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Abstract—Knowledge of the topological structure of a camera
network can help with tasks such as person re-identification
by limiting the correspondence possibilities for each observed
person. In situations where manually determining the camera
layout is not practical, automated camera network topology
estimation can be used to discover the connections between the
different camera views.

This work proposes two methods for discovering the topology
of a non-overlapping camera network based on sparse inverse
covariance estimation. Using sparse inverse covariance estimation
an empirical covariance matrix obtained from observed feature
data can be used to discover a sparse graphical model repre-
senting the conditional dependence structure between its nodes.
The first method establishes direct correspondences between
appearances of the same person in different cameras via color
based thresholding, whereas the second method estimates a
graph representing connections between events based on observed
features without directly establishing correspondences.

Favorable experimental results are shown for both methods
using randomly generated trajectory data obtained from an
event simulator. Synthetic noise was added to the generated color
descriptors to test the methods’ robustness to noisy data.

I. INTRODUCTION

Video surveillance is increasingly common nowadays [1],
being used in both public and private environments such as
offices, hospitals, homes and even outdoor spaces like roads.
In many large environments a network composed of multiple
cameras is necessary for an effective surveillance [2]. One
of the most important aspects of surveillance in a network of
cameras is the task of following targets across multiple camera
views.

In order to properly follow a target through the various
cameras composing the network, especially cameras with non-
overlapping fields of view, it can be helpful to know the spatial
relations between them. While precise metric information of
each camera’s position can be useful, it is often enough to find
a topological representation of the camera network map. This
topological map can take the form of a graph where each
vertex represents either a camera or an entry/exit zone of a
camera’s field of view. This latter option allows for a better
understanding of the network, especially in more closed indoor
areas where different hallways and doorways in the same
camera view can lead to different places. The graph edges
represent connections between these zones - if two vertices are
connected by an edge in the graph, then there is an off-camera
path between the two zones and it is possible for objects that
disappear in an entry/exit zone associated with one of the two
vertices to appear in the zone associated with the other vertex.

The problem of camera network topology estimation has
been approached in several different ways. Kamenetsky [3]
divides this problem into two main types: overlapping and
non-overlapping. In overlapping camera networks the fields
of view of the different cameras overlap, partially observing
the same area. In the topology graphs for these problems
two cameras are linked by an edge if their fields of view
overlap, forming a vision graph. In non-overlapping problems
different cameras observe different parts of the environment,
without any overlap in their fields of view. In these cases the
relationships between the different cameras are represented by
a communication graph. These are undirected graphs where
each node represents one camera and an edge connecting two
nodes indicates that transitions between the two cameras are
possible. These edges can also have weights corresponding
to transition probabilities and times. Our work is focused
on these non-overlapping camera networks, where the graph
nodes represent specific zones through which people enter and
exit the camera’s field of view.

In addition to this distinction, Li et al. [4] state that non-
overlapping problems can be approached with correspondence
based methods and correspondence-free methods. Correspon-
dence based methods require direct correspondences between
people sighted in different cameras, that is, they need to
identify the same person in different camera views. This can
be done manually or through an automatic re-identification
method. Correspondence-free methods have no such require-
ments. In [4] the authors propose a correspondence-free
method for camera network topology estimation based on
accumulated cross correlation and Gaussian fitting.

Another correspondence-free method is proposed by Makris
et al. [5]. For this method the entry and exit zones of the
different cameras are learned automatically from observed tra-
jectories using an expectation-maximization algorithm. Visible
connections are learned through a standard on-camera object
tracking algorithm and the cross-correlation data for each pair
of nodes is used to identify invisible connections as well as
overlapping nodes and additional visible connections.

Cho et al. [6] propose a correspondence based iterative
method to estimate camera network topology and perform
automated person re-identification. Correspondence data ob-
tained from automated re-identification is used to estimate the
network topology and this information is used to improve the
re-identification. This process is repeated until the topology
estimate converges.



In this work we propose two camera network estimation
methods focused on discovering an undirected graph of invis-
ible connections between specific manually determined entry
and exit zones belonging to non-overlapping cameras. An
edge connecting two entry/exit zones indicates that a person
disappearing from one of those zones may reappear in the
other, and no transition probabilities or time distributions are
computed. The first method is correspondence based, while
the second is a correspondence-free method. Both methods
use a sparse graph learning algorithm detailed in section III
to solve the topology estimation problem by using observed
feature data to discover the graph that represents the camera
network.

