information from more than 11,000
patients. Their datasets are public and have been widely used
by the research community [4, 14].

III. PROPOSED METHOD

Firmly based on the work exposed by Verı́ssimo et al. [4],
the proposed method also considers centrality measures as a
penalty factor. However, the network in analysis focuses on a
protein network instead of gene networks. The idea behind the
method under study is to use the L1 and L2 norms penalisation
as the Elastic Net method, yet, with an extra penalty factor vi,
described on

λ

p∑
i=1

viPα (βi) = λ

p∑
i=1

vi

(
(1− α)

1

2
β2
i + α|β|i

)
. (15)

The objective is to find the best properties in the network
that reflect each node importance and use it to control the
level of penalisation of the regression coefficients. Within
the STRING information, for each connection, it is given an
overall score named “combined score”. With all the edges
information, a biological network can be defined as the ad-
jacency matrix A, with aij equal to the “combined score”
between protein i and protein j when considering a weighted
network. It can also be studied the unweighted scenario, where
aij is given by

aij =

{
1, if i 6= j and combined scoreij > θ

0 , otherwise
, (16)

where θ is equal to the threshold applied to the “combined
score”. Having the matrix A defined, the biological network
can be seen as a graph G := (V,E), with V denoting the
set of proteins and E the weighted interaction between them.
With the presented graph, the pipeline presented in Figure 1
will be applied in order to study the most promising centrality
measures to get the best regression models.

A. Centrality Metrics Computation

The degree metric is a significant metric to consider in
networks’ analysis and is not difficult to compute. For ei-
ther weighted and unweighted cases, it consists in going to
each node and sum all the edges weights associated with it.
Therefore, it is required O(n + m) time and O(n) space to

Fig. 1. Proposed methodology over the STRING network to reach the final
regression coefficients.

obtain this metric values, with n as the number of vertices
in the network and m equal to the number of edges between
vertices.

The computation betweenness was associated with a big
complexity cost given the involvement of shortest path cal-
culation. Nevertheless, Brandes presented an algorithm that
reduces the required resources to O(n+m) in terms of space
and O(nm) in terms of time [15].

The last studied metric is the closeness centrality that also
considers the calculation of shortest paths since it reflects the
proximity of the considered node to all other nodes in the
network. It has been proven that the best algorithm to calculate
all the shortest paths between all the nodes in an unweighted
with positive integer weights network also a time complexity
of O(nm) [16].

B. Protein-Gene Mapping

After the pre-process and study over the STRING data, the
bridge between proteins and genes needs to be crossed since
the considered survival datasets focus on genes’ expression
values and not on proteins. The BioMart package provides
a powerful link between biological databases and microarray
data analysis, by bridging proteins and genes information [13,
17]. Unfortunately, some proteins and genes are not fully
documented yet, leading to some mismatch between these two
entities. Moreover, the relationship between proteins and genes
is a many-to-many connection being possible to have more
than one gene responsible for the production of a specific
protein and more than one protein produced by the same gene.
To solve the later cases, the genes with more than one protein
associated would have the sum of the considered centrality
measure values associated to those proteins.

C. Penalty Factor Computation

The higher penalty associated with a specific gene, the
less likely the respective regression coefficient is going to be
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considered. For that reason, the higher the centrality metric,
the lower the respective penalty factor should be. To have this
effect, the penalty factor is given by

vi =
1

w′i
, (17)

with w′i as the re-scaled centrality metric for the gene i. The
re-scaling process applied over the centrality metric value is
given by

w′ =
w −min(w)

max(w)−min(w)
+ µ, (18)

with µ as the parameter that controls the vi max value ( 1µ ).
This re-scale process results a www between with values between
µ e 1 + µ. Note that the parameter µ has a significant impact
on the distribution of the penalty vector, being an important
parameter to consider on the regression models.

D. Regression Coefficients Computation

As stated, the regression coefficients for the Cox PH Model
are obtained according to the Eq.(15), being considered dif-
ferent penalty vectors. Within the same centrality metric, it
has been shown that the variable µ has a great impact on the
penalty vector distribution. This phenom had to be considered
in the analysis, being one of the challenges the selection of
the best µ value for each of the metrics.

