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Abstract

Mobile networks have been growing significantly in recent years, both in terms of number of subscribers

and in the complexity of the network itself. As such, performing an efficient management of the network,

to ensure that it maintains the desired performance, has become an increasingly difficult task. Moreover,

due to the increase in the amount data available, namely Key Performance Indicators (KPI), it becomes

unfeasible to do this management using the traditional methods.

This thesis focuses on the evaluation of the performance of a LTE network through the use of

unsupervised learning techniques. The main objective is to detect groups of cells that show similar

performances and, consequently, identify the groups that perform below the desired level. The advantage

of this approach over the methods commonly used in performance evaluation is that it allows to scan

multiple KPIs at once, not requiring, in a first instance, a manual analysis.

Furthermore, this thesis also aims to identify which cell configurations are associated with a better

performance.

In order to fulfill the first objective, a methodology based on the application of clustering algorithms to

features extracted from the original KPIs was developed. The following algorithms were tested: K-means,

Expectation-Maximization using Gaussian Mixture Models, and Spectral Clustering. The selection of the

optimal input parameters of each of the algorithms is based on a voting mechanism that used several

internal clustering validity metrics.

Regarding the second objective, Fisher’s exact test was used. This test evaluates the independence

between the configuration values of the cells and the groups to which they belong.

Using this methodology it was verified that there is not a significant difference in the results obtained

using the different algorithms. In the majority of the cases presented, only two groups of cells were

identified: one group consisting essentially of the cells with the best performance and the other group

containing the worst performing cells.

As far as the connection between configuration data and performance data is concerned, only one

case, referring to a parameter associated with the subscription capacity of the cells, was detected.

Keywords: LTE, Mobile Networks, Machine Learning, Clustering, KPIs.
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Resumo

As redes móveis têm verificado um crescimento acentuado nos últimos anos, tanto em número de

utilizadores como na própria complexidade da rede. Como tal, realizar uma gestão eficiente da rede, de

modo a garantir que esta tenha um desempenho desejado e consistente, tem-se tornado uma tarefa cada

vez mais árdua. Mais ainda, face ao crescimento de quantidade de dados disponı́veis, nomeadamente

Key Performance Indicators (KPI), torna-se incomportável fazer essa gestão utilizando os métodos

usuais.

Esta tese foca-se na avaliação do desempenho de células numa rede LTE através da utilização de

técnicas de aprendizagem automática não supervisionada. O objetivo principal é detetar grupos de

células que apresentem desempenhos semelhantes e, consequentemente, identificar os grupos que

apresentam um desempenho abaixo do desejado. A vantagem desta abordagem relativamente aos

métodos habitualmente utilizados na avaliação de desempenho é que permite fazer um varrimento sobre

vários KPIs de uma só vez, não requerendo uma análise manual, numa primeira instância.

Após identificar os diferentes grupos de células, pretende-se identificar quais são as configurações

das células que estão associadas a um melhor desempenho.

De modo a cumprir o primeiro objetivo, foi desenvolvida uma metodologia baseada na aplicação de

algoritmos de clustering a dados extraı́dos a partir de KPIs. Foram testados os seguintes algoritmos: K-

means, Expectation-Maximization utilizando Gaussian Mixture Models, e Spectral Clustering. A seleção

dos parâmetros de entrada ótimos de cada um dos algoritmos é baseada num mecanismo de votação

que utiliza diversas métricas de avaliação dos clusters de células obtidos.

Relativamente ao segundo objetivo, é utilizado o teste exato de Fisher, que avalia a independência

entre os valores de configuração das células e os grupos a que estas pertencem.

Utilizando esta metodologia verificou-se que não existe uma diferença significativa nos resultados

obtidos utilizando os diferentes algoritmos. Na maioria dos casos apresentados apenas foram identifica-

dos dois grupos de células: um grupo que é essencialmente constituı́do por células que apresentam o

melhor desempenho e o outro grupo que é constituı́do pelas células com pior desempenho.

No que diz respeito à ligação entre dados de configuração e dados de desempenho, apenas um caso,

referente a um parâmetro associado à capacidade de subscrição das células, foi detetado.

Palavras-chave: LTE, Redes Móveis, Aprendizagem Automática, Clustering, KPIs.
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Chapter 1

Introduction

This chapter presents the motivation that led to developed work, as well as the objectives to be accom-

plished. The thesis outline is also included in this chapter.

1.1 Motivation

As the complexity of mobile networks increases due to the increase of performance requirements and

number of subscribers, it becomes harder for the mobile network operators not only to maintain but also

to optimize the performance of those networks. As a result, mobile network operators are focusing more

and more in creating tools and procedures that aim to not only assist radio engineers in the process of

maintaining and optimizing the mobile networks, but also making the network itself more autonomous.

At the same time, Machine Learning (ML) and associated technologies are revolutionizing the way

current systems work, by allowing machines to learn from available data and perform actions that would

normally be taken by humans. Thus, mobile network operators can take advantage of these techniques to

assist in the network management and automation process, increasing its efficiency and reducing costs.

The data used to evaluate the performance of a network is composed of Key Performance Indicators

(KPI), which are quantifiable performance metrics. Some work related with the application of ML

techniques to KPIs collected from mobile networks has already been developed, as in [1], where

unsupervised learning techniques are used to automatically detect faults in a Long Term Evolution (LTE)

network.

This thesis focuses on applying unsupervised learning techniques to a set of KPIs from a LTE network

to assess its performance.

1.2 Objectives

The main objective of this thesis is to develop a model that is able to evaluate the performance of a LTE

network, based on KPIs collected from the network. The system should apply unsupervised learning

techniques in order to find groups of cells that present similar performances.
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Furthermore, the system should classify those groups regarding the performance of the cells that

constitute them. This classification depends on levels of performance specified by the mobile network

operator.

Thus, the end purpose of this system is to find groups of cells that exhibit poor performance, serving

as a tool to assist radio engineers when assessing the network performance. The key advantage when

compared to traditional methods to assess the network performance is that this system should be capable

of analyzing multiple KPIs at once.

Additionally, this thesis also aims to analyse the relationship between the configuration parameters

and the obtained groups of cells performance.

1.3 Thesis Outline

This work is divided into six chapters. Chapter 2 gives a technical overview of LTE networks, necessary

to understand the available Performance Management (PM) and Configuration Management (CM) data.

Chapter 3 presents the used PM and CM data, consisting of KPIs and configuration parameters,

respectively. This chapter also presents the data preprocessing steps applied to remove any data artifact

and null values.

Chapter 4 presents the methodology proposed to accomplish the outlined objectives of this work, as

well as the technical ML background necessary to develop that methodology.

Chapter 5 includes the results obtained through the application of the proposed methodology in

Chapter 4. It includes both the clustering results and the results regarding the connection between the

configuration parameters and the overall cluster performance.

In Chapter 6, a summary of the work carried out in this thesis is presented and some conclusions are

drawn. Lastly, future work is suggested.

1.4 Publications

The following scientific paper was written in the context of this work:

• “Unsupervised Learning Approach for Performance and Configuration Optimization of 4G Networks”

written by R. Santos, M. Sousa, P. Vieira, M. P. Queluz and A. Rodrigues. This paper was submitted

to the 2019 Institute of Electrical and Electronics Engineers (IEEE) Wireless Communications and

Networking Conference (WCNC), Marrakech, Morocco, 15th-18th April 2019.
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Chapter 2

LTE Background

This chapter aims to give an overview of LTE networks. In Section 2.1 a short introduction about LTE is

presented. Section 2.2 provides an overview of the LTE network architecture. Section 2.3 explains the

multiple access techniques used in LTE. Section 2.4 briefly describes the physical layer design. In Section

2.5 are presented the mobility aspects of LTE networks. Section 2.6 introduces concepts regarding PM

and CM.

The information provided in this chapter was based on the following literature: [2, 3] in Section 2.1;

[2–5] in Section 2.2; [2, 5] in Section 2.3; [2, 3, 5, 6] in Section 2.4; [2, 6, 7] in Section 2.5; [8–11] in

Section 2.6.

2.1 Introduction

LTE corresponds to a set of mobile network standards developed by the Third Generation Partnership

Project (3GPP). The driving forces for the development of LTE were:

• the evolution of wireline capabilities that increased data rates;

• the requirement for more wireless capacity;

• the need to increase data delivery efficiency;

• the competition of other wireless technologies.

These driving forces pushed LTE to meet, among others, the following performance targets: increase

the peak user throughput by a factor of 10; decrease the latency by a factor of 2-3; increase the spectral

efficiency by a factor of 2-4.

In order to achieve those goals, LTE used some technologies such as: Orthogonal Frequency Division

Multiple Access (OFDMA) for the transmission in the downlink direction, Single Carrier Frequency Division

Multiple Access (SC-FDMA) for the transmission in the uplink direction and Packet-Switched (PS) radio

interface. These technologies are explained in detail in the following subsections.

In LTE, the transmission bandwidth can be selected from 1.4 MHz up to 20 MHz, depending on the

available spectrum.
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2.2 Network Architecture

LTE is designed to only support PS services in contrast to the Circuit Switched (CS) model of previous

systems. The combination of the radio access component, LTE, and the non radio access component,

System Architecture Evolution (SAE) which includes the Evolved Packet Core (EPC) network, form the

Evolved Packet System (EPS). EPS is responsible for providing the user with Internet Protocol (IP)

connectivity to a Packet Data Networks (PDN) for accessing the Internet as well as running services built

on top of IP.

The overall network architecture is shown in Figure 2.1. Each Network Element (NE) has a different

function and different elements are interconnected through standardized interfaces. The radio access

component, also known as Evolved UMTS Terrestrial Radio Access Network (E-UTRAN), is essentially

composed by only one type of nodes, the Evolved Node Base Station (eNodeB), that connects to the

User Equipment (UE)s, while the EPC consists of many logical nodes.

Figure 2.1: EPS network elements (adapted from [3]).

2.2.1 Core Network

The role of the core network is to control the UE and to establish the E-UTRAN Radio Access Bearer

(E-RAB)s. E-RABs are used to route IP traffic, with a defined Quality of Service (QoS), between a gateway

in the PDN and the UE. The PDN Gateway (P-GW), Serving Gateway (S-GW), Mobility Management

Entity (MME) and Evolved Serving Mobile Location Centre (E-SMLC) are the main logical nodes of

the core network. In addition to these main nodes there are other logical nodes and functions such as

the Home Subscriber Server (HSS), the Gateway Mobile Location Centre (GMLC) and the Policy and

Charging Rules Function (PCRF). All the nodes and functions listed are explained in more detail below:

• P-GW is the edge router that interconnects the EPS and external PDNs. It is responsible for traffic

gating and filtering functions needed by the different services and is responsible for the allocation of

an IP address to each UE. This IP allocation function can also be done by the external PDN, to

which the UE is connected, and the P-GW tunnels all traffic to that network.

• S-GW is responsible for the management and switching of user plane data. Moreover, it serves as

a mobility anchor so that the data transmission is continuous when the UE moves between different

eNodeBs.
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• MME is the main control entity in the EPC. Its main functions can be categorized into bearer

management related functions and connection management related functions. The first one

includes the establishment, maintenance and release of bearers while the second one is related to

the connection establishment and the security of that connection.

• E-SMLC is responsible for managing the resources required to find the location of a UE.

• HSS is a database that stores user related information such as QoS, roaming restrictions and the

PDNs to which the user can connect. It can also integrate the Authentication Centre (AuC) that, in

turn, generates the vectors for both authentication and security keys.

• PCRF is the node responsible for policy control, which includes making the decisions on how each

service should be handled in terms of QoS, and is also responsible for data charging functions.

• GMLC incorporates the required functionalities to support LoCation Services (LCS).

2.2.2 Radio Access Network

E-UTRAN is responsible for all the radio-related functions. As stated previously, this network component

is only composed by eNodeBs which, in turn, are interconnected with each other through X2 interfaces

and are also connected to the EPC via S1 interfaces, as shown in Figure 2.2.

Figure 2.2: Overall E-UTRAN architecture (adapted from [3]).

The functions performed by the eNodeBs include, among others, the following:

• Radio Resource Management (RRM), i.e. managing radio bearers and radio link’s resources;

• Compression and decompression of IP headers;

• Encryption of the data sent over the radio interface;

• Connectivity to the EPC;

• Handling handover between eNodeBs that are connected via X2 interfaces.
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2.2.3 Radio Protocol Architecture

The protocol architecture of the radio access component in LTE can be divided into user plane architecture

and control plane architecture. The role of these protocols is to set up, reconfigure and release the Radio

Bearer that enables for transferring the EPS bearer.

The stack layer for both user and control plane in the radio access is shown in figure 2.3.

Figure 2.3: LTE Radio Protocol Stacks [2].

Both user and control plane include the Medium Access Control (MAC), Radio Link Control (RLC) and

Packet Data Convergence Protocol (PDCP) layer, which are Layer 2 protocols, above the physical layer.

Additionally, the control plane also includes the Radio Resource Control (RRC) protocol, which is a Layer

3 protocol. A brief description of these protocols is given below:

• Physical layer is responsible for carrying the information from the MAC transport channels over

the air interface;

• MAC maps the logical channels to transport channels as presented in figure 2.3. Other functions in

this layer include multiplexing/demultiplexing of RLC Payload Data Unit (PDU)s belonging to one

or different radio bearers into/from Transport Blocks (TB) delivered to/from the physical layer on

transport channels, perform error correction using Hybrid Automatic Repeat Request (HARQ) and

handling priorities between logical nodes through dynamic scheduling;

• RLC is responsible for the segmentation and concatenation of the PDCP-PDUs to be transmitted

and for the reassemble of RLC PDUs to reconstruct the PDCP PDUs and also performs error

correction through the Automatic Repeat Request (ARQ) mechanism;

• PDCP main functions include IP header compression/decompression, integrity protection and

ciphering/deciphering both the user plane data and most of the control plane data;

• RRC controls the radio resource usage. It is responsible for managing UE’s signalling and data

connections and also has functions related to handovers.
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Additionally to the protocols related to the LTE radio interface, there are protocols between the UE

and the core network that are transparent to the radio layers and are generally referred to as Non-Access

Stratum (NAS) signaling.

2.3 LTE Multiple Access

LTE uses OFDMA as the downlink multiple access scheme while for the uplink it uses SC-FDMA. The

principle of Single Carrier (SC) transmission is to modulate the information to only one carrier. This can

be done by adjusting the carrier, with respect to the information that needs to be transmitted, in phase or

amplitude or both. This principle is shown in Figure 2.4.

Figure 2.4: Single carrier transmitter [2].

In a Frequency Division Multiple Access (FDMA) system, different users use different carriers or

sub-carriers in order to access it simultaneously. Consequently, interference between carriers may arise

which leads to the use of guard bands in order to minimize that interference. However, these guard bands

cannot be too extensive since that would lead to an inefficient use of the available bandwidth. The FDMA

principle is presented in Figure 2.5.

Figure 2.5: FDMA principle [2].