Like the µ value, the α has also a determinant rule in
the outcome solution since it has a significant control over
the number of regressions considered in the solution. Another
important variable that also has a great impact on the results
is the train/test, being interesting to verify if a good model is
obtained even with few data of if the model is able to avoid
overfit when more training data is give.

IV. NETWORK PROPERTIES OF STRING

The objective of this chapter is to extract relevant insights
out of documented protein datasets and use it as the further
constraint on the solution space. The STRING network will
be analysed in detail, being presented the respective centrality
metrics distributions along with other relevant properties. The
effects of the protein-gene mapping process are also presented
as well as the penalty factor computation.

A. Centrality Measures

The used STRING netwrok comprises information of Homo
sapiens protein interactions [5], being composed by 5676527
edges, with an average combined score value equal to 277.6,
minimum value of 150 and never exceeds 999. The total
number of proteins considered was 19576, and the average
shortest path separating any two nodes in the network shows
the value 〈l〉 = 2.203, which is very small compared with
the network size. The graph density has also been obtain
D′ = 2|E|

|V |(V−1) = 0.0296, which means that nearly 3% of
the possible edges actually exist in the network. To have a
deeper understanding of the proteins influence in the network

1) Weighted Network: Weighted networks are used when
it is important to consider connections of any kind between
two entities with a weight attached to that connection. In this
particular case, it is considered how well two proteins relate
to each other: the higher the value, the stronger the relation is.
Therefore, more than just calculate the number of interaction
that a protein has with it’s neighbours, it can be interesting to
consider the “amount” of impact it has on it’s surroundings.
This can be accomplished by measuring the weighted degree
centrality, Eq. (7). Given that betweenness and closeness
metrics consider shortest paths in their computation and the
network reflect entity relations, it has been concluded that only
the degree centrality is worth consider in this scenario.

Considering aij equal to the combined score between node
i and j, it is possible to obtain the weighted degree distribution
as presented in Fig.2. The distribution count axis is in log10

scale to properly analyse the degree distribution and identify
the number of hubs network.

Fig. 2. Weighted degree distribution in log10 scale with θ < 150.

By analysing the weighted degree distribution, it is clear to
see that the number of nodes/proteins with high degree values
is, as expected, very low. This type of properties is common
in scale-free topology.

To test this assumption, the plfit function from the pow-
eRlaw package [18], estimating that the distribution indeed
follows a powerlaw distribution for nodes with degree higher
than 99953, having γ = 2.112975. With that in mind and
given the average shortest path between any two nodes, there
are significant pieces of evidence that the exposed STRING-
based network is considered a small-world network that ap-
proximately follows the scale-free topology for nodes with
high degree value.

2) Unweighted Network: The other obtained network is the
unweighted network, that only considers whether two different
proteins are connected or not given the STRING combined
score value. The aij is defined by Eq. (16) at page 4, with
θ < 150. The outcome networks on cases with bigger θ
values would not be connected networks, strongly harming
the betweenness and closeness centrality values.

The degree distribution is presented in Fig.3, being similar
to the distribution of the weighted case, Fig.2, even though the
weighted degree distribution decreases more smoothly. Again,
the distribution approximates a power law distribution for high
values of degree. For nodes with degree higher than 2035, it
approximates a power law distribution with γ = 4.48.
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Fig. 3. Weighted degree distribution in log10 scale with θ < 150.

The correlation value between unweighted and weighted
degree is 0.954, which is a very high. For that reason and given
the relevance of other metrics considered on the unweighted
network, was the weigheted degree metric was rejected.

The betweenness centrality is a very interesting and robust
metric that reflex the amount of “flow” that passes through
each node in the network. It has a strong relationship with
the degree [19] and covers some specific cases that the degree
alone cannot detect.

In Fig.4, is presented the betweenness distribution, being
clear that, just like the degree distribution, few nodes have
high values of betweenness. These values genuinely stand out,
being interesting to relate this metric values with the degree
distribution and take some conclusions.

Fig. 4. Betweenness distribution in log10 scale with θ < 150.