These techniques allow for a better use of the available bandwidth and also to reduce inter-symbol in-

terference and fading. Thus, these multiple access schemes have a key role in achieving the performance

targets defined in LTE.

2.3.1 OFDMA

In OFDMA the sub-carriers are mutually orthogonal. This means that at a sampling instant of a given

sub-carrier all the others have zero value, as shown in figure 2.6. It is then intuitive to understand that
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such scheme allows for a better use of the available bandwidth since the sub-carriers overlap without

interference. In the specific case of LTE, the sub-carrier spacing has been specified to be 15 kHz

regardless of the available bandwidth.

Figure 2.6: Maintaining the sub-carriers’ orthogonality [2].

The practical implementations of an OFDMA system use both the Fast Fourier Transform (FFT) and

the Inverse Fast Fourier Transform (IFFT), where the first moves a time-domain signal into the frequency

domain while the second does the inverse operation. These operations can be carried out back and forth

as long as the sampling rate requirements of digital signal processing are fulfilled.

The transmitter of an OFDMA system has an IFFT block that transforms each sub-carrier from

frequency to time domain. The IFFT block is fed by a serial-to-parallel block which has the data source

as the input and the different sub-carriers as the output. Following the IFFT block it is added a cyclic

extension so that inter-symbol interference is avoided. Figure 2.7 illustrates the architecture of an OFDMA

system.

Figure 2.7: OFDMA transmitter and receiver [2].

The addition of a cyclic extension is preferable when compared to breaking the transmission (guard

interval) since then the Orthogonal Frequency Division Multiplexing (OFDM) signal is periodic. The impact
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on the channel, due to the periodic nature of the signal, ends up corresponding to a multiplication by a

scalar. Not only that, but the periodicity of the signal also allows for a discrete Fourier spectrum which, in

turn, enables the use of the Discrete Fourier Transform (DFT) in the receiver and Inverse Discrete Fourier

Transform (IDFT) in the transmitter.

On the receiver end, the inverse operations are applied and there is also an equalizer that reverts the

channel impact for each sub-carrier.

A major aspect of using an OFDMA scheme in a base station transmitter is that it can allocate any

of its sub-carriers in the frequency domain to its users. On one hand, the scheduler is able to benefit

diversity in the frequency domain. On the other hand this implies a practical limitation since the signalling

resolution caused by the resulting overhead prevents the allocation using single sub-carriers. Therefore,

in LTE, the allocation is done using Physical Resource Block (PRB)s, each consisting of 12 sub-carriers

which translates into a minimum allocated bandwidth of 180 kHz. The allocation in the time-domain is

done in intervals of 1 ms, designated by Transmission Time Interval (TTI), even though each PRB lasts

only 0.5 ms.

2.3.2 SC-FDMA

One major challenge of using OFDMA is the need for high linearity in the transmitter due to the large

variations of the transmitted signal power that result in a high Peak-to-Average Ratio (PAR). Since

SC-FDMA enables better power amplifier efficiency when compared to linear amplifiers that are required

by OFDMA, then SC-FDMA is the selected multiple access scheme used in the uplink transmission

because it allows to use cheaper transmitters when compared to the ones used in base stations.

SC-FDMA is similar to Time Division Multiple Access (TDMA) in the way that each symbol is sent one

at a time. The generation of the signal in the frequency domain, which is shown in Figure 2.8, adds the

OFDMA property of good waveform. Therefore, similarly to what happens with the OFDMA scheme used

in the downlink, there is no need to use guard intervals between different users.

Figure 2.8: SC-FDMA transmitter and receiver with frequency domain signal generation [2].
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As in the OFDMA scheme, a cyclic extension is added periodically to the signal in order to prevent

inter-symbol interference and to simplify the receiver design. However, this cyclic extension is not

added after each symbol because the symbol rate is faster in SC-FDMA than in OFDMA. Thus, the

cyclic extension only prevents inter-symbol interference between blocks of symbols and inter-symbol

interference between symbols of the same block still needs to be taken into account. In the receiver, each

block of symbols is handled by the equalizer until reaching the cyclic prefix so that the further propagation

of inter-symbol interference is prevented.

In LTE, the resolution allocation rate for the SC-FDMA system is 1 ms, which is the same value as

for the OFDMA system, and the transmission occupies the whole part of the user’s allocated spectrum.

Moreover, the SC-FDMA system uses the same values for the sub-carrier spacing and for the resource

blocks bandwidth, these values being 15 kHz and 180 kHz, respectively. It is worth noticing that even

though the transmission is, by name, a single carrier, the signal generation phase uses a sub-carrier term.

Since only a single modulation symbol is transmitted at a time, then a low transmitter waveform is

ensured and the modulation method used highly influences the waveform characteristics. Consequently,

using SC-FDMA, a low PAR can be achieved and power amplifiers with low power consumption and good

power conversion efficiency can be used.

The receiver located in the base station that is used in the SC-FDMA system is more complex than

the receiver used in the OFDMA system due to the fact that in SC-FDMA the inter-symbol interference is

terminated only after a block symbols while in OFDMA the inter-symbol interference is terminated after

every symbol. However, this increased complexity in the receiver using SC-FDMA is outweighed by the

benefits of the uplink range and better device battery life. Additionally, the dynamic resource usage with a

1 ms resolution guarantees that there is no base-band receiver per UE on standby and enables the base

station to be used in a dynamic fashion by users that have data to transmit.

2.4 Physical Layer Design

The physical layer of LTE is designed in order to maximize the efficiency of packet-based transmission,

meaning that the channels are shared, enabling dynamic resource utilization, instead of having dedicated

resources reserved for each user. The deployment of the physical layer in a radio access system plays

an essential role on the resulting system’s capacity and, consequently, is a relevant point of comparison

on the expected performance of different systems.

2.4.1 Transport Channels

Transport channels are responsible for connecting the physical layer to the MAC layer and they are briefly

described in the following points:

• Uplink Shared Channel (UL-SCH) carries user data and control messages in the uplink direction;

• Random Access Channel (RACH) acts on the uplink direction and enables the mobile to contact

the network without prior scheduling;
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• Downlink Shared Channel (DL-SCH) carries user data and control messages in the downlink

direction;

• Paging Channel (PCH) transports paging messages in the downlink direction;

• Broadcast Channel (BCH) broadcasts, in the downlink direction, information required for the

devices to access the system and to identify the operator;

• Multicast Channel (MCH) is used in the downlink direction for carrying multicast service content

to the UE.

The mapping between the transport channels described above and the corresponding physical

channels is the following:

In the uplink direction, the UL-SCH and RACH are mapped to the Physical Uplink Shared Channel

(PUSCH) and Physical Random Access Channel (PRACH), respectively.

In the downlink direction, both the PCH and the DL-SCH are mapped to the Physical Downlink Shared

Channel (PDSCH) while the BCH and MCH are respectively mapped to the Physical Broadcast Channel

(PBCH) and Physical Multicast Channel (PMCH).

2.4.2 Uplink User Data Transmission

The PUSCH carries the user data in the uplink direction. It has a 10 ms frame structure and is based

on the allocation of frequency and time resources with 1 ms and 180 kHz resolution. The resource

allocation is performed by a scheduler located in the eNodeB, as shown in Figure 2.9. Only random

access resources may be used if there is no prior signaling from the eNodeB and since resource allocation

is done in a dynamic fashion, there are no fixed resources for the devices. Thus, the UE needs to provide

information to the eNodeB of both the its transmission requirements and its available transmission power

resources.

Figure 2.9: Uplink resource allocation controlled by eNodeB [2].
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The 10 ms frame structure can be divided into subframes of 1 ms each, which constitutes the allocation

period. Each subframe can be further divided into slots of 0.5 ms each. Within the 0.5 ms slot there are

both user data symbols and reference symbols, in addition to the signalling. The 10 ms frame structure is

illustrated in Figure 2.10.

Figure 2.10: LTE Frequency Division Duplex (FDD) frame structure [2].

In the frequency domain, the bandwidth is allocated between 0 and 20 MHz in the steps of 180 kHz.

Since the uplink transmission is FDMA modulated with only one symbol being transmitted at a time, then

the allocation is continuous. The slot bandwidth adjustment between consecutive TTIs is shown in Figure

2.11, where it can be observed that doubling the data rate results in doubling the bandwidth being used.

Moreover, it can be seen that a higher data rate results in a corresponding increase for the reference

symbol data rate since the reference symbols occupy the same space in the time domain.

Figure 2.11: Data rate between TTIs in the uplink direction [2].

In the uplink, the cyclic prefix may take two values depending on whether a short or extended cyclic

prefix is used. If an extended cyclic prefix is applied then the data payload is reduced and only 6 symbols

are transmitted per slot, instead of the 7 symbols transmitted with the short cyclic prefix, so this is not

frequently used because the benefits of having more payload are greater than possible degradation

caused by inter-symbol interference when the channel delay spread is higher than the cyclic prefix.

2.4.3 Downlink User Data Transmission

The PDSCH carries the user data in the downlink direction. Similarly to what happens in the uplink

direction, the resources are allocated, in the frequency domain, in blocks of 180 kHz. The user data rate

is dependent on the number of allocated sub-carriers for a given user as the multiple scheme is OFDMA
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which translates into each sub-carrier being transmitted as parallel 15 kHz sub-carrier. The eNodeB

allocates the resources based on the Channel Quality Indicator (CQI) specified by the UE. The resource

allocation is done in both the time and the frequency domain, as in the uplink direction, and is illustrated

in Figure 2.12.

Figure 2.12: Downlink resource allocation at eNodeB [2].

Each UE is informed about the corresponding allocated resources through the Physical Downlink

Control Channel (PDCCH) and, once again, the resource allocation is done dynamically with a 1 ms

granularity. PDSCH data can occupy from 3 up to 6 symbols in each 0.5 ms slot, depending on the type

of cyclic prefix used (short or extended) and also on the allocation for the PDCCH. Within each 1 ms

subframe, only the first 0.5 ms slot contains control symbols PDCCH while the second 0.5 ms slot is used

solely to transmit data symbols (PDSCH). A short cyclic prefix allows to fit 7 symbols in each 0.5 ms slots,

while with an extended cyclic prefix each 0.5 ms accommodates 6 symbols. Figure 2.13 illustrates the

downlink slot structure assuming that 3 symbols are used for PDCCH. Besides the control symbols, also

the reference symbols, synchronization signals and broadcast reduce the space available for the user

data.

Figure 2.13: Downlink slot structure for bandwidths above 1.4 MHz [2].
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2.5 Mobility

In this section is presented a brief overview of how mobility management is performed in LTE. Mobility is

a key aspect in LTE, and in mobile networks in general, because in order to provide ubiquitous coverage

to different users it is required that they are able to access and maintain the services as they move across

the network coverage area. Such coverage comes with the cost of increased network complexity. Thus,

LTE aims to provide seamless mobility but taking into account that complexity is an important factor and

must be minimized.

There are two possible states that a UE can take: RRC IDLE and RRC CONNECTED. The mobility

management procedures are then chosen with respect to the UE state. The RRC IDLE state corresponds

to the UE being switched on but not connected to the network while the RRC CONNECTED state

corresponds to when there is a connection between the network and the UE. In the former the mobility

procedures are triggered by the UE and are related to cell re-selection according to parameters sent by

the network; in the latter it is the E-UTRAN that decides, according to the reports sent by the UE, whether

or not to perform an handover.

In order to provide user mobility in a LTE network, the following measurements are performed:

• Reference Signal Received Power (RSRP) corresponds, for a given cell, to the average power

measured per resource element that contains cell-specific reference signals;

• Reference Signal Received Quality (RSRQ) is the ratio of the RSRP and the Evolved UMTS

Terrestrial Radio Access (E-UTRA) Carrier Received Signal Strength Indicator (RSSI), for the

reference signals;

• RSSI is the total received wideband power on a specific frequency.

2.5.1 Idle Mode Mobility

In Idle mode, the cell selection is done by the UE and is based on radio measurements that the UE itself

performs. When a suitable cell is selected by the UE it is said that the UE is camped in that cell. In order

for a cell to be considered a suitable candidate it must have good radio quality and not be blacklisted.

More specifically, it is required that the cell fulfills the S-criterion:

Srxlevel > 0, (2.1)

where

Srxlevel > Qrxlevelmeas − (Qrxlevmin −Qrxlevelminoffset) (2.2)

The Srxlevel is the Rx level value of the cell, the Qrxlevelmeas is the measured cell received level RSRP,

Qrxlevelmin is the minimum required received level, measured in dBm, and the Qrxlevelminoffset is an

offset used when searching for a higher priority Public Land Mobile Network (PLMN).
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The UE continuously tries to find better cells as candidates for reselection, according to the reselection

criteria, even after being camped on a cell. Some cells may be blacklisted by the network which means

that those cells cannot be considered by the UE for the reselection process. In order to reduce the

reselection measurements, the UE considers that if SServingCell, which corresponds to the Rx level value

of the serving cell, is high enough then it does not need to carry out further intra-frequency, inter-frequency

or inter-system measurements. When SServingCell ≤ Sintrasearch or SServingCell ≤ Snonintrasearch, the

UE starts performing measurements for intra-frequency or inter-frequency reselection, respectively. The

Sintrasearch corresponds to the serving cell’s Rx level threshold for the UE to start making intra-frequency

measurements while the Snonintrasearch corresponds to the serving cell’s Rx level threshold for the UE to

start making inter-frequency measurements. Both intra-frequency reselection and equal priority E-UTRAN

frequency reselection are based on the R-criterion which aims to find the best cell for the UE to camp on.

The R-criterion comprehends both the serving cell ranking (Rs) and the neighbouring cell’s ranking (Rn)

where the former ranks the serving cell while the latter ranks the different neighbouring cells:

Rs = Qmeas,s +Qhyst (2.3)

Rn = Qmeas,n +Qoffset, (2.4)

where Qmeas is the RSRP measurement, the Qhyst is the power domain hysteresis to avoid ping-pong

between cells and Qoffset is an offset that controls different frequency specific characteristics.

In order to restrain the amount of reselections that are performed it is used the parameter Treselection.

If the best ranked neighbor cell is better ranked than the serving cell for a period of time longer than

Treselection then, the reselection occurs.

A method known as absolute priority based reselection is used in LTE, allowing the operators to control

how UE prioritizes camping on different Radio Access Technology (RAT)s or frequencies of E-UTRAN. It

is assigned a priority to each layer (different RAT/frequency) and the UE tries to camp on the highest

priority layer, as long as it can provide decent service. This means that a threshold, Threshhigh, needs

to be fulfilled for a period of time longer than Treselection before reselection is performed. Furthermore,

a reselection to a lower priority is only performed if the higher priority layer drops below the threshold

Threshhigh and the lower priority layer rises above the Threshlow.

2.5.2 Connected Mode Mobility

When the UE is in the RRC CONNECTED state its mobility is controlled by the network, with the decision

taken by the E-UTRAN to perform an handover being based on measurements carried out by the UE.