The closeness evaluates how adjacent a specific node is to
all the nodes in the network. In Fig.5, the closeness distribution
is presented in log10 scale and the respective distribution is
very different from the betweenness and degree.

Fig. 5. Closeness distribution in log10 scale with θ < 150.

Some nodes stand out regarding closeness values. However,
the closeness distribution is very smooth when compared to
the obtained considering degree and betweenness. A priori,

this result makes the closeness centrality less interesting to
consider, given the previously obtained distributions.

At this point, to better understand the best metrics to use, a
Venn Diagram was made on the 250 top proteins regarding
each metric, Fig.6. Note that nearly all closeness vector
intersects the degree vector, indicating a strong relationship
between these two metrics. The correlation between both them
is 0.785 which is high, being relevant to exclude one of them.
Knowing that the degree has already been studied over gene
networks [4], the selected metric between this two was the
degree.

Fig. 6. Venn diagram on the top 250 proteins regarding the degree,
betweenness and closeness metrics.

Notice that the betweenness vector selected many nodes that
do not intersect any of the other vectors. That fact along with
this metric similarity with the degree concerning distribution
makes it an attractive metric to consider a penalty factor.
Even though the relation is not as high as the one closeness
and degree, the betweenness has a correlation value of 0.614
with the degree and, yet, 81 out of the top 250 proteins
do not intersect, make it worth considering their relation to
combine both strengths. The linear relation between degree
and betweenness was not low, nevertheless, the exponential
relation is much more interesting: 0.885. In the Fig.7 it is
presented the logarithm of re-scaled betweenness vs logarithm
of re-scaled unweighted degree. With this relation in mind, it
is purposed the DBetlog distance metric.. This formula would
consider both degree and betweenness through

DBetlog =
√
d′2 +B′2, (19)

with d′ and B′, respectively, corresponding to the re-scaled
degree and betweenness. The re-scaling formula applied is
given by

d′ =
d−min(d)

max(d)−min(d)
, (20)

where d corresponds to the degree centrality. The same re-
scaled process is applied over betweenness centrality, B. From
a geometric view, this corresponds to the distance to the origin
focusing a specific node in Fig. 7, illustrated with a red dotted
line.

The distribution obtained with this new metric DBetlog is
presented in Fig.8. As it can be observed, the distribution is
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Fig. 7. Logarithm of re-scaled betweenness vs logarithm of re-scaled
unweighted degree. The x-axis corresponds to the logarithm of re-scaled
unweighted degree and y-axis to the logarithm of re-scaled betweenness.

not so sharp as the betweenness and degree distributions, and
that is because logarithmic values are considered.

Fig. 8. DBetlog distribution in log10 scale with θ < 150.

Given the results presented, it can be concluded that the
strongest candidates to use as a penalty factor are between-
ness and degree. The proposed DBetlog has also shown an
interesting distribution. Not only that but is a metrics that can
consider both degree and betweenness at once: focusing on
the top 250 proteins, it presented 47 proteins with intersection
with only the betweenness and 31 with only the degree. The
metrics that will be considered as penalty factor are degree,
betweenness and DBetlog distance.

B. Mapping and Penalty Factor

The bridge between proteins and genes needs to be crossed
by using the BioMart package. The proteins and genes need
better documentation so that all the relations can be es-
tablished. As a result, some of the proteins will not have
a gene associated, and some proteins can have the same
gene associated. Focusing on the first point, from the 19503
proteins considered on the STRING network, 18241 have a
gene associated. From those, 70 have problems related to
the association of the same gene to more than on protein,
passing through the process presented in Section III-B. Most
of the information was kept on this process and only some
few proteins information needed to be joint in a single gene,
being kept the different metrics main characteristics.

The penalty factor was calculated considering the different
metrics and different µ values. From the analysis of penalty
factor distribution on the degree scenario with different µ
values, Fig. 9, the µ parameter influence is clear.

(a) µ = 0.1 (b) µ = 0.001

Fig. 9. Penalty factor considering degree centrality and different µ values.

V. RESULTS

Now that the pipeline to get the penalty factor is presented,
the regression method under study will be applied on real data
from the TCGA to obtain the respective Cox models.

A. Breast Cancer Dataset

The Breast Invasive Carcinoma (BRCA) survival dataset
from TCGA will be used to test the presented method focusing
the different centrality metrics. The dataset comprises the
patients gene expression levels and clinical data. It involves
information from 1036 individuals and 55882 genes, from
which only 19868 were considered because they are protein-
coding genes according to the Consensus Coding Sequence
and Ensembl databases [20, 21].

Before using the dataset, a selection of the genes, according
to the ones consider in the STRING, was necessary. Only the
intersected genes were considered, this resulted in a total of
18085 genes that are going to be used on the construction of
the final models, meaning that more than 90% of the protein-
coding genes that were kept.

B. Validation Metrics

To validate the presented method, the Elastic Net (ENet)
model will be handled as the baseline model. On the models
under analysis it will be selected low α values, considering
the Eq. (15), to have more non-zero coefficients in the final
models and better understand the penalty factor influence on
the results.

The respective models’ analysis will focus on two different
points of view. First the analysis of the models’ performance
and then over the significance of the selected genes. The
former were analysed based on the log-rank test (p-value),
concordance c-index [22] and number of selected genes.

To further understand the performance of each of the
models, the analysis over the selected genes has also been
implemented. First the intersection of the selected genes by the
different models is analysed and them the most relevant genes
will pass over the Cancer Hallmarks Analytics Tool (CHAT)
has been used [23]. This tool considers text mining techniques
over cancer-related references from PubMed, being possible to
understand the percentage of genes that are present in literature
related to oncology investigations.
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C. Selected Regression Coefficients Analysis
To obtain the best models to predict whether a person

belongs to a high-risk group or not, many combinations
of train/split ratio, α and µ values were considered. The
parameters values combinations are presented in the Table I,
having the number of genes selected, the c-index and the p-
value for each models according to the different combinations.

These values were obtained after the best λ value was
obtained with a 10-fold cross-validation process to avoid
overfited models. For each of the folds, 1000 λ values are
considered and tested with cross-validation and the best λ
is selected based on the minimum log-likelihood deviation
considering all the different folds.

It was concluded that the 0.8 train/test split ratio value
results on models that stand out negatively., since all of the
resulting models are not statistically significant. This fact
might be verified because the models start overfitting when
higher values of this parameter are used. The µ show a strong
impact on the models’ results. However, for high values of
this parameter, the results are not so different than the ones
obtained with the ENet since the nodes have a considerable
small penalisation. As the µ decreases, the range of values of
the penalisation vector increases and some exciting models
start to stand out, even though the number of considered
regression coefficients is smaller. The ENet models have a
good performance for the majority of the scenarios, yet, the
number of variables selected is considerably higher than the
models in a study, which is “unfair” and may mean that the
chosen genes are not so significant.

Another important used metric for all the selected models
is the percentage of the non zero regression coefficients with
no hallmark hits, also presented in Table I. Note that 36.46%
of all the examined genes have at least a hallmark associated.
These values were obtained with the usage of the CHAT.

To have a better understanding of the influence of the
centrality type on the models’ performance, the boxplots with
whiskers with maximum 1.5 interquartile range have been
obtained for all of the studied metrics (models shadowed
in green), Figure 10. However, the models that consider a
train/test split equal to 0.8 were not taken into account because
they strongly harmed all the models’ performance.

Focusing on the number of genes selected in Fig.10 (a),
the Degree and Betw models stand out as they select fewer
coefficient regressions. The DBetlog does not stand out and,
likely because the penalisation for most of the genes is small
since the performance is always very similar to the ENet
models.

With respect to the c-index and p-value measures, Fig-
ure 10 (b) and (c), the majority of the models have similar
results regarding c-index and p-value. However, it is possible
to observe some outliers in the Degree and Betw models. This
lower performance is verified because the penalisation applied
by both α and penalty factor considered is too high for some
of the models.

Considering all the metrics, the Degree models have showed
the best results. These models exhibit better performance

(a) Number of selected genes (b) c-index

(c) p-value (d) No hallmarks genes (%)

Fig. 10. Boxplots with whiskers with maximum 1.5 interquartile range
focusing on the number of genes selected, c-index, p-value, and percentage
of genes with no hallmarks.