Those measurements and their reporting are controlled by parameters given by the E-UTRAN. Since the

handovers are targeted to be lossless, packet forwarding between the source and the target eNodeB is

used. Once the handover is completed the core network S1 connection is updated. This is also known as

Late path switch. The core network has no influence over the handovers. Figure 2.14 shows an overview

of the intra-frequency handover procedure.
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Figure 2.14: Intra-LTE handover procedure [7].

Firstly, it is illustrated that the UE is moving from left to right and has a user plane connection to the

source eNodeB and further to the SAE Gateway (SAE GW). Moreover, the S1 connection exists between

the source eNodeB and the MME. As the UE moves closer to the other eNodeB shown in the figure, the

measurements relative to that target cell get closer to a reporting threshold, until they eventually fulfill that

threshold. Once the threshold is fulfilled, the UE sends the measurement report to the source eNodeB.

The source eNodeB then establishes both the signalling connection and the GPRS Tunneling Protocol

(GTP) tunnel to the target cell. The source eNodeB sends the handover command to the UE when the

target eNodeB has the resources available and then the UE can switch the radio connection to the target

eNodeB. Once that connection is established, the core network connection is updated.

Regarding connected mode mobility, LTE also supports handovers to other RATs, namely Univer-

sal Terrestrial Radio Access Network (UTRAN), GSM/EDGE Radio Access Network (GERAN) and

cdma2000 R© [2].

2.6 Performance Data Collection

The increasing complexity of telecommunication networks results in major challenges to telecommuni-

cation operators in both monitoring and managing the performance of those networks. In order to face

those challenges, network operators use a set of methods that allows to collect data originated from the

networks. These data provides insights about the network and thus can be used to monitor, plan and

optimize the network.

2.6.1 Performance Management

International Telecommunication Union (ITU) developed Telecommunication Management Network (TMN)

which is the framework used to manage telecommunications networks and services. In each layer of the

TMN reference model, five different management functional areas are considered: Fault, Configuration,

Accounting, Performance and Security. PM consists in evaluating and reporting the behavior and

effectiveness of network elements by gathering statistical information, maintaining and examining historical
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logs, determining system performance and altering the system modes of operation. With that, the network

use can be optimized, allowing increased Quality of Service (QoS) for the end users applications. PM

has a key role for network operators because it allows them to detect the deteriorating trend in advance

and thus solve potential threats and prevent faults.

The architecture of a PM system is divided in the following layers:

• Data Collection and Parsing Layer: where data is collected from the NEs using network specific

protocols, like File Transfer Protocol (FTP) or Simple Network Management Protocol (SNMP);

• Data Storage and Management Layer: where the data coming from the Data Collection and

Parsing Layer is stored into a database;

• Application Layer: is responsible for the processing of collected and stored data. It is also

responsible for storing and sharing of generated KPIs and reports;

• Presentation Layer: provides a web-based user interface that shows the generated PM results, in

the form of dashboards, charts and real-time graphs.

The main challenges faced in PM are related to the high volume of performance measurements data

that is collected over time periods which rises difficulties in making an efficient administration, and to

the fact that certain performance measurements don’t have an unified structure or content thus creating

difficulties in handling those measurements.

2.6.2 Key Performance Indicators

Generally speaking, KPIs are measures of the performance of essential operations and/or processes

in an organization. In the context of telecommunications, KPIs are measures of the performance of a

network. These KPIs are obtained through statistical calculations based on counters installed on the

NEs, that register many indicators such as dropped calls, failed handovers or handover types. KPIs are

fundamental in the context of PM since they provide valuable information about the network performance

which can be used not only to identify performance gaps between current and desired performance but

also to provide indication concerning the progress in closing those gaps.

Telecommunication specific KPIs can be divided into different categories, based on the measurement

targets. Usually these categories are the following: Accessibility, Retainability, Integrity, Availability and

Mobility . However, this is not standardized, therefore vendors may define additional categories such as

Utilization [10]. A brief description and a KPI example for each category are provided in Table 2.1.
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Categories Description Examples

Accessibility Indicates if services requested by a user can be
accessed within specified tolerances in the given
operating conditions

Random Access Success
Rate

Availability Indicates the percentage of time that a cell is avail-
able

Cell Availability

Integrity Indicates the E-UTRAN impacts on the service qual-
ity provided to the end-user

Downlink and Uplink
Throughputs

Mobility Evaluates the performance of E-UTRAN mobility Intra-frequency Handover
Out Success Rate

Retainability Evaluates the network capability to retain a connec-
tion from its initiation until its disconnection by the
user

Call Drop Rate

Utilization Evaluates the network capability to meet the traffic
demand

Resource Block Utilizing
Rate

Table 2.1: KPI categories description.

2.6.3 Configuration Management

CM allows the operator to assure correct and effective operation of the network as it evolves. CM actions

purpose is to control and monitor the active configuration of the NEs and Network Resource (NR)s which

can be initiated by the operator or by functions in the Operation Systems or NEs. These actions may be

carried out as part of implementation programmes, optimisation programmes and to maintain the overall

QoS [11].

CM Service Components

When a network is installed and brought into service and following its installation, the network operator

needs to enhance and adapt the network so that short and long term requirements are met and customer

needs are satisfied. Thus, the network operator should be provided with a set of capabilities, such as

initial system installation, system operation to adapt the system to short term requirements, system

update to overcome software bugs or equipment faults and system upgrade to enhance or extend the

network by features or equipment respectively. Such capabilities are provided by the CM system through

its service components – system modification and system monitoring.

The system modification service component is used to adapt the system data to a new requirement

due to optimization or new network configurations while the system monitoring service component allows

the operator to receive reports, from managed NEs, on the configuration of the entire network, or parts of

it.

CM Functions

Due to the requirements of CM and their usage, some basic system modification functions need to be

defined for the network: creation of NEs and NRs; deletion of NEs and NRs; conditioning of NEs and

NRs. To each of these functions, the following requirements apply:
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• affected resources should be taken out of service only if needed, resulting in minimal network

disturbance;

• physical modifications and the related logical modifications should be independent;

• in order to bring resources into service all the actions needed to satisfy a certain task should be

completed correctly;

• data consistency checks should be performed.
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Chapter 3

PM and CM Data

This chapter focuses on both the PM and CM data used in this thesis. This data is from a live network,

deployed in a urban environment, and was provided by a mobile network operator.

For both datasets, a description of the most relevant features is provided and, in addition, each KPI in

the PM dataset is classified into one of the classes considered in Section 2.6. Since the available data

was originated from eNodeBs deployed with Ericsson equipment, both the PM and CM feature description

and KPIs classification of each KPI are based on the available information provided in [12].

Each site may support from one up to three of the following frequency bands: L800 (800 MHz), L1800

(1800 MHz) and L2600 (2600 MHz).

This chapter presents the PM data in Section 3.1 and the CM data in Section 3.2.

3.1 PM Data

For each one of the analyzed cells, deployed in a site, the PM data was collected every 15 minutes, during

10 days, consisting of multiple KPIs and counters. Thus, for each cell, each PM data feature corresponds

to a time-series.

The first step towards achieving the goals of this work is to understand what each feature in the dataset

represents and, from there, select which KPIs are more relevant to analyse the network performance and

classify each one of them into one of the classes defined in Section 2.6.2.

3.1.1 KPIs Selection and Description

The KPIs selected to evaluate the performance of each cell in the network are presented in Table 3.1,

according to the KPI class to which they belong.
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Accessibility Integrity Availability

CB RACH fail% DL Throughput per UE(Mbps) CellAvail perc
Added E RAB Estab fail% UL Throughput per UE(Mbps) CellAvailAuto perc
Init E RAB Estab fail% DL Pdcp Cell Tput(Mbps) CellAvailMan perc
RRC Estab fail% DL MAC Cell Tput(Mbps)
S1 Estab fail% UL Pdcp Cell Tput(Mbps)

UL MAC Cell Tput(Mbps)

Table 3.1: Selected KPIs.

Accessibility

The Init ERAB Estab fail% indicates the E-RABs fail rate for end-user services that are carried by E-RABs

included in the Initial UE Context setup procedure. Figure 3.1 illustrates the Initial UE Context setup

procedure, where the attempts to establish the initial E-RAB are counted in point A while the failed

established initial E-RABs are counted in point B.

Figure 3.1: Initial UE context setup procedure [10].

When a UE requests a service that requires an improved level of QoS, the network decides if it

establishes a new E-RAB (added E-RAB) for that service or if it modifies the QoS of an existing E-RAB.

The Added ERAB Estab fail% corresponds to the fail rate for end-user services that are carried by

E-RABs included in the E-RAB setup procedure.

The RRC estab fail% measures the fail rate regarding the RRC connections establishment and the

S1 Estab fail% gives the fail rate for the establishment of signaling connections over the S1 interface.

Lastly, the CB RACH fail% indicates how often, in a Contention Based (CB) RACH procedure, a

transmitted RaMsg2 does not result in a successfully received RaMsg3. The contention based RACH
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procedure can be observed in Figure 3.2 and it is performed by a UE in order to be synchronized with the

network. Each cell has 64 preambles reserved, from which a fraction is reserved for the non-contention

based procedure and the remaining are reserved for the contention based procedure. In the contention

based procedure, a UE selects, randomly, a preamble sequence from the ones that are reserved for this

procedure and transmits it on PRACH to the eNodeB. Then, a preamble response is sent to the UE on the

DL-SCH resource assigned on PDCCH through the Random Access Radio Network Temporary Identifier

(RA-RNTI), which is derived by the eNodeB through the time slot in which it receives the preamble.

This response message carries, among others, information regarding the synchronization for uplink

transmission and a temporary Cell Radio Network Temporary Identifier (C-RNTI) which identifies the UE

[3].

Since the preamble sequence is selected randomly, a collision may happen, if two or more UEs select

the same preamble and transmit it simultaneously. Thereupon, those UEs will receive the same C-RNTI

and will also transmit the RaMsg3 on the same time-frequency resources, which may result in the eNodeB

not being able to decode the message due to the resulting interference, meaning that the RaMsg3 is not

successfully received.

Figure 3.2: Contention based random access procedure (adapted from [2]).

Availability

The CellAvailAuto perc provides the percentage of time that a given cell is available with respect to the

time that has been disabled due to a fault while the CellAvailMan perc provides the percentage of time
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that a given cell is available with respect to the time that has been disabled due to a reconfiguration

request performed by the operator. The CellAvail perc provides the overall percentage of time that a

given cell is available.

Integrity

Regarding Integrity, DL Throughput per UE and UL Throughput per UE give, respectively, the aver-

age throughput measures per user in the downlink and uplink direction. The Pdcp Cell Tput and the

MAC Cell Tput provide the average cell throughput with respect to the PDCP layer and the MAC layer,

respectively. Once again, the DL and UL tags refer to downlink and uplink, respectively.

3.1.2 PM Data Preprocessing

Since the PM data was collected through measurements from multiple NEs in a live network, it is expected

that it contains both missing values and noise. Consequently, the available data must go through a

cleaning process before applying any clustering algorithm.

The preprocessing for the PM data consisted in the following steps:

1. Verify for missing values;

2. Verify for unexpected negative values;

3. Verify for unexpected big values.

Figure 3.3 shows that the dataset does not have missing data and, consequently, there is no need for

preprocessing regarding the missing values.

Figure 3.3: Frequency of KPI null occurrence percentage.

Given the KPIs presented in Section 3.1.1 it is quite straightforward to understand that their values

should always be positive. Thus, it was verified if there were any KPIs that presented negative values.
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Figure 3.4 illustrates the obtained percentages of negative values per KPI and it can be verified that there

are three KPIs that have negative values, which are presented in Table 3.2.

Figure 3.4: Frequency of KPI negative occurrence percentage.

KPI Negative occurrence (%)

CB RACH fail% 0.008210
CellAvail perc 0.015578
CellAvailAuto perc 0.002105

Table 3.2: Negative occurrence percentage per KPI.

Additionally, the distribution of the occurrence of negative values, in percentage, for each one of the

three KPIs shown in Table 3.2, can be observed in Figure 3.5. Since, for each KPI, the observed values

for the percentage of negative values per cell are rather low, with the maximum being 0.4167% for the

CellAvail perc feature in only one cell, it was decided to simply remove the rows that contained at least

one negative value because the loss of information would not be significant.

Since all KPIs from the Availability and Accessibility classes are measured in terms of percentages, it

was verified if there were any values above 100%. Since the maximum value observed for each one of

these KPIs was 100%, further preprocessing was not needed.

Regarding the Integrity KPIs, the downlink and uplink throughputs were compared against the respec-

tive maximum theoretical downlink data rate (300 Mbps) and the maximum uplink data rate (75 Mbps)

presented in [2]. It was verified that for all Integrity KPIs, with the exception of the DL MAC Cell Tput, the

values were coherent with the theoretical ones. The histogram of outliers regarding the Dl MAC Cell Tput

is illustrated in Figure 3.6. Similarly to the approach taken for the negative values, the decision regarding

the outliers for the Dl MAC Cell Tput KPI was to simply remove the rows of the dataset that contained

them.
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(a) CellAvail perc. (b) CellAvailAuto perc.

(c) CB RACH fail%.

Figure 3.5: Frequency of negative occurrence percentage per KPI and cell.

Figure 3.6: Frequency of outliers occurrence percentage per cell for Dl MAC Cell Tput.
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3.2 CM Data

For each cell in the PM dataset there is the correspondent configuration parameters in the CM dataset.

The configuration parameters available are described in the following points [12]:

• EARFCNDL and EARFCNUL - channel number for the central downlink and uplink frequency,

respectively;

• DLCHANNELBANDWIDTH and ULCHANNELBANDWIDTH - cell’s downlink and uplink channel

bandwidth, respectively;

• NOOFPUCCHCQIUSERS - number of CQI resources available on the Physical Uplink Control

Channel (PUCCH);

• NOOFPUCCHSRUSERS - number of Scheduling Request (SR) resources available on the PUCCH;

• ULINTERFERENCEMANAGEMENTACTIVE - specifies if uplink interference management is en-

abled or disabled;

• NOCONSECUTIVESUBFRAMES - number of consecutive downlink sub-frames with positioning

reference signals;

• COVTRIGGERDBLINDHOALLOWED - indicates whether a blind handover from this cell can be

initiated when a UE reports bad coverage, or not;

• MIXEDMODERADIO - determines whether this SectorEquipmentFunction is shared with another

node;

• CELLSUBSCRIPTIONCAPACITY - normalized subscription capacity of the cell. The value repre-

sents the total capacity of the cell used for traffic load balancing purposes;

• PDCCHCFIMODE - controls the Control Format Indicator (CFI) used for the control region;

• THRESHSERVINGLOW - specifies the threshold that the signal strength of the serving cell must

be below for cell reselection towards a lower priority inter-frequency or inter-RAT frequency;

• FREQBAND - primary frequency band the cell belongs to according to its defined EARFCN;

• LBTPNONQUALFRACTION - fraction of non-qualified UEs at UE selection for throughput aware

load balancing;

• LBTPRANKTHRESHMIN - minimum threshold for the relative gain at throughput aware load

balancing;

• ALLOCTHRPUCCHFORMAT1 - threshold in terms of number of remaining SR resources available

for the cell. Below this threshold, allocTimerPucchFormat1 for allocation of an additional PUCCH

format 1 PRB pair is triggered;
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• DEALLOCTHRPUCCHFORMAT1 - threshold in terms of number of remaining SR resources

available for the cell. Above this threshold, deallocTimerPucchFormat1 for deallocation of a PUCCH

format 1 PRB pair is triggered;

• DEALLOCTIMERPUCCHFORMAT1 - defines a guard time. After this time, a PUCCH format 1

PRB pair is deallocated if threshold deallocThrPucchFormat1 is still passed;

• ALLOCTIMERPUCCHFORMAT1 - defines a guard time. After this time, a PUCCH format 1 PRB

pair is allocated if threshold allocThrPucchFormat1 is still passed;

• TRANSMISSIONMODE - defines the Transmission Mode that shall be used for the UEs that are

connected to the cell;

• INTERFERENCETHRESHOLDSINRCLPC - Threshold value for measured noise plus interference

level. If measured noise plus interference is higher than interferenceThresholdSinrClpc, then the

Signal to Interference and Noise Ratio (SINR)-based UL Closed Loop Power Control (CLPC) can

be considered;

• RXSINRTARGETCLPC - SINR target value for the PUSCH SINR-based CLPC;

• OPERATIONALSTATE - indicates the operational state of the cell.