(highest c-index) and also have the characteristic of comprising
fewer variables, resulting in simpler models. And finally, the
percentage of regression coefficients that do not have hallmark
hits is considerably smaller than the obtained with the other
models, a median of approximately 17%. The Betw models
follow the Degree ones since its best models also surpass the
ENet and DBetlog and, the number of considered variables and
percentage no hallmarkss genes, in most of the scenarios, is
smaller.

In Table I, the best models considering each of the centrality
metrics are shadowed in light blue, with the respective values
in bold. Considering the selected regression coefficients by
each of the models, a Venn diagram was computed, Fig. 11.
The best models considering Degree, Betw and DBetlog
penalties, have, respectively, 45.14%, 60.40% and 82.85%
of intersection with the ENet selected genes, which reflex
influence of the penalty factor.

Fig. 11. Venn diagram considering the non zero coefficients of the best
selected models.

The proposed method encourages the usage of well-known
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µµµ train ααα
# of genes selected ppp-value (%) ccc-index No hallmarks genes (%)

ENet Deg. Betw DBet ENet Deg. Betw DBet ENet Deg. Betw DBet ENet Deg. Betw DBet

0.5

0.05 1534 1545 1539 1507 0.37 0.47 0.37 0.29 0.819 0.819 0.820 0.818 31.16 28.16 31.38 31.79
0.1 859 805 860 770 0.36 2.81 0.41 1.54 0.820 0.820 0.820 0.818 32.13 28.32 31.98 32.73
0.15 551 575 548 561 0.85 1.11 0.86 2.45 0.817 0.820 0.817 0.817 33.39 29.91 33.39 33.160.7
0.2 423 423 424 430 3.09 2.93 3.13 4.78 0.815 0.820 0.815 0.815 35.93 31.21 35.38 34.19

0.05 1419 1373 1426 1492 3.16 3.65 3.13 4.22 0.818 0.814 0.817 0.817 30.59 27.75 30.65 31.50
0.1 777 578 776 718 4.53 3.20 4.47 4.19 0.816 0.810 0.816 0.814 30.89 23.70 31.19 29.39
0.15 496 294 491 475 4.53 3.09 4.51 4.30 0.812 0.805 0.813 0.810 30.24 20.07 29.94 28.210.75
0.2 309 220 301 315 4.51 2.25 4.74 3.24 0.808 0.805 0.807 0.806 29.77 21.36 29.57 26.35

0.8
0.05 1231 1140 1244 1219 71.59 71.59 72.77 71.59 0.812 0.811 0.811 0.809 30.63 25.97 31.03 30.44
0.1 613 583 624 666 71.59 71.59 72.77 72.77 0.817 0.816 0.816 0.813 29.04 24.01 29.17 30.48
0.15 439 393 446 421 72.77 73.68 72.77 71.59 0.817 0.820 0.815 0.810 29.39 21.12 28.48 28.74
0.2 322 302 318 287 72.01 73.68 70.82 92.98 0.816 0.816 0.812 0.808 29.81 23.51 28.30 26.48

0.1

0.05 1534 1334 1466 1468 0.37 1.68 0.32 1.13 0.819 0.815 0.821 0.816 31.16 22.94 31.51 31.95
0.1 859 725 808 763 0.36 0.28 4.33 2.36 0.820 0.819 0.823 0.817 32.13 21.24 32.30 32.63
0.15 551 463 595 557 0.85 0.35 9.18 2.43 0.817 0.820 0.820 0.818 33.39 19.22 33.78 33.390.7
0.2 423 192 437 410 3.09 1.37 11.70 4.78 0.815 0.827 0.821 0.817 35.93 16.15 34.78 33.66

0.05 1419 983 1472 1480 3.16 3.56 3.18 5.20 0.818 0.801 0.816 0.817 30.59 22.28 31.18 31.08
0.1 777 486 753 675 4.53 4.25 4.49 3.42 0.816 0.802 0.811 0.812 30.89 17.28 30.15 28.89
0.15 496 192 482 438 4.53 16.14 4.49 3.29 0.812 0.807 0.808 0.809 30.24 13.54 28.83 27.170.75
0.2 309 115 343 326 4.51 49.93 4.65 3.58 0.808 0.806 0.806 0.808 29.77 11.30 28.28 26.99

0.8
0.05 1231 1074 1166 1223 71.59 73.68 72.77 70.82 0.812 0.807 0.808 0.807 30.63 20.67 31.39 30.09
0.1 613 367 623 633 71.59 26.60 72.77 71.59 0.817 0.800 0.810 0.810 29.04 14.99 29.21 30.65
0.15 439 244 470 443 72.77 21.05 44.57 70.82 0.817 0.803 0.810 0.812 29.39 12.71 28.94 28.67
0.2 322 111 335 309 72.01 31.19 44.57 92.16 0.816 0.810 0.808 0.811 29.81 12.61 26.57 29.45

0.05

0.05 1534 1206 1413 1455 0.37 1.97 0.47 1.13 0.819 0.817 0.821 0.816 31.16 21.48 31.28 31.89
0.1 859 559 763 766 0.36 0.76 6.98 2.36 0.820 0.821 0.823 0.817 32.13 19.14 32.90 32.64
0.15 551 275 553 541 0.85 1.21 12.75 2.70 0.817 0.824 0.821 0.817 33.39 17.46 32.73 32.900.7
0.2 423 178 417 401 3.09 0.63 13.04 2.74 0.815 0.832 0.824 0.817 35.93 14.61 32.85 33.92

0.05 1419 934 1442 1474 3.16 3.91 4.82 5.52 0.818 0.797 0.813 0.816 30.59 21.09 30.86 31.00
0.1 777 413 720 666 4.53 3.56 5.82 3.44 0.816 0.800 0.808 0.811 30.89 15.98 30.14 28.38
0.15 496 152 445 440 4.53 35.77 5.60 3.27 0.812 0.804 0.803 0.809 30.24 11.84 28.09 28.410.75
0.2 309 115 355 326 4.51 48.61 10.56 3.58 0.808 0.804 0.805 0.808 29.77 10.44 28.73 27.30

0.8
0.05 1231 930 1164 1206 71.59 41.04 72.77 70.82 0.812 0.804 0.805 0.808 30.63 19.89 30.50 30.18
0.1 613 336 643 630 71.59 21.05 44.57 71.59 0.817 0.800 0.807 0.810 29.04 13.69 30.02 30.48
0.15 439 158 442 451 72.77 10.42 64.60 70.82 0.817 0.810 0.811 0.811 29.39 12.03 28.96 29.05
0.2 322 108 330 295 72.01 21.35 65.34 92.16 0.816 0.811 0.813 0.810 29.81 12.96 27.88 28.48

0.01

0.05 1534 1067 910 1442 0.37 2.17 12.40 1.13 0.819 0.817 0.815 0.816 31.16 20.62 31.54 31.62
0.1 859 462 411 758 0.36 0.76 13.61 2.36 0.820 0.822 0.812 0.818 32.13 18.18 30.41 32.85
0.15 551 233 294 552 0.85 0.37 21.27 2.70 0.817 0.830 0.810 0.817 33.39 15.02 29.93 33.510.7
0.2 423 144 218 396 3.09 0.63 15.42 2.74 0.815 0.834 0.809 0.816 35.93 13.89 29.36 34.09

0.05 1419 798 897 1488 3.16 4.29 13.41 5.52 0.818 0.797 0.791 0.816 30.59 20.18 29.77 30.91
0.1 777 414 501 665 4.53 4.73 46.68 3.44 0.816 0.800 0.789 0.812 30.89 15.46 29.34 28.57
0.15 496 155 367 435 4.53 35.77 64.27 3.29 0.812 0.803 0.787 0.809 30.24 10.97 29.97 28.050.75
0.2 309 112 295 322 4.51 55.68 60.83 3.58 0.808 0.804 0.781 0.808 29.77 8.04 30.17 27.64