The available CM data did not required any preprocessing since it did not contained neither missing

values nor other kinds of artifacts.

Given that the OPERATIONALSTATE feature indicates the operational state of the cell, i.e. if the cell

is active or not, only active cells were considered.
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Chapter 4

PM Clustering

The PM data presented in section 3.1 is constituted by a special type of data, named multivariate time-

series. This kind of data is characterized for having multiple features whose values change over time.

The main goal of this thesis is to develop a mechanism that has the ability to learn from the PM data in

order to evaluate the performance of an LTE network. This can be done using ML.

The purpose of ML is to provide to computers the ability to learn, without them being explicitly

programmed. This is done through mathematical models that are built based on statistical and probability

theory. The data that is used to train those models is known as training data and, depending on the

available training data, there are two main categories into which the learning process may be classified:

supervised or unsupervised.

Regarding supervised learning, the training data is composed by an input vector and a target vector.

A supervised learning problem may be further divided into [13] a classification problem or a regression

problem, the difference being that, for the former, the target data is categorical while for the latter the

target data is continuous. In both cases, the goal is to use the model to make predictions in the future.

About unsupervised learning, the training data does not have have any target data to train the model,

so the goal in such cases is to identify complex processes or patterns. Unsupervised learning problems

may be further classified into [13]: clustering, dimensionality reduction and density estimation. Regarding

clustering, the goal is to divide the input vector into groups with similar characteristics. In dimensionality

reduction the objective is to map the input vector from a higher dimension to a lower dimension space.

Lastly, in density estimation the objective is to find the distribution of the input vector.

Since the PM data is not labelled, meaning that there is no target data to train the model, the focus

will be set on developing an unsupervised learning based system that, given the PM data, is able to not

only find groups of cells that present similar performance but also classify the performance of each group.

To develop such system, it is necessary to understand the different approaches that can be taken

when clustering multivariate time-series, the clustering algorithms that can be used and how to choose

the number of groups in which the cells are going to be categorized.

This chapter is organized as follows: Section 4.1 briefly explains the approaches usually taken when

clustering time-series; Section 4.2 gives the theoretical background behind the clustering algorithms used
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in this work; Section 4.3 presents the clustering validation metrics considered; Section 4.4 introduces

a technique for dimensionality reduction; Section 4.5 details the methodology used to accomplish the

objectives of this work.

4.1 Clustering Time-Series

The following challenges are faced when clustering time-series [14]:

• Time-series data is naturally high dimensional and large in data size which results in an exponential

decrease of the clustering process speed;

• Computing the similarity between time-series in order to group them into clusters due to the data

itself which is prone to be noisy, contain outliers and shifts but also to its length that can vary.

When clustering time-series, one of the following approaches is usually taken [14]:

• Shape-based - the raw time-series are clustered based on their shape, using conventional clus-

tering algorithms and an appropriate similarity measure for time-series, such as Dynamic Time

Warping (DTW) [15];

• Feature-based - each raw time-series is converted into a lower dimension feature vector and the

extracted feature vectors are then clustered;

• Model-based - for each raw time-series, it is assumed that it was generated by a known model [16].

Using a suitable distance measure to compute the similarity, a conventional clustering algorithm is

applied over the model parameters.

In this work it was taken a feature-based approach, in which the raw time-series are converted into

single values that are clustered to find groups of cells with similar performance. Since we are now

clustering a vector for each cell, instead of a multivariate time-series, the complexity of the clustering

process is reduced significantly.

This process is explained in more detail in Section 4.5.

4.2 Clustering Algorithms

There are several clustering algorithms defined in the literature that depending on the starting point and

criteria to cluster the data, can be classified into one of the following categories [17, 18]:

• Representative-based clustering - the goal of this type of clustering is to partition the data,

containing n objects, into k desired clusters, each one having at least one object. Moreover, there

is a representative point for each cluster that summarizes it, a common choice being the mean

(centroid);
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• Hierarchical clustering - data objects are grouped in a sequence of partitions, either starting with

each data object being a partition (bottom-up approach) or with a partition including all data objects

(top-down approach). For the former, the most similar pair of clusters are successively merged, until

all objects are grouped into only one cluster. For the latter, the opposite process is performed, with

each cluster being successively split until each object belongs to a different cluster.

• Density-based clustering - aims to find regions with a high density of points that are separated

from one another by sparse or empty regions;

• Graph clustering - objects are clustered over a graph that models the similarity between each pair

of objects.

Since different clustering algorithms have distinct underlying principles and assumptions, it is unclear

which one fits the available data the best. Consequently, different algorithms were considered: K-means,

Expectation-Maximization (EM) using Gaussian Mixture Models (GMM) and Spectral Clustering.

4.2.1 K-means

K-means is a representative-based clustering that, given a cluster set C = {C1, ..., Ck}, aims to minimize

the following sum of squared errors:

SSE(C) =
k∑

i=1

∑
xj∈Ci

∥∥xj − µi

∥∥2 (4.1)

where xj and µi are the jth point and centroid of cluster Ci, respectively. Formally, this is given by:

C∗ = argmin
C
{SSE(C)} (4.2)

The pseudo-code for K-means is shown in Algorithm 1, where it can be seen that the algorithm

is iterative, with each iteration consisting of two steps: cluster assignment and centroid updates. The

inputs D, k and ε, where ε > 0, correspond to the dataset, number of desired clusters and convergence
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threshold, respectively.

Algorithm 1: K-means algorithm (adapted from [17]).
Input :D, k and ε

1 t← 0

2 Randomly initialize the centroids µt
1,..., µt

k

3 repeat

4 t← t+ 1

5 foreach xj ∈ D do

6 j∗ ← argmini
{∥∥xj − µt

i

∥∥2 }
7 Cj∗ ← Cj∗ ∪ {xj}

8 end

9 foreach i = 1 to k do

10 µt
i ← 1

|Ci|
∑

xj∈Ci
xj

11 end

12 until
∑k

i=1

∥∥∥µt
i − µt−1

i

∥∥∥ ≤ ε;
It is important to notice that K-means is particularly suited for convex shaped clusters, namely spherical

shaped clusters, or circular in two dimensions. Furthermore, K-means is a clustering algorithm used for

general purpose due to its simplicity and speed [19].

4.2.2 Expectation-Maximization Clustering using Gaussian Mixture Models

The EM using GMM is also a representative-based clustering algorithm.

Let D = {xj}nj=1 be a dataset of n points in Rd and X = (X1, ..., Xd) be the vector random variable

for the d-attributes. In a GMM each cluster Ci is represented by a multivariate Gaussian distribution, so,

the probability density at x relatively to cluster Ci is given by:

fi(x) =
1

(2π)
d
2 |Σi|

1
2

exp

{
− (x− µi)

TΣ−1i (x− µi)

2

}
(4.3)

where µi ∈ Rd and Σi ∈ Rd×d are the cluster mean and covariance, respectively.

The probability density function of each point x over all the k specified clusters is a GMM defined by:

f(x) =

k∑
i=1

fi(x)P (Ci) (4.4)

where P (Ci) are the prior probabilities which must satisfy
∑k

i=1 P (Ci) = 1.

Therefore, the set of parameters θ that characterize the GMM are the mean µi, the covariance Σi

and the probability P (Ci) of each one of the k clusters:

θ = {µ1,Σ1, P (C1), ....,µk,Σk, P (Ck)}

The goal is to estimate θ so that the conditional probability of the data D given the model parameters
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θ is maximized. Formally, this is given by:

θ∗ = argmax
θ
{P (D|θ)} (4.5)

where, considering that each point xj is independent and identically distributed as X, P (D|θ) is

defined as

P (D|θ) =
n∏

j=1

f(xj) (4.6)

In order to estimate θ that maximizes Equation 4.6, the Expectation-Maximization algorithm is used,

as shown in Algorithm 2. The Expectation-Maximization algorithm consists in two steps, the expectation

step and the maximization step, that are iteratively performed until a convergence condition is satisfied.

Algorithm 2: Expectation-Maximization algorithm (adapted from [17]).
Input :D, k and ε

1 t← 0;

2 Randomly initialize µt
1,..., µt

k

3 Σt
i ← I,∀i = 1, ..., k

4 P t(Ci)← 1
k ,∀i = 1, ..., k

5 repeat

6 t← t+ 1

// Expectation Step

7 for i = 1, ..., k and j = 1, ..., n do

8 wt
ij ←

f(xj |µi,Σi)P (Ci)∑k
a=1 f(xj |µa,Σa)P (Ca)

// where wt
ij = P t(Ci|xj)

9 end

// Maximization Step

10 for i = 1, ..., k do

11 µt
i ←

∑n
j=1 wijxj∑n
j=1 wij

12 Σt
i ←

∑n
j=1 wij(xj−µi)(xj−µi)

T∑n
j=1 wij

13 P t(Ci)←
∑n

j=1 wij

n

14 end

15 until
∑k

i=1

∥∥∥µt
i − µt−1

i

∥∥∥ ≤ ε;
Clustering using GMMs is a generalized version of the K-means where each point can now belong to

multiple clusters instead of only one cluster. This is also known as “soft” assignment. Since each cluster

is described by two parameters, mean and variance, GMM is more flexible when compared to K-means,

being able to find elliptical shaped clusters.

4.2.3 Spectral Clustering

Spectral clustering [20] is a form of graph clustering. Let D = {xj}nj=1 be a set of n points in Rd. The

algorithm starts by computing the pairwise similarities through the Gaussian Radial Basis Function (RBF)
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[21], resulting the similarity matrix A ∈ Rn×n, whose diagonal elements are Aii = 0.

Then, the normalized symmetric Laplacian matrix is computed by [17]:

Ls = ∆−1/2L∆−1/2 (4.7)

where L = ∆ −A is the Laplacian matrix and ∆ is the n × n diagonal matrix that represents the

degree of each vertex in the graph. The degree of a vertex xi is defined as:

di =

n∑
j=1

Aij (4.8)

After that, the algorithm finds the k eigenvectors, u1, . . . ,uk, corresponding to the k smallest eigenval-

ues of Ls [22]. These vectors are then used as columns to construct the matrix U ∈ Rn×k. Further, the

matrix U is normalized so the rows have unit norm, resulting the matrix Y ∈ Rn×k.

Each row of Y is then treated as point in Rk and clustered into k clusters using K-means. The

pseudo-code for spectral clustering is presented in Algorithm 3.

Algorithm 3: Spectral clustering algorithm (adapted from [20]).
Input :D, k

1 Compute the similarity matrix A ∈ Rn×n

2 Compute the diagonal matrix ∆ ∈ Rn×n

3 Construct the matrix Ls ∈ Rn×n

4 Find u1, . . . ,uk, the k eigenvectors corresponding to the k smallest eigenvalues of Ls

5 Form the matrix U ∈ Rn×k by stacking the eigenvectors in columns

6 Form the matrix Y from U by normalizing each row of U to have unit norm: Yij ← Uij

(
∑

j U2
ij)

1/2

7 Treating each row of Y as point in Rn×k, cluster them into k clusters using K-means

8 Assign each original point xi to cluster j if row i of the matrix Y was assigned to cluster j

Compared with the K-means and the EM using GMM, the Spectral Clustering algorithm is able to find

non-convex clusters, as it is neither tied to any ideal cluster spherical shape, as K-means, nor to elliptical

shapes, as the GMM.

4.3 Clustering Validation

The information provided in this section was mainly based in [23].

Clustering validation is the process of evaluating the goodness of partitions after clustering and it can

be categorized, depending if external information is used for clustering validation or not, into two main

classes: internal clustering validation and external clustering validation.

External Clustering Validity Index (CVI)s are used when the ground truth of the data is available and

they are indicators for choosing an optimal clustering algorithm in a specific data set.

Additionally, internal CVIs are used when the ground truth is not available and they are indicators of

the optimal number of clusters. Taking into account that the goal of clustering is to make objects in a
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cluster similar and objects in different clusters distinct, internal CVIs are usually based on one or both of

the following criteria:

Compactness: measures how closely related the objects in a cluster are.

Separation: measures how well-separated or distinct a cluster is from other clusters.

Given that, in the context of this work, the true cluster labels are not available, only internal CVIs

are presented. Furthermore, only the CVIs that contemplate both evaluation criteria, compactness and

separation, were considered.

Calinski-Harabasz Index

The Calinski-Harabasz (CH) index is a ratio-type index that measures the compactness and the separation

through the average between- and within-cluster sum of squares, respectively. It is computed using the

following expression:

CH =

∑
i nid

2(ci, c)/(NC − 1)∑
i

∑
x∈Ci

d2(x, ci)/(n−NC)
(4.9)

where i is the ith cluster, n is the number of points in the data set, ni is number of points in the cluster

Ci, ci is the ith cluster centroid, c is the data set centroid, NC is the total number of clusters, x is a data

point and d is the Euclidean distance function.

I Index

The I index evaluates the separation through the maximum distance between cluster centroids and the

compactness by the sum of distances between points and their respective cluster centroid. The value of

this index is given by:

I =

(
1

NC
·

∑
x∈D d(x, c)∑

i

∑
x∈Ci

d(x, ci)
·maxi,jd(ci, cj)

)p

(4.10)

where p is the number of attributes of the data set and the remaining variables have the same definition

as in Equation 4.9.

Dunn’s Index

Dunn’s index evaluates the cluster separation through the minimum pairwise distance between points in

different clusters and the cluster compactness through the maximum diameter between all clusters. It is

computed as follows:

D = mini { minj

(
minx∈Ci,y∈Cj

d(x, y)

maxk { maxx,y∈Ck
d(x, y) }

)
} (4.11)

where y is also a data point and the remaining variables have the same definition as previous CVIs.
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Silhouette Index

The Silhouette index is a summation-type index that validates the clustering performance through the

pairwise difference of between-cluster distances (separation) and the pairwise difference of within-cluster

distances (compactness). It is given by:

1

NC

∑
i

 1

ni

∑
x∈Ci

b(x)− a(x)
max

[
b(x), a(x)

]
 (4.12)

where a(x) and b(x) are defined in 4.13 and 4.14, respectively. The remaining variables were already

defined.

a(x) =
1

ni − 1

∑
y∈Ci,y 6=x

d(x, y) (4.13)

b(x) = minj,j 6=i

 1

nj

∑
y∈Cj

d(x, y)

 (4.14)

where x and y are data points and the remaining variable were already defined.

Davies-Bouldin Index

The first step to determine the Davies-Bouldin Index (DB) is to compute, for each cluster C, the similarities

to all the other clusters and assign to that cluster C the highest similarity value obtained. The DB is then

obtained by averaging all the cluster similarities:

DB =
1

NC

∑
i

maxj,j 6=i


1
ni

∑
x∈Ci

d(x, ci) +
1
nj

∑
x∈Cj

d(x, cj)

d(ci, cj)

 (4.15)

where all variables were previously defined.

S Dbw

The S Dbw index [24] introduces the notions of scattering and density to measure the compactness of

the clusters and the separation between clusters, respectively. It is computed as follows:

S Dbw = Scat(NC) +Dens bw(NC) (4.16)

where Scat(NC) corresponds to the average cluster scattering and is given by:

Scat(NC) =
1

NC

∑
i ||σ(Ci)||
||σ(D)||

(4.17)

where NC is the number of clusters, σ(Ci) is the ith cluster variance vector and σ(D) is the whole data
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set variance vector. The variance of the data set is σ(D) and its pth dimension value is given by:

σp
D =

1

n

n∑
k=1

(
xpk − x

p
)2 (4.18)

where xp is the pth dimension of:

X =
1

n

n∑
k=1

xk,∀xk ∈ D (4.19)

The pth dimension of the cluster Ci variance is defined as:

σp
Ci

=
1

ni

ni∑
k=1

(
xpk − c

p
i

)2 (4.20)

where ni is the number of objects belonging to cluster Ci.

Dens bw evaluates the average density in the region among clusters in relation with the density of the

clusters and is computed by:

Dens bw(NC) =
1

NC(NC − 1)

NC∑
i=1

 NC∑
j=1,j 6=i

density(uij)

max { density(ci), density(cj) }

 (4.21)

where NC is total number of clusters, ci and cj are the centers of the clusters Ci and Cj , and uij is the

middle point of the line segment defined by ci and cj . The density function density() is defined as follows:

density(u) =

nij∑
l=1

f(xl, u) (4.22)

where nij is the number of tuples that belong to the clusters Ci and Cj , i.e., xl ∈ Ci ∪ Cj ⊆ D,

representing the points in the neighborhood of u. A point belongs to the neighborhood of u if its distance

from u is smaller than the average standard deviation of clusters:

f(x, u) =

0, if d(x, u) > stdev

1, otherwise
(4.23)

where the average standard deviation of clusters is given by:

stdev =
1

NC

√√√√NC∑
i=1

∥∥σ(Ci)
∥∥ (4.24)

It is worth noticing that, even though all the CVIs presented above evaluate both the compactness and

the separation of the obtained partitioning, the optimal number of clusters can be given by the lower or

the higher value of the CVIs. For the Calinski-Harabasz, I, Dunn’s and Silhouette indices, a higher value

indicates a better partitioning whereas for the Davies-Bouldin and S Dbw indices the opposite happens,

with a lower value indicating a better partitioning of the data.
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4.4 Clustering Visualization with t-SNE

t-Distributed Stochastic Neighbour Embedding (t-SNE) [25] is an algorithm for dimensionality reduction.

Given a high-dimensional dataset X = {x1, x2, ..., xn}, where each xi represents a data point in the

high-dimensional space, t-SNE converts it into a two or three-dimensional dataset Y = {y1, ..., yn},

where each data point yi is the low-dimensional representation of the correspondent xi data point. The

low-dimensional data Y and the low-dimensional representation yi of individual data points are also

referred to as a map and map points, respectively. The dimensionality reduction aims to preserve as

much of the significant structure of the original data as possible in the low-dimensional map and allows

for visualization of high-dimensional data since the map points can be displayed in a scatterplot.

This algorithm corresponds to a variation of the Stochastic Neighbour Embedding (SNE) [26].

t-SNE starts by converting the high-dimensional Euclidean distances between each pair of data points

into conditional probabilities that represent similarities. More specifically, each conditional probability,

pj|i, is the probability that the data point xi would pick xj as its neighbour if neighbours were picked

in proportion to their probability density under a Gaussian centered at xi and it is computed using the

following expression:

pj|i =
exp(−||xi − xj ||2/2σ2

i )∑
k 6=i exp(−||xi − xk||2/2σ2

i )
(4.25)

where σi is the variance of the Gaussian centered at xi. For any particular value of σi a probabilistic

distribution, Pi, is induced over all data points. The value of σi is obtained through a binary search,

performed by t-SNE, that produces a Pi with a fixed perplexity which is a parameter specified by the user

and can be interpreted as a smooth measure of the effective number of neighbours.

The joint probabilities in the high-dimensional space, pij , are then determined by:

pij =
pj|i + pi|j

2n
(4.26)

where n is total number of high-dimensional datapoints.

It is also possible to compute a joint probability, denoted by qij , for the low-dimensional counterparts

yi and yj of the high-dimensional data points xi and xj . However, in order to compute qij , a heavy-

tailed distribution (Student-t distribution) is used to convert the Euclidean distance into probabilities

instead of a Gaussian distribution. This is a direct consequence of the “crowding problem”: when a

high-dimensional dataset is modeled into two or three dimensions, it is difficult to segregate the nearby

data points from moderately distant data points and gaps can not form between natural clusters. Hence,

using a heavy-tailed distribution allows a moderate distance in high-dimensional space to be modeled by

a larger distance in the low-dimensional space when compared to using a Gaussian distribution. The

joint probability qij is given by:

qij =

(
1 + ||yi − yj ||2

)−1
∑

k 6=l

(
1 + ||yk − yl||2

)−1 (4.27)
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If the similarity between the high-dimensional data points xi and xj is correctly modeled by the map

points yi and yj , the joint probabilities pij and qij will be equal. Thus, the goal is to find a low-dimensional

map that minimizes the mismatch between pij and qij . The faithfulness with which qij models pij can be

measured by the Kullback-Leibler divergence. The cost function is given by:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(4.28)

where P and Q correspond to the joint probability distributions in the high- and low-dimensional space,

respectively. Both pii and qii are set to zero since we are only interested in modeling pairwise similarities.

A gradient descent method is performed in order to minimize the cost function presented in (4.28).

4.5 Performance Evaluation Methodology

Developing an automatic procedure to evaluate the performance of LTE networks, or any other cellular

networks for that matter, is rather challenging. The existence of databases with labelled cases of faults or

performance evaluations is scarce, making it unfeasible to use supervised learning techniques.

Hence, the developed methodology consists on the application of clustering techniques in order to

find groups of cells with similar performances. Between the identified groups, it is expected to distinguish

groups of cells with good performance while others should correspond to cells where the performance is

below the desired level.

The proposed method consists in a feature-based approach, where new features are extracted through

the comparison of each time-series against desired targets for each KPI. Even though this approach

results in the loss of information regarding the cell behavior, in the time domain, it allows to evaluate each

cell overall performance level and group the cells accordingly. The methodology flowchart is illustrated in

Figure 4.1.

Figure 4.1: Methodology flowchart.

As figure 4.1 shows, the first stage, which was already described in detail in Section 3.1.2, corresponds

to the data cleaning step, where the PM data goes through the process of data preprocessing to ensure

the data integrity. This step is also applied to the CM data with the same purpose.
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4.5.1 Feature Engineering

The feature engineering step corresponds to the process of extracting new features from the original data.

The process of feature extraction consists in defining a set of target values T = [T1, T2, ..., TM ], where

each Tp corresponds to the target value for the pth KPI, from the M considered KPIs. Then, for each cell,

c, and KPI, p, each measure, xcp t, acquired in the instant t of the time-series of size N , is compared

against the defined target, Tp, for that KPI.

If the KPI is from the Accessibility group then the target is said to be satisfied if xcp t is lower than the

target, since each Accessibility KPI in the PM dataset corresponds to a fail rate. The value of xcp t is then

changed to 0 or 1 accordingly:

xcp t =


1, if xcp t ≤ Tp

0, otherwise
(4.29)

Contrarily, for an Integrity or Availability KPI, it is desired that xcp t is greater than the target value.

Thus, the new value for xcp t is given by:

xcp t =


1, if xcp t ≥ Tp

0, otherwise
(4.30)

Thereupon, for each cell, c, and KPI, p, the ratio between the number of times that KPI satisfies its

defined target and the total number of times the KPI was measured is computed:

featurecp =
1

N

N∑
t=1

xcp t (4.31)

A visual interpretation of the feature engineering process is shown in Figure 4.2. Considering one cell,

the KPI RRC Estab fail% is plotted over the time that was measured, against the target value for that KPI.

The new feature generated from this KPI, and all the remaining extracted features for that matter, can

be interpreted as the time period over the total considered time that the defined target for the original

KPI was satisfied. Since the KPI shown in Figure 4.2 corresponds to a fail percentage then satisfying the

target means that the measured value for the KPI is below its target.

Intuitively, every value obtained for the generated features is comprised between 0 and 1, with 1

representing a cell that satisfied the target set for a KPI during the total period of time in which the time

series were obtained.

As a result, for each pair, cell and KPI, the correspondent time series is converted into a single value,

thus the resulting dataset is composed by only one row per cell. This is exemplified for one KPI in Figure

4.3. It can be observed the Init E RAB Estab fail% KPI as a time-series, for a cell univocally identified by

the MECONTEXT and VSDATAEUTRANCELLFDD columns, prior to the feature engineering stage and

the extracted feature for that same cell.
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Figure 4.2: Feature engineering example.

(a) Before the feature engineering process.

(b) After the feature engineering process.

Figure 4.3: Example of PM data before and after the feature engineering process.

4.5.2 Clustering and Labelling Stages

The next step consists in applying a clustering algorithm to the dataset generated in the previous stage in

order to find groups of cells that present similar behaviours. This is an iterative process:

1. Choose the clustering algorithm;

2. Run the clustering algorithm with different input parameters and evaluate the clustering result using

the Kolmogorov-Smirnov test;

3. Select the set of input parameters that give the best clustering results using the metrics presented

in Section 4.3.

Regarding step 2 of the above process, each pair of clusters must have a distinct statistical behaviour

for at least one feature in order to consider the clustering result relevant [1]. This is verified using the
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two sample Kolmogorov-Smirnov test [27], to test if the observed values for a feature of two different

clusters are generated by the same distribution (null hypothesis). The null hypothesis is rejected when

the resulting p-value is lower than the chosen significance level, thus a lower p-value indicates a more

distinct statistical behaviour between the pair of clusters and feature being evaluated. If there is at least

one pair of clusters that present a similar statistical behaviour for every feature, meaning that the null

hypothesis is never rejected, then the number of clusters that originated that partition is automatically

discarded. The significance level used to test the null hypothesis was 0.01.

Each one of the clustering algorithms presented in Section 4.2 requires the number of clusters to be

specified beforehand. In this work, it was chosen to run the chosen clustering algorithm for set of number

of clusters that ranges from 2 to 8, to ensure that a wide enough range of possible partitions is analyzed

by the system.

In step 3, the selection of the set of input parameters, which includes the optimal number of clusters,

k, that give the best partitioning of the data is attained using multiple internal validation metrics. This

approach was taken because not only it is extremely hard to, intuitively, understand which metric is the

most appropriate, for this data, but also considering that even though all proposed metrics evaluate

the partitioning through the clusters separation and compactness, they do not always return the same

optimal number of clusters [23]. Therefore, the optimal number of clusters is chosen through an election

mechanism where all metrics have the same importance, meaning that the optimal number of clusters is

the one that obtains more votes, with each metric contributing with one vote. The validation metrics used

were the ones presented in Section 4.3.

Once the set of input parameters that give the best partitioning result, according to the election

mechanism, is identified, the algorithm is performed again with the optimal input in order to assign a label

to each cell, identifying to which cluster that cell belongs. Thus, this is called the labelling stage.

4.5.3 PM Analysis

After each cell has been labelled according to the cluster to which it belongs, PM analysis is performed.

This stage includes the following actions:

• Data visualization - t-SNE is used for dimensionality reduction and the resulting points are plotted

in a two-dimensional space for visual inspection;

• Cluster scoring and classification - a score for each cluster is computed. A higher score indicates

a better performance. The clusters are then classified based on the obtained score;

• Feature distribution analysis - the distribution of each feature per cluster is plotted allowing the

user to gain insight about the performance of each cluster regarding each KPI.

The cluster score is a weighted average of the scores computed for each feature considered, and is

given by:

scorecluster =
1

M

M∑
p=1

αpscorefeature p (4.32)
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where αp corresponds to a weight given to featurep and
∑M

p=0 αp = 1 and scorefeature p is the score

for the pth feature of the considered cluster and is given by:

scorefeature = P (feature ≥ timethreshold)

= 1− P (feature < timethreshold)
(4.33)

where timethreshold is a parameter that can take values between 0 and 1 and is specified by the user

depending on the level of exigency desired. This score can be interpreted as the probability of a cell in

the cluster being compliant with the target set for the feature being evaluated, for a period of time above

the timethreshold. This is illustrated in Figure 4.4, where the timethreshold was set at 0.8. The intersection

of the vertical red line, representing the threshold, with the Empirical Cumulative Distribution Function

(ECDF) of a cluster gives the value of P (feature < timethreshold). It is straightforward to see that the

probability of a cell belonging to cluster 1 being compliant with the target defined for the RRC Estab fail%

for more than 80% of the total period of time of the original time-series, is greater than for a cell belonging

to cluster 0. This probability gives the scorefeature for each cluster.

Figure 4.4: Visual interpretation of the cluster feature score.

So, setting timethreshold to 1 means that the user wants to obtain the probability of a cell in the cluster

to be compliant with the defined target during the total period of time during which the original time series

were obtained. Furthermore, by multiplying the obtained scorefeature with the number of cells in the

cluster being evaluated one gets the number of cells that are compliant with the target for the specified

timethreshold.

Through the combination of the cluster scoring and the feature distribution analysis, one is able to

immediately tell which clusters have better performance and what are the most distinct performance

features.
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4.5.4 CM Independence Evaluation

Regarding the CM features, the goal is to find the set of configuration parameters that are most distinct

between clusters and evaluate if, for the class of KPIs being analyzed, there is a correlation between

them and the performance of the cluster.