0.8
0.05 1231 794 886 1212 71.59 38.70 29.69 72.91 0.812 0.801 0.800 0.808 30.63 18.51 29.46 30.36
0.1 613 270 435 636 71.59 9.40 29.69 71.59 0.817 0.807 0.805 0.810 29.04 11.85 28.74 30.03
0.15 439 167 317 450 72.77 9.40 52.36 70.82 0.817 0.808 0.807 0.811 29.39 11.38 28.08 29.33
0.2 322 109 250 298 72.01 20.34 52.36 92.16 0.816 0.808 0.804 0.810 29.81 12.84 27.20 28.86

0.005

0.05 1534 1034 683 1440 0.37 2.17 13.65 1.13 0.819 0.817 0.813 0.816 31.16 20.89 29.87 31.67
0.1 859 440 338 760 0.36 2.28 11.44 2.36 0.820 0.822 0.812 0.818 32.13 17.05 29.88 32.90
0.15 551 234 233 552 0.85 0.37 28.46 2.70 0.817 0.830 0.809 0.817 33.39 14.53 28.76 33.510.7
0.2 423 143 187 390 3.09 0.63 36.61 2.74 0.815 0.833 0.807 0.816 35.93 13.99 27.81 33.85

0.05 1419 792 767 1485 3.16 5.60 46.68 5.52 0.818 0.797 0.787 0.816 30.59 20.33 29.99 30.98
0.1 777 313 460 673 4.53 5.87 64.53 3.44 0.816 0.799 0.784 0.812 30.89 14.38 30.00 28.83
0.15 496 155 311 437 4.53 35.77 61.43 3.62 0.812 0.804 0.777 0.809 30.24 10.97 30.23 28.150.75
0.2 309 112 251 326 4.51 55.68 64.53 3.58 0.808 0.804 0.776 0.808 29.77 8.04 28.69 27.91

0.8
0.05 1231 795 738 1208 71.59 38.70 27.78 72.91 0.812 0.801 0.803 0.808 30.63 18.62 29.68 30.30
0.1 613 272 390 639 71.59 9.40 27.78 71.59 0.817 0.807 0.806 0.810 29.04 11.77 29.23 30.20
0.15 439 167 286 448 72.77 9.40 50.62 70.82 0.817 0.808 0.807 0.811 29.39 11.38 26.92 29.46
0.2 322 110 200 297 72.01 20.34 56.51 92.16 0.816 0.808 0.803 0.810 29.81 12.73 28.50 28.96

0.001

0.05 1534 1013 574 1441 0.37 2.17 12.97 1.13 0.819 0.817 0.812 0.816 31.16 20.83 29.97 31.65
0.1 859 434 279 751 0.36 0.88 48.10 2.36 0.820 0.822 0.809 0.817 32.13 17.05 28.67 32.89
0.15 551 233 208 551 0.85 0.37 45.46 2.70 0.817 0.829 0.806 0.817 33.39 14.59 28.37 33.390.7
0.2 423 143 178 385 3.09 0.63 27.54 2.70 0.815 0.833 0.806 0.816 35.93 13.99 29.21 34.03

0.05 1419 781 669 1482 3.16 5.60 41.12 5.52 0.818 0.797 0.781 0.816 30.59 19.85 31.09 30.97
0.1 777 307 378 672 4.53 5.87 50.28 3.44 0.816 0.800 0.777 0.812 30.89 14.33 29.10 28.87
0.15 496 156 272 436 4.53 35.77 50.16 3.62 0.812 0.804 0.775 0.809 30.24 10.26 29.78 27.980.75
0.2 309 112 225 326 4.51 55.68 64.39 3.58 0.808 0.805 0.773 0.808 29.77 8.04 29.78 27.91

0.8
0.05 1231 804 624 1204 71.59 38.70 54.74 72.91 0.812 0.802 0.806 0.808 30.63 18.53 30.61 30.40
0.1 613 270 357 641 71.59 9.40 52.42 71.59 0.817 0.807 0.807 0.810 29.04 11.85 29.13 30.27
0.15 439 166 238 449 72.77 12.89 33.10 70.82 0.817 0.809 0.803 0.811 29.39 11.45 26.89 29.40
0.2 322 108 175 301 72.01 20.34 36.25 92.16 0.816 0.810 0.802 0.810 29.81 12.04 27.43 28.90