The process of identifying the most distinct configuration parameters is based on the Fisher’s exact

test of independence [28] while the process of evaluating if there is a correlation between the configuration

parameters and the performance relies, at this stage, on the expertise of radio network engineers.
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Chapter 5

Network Performance Analysis

In this chapter, the results related with the clustering process and subsequent analysis of the clusters

performance are presented. As described in 4.5, these results include the optimal number of clusters, the

visualization for the optimal partitioning, the comparison of the Probability Density Function (PDF) and

ECDF plots for each feature in different clusters and the respective cluster scoring.

It was already mentioned in Section 3.1 that the network under analysis contains sites from three

distinct frequency bands (L800, L1800 and L2600). Moreover, each frequency band in this network

is associated with a specific bandwidth; for L800 the bandwidth is 10 MHz while for both L1800 and

L2600 the bandwidth is 20 MHz. Since different frequency bands may serve different purposes and the

bandwidth affects the performance of a telecommunications system, it was decided to divide the available

PM dataset into three smaller datasets, each one corresponding to a different frequency band.

Moreover, the PM data is further grouped according to the classes of KPIs presented in Section 3.1.1,

so the performance for each frequency band deployed is evaluated for each KPI class individually.

Both the clustering algorithms (K-means, EM using GMM and Spectral Clustering) and the t-SNE

algorithm used in this chapter are from the Scikit-learn library [29].

Additionally, each feature in the dataset being clustered, was standardized by removing the mean and

scaling to unit variance.

The figures where the cells locations are shown were obtained using the software in [30].

The scores obtained for each cluster using Equation 4.32 were computed with timethreshold = 0.8,

unless explicitly stated otherwise.

This chapter is organized as follows: Section 5.1 gives a brief introduction regarding the targets used

in the feature engineering step; in Section 5.2 the clustering results, using the K-means, are presented;

Section 5.3 presents a comparison between the results obtained with K-means, Spectral Clustering and

EM using GMMs; lastly, Section 5.4 details the method used to link the configuration parameters with the

performance parameters and presents a use case related with the cells subscription capacity.
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5.1 Targets

A reasonable choice regarding the KPIs targets is perhaps the most influential step when applying the

methodology presented in Section 4.5, as the dataset resulting from the feature engineering step depends

on that choice. On one hand, a set of targets that is too demanding, regarding the KPI class being

evaluated, may result in all cells showing a similar poor performance. On the other hand, if the targets

are too loose it may result that all cells show great performance. Therefore, the targets should be defined

taking into account the knowledge of experts and the performance level that the operator wants to provide.

In the context of this work, it was necessary to define targets for the three identified KPI classes:

Availability, Accessibility and Integrity. For both the Accessibility and Availability KPIs it was considered

that their targets should be independent of the frequency band. However, the bandwidth is intrinsically

related to the provided QoS, which in turn is evaluated through the Integrity KPIs, so the targets defined

for this class vary with respect to the used bandwidth. Thus, two sets of targets for the Integrity KPIs are

specified, one for the L800 frequency band and the other for both the L1800 and L2600 frequency band.

The target values for both the Availability and Accessibility KPIs were specified with the help of

engineers from Celfinet. Since all available Integrity KPIs are different measures of throughputs, which

depend not only on the established service(s) for the UEs connected to the cell but also on other factors

such as the modulation used or the channel coding rate [2], it is rather difficult and somewhat naive to

define targets for this category. The approach taken for this case was to compute, for each Integrity

KPI, the 25th percentile with respect to the 10 MHz and 20 MHz bandwidths. This percentile should be

sufficiently low that different performing groups of cells are found but not too low so all cells appear to

have an excellent performance.

5.2 Clustering using K-means

K-means was the first algorithm used to cluster the PM data due to its simplicity. The only input parameter

that was changed, when using K-means during the clustering stage, was the number of clusters, k. For

the initialization of the k centroids , K-means++ [31] was used.

The clustering results regarding the Availability KPIs will only be presented for the L1800 frequency

band, as most cells were always available, during the time window for which the KPIs were collected.

5.2.1 L800

This section presents the clustering results obtained for the cells operating in the 800 MHz frequency

band. The PM dataset for this frequency band is constituted by 219 cells.

Accessibility

Following the methodology presented in Section 4.5, and since the preprocessing of the PM data was

already explained in Section 3.1, the targets for the Accessibility KPIs need to be defined in order to
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perform the feature engineering step. The targets for each Accessibility KPI are presented in Table 5.1.

These targets are the same for the L1800 and L2600 frequency bands.

KPI Target [%]

CB RACH fail% 5

Added E RAB Estab fail% 0.01

Init E RAB Estab fail% 0.05

RRC Estab fail% 0.25

S1 Estab fail% 0.25

Table 5.1: Targets for Accessibility KPIs.

Executing the K-means for values of k ranging from 2 to 8, the optimal number of clusters for each

CVI, presented in Section 4.3, is shown in Figure 5.1.

Figure 5.1: CVI results for K-means in L800 (Accessibility).

It can be seen that the most voted optimal number of clusters was 2. With the exception of the Dunn

Index, all metrics return an optimal k of 2 or 3. Using the t-SNE for dimensionality reduction, the obtained

clusters for k = 2 can be visualized in Figure 5.2.

There are 79 cells belonging to cluster 0 while cluster 1 contains 140 cells. It can be visualized that

there is not a clear separation between the two clusters. Even though the Figure 5.2 points correspond to

a mapping of the original data in two dimensions, where some information was lost, it can be seen that

the points have a somewhat homogeneous distribution.

Applying the procedure detailed in Section 4.5.3, the scores for each cluster were obtained. Further-

more, the operator may choose to qualitatively classify the overall performance cluster based on the

obtained score. In this work, to ease the results analysis, the following qualitative levels of performance

were considered: unsatisfactory, for a cluster score below 0.25; below average, for a score between 0.25

and 0.5; average, for a cluster score between 0.5 and 0.75; and above average for a cluster score greater

than 0.75.

47



Figure 5.2: Clustering visualization for K-means in L800 (Accessibility).

Both the quantitative and qualitative scores obtained for the clusters are presented in Table 5.2.

Cluster Number of Cells Score Classification

0 79 0.32 Below average
1 140 0.57 Average

Table 5.2: Cluster classification for K-means in L800 (Accessibility).

Cluster 1 contains approximately 64% of the cells being evaluated and presents an average overall

performance, whereas, cluster 0, containing the remaining cells, presents a performance that is below

average. From an operational perspective, the cluster scores would allow to radio engineers to focus their

network optimization efforts towards the cluster 0.

Even though the main goal of the Kolmogorov-Smirnov test is to guarantee that the obtained clusters

are statistically significant, it is also possible to gain knowledge regarding the features that contribute

the most for the attained clustering partitions. Following the line of though explained in Section 4.5.2,

regarding the obtained p-value through the Kolmogorov-Smirnov test, the features that have a lower

p-value for a pair of clusters are the ones that better explain the difference between those clusters. The

results from the Kolmogorov-Smirnov test, applied to clusters 0 and 1, are presented in Table 5.3, where

the column Feature contains the names of the features extracted from the respective KPIs.
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Feature p-value

CB RACH fail target compliance ratio 6× 10−15

Added E RAB Estab fail target compliance ratio 2× 10−11

Init E RAB Estab fail target compliance ratio 7× 10−30

RRC Estab fail target compliance ratio 1× 10−23

S1 Estab fail target compliance ratio 4× 10−25

Table 5.3: Kolmogorov-Smirnov test for K-means in L800 (Accessibility).

The resulting p-value for each feature is very low when compared to the significance level of 0.01

that was considered. Thus, clusters 0 and 1 are statistically significant, for a 99% confidence interval, in

all features. Furthermore, the visual comparison of the histograms of each feature allows to intuitively

understand the features that are more distinct between clusters. Figure 5.3 shows the histograms of each

cluster for the features that presented the lowest p-values in Table 5.3.

(a) S1 Estab fail target compliance ratio. (b) Init E RAB Estab fail target compliance ratio.

(c) RRC Estab fail target compliance ratio.

Figure 5.3: Histograms of Accessibility features for K-means in L800.

Regarding the histograms analysis, the cluster 0 histogram is systematically worse than cluster 1, in

terms of performance. Even though Figure 5.3 presents the three most distinct features between the

two clusters, these features are not necessarily the ones that better explain the obtained scores for the
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clusters. The visualization of the ECDFs of the features for each cluster allows one to understand which

are the features that most contribute to lower the score of the clusters. In Figure 5.4 are presented the

ECDFs of the features that better explain the scores presented in Table 5.2.

(a) CB RACH fail target compliance ratio. (b) Init E RAB Estab fail target compliance ratio.

(c) RRC Estab fail target compliance ratio.

Figure 5.4: ECDFs of Accessibility features for K-means in L800.

It can be verified that the cells of both clusters have a poor performance regarding the CB RACH fail%

KPI. For the other two features it can be seen that approximately half of the cells belonging to cluster 1

are compliant with the timethreshold while none of the cells belonging to cluster 0 are compliant with that

same value.

Since the behaviour that each cell presents is heavily influenced by its location, it can be interesting to

observe if there are geographical areas with a high density of similarly performing cells. Figure 5.5 shows

the cells location, with each cell being identified with the color of the cluster to which it belongs.

It is possible to identify a few areas where the concentration of cells belonging to one of the clusters,

is predominant. Moreover, there is a specific area, highlighted in the figure with a blue circle, which is

mainly populated with cells from cluster 0, thus being a zone with accessibility issues for the 800 MHz

frequency band.

The joint analysis of the obtained cluster scores and their geographical distribution, presents valuable

information from the network optimization perspective. It can be used to prioritize network optimization

actions, that would have the most impact in network performance and respective network users’ QoS.
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Figure 5.5: Clusters geographical distribution for Accessibility KPIs (L800).

Integrity

The first step before applying the methodology presented in Section 4.5 for the Integrity KPIs is to define

the respective targets. Following the idea described in Section 5.1, and since all cells operating in this

frequency band have a 10 MHz bandwidth, the set of targets for the Integrity KPIs with respect to this

frequency band was obtained and is presented in Table 5.4.

KPI Target [Mbps]

DL Tput per UE(Mbps) 12.6

DL Pdcp Cell Tput(Mbps) 7.2

DL MAC Cell Tput(Mbps) 8.1

UL Tput per UE(Mbps) 0.4

UL Pdcp Cell Tput(Mbps) 0.59

UL MAC Cell Tput(Mbps) 0.75

Table 5.4: Targets for Integrity KPIs (10 MHz bandwidth).

The optimal number of clusters obtained for each CVI, after executing the K-means for the different

values of k, is shown in Figure 5.6.

Since each CVI has the same weight in the election system, the resulting optimal number of clusters

is k = 2. The attained clusters can be visualized in Figure 5.7.

Cluster 0 and cluster 1 contain 130 and 89 cells, respectively. The quantitative score and respective

classification of the clusters are presented in Table 5.5.
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Figure 5.6: CVI results for K-means in L800 (Integrity).

Figure 5.7: Clustering visualization for K-means in L800 (Integrity).

Cluster Number of Cells Score Classification

0 130 0.67 Average
1 89 0.11 Unsatisfactory

Table 5.5: Cluster classification for K-means in L800 (Integrity).

It can be verified that the two obtained clusters have very distinct scores, with cluster 0 being

categorized as average while cluster 1 is categorized as unsatisfactory. As mentioned in Section

5.1, the throughputs depend on the established services. Consequently, when a cell measures low

throughputs, whether in uplink or in downlink, it does not necessarily imply that that cell is underperforming.

Nonetheless, given the low targets that were shown in Table 5.4 when compared to the maximum
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theoretical throughputs [2], the score attained for cluster 1 may very well be an indicator that the cells

belonging to that cluster do not present the desired behaviour.

Through the inspection of the histograms of the two clusters (Figure 5.8), it can be verified that

they have very distinct behaviours, for each one of the features, as one would expect given the scores

presented in Table 5.5.

(a) DL Tput per UE target compliance ratio. (b) UL Tput per UE target compliance ratio.

(c) DL Pdcp Cell Tput target compliance ratio. (d) UL Pdcp Cell Tput target compliance ratio.

(e) DL MAC Cell Tput target compliance ratio. (f) UL MAC Cell Tput target compliance ratio.

Figure 5.8: Histograms of Integrity features for K-means in L800.

The difference in the scores of the two clusters can be visually understood from

Figure 5.9, which shows the ECDFs for the DL Tput per UE target compliance ratio

and the UL Tput per UE target compliance ratio. The scores obtained for the
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DL Tput per UE target compliance ratio and the UL Tput per UE target compliance ratio are

representative of the scores obtained for the remaining downlink and uplink features, respectively.

(a) DL Tput per UE target compliance ratio. (b) UL Tput per UE target compliance ratio.

Figure 5.9: ECDFs of Integrity features for K-means in L800.

Similarly to the Accessibility KPIs, the Integrity KPIs of a cell are also impacted by its location. Figure

5.10 illustrates the locations of the different cells belonging to clusters 0 and 1.

Figure 5.10: Clusters geographical distribution for Integrity KPIs (L800).

Through the visualization of Figure 5.10, it is possible to identify a few areas where cells predominantly

belong to only one cluster. In this case, the goal is to find the areas that are mainly populated by cells

belonging to cluster 1 since, given the overall performance of cluster 1, those areas should be the most

problematic.

Cells from cluster 1 located in areas of high population density might be struggling with capacity

issues. Also, the mobility strategy could be revised to optimize the network in this areas.
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5.2.2 L1800

The clustering results, regarding Accessibility and Integrity, for cells operating in the L1800 frequency

band are presented in this section. This frequency band contains 69 cells.

Accessibility

The feature engineering step is carried out using the targets defined in Table 5.1, and K-means is applied

on the extracted features for the different values of k, as in Section 5.2.1. The acquired results regarding

the optimal number of clusters for each CVI are presented in Figure 5.11.

Figure 5.11: CVI results for K-means in L1800 (Accessibility).

From Figure 5.11, it can be observed that there was a tie between k = 2 and k = 3. In scenarios

where a tie between two or more different configurations occurs, the configuration corresponding to higher

number of clusters is selected. The rationale behind this decision is to have more granularity regarding

the performance of the cells, since more groups with distinct behaviours are identified. Therefore, in this

case the selected number of clusters was 3.

The obtained clusters with k = 3 can be visualized in Figure 5.12.

There are only 4 cells belonging to cluster 0, while clusters 1 and 2 have 39 and 26 cells, respectively.

The scores and classification of the clusters are presented in Table 5.6

Cluster Number of Cells Score Classification

0 4 0.7 Average
1 39 0.85 Above average
2 26 0.8 Above average

Table 5.6: Cluster classification for K-means in L1800 (Accessibility).

It can be verified that the performance level of cluster 0 is average while both clusters 1 and 2 exhibit

above average performance. Figure 5.13 shows, through the histograms, which features present the
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Figure 5.12: Clustering visualization for K-means in L1800 (Accessibility).

most distinct behaviour between clusters.

It can be verified that for the same features, their cluster respective histogram can be very different,

indicating that, indeed, the cluster partition identified the main performance patterns in the data. Even

though clusters 1 and 2 have very similar scores, which translates into having the same classification, it

can be observed in Figure 5.13 that, for the CB RACH fail target compliance ratio feature, they present

very distinct behaviours.

Furthermore, the ECDFs of the features that explain the differences in the scores of the clusters are

shown in Figure 5.14.

It can be verified that all clusters exhibit problems regarding the CB RACH fail target compliance ratio,

with only cluster 1 having a score above 0 for the corresponding extracted feature. More-

over, the lower score of cluster 0 can be explained through the score obtained obtained for the

RRC Estab fail target compliance ratio, which is due to the fact that this cluster only contains 4 cells and

one of them is not compliant with the target defined for the RRC Estab fail% KPI for a period of time

above timethreshold.

The location of each cell is illustrated in Figure 5.15.

The number of cells operating in this frequency band is much lower when compared with the number

of cells operating in the L800 frequency band. As a result the locations of the cells are much more

disperse. In this case, given that cluster 0 only contains 4 cells and clusters 1 and 2 have a similar score,

with both having above average performance, it is the harder to find a relation between the locations of

the cells and their performance. Nonetheless, it is still possible to identify a few areas where the cells

predominantly belong to cluster 1 or cluster 2.
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(a) CB RACH fail target compliance ratio. (b) Init E RAB Estab fail target compliance ratio.

(c) S1 Estab fail target compliance ratio.

Figure 5.13: Histograms of Accessibility features for K-means in L1800.

(a) CB RACH fail target compliance ratio. (b) RRC Estab fail target compliance ratio.

Figure 5.14: ECDFs of Accessibility features for K-means in L1800.
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Figure 5.15: Clusters geographical distribution for Accessibility KPIs (L1800).

Integrity

All the cells operating on this frequency band have a 20 MHz bandwidth. For this bandwidth, the set of

targets for the Integrity KPIs, obtained as described in Section 5.1, is presented in Table 5.7.

KPI Target [Mbps]

DL Tput per UE(Mbps) 15.8

DL Pdcp Cell Tput(Mbps) 8.6

DL MAC Cell Tput(Mbps) 9.5

UL Tput per UE(Mbps) 0.5

UL Pdcp Cell Tput(Mbps) 0.68

UL MAC Cell Tput(Mbps) 0.99

Table 5.7: Targets for Integrity KPIs (20 MHz bandwidth).

The feature engineering step is then applied to the Integrity KPIs of the cells operating in the 1800

MHz, using the targets of Table 5.7. The optimal number of clusters, with respect to the CVIs, is shown in

Figure 5.16.

From the examination of Figure 5.16, it results that k = 2 provides the best partitioning of the dataset

being clustered. The resulting clusters can be visualized in Figure 5.17.

Cluster 1 only contains 9 cells while cluster 0 contains 60 cells, thus being the most representative

cluster of the dataset. Table 5.8 shows the score for each cluster as well as its overall performance

classification, regarding the Integrity class.
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Figure 5.16: CVI results for K-means in L1800 (Integrity).

Figure 5.17: Clustering visualization for K-means in L1800 (Integrity).

Cluster Number of Cells Score Classification

0 60 0.99 Above average
1 9 0.72 Average

Table 5.8: Cluster classification for K-means in L1800 (Integrity) and timethreshold = 0.8.

When comparing the histograms of the features of each cluster, it was verified an identical situation to

the one observed in Section 5.2.1, where, for each feature, the histogram relative to the cluster with the

lower score is shifted to the left and the histogram of the cluster with the higher score is shifted to the

right.

It is interesting to see how the classification of a cluster changes by changing the value of

timethreshold. Let us consider a more demanding cluster evaluation by setting timethreshold = 0.9
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instead of timethreshold = 0.8, which was the value used thus far. The scores and classification obtained

in this case are presented in Table 5.9.

Cluster Number of Cells Score Classification

0 60 0.83 Above average
1 9 0.25 Unsatisfactory

Table 5.9: Cluster classification for K-means in L1800 (Integrity) and timethreshold = 0.9.

Comparing Tables 5.8 and 5.9, it can be verified that cluster 0 still has an above average performance.

However, the score of cluster 1 drops drastically after changing the value of timethreshold, being classified

as unsatisfactory.

Figure 5.18 exemplifies the difference in the score obtained for the feature

UL Tput per UE target compliance ratio with timethreshold set to 0.8 and 0.9.

Figure 5.18: Score comparison for different timethreshold values.

It can be verified that the ECDF of cluster 1 is shifted to the right of the red line, representing

timethreshold = 0.8, thus the score obtained with respect to that value is 1. Contrarily, for timethreshold =

0.9, identified with the green line, the score for cluster 0 is nearly 0, with only one cell being compliant with

the target for a period of time above the timethreshold. This demonstrates the importance of setting the

value of timethreshold to a value that is aligned with the expectations of the network operator, regarding

the performance of the network.

The geographic location of the cells is shown in Figure 5.19. Cluster 0 contains about 86% of the

cells of the dataset, therefore it is only natural that there are areas that are mainly populated with cells of

cluster 0. Regarding the cells from cluster 1, it were not identified any particular small areas with a large

concentration of cells, since they have disperse locations.
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Figure 5.19: Clusters geographical distribution for Integrity KPIs (L1800).

Availability

For the Availability KPIs, the target specified in the feature extraction process, was 99.7% for the three

KPIs that constitute this class. It could be argued that only the Cell Avail perc could be used, as this

KPI presents the overall availability of the cell, thus containing the information provided by the other two

KPIs. However, this KPI also provides insight about the cell sleep mode. Thus, if one would analyze the

availability of the cells, based solely on the Cell Avail perc KPI, it could be mislead into thinking that the

cell was unavailable due to a fault or a reconfiguration request when in fact it was in sleeping mode.

The optimal number of clusters obtained for each CVI is shown in Figure 5.20.

Figure 5.20: CVI results for K-means in L1800 (Availability).

In this case, all CVIs are in accordance relatively to the optimal number of clusters, which is k = 2.

The resulting clusters can be visualized in Figure 5.21. Cluster 0 contains 44 cells while cluster 1 contains

25 cells.
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Figure 5.21: Clustering visualization for K-means in L1800 (Availability).

Through the visualization of the histograms for each feature, in Figure 5.22, the situation explained

above is verified.

(a) CellAvailAuto target compliance ratio. (b) CellAvailMan target compliance ratio.

(c) CellAvail target compliance ratio.

Figure 5.22: Histograms of Availability features for K-means in L1800.

It can be observed that even though both clusters would present a score close to 1 for the features

62



CellAvailAuto target compliance ratio and CellAvailMan target compliance ratio, the same would not be

verified for cluster 0 in regard to CellAvail target compliance ratio. In other words, it could be perceived,

through the analysis of the feature CellAvail target compliance ratio, that some cells exhibit availability

problems. However, through the analysis of the other two features, it can be inferred that the cells that

presented a lower value for the CellAvail target compliance ratio, were in fact in a sleeping mode state,

which is not related with a performance issue but rather with a mechanism to improve energy efficiency.

Thus, the overall score for the Availability should be computed taking into account only the features

CellAvailAuto target compliance ratio and CellAvailMan target compliance ratio. In this case it is straight-

forward to see that both clusters would have a score near 1, even for a value of timethreshold as high as

0.995.

5.2.3 L2600

The clustering results for the L2600 frequency band, using K-means, are presented in this section. The

PM dataset contains 121 cells operating on this frequency band.

Accessibility

Following the procedure detailed in the previous sections, the optimal number of clusters for each CVIs

were attained. Figure 5.23 illustrates the optimal number of clusters for each CVI.

Figure 5.23: CVI results for K-means in L2600 (Accessibility).

It can be verified that there is a tie between k = 2 and k = 3. Adopting the same line of thought

presented in Section 5.2.2, for the clustering of Accessibility features, it was selected k = 3. The clusters

can be visualized in Figure 5.24.

Clusters 0 and 2 are the most representative of the dataset, containing 80 and 35 cells respectively.

There are only 6 cells belonging to cluster 1. The scores and respective classification for each cluster are

presented in Table 5.10.

63



Figure 5.24: Clustering visualization for K-means in L2600 (Accessibility).

Cluster Number of Cells Score Classification

0 80 0.89 Above average
1 6 0.57 Average
2 35 0.79 Above average

Table 5.10: Cluster classification for K-means in L2600 (Accessibility).

Cluster 0 and cluster 2 were both classified with above average performance, attaining a 0.89 and

0.79 score, respectively. Cluster 0 only scored 0.57, thus having an average performance. Figure 5.25

shows the histograms regarding the features that better explain the obtained partitioning.

It can be observed that the main difference regarding clusters 0 and 2 lies on the

CB RACH target compliance ratio feature. Regarding cluster 1, it can be verified that its be-

haviour differs from the other two clusters for both the Init E RAB target compliance ratio and

RRC Estab fail target compliance ratio. Moreover, the cluster 1 also presents a distinct behaviour

for the CB RACH target compliance ratio feature when comparing to the one of cluster 2.

The scores of each cluster can be mainly explained through the ECDFs for the

RRC Estab fail target compliance ratio and CB RACH target compliance ratio. These are shown in

Figure 5.26.

It can be verified that for the CB RACH target compliance ratio feature, both cluster 0 and cluster 1

present a score of 0, since their probability of having a cell that is compliant with the target, for at least

80% of the time (i.e. timethreshold = 0.8), is zero. Regarding the RRC Estab fail target compliance ratio,

the cluster 1 performs worse than clusters 0 and 2, which have a score of 1.

The location of the cells of each cluster is presented in Figure 5.27.
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(a) CB RACH fail target compliance ratio (b) Init E RAB Estab fail target compliance ratio

(c) RRC Estab fail target compliance ratio

Figure 5.25: Histograms of Accessibility features for K-means in L2600.

(a) CB RACH fail target compliance ratio (b) RRC Estab fail target compliance ratio

Figure 5.26: ECDFs of Accessibility features for K-means in L2600.
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Figure 5.27: Clusters geographical distribution for Accessibility KPIs (L2600).

Integrity

Regarding the Integrity KPIs, the optimal number of clusters with respect to the CVI is presented in Figure

5.28.

Figure 5.28: CVI results for K-means in L2600 (Integrity).

It can be verified that the most voted optimal number of clusters was k = 2. The obtained partitioning

for k = 2 can be visualized in Figure 5.29.

Cluster 0 contains 101 cells, which is approximately 83% of the cells in the data set. The remaining

20 cells belong to cluster 1. The scores and classification of each cluster can be observed in Table 5.11.

It can be verified that cluster 0 has a nearly ideal performance. Conversely, cluster 0 is classified as

average. The differences in the performance classification of the two clusters can be explained through
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Figure 5.29: Clustering visualization for K-means in L2600 (Integrity).

Cluster Number of Cells Score Classification

0 101 0.99 Above average
1 20 0.56 Average

Table 5.11: Cluster classification for K-means in L2600 (Integrity).

the ECDFs of the features related to the uplink transmission. These ECDFs are shown in Figure 5.30.

(a) UL Tput per UE target compliance ratio (b) UL MAC Cell Tput target compliance ratio

Figure 5.30: ECDFs of Integrity features for K-means in L2600.

It can be observed that the probability of a cell belonging to cluster 0 being compliant with the

timethreshold, for each one of the features presented, is approximately 1, while for cluster 1, the score for

each feature is lower than 0.5.

The deployment of the cells on the urban area can be visualized in Figure 5.31.
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Figure 5.31: Clusters geographical distribution for Integrity KPIs (L2600).

Given the fact that cluster 0 contains most of the cells operating in the 2600 MHz frequency band, it

comes as no surprise that there are areas predominantly occupied by cells of cluster 0. Regarding the

cells of cluster 1, they are sparsely located over the demarcated geographic region.

5.3 Clustering Algorithms Comparison

This section presents an overview over the results obtained with the three clustering algorithms tested:

K-means, EM with GMM, and Spectral Clustering. Only the Accessibility and Integrity classes were

tested, as the Availability class, due to the reduced number of features and nature of the same, is quite

straightforward to analyze.

Apart from the number of clusters, the EM with GMM algorithm, from the Scikit-learn library, also

includes the cov type which is a parameter that can be tuned to specify the type of covariance parameters

to be used [29]: spherical, diagonal, tied or full.

Spectral Clustering requires the number of clusters to be specified beforehand, similarly to both

K-means and GMM. Additionally, another input parameter, gamma, was configured. This parameter is

the kernel coefficient for the RBF [29]. The set of values considered for gamma was [0.01, 0.1, 1].

The same approach, using the election mechanism, was used for both EM with GMM and Spectral

Clustering, with the difference that the optimal configuration now includes two input parameters instead of

just one, as in K-means.
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5.3.1 L800

For the L800 frequency band, the results attained with each clustering algorithm are summarized in Table

5.12.

KPI Class Algorithm Clusters Number of cells Score Classification

Accessibility

K-means 2
79 0.32 Below average

140 0.57 Average

EM with GMM 2
15 0.2 Unsatisfactory

204 0.5 Average

Spectral 2
89 0.33 Below average

130 0.58 Average

Integrity

K-means 2
89 0.11 Unsatisfactory

130 0.67 Average

EM with GMM 2
68 0.09 Unsatisfactory

151 0.6 Average

Spectral 2
90 0.11 Unsatisfactory

129 0.68 Average

Table 5.12: Results comparison for L800.

It can be verified that there are no significant differences between the results from different clustering

algorithms.

The most distinct one corresponds to the Accessibility class, where the clusters resulting from

the EM with GMM were much more unbalanced with respect to the number of cell that they contain.

Furthermore, it was able to identify a more specific cluster, containing less cells, that is characterized by

an unsatisfactory performance. However, there were quite a few cells that were included in the cluster

with average performance that would have been in a below average performing cluster if K-means or

Spectral Clustering were used.

5.3.2 L1800

Regarding the L1800 frequency band, the results obtained are condensed in Table 5.13.

It can be observed that the Spectral Clustering algorithm was not able to partition the data into clusters

with specific performances, since all clusters are classified as above average.

For the Integrity class, both K-means and EM with GMM managed to identify one cluster that presents

average performance, thus being able to partition the data into two clusters with different performances.

Regarding the Accessibility class, both K-means and and EM with GMM partitioned the cells into

three clusters. Even though all the clusters attained for EM with GMM have the same classification, it

can be inferred that this result is similar to the one of K-means, as the cluster that presents a different

classification only differs in one cell.
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KPI Class Algorithm Clusters Number of cells Score Classification

Accessibility

K-means 3
4 0.7 Average

26 0.8 Above average

39 0.85 Above average

EM with GMM 3
5 0.76 Above average

31 0.86 Above average

33 0.83 Above average

Spectral 2
18 0.81 Above average

51 0.85 Above average

Integrity

K-means 2
9 0.72 Average

60 0.99 Above average

EM with GMM 2
6 0.58 Average

63 0.99 Above average

Spectral 2
20 0.85 Above Average

49 1 Above Average

Table 5.13: Results comparison for L1800.

5.3.3 L2600

The outcome of each clustering algorithm regarding the Accessibility and Integrity classes of KPIs are

shown in Table 5.14.