TABLE I
MODELS NUMBER OF SELECTED GENES, p-VALUE AND c-INDEX WITH DIFFERENT VALUES OF TRAIN/TEST SPLIT, α AN µ. THE ROWS SHADOWED IN

LIGHT BLUE CORRESPOND TO THE BEST MODELS CONSIDERING EACH OF THE MODEL TYPES. THE ENET MODEL HAS train/testsplit = 0.7 AND
α = 0.1, THE DEGREE MODEL HAS train/test split = 0.7, µ = 0.01 AND α = 0.2, THE BETW MODEL HAS train/test split = 0.7, µ = 0.05 AND

α = 0.05 AND THE DBETlog MODEL HAS train/test split = 0.7, µ EQUAL 0.01 AND α = 0.1. THE RESULTING VALUES ARE HIGHLIGHTED WITH BOLD
FONT. THE ROWS WITH THE GREEN BACKGROUND CORRESPOND TO THE CONSIDERED MODELS FOR THE BOXPLOTS PRESENTED IN FIGURE 10.

genes according to many other studies since the used tools
focus on text-mining techniques. For that reason, this method-
ology might also be interesting to find new potential candidates

for breast cancer analysis. With that in mind, from the Venn
Diagram on Figure 11 analysis, it can be seen that all the top
models select a total of 39 genes that intersected. Focusing
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on those genes, and using the CHAT, it was concluded that
30 from 39 genes have hallmark hits, which is a significant
portion. Nevertheless, there are still nine genes that have no
hallmarks and were considered relevant according to all the
models. Those genes were penalised based on different metrics
and were still selected which strongly emphasise their rule on
breast cancer survival risk determination.

These genes might be essential to carefully analyse when
studying breast cancer patients not only because of their pres-
ence as regression coefficients but also, in some of the cases,
because of their functions. For instance, the gene ANKRD52 is
associated to the recognition of recognition of phosphoprotein
substrates and “Dysregulation of phosphorylation signalling
is implicated in a wide variety of diseases” [24]. Another
example is the ZBTB11 that may be associated with the
transcriptional regulation, a process that can be strongly related
to cancer expression [25].

VI. CONCLUSIONS

Given the obtained regression models, the primary objective
of the project was achieved: get simpler models with less
but more relevant genes selected while keeping the model
performance. The information extracted from the STRING
dataset allowed a relevant restriction of the solution space,
leading, in a significant number of cases, to a sparser solution
with the same performance as the Elastic Net. Moreover, the
genes selected by the purposed method tend to have a more
significant presence in cancer studies.

Furthermore, it has been concluded that the usage of the
presented pipeline might also be relevant to find new genes
that have an important role on the determination of breast
cancer survival. The presented models tend to favour the genes
that have already been proved to be relevant in many different
types of cancer. Even so, some of the frequently selected genes
are still not associated with any cancer study, being likely
interesting to consider them on further analysis by a specialist
in the field.

With this thesis project, it has been proved that the usage
of network-based regularisation over oncological patients sur-
vival data to get Cox regression models, result on simpler
models with greater biological meaning according to public
datasets. Moreover, the present methodology can also be used
as a tool to find interesting genes that are not yet associate
with cancer investigations.

This area of knowledge is a large road, and many steps are
being taken every day. Regarding the present method, further
explorations can be taken into account to explore different
parameters and possibly achieve more interesting and useful
results. Another interesting aspect that could be considered in
future works is the usage of the patients’ clinical data. Those
features typically have a strong relationship with the way the
body functions and might lead to more robust models with
higher performance.

An important step to further validate this method is its use
on other relevant datasets covering different types of cancer.
The results presented here are promising, but they should be

explored on many other datasets to prove that the achieved
regressions are indeed better and more straightforward. The
worked developed so far as also prove to be a relevant method
to find potential gene candidates with a strong relation with
cancer under study. The exhabited hypothesis, however, needs
further exploration and validation over different datasets and
requires the revision of a curator.
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