KPI Class Algorithm Clusters Number of cells Score Classification

Accessibility

K-means 3
6 0.57 Average

35 0.79 Above average

80 0.89 Above average

EM with GMM 2
14 0.71 Average

107 0.86 Above average

Spectral 3
8 0.63 Average

32 0.8 Above average

81 0.88 Above average

Integrity

K-means 2
20 0.56 Average

101 0.99 Above average

EM with GMM 2
15 0.53 Average

106 0.97 Above average

Spectral 2
21 0.57 Average

100 0.99 Above average

Table 5.14: Results comparison for L2600.

Regarding the Integrity class, the results are, once again, very similar for the considered algorithms.

However, for the Accessibility class, it can be observed that the optimal number of clusters for both

Spectral Clustering and K-means is three, which suggests that they were able to identify two clusters with

different behaviours, even though they have the same classification.

Through the comparison of the results obtained for each clustering algorithm, shown in Tables
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5.12, 5.13 and 5.14, it can be verified that, using the proposed mechanism to find the values of the

input parameters which give the optimal partitioning, there were no significant differences between the

clustering algorithms. As such, the K-means algorithm was considered the best out of the three tested

algorithms, since it has less input parameters to tune, thus making it easier to use.

In addition, the proposed election mechanism with multiple CVIs to acquire the optimal configuration

parameters, and therefore the optimal number of clusters, predominantly selects k = 2 for the optimal

partitioning. This selection allows to capture the overall performance of the network, by identifying

a cluster mostly composed of the best performing cells and a cluster mostly composed of the worst

performing cells. However, it fails to find clusters of cells with more specific behaviours.

Lastly, it can be interesting to compare the results for the different frequency bands. The L800

frequency band shows an overall worse performance, for the Integrity and Accessibility classes, with the

obtained clusters being classified as unsatisfactory, below average or average. On the other hand, the

L1800 and L2600 frequency bands show a better performance, with all clusters having either average or

above average performance.

5.4 CM Independence Evaluation

This section presents the process used to correlate the performance of the clusters with the respective

configuration parameters and, consequently, finding the optimal cell configuration.

The CM independence evaluation is performed after the clustering and PM analysis stages, as seen

in Figure 4.1. Thus, the cells are labelled with the cluster to which they belong and those clusters have

already been classified with respect to their performance for the KPI class being evaluated.

As briefly explained in Section 4.5, firstly, it is applied an independence test, for each configuration

feature, to test if there are distinct configurations regarding that feature for cells belonging to different

clusters. In this regard, the Fisher’s exact test was used.

Then, in case a correlation between a CM feature and the clusters is found, i.e. the values for

that feature are dependent of the cluster, an engineer should evaluate that result to conclude if that

configuration parameter as, in fact, any impact on the performance of class of KPIs being evaluated. If yes,

then it should be straightforward to understand which values of the configuration feature are associated

with the clusters that exhibit better performances.

5.4.1 Fisher’s Exact Test

Fisher’s exact test of independence is used when one has two nominal variables and wants to test, with a

level of certainty defined through the significance level, whether the proportions of one variable change

depending on the other variable. The null hypothesis then corresponds to the relative proportions of one

variable being independent of the value of the other variable. This test can be used in the problem of

connecting the configuration parameters with the performance of each cluster because both the labels

that identify the cluster and the configuration features can be considered nominal variables, since the
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optimal number of clusters k is forced to be small (between 2 and 8) and the observations of each one of

the CM features can be classified into a small number of categories, as shown in Figure 5.32.

Figure 5.32: Number of categories per configuration feature.

Furthermore, the null hypothesis in this context is that, for each configuration feature, its relative

proportions are independent of the labels (i.e. clusters). When this null hypothesis is rejected it means

that different clusters have different proportions regarding the values of the configuration parameter

being evaluated which, in turn, might indicate that there is a direct correlation between that configuration

parameter and the performance of each cluster. In such case, that should be further investigated by

an expert to identify if there is, in fact, a direct influence of the parameter value on the behaviour of the

cells regarding the KPI class being evaluated and also what is the configuration that results in a better

performance.

As a consequence of the clustering being performed individually for each frequency band, some

CM features present only one category for the frequency band under analysis. This is the case of

the following features: EARFCNDL, EARFCNUL, FREQBAND, DLCHANNELBANDWIDTH, ULCHAN-

NELBANDWITH, ALLOCTHRPUCCHFORMAT1, ALLOCTIMERPUCCHFORMAT1, DEALLOCTHRPUC-

CHFORMAT1, DEALLOCTIMERPUCCHFORMAT1. Moreover, it can be seen in Figure 5.32 that the

features MIXEDMODERADIO, ULINTERFERENCEMANAGEMENTACTIVE, COVTRIGGERDBLIND-

HOALLOWED, THRESHSERVINGLOW and OPERATIONALSTATE already have only one category,

independently of the frequency band used. Therefore, this features are, evidently, independent of the

clusters and are not considered in this evaluation.
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5.4.2 Use Case: Cell Subscription Capacity

The use case presented in this section is related to the clustering results obtained using K-means, for

both the 800 MHz and 2600 MHz frequency bands, when evaluating the performance of the respective

cells regarding the Accessibility KPI class. The significance level used for the Fisher’s exact test was 0.05.

If the p-value obtained for a CM feature when testing the null hypothesis is lower than the significance

level, the null hypothesis is rejected with a confidence interval of 95%, otherwise is accepted. If the null

hypothesis is rejected than it can be inferred that there is a correlation between the performance level of

a cluster and the configuration of the cells.

Let us consider the 800 MHz frequency band first. For this frequency band and accessibility features,

two clusters were obtained. As presented in Table 5.2, cluster 1 has an average performance with a score

of 0.57, while cluster 0 has below average performance with a score of 0.32.

Fisher’s exact test was then applied for each CM feature with respect to the obtained clusters. The

results are presented in Table 5.15.

CM Feature p-value Independent?

CELLSUBSCRIPTIONCAPACITY 0.000004 No

LBTPNONQUALFRACTION 0.058 Yes

LBTPRANKTHRESHMIN 0.058 Yes

RXSINRTARGETCLPC 0.14 Yes

INTERFERENCETHRESHOLDSINRCLPC 0.31 Yes

NOCONSECUTIVESUBFRAMES 0.41 Yes

NOOFPUCCHCQIUSERS 0.54 Yes

NOOFPUCCHSRUSERS 0.54 Yes

PDCCHCFIMODE 0.75 Yes

Table 5.15: Fisher’s exact test results for L800 (Accessibility).

From Table 5.15 it can be verified that the only feature that is dependent on the cluster is the

CELLSUBSCRIPTIONCAPACITY. Figure 5.33 shows the percentage of cells, for each one of the clusters,

with respect to the configuration they have for the CELLSUBSCRIPTIONCAPACITY feature.

It can be seen that cluster 0, that has a lower score, contains a higher percentage of cells with the

CELLSUBSCRIPTIONCAPACITY feature set to 75000 when compared to cluster 1.

For the 2600 MHz frequency band and accessibility features, a similar situation occurs. For this

frequency band the optimal number of clusters was three. From those three clusters, two presented

above average performance with the remaining having an average performance, as seen in Table 5.10.

The p-values, with respect to each CM feature, obtained using Fisher’s exact test are presented in

Table 5.16.

Figure 5.34 shows the percentage of cells with respect to the values they present for the CELLSUB-
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Figure 5.33: Proportions for CELLSUBSCRIPTIONCAPACITY per cluster in L800 (Accessibility).

CM Feature p-value Independent?

CELLSUBSCRIPTIONCAPACITY 0.017 No

PDCCHCFIMODE 0.34 Yes

TRANSMISSIONMODE 0.34 Yes

RXSINRTARGETCLPC 0.53 Yes

LBTPNONQUALFRACTION 0.66 Yes

LBTPRANKTHRESHMIN 0.66 Yes

NOCONSECUTIVESUBFRAMES 0.67 Yes

INTERFERENCETHRESHOLDSINRCLPC 1 Yes

Table 5.16: Fisher’s exact test results for L2600 (Accessibility).

SCRIPTIONCAPACITY, per cluster.

Figure 5.34: Proportions for CELLSUBSCRIPTIONCAPACITY per cluster in L2600 (Accessibility).

Taking into account the scores presented in Table 5.10, it can be verified that the higher the score of

the cluster, the lower is the percentage of cells with the CELLSUBSCRIPTIONCAPACITY feature set to

150000.

Taking these two cases into accounts, it seems that setting a higher value for CELLSUBSCRIPTION-
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CAPACITY results in a lower performance regarding the accessibility.

The CELLSUBSCRIPTIONCAPACITY is a feature that impacts the load balancing in a cell. Let

cellSubscriptionCapacity be the variable associated with the CELLSUBSCRIPTIONCAPACITY feature.

The cellSubscriptionCapacity is used to compute the SubscriptionRatio as follows:

SubscriptionRatio =

∑
qciSubscriptionQuanta

cellSubscriptionCapacity
(5.1)

where qciSubscriptionQuanta is a weight given to an established E-RAB based on its CQI. Thus, the

SubscriptionRatio can be viewed as the load in the cell. A higher value of cellSubscriptionCapacity will

cause the value of SubscriptionRatio to drop, meaning that the cell will try to accommodate more users

which may cause accessibility issues.

The CELLSUBSCRIPTIONCAPACITY feature is only taken into account when another CM feature,

that controls the load balancing process, is active. Since there was no information available regarding the

feature that activates the load balancing mechanism, it was assumed in this work that that feature was, in

fact, activated.
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Chapter 6

Conclusions

This chapter is divided into two sections. In Section 6.1, a summary of the work carried throughout

this thesis is presented as well as some conclusions drawn. Section 6.2 aims to give insight about the

possible steps that can be taken to further improve and evaluate the methodology presented.

6.1 Summary

The main goal for this thesis was to create a system that assesses the performance of a LTE network, by

analyzing the KPIs collected from that network, and through that evaluation is able to find groups of cells

that exhibit similar performances. Ideally, the system should be capable of finding the groups of cells that

exhibit an undesired level of performance, in regard to the requirements of the network operator, if they

exist. This system is based on unsupervised learning techniques.

Additionally, this thesis also aimed to find the configuration parameters that were associated with the

groups of cells that presented a desired level of performance. In that regard, Fisher’s exact test was used.

Chapter 2 provides a technical overview of LTE networks. This allowed to better understand both the

PM and CM data that was available.

Chapter 3 focuses on both the PM and CM data available. A brief explanation of each KPI considered

in this work, as well as of each CM feature available, is given. Furthermore, the preprocessing steps

considered to remove any artifacts and null values that the data may contain are presented.

Chapter 4 introduces the ML concepts and techniques to develop the desired system to evaluate the

network performance and presents the proposed system.

The proposed method to evaluate the performance of the network is based on a feature-based

approach, where the KPIs for each cell go through a feature engineering stage before applying the

clustering algorithm. The optimal input parameters for the clustering algorithm are selected through an

election mechanism using multiple CVIs. A scoring system for the clusters attained when applying this

method is also proposed. Lastly, it is presented the line of thought used to correlate the configuration

parameters with the performance of the attained clusters.

Chapter 5 presents the results obtained using the method proposed in Chapter 4. To assess the
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performance of the network, the method is applied individually to each frequency band and KPI class.

Three different clustering algorithms were tested: K-means, EM using GMM and Spectral Clustering.

In this chapter, the considered targets, used in the feature engineering step for each KPI, were also

presented. Since the dataset to which the clustering algorithms are applied depends on these targets, it

is straightforward to understand that the definition of these targets is a key aspect of the methodology

proposed. Thus, the targets for each KPI should be specified by the mobile network operator according

to the desired level of performance for the network.

Moreover, it was also presented a possible qualitative classification for the clusters based on their

score. Yet again, the score depends on a target, timethreshold, that should be set in agreement with the

requirements of the network operator regarding the level of performance of the network. It was verified,

for the 1800 MHz frequency band and Integrity KPIs, that a slight change in the value of timethreshold

results in a very distinct classification for one of the clusters obtained using K-means.

Regarding the clustering results using K-means, for the Accessibility and Integrity classes, it was

observed that the optimal number of clusters is given by the election mechanism with multiple CVIs

is predominantly two, with one cluster mainly containing the best overall performing cells, for the KPI

class and frequency band being evaluated, while the other is predominantly composed by the poorest

performing cells. When a tie occurs in the election mechanism, the rationale is to use the set of

parameters that correspond to a higher number of clusters, as this allows to have more granularity over

the performance of the cells due to more groups with distinct behaviours being identified.

Through the visualization of the attained clustering, using t-SNE, it is possible to infer about the

separability of the data. For both the Integrity and Accessibility classes of KPIs in L800 it was observed

that it did not exist a clear separation between the two attained clusters.

Spectral Clustering and clustering using GMM were also tested regarding the Accessibility and

Integrity in the three frequency bands. It was verified that there were no significant differences in the

results obtained with both EM with GMM and Spectral Clustering, when compared to the ones obtained

with K-means. Therefore, given the simplicity in tuning the input parameters for the K-means algorithm,

this was considered as the best out of the three.

Regarding the performance per frequency band, it was observed that the L800 exhibits a worse

performance, for the Integrity and Accessibility classes, with the obtained clusters being classified as

unsatisfactory, below average or average. The clusters obtained for both the L1800 and L2600 frequency

bands are classified with either average or above average performance, thus it can be inferred that the

cells operating in these frequency bands exhibit better overall performance when compared to the ones

operating in L800.

The obtained results showed that the system is able to find different groups of cells regarding their

performance and most importantly, is able to detect clusters of cells that show a performance level that

is below the desired. However, it mostly captures the overall performance regarding the features being

evaluated, having trouble to find clusters with more specific behaviours.

Lastly, this chapter presented the results for linking the performance of the clusters with the configura-

tion of the cells that constitute them. Only a use case, related with the feature CELLSUBSCRIPTIONCA-
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PACITY, was detected. For the L800 and L2600 frequency bands it was verified that the clusters with

better performance, regarding the Accessibility features, are constituted by a higher percentage of cells

with a lower configuration value for CELLSUBSCRIPTIONCAPACITY, while for the clusters with lower

performance the opposite happens. The limited amount of CM features available and the fact that most of

those CM features present a constant value for this network constituted an obstacle towards evaluating

the value of the proposed method to find the optimal configuration parameters.

The main challenge faced in this work was to evaluate the goodness of the proposed model, as in

unsupervised learning there is no ground truth against which the results can be compared.

6.2 Future Work

In this thesis, a methodology to evaluate the performance of an LTE network and correlate the performance

with the configuration parameters was proposed.

In terms of future work for the methodology proposed, a different combination of clustering algorithms

and validation metrics could be tested with the end goal of obtaining clusters with more specific behaviours

or performances. Regarding the analysis between the configuration features and the performance of

the clusters, it would be interesting to test the method proposed with a dataset that not only contained

more cells but also more CM features. Moreover, the proposed method should be tested with an active

approach, where the CM features can be modified, instead of the passive analysis performed in this work.
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