II. PROBLEM DEFINITION

As people move through the area observed by the network
of non-overlapping cameras, they will either be on-camera
(within a camera’s field of view) or off-camera (outside the
field of view of every camera). The transition between the on-
camera and off-camera areas is done through entry and exit
zones, which are the parts of a camera’s field of view from
which people appear and disappear. All of these zones are
simultaneously entry zones and exit zones, as any zone through
which people can enter a camera’s field of view can also be
used to exit it. These entry/exit zones will serve as the nodes
in the camera network graphs we want to estimate, and these
graphs will represent the connections between the different
entry/exit zones - an edge connecting two zones indicates that
a person can travel between those two zones without passing
through any other.

We can divide each trip made by a person into its on-camera
(visible) and off-camera (hidden or invisible) portions, as can
be seen in figure 1.

(a) Example trip (b) Visible paths

(c) Hidden paths

Fig. 1. Example of a path travelled by a person as well as its visible and
hidden portions. The areas in yellow represent the fields of view of three
different non-overlapping cameras in a camera network.

The points A, B, C, E and F are entry/exit zones of the
fields of view of three cameras in a network. The example
trip shown in figure 1(a) passes through all of these zones
and can be divided into five sequential segments: A → B,

B → C, C → D, D → E and E → F . Segments where both
the beginning and the end nodes belong to the same camera’s
field of view (A → B, C → D and E → F ) form visible
paths, while segments where the two nodes are in the fields
of view of different cameras (B → C and D → E) form
hidden paths. Our goal is to find the graph that represents all
the hidden paths in a camera network, that is, all the paths
that can be travelled off-camera. These graphs are undirected,
as all paths can be travelled both ways - if a person can travel
from node A to node B, they can also travel from node B to
node A.

These hidden path graphs will be found based on entry and
exit events. These events correspond to a person entering or
exiting a camera’s field of view. Associated with each en-
try/exit event is the entry/exit zone through which it happened,
the instant when it happened and a descriptor of the person
involved in the event. This information can be used to match
different entry/exit events, forming trips travelled by people
in the camera network and thereby identifying possible paths.
Unlike with entry/exit zones, the distinction between entry and
exit events is important, as entry events can not be matched
with other entry events, or exit events with other exit events.

III. GRAPH ESTIMATION METHOD

An undirected weighted graph can be fully represented by
its Laplacian matrix [7]. The Laplacian matrix ∆ = [∆ij ] of
an undirected weighted graph G with n nodes is given by

∆ij =

−wij , i 6= j∑
k

wik, i = j , i, j = 1, ..., n, (1)

where wij is the weight of the graph edge connecting nodes i
and j. These weights are nonnegative (that is, wij ≥ 0 ∀i, j =
1, ..., n) and it is considered that if two nodes i and j are not
directly connected by an edge in the graph, the weight wij
between the two nodes is 0. As the diagonal of the Laplacian
contains the weighted degree of the corresponding nodes and
can be obtained from the non diagonal entries of ∆, the
graph can be fully represented by these non diagonal entries
alone. Therefore, it is sufficient to estimate the weighted
adjacency matrix W = [wij ] with i, j = 1, ..., n. This matrix
is symmetric as the graph is undirected, and it is considered
that wii = 0 for all i = 1, ...n.

The weighted adjacency matrix W can be estimated as
described by Lake & Tenenbaum [8] by defining the following
maximum a posteriori (MAP) estimate:

(2)
Ŵ = argmax

W
p(W |D)

= argmax
W

p(D|W ) · p(W ).

The matrix D is an n×m feature matrix with each of the m
columns representing a feature vector f (k) = (f

(k)
1 , ..., f

(k)
n )T

where f (k)i represents the value of feature k pertaining to node



i. These features are assumed to be independent and identically
distributed draws from a normal distribution
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This is equivalent to p(f (k)|W ) ∼ N(0, ∆̃−1), where ∆̃ is a
regularized graph Laplacian given by ∆̃ = ∆ + diag

(
1/σi

2
)
,

with diag
(
1/σi

2
)

being a diagonal matrix containing n reg-
ularization terms. This regularization of the graph Laplacian
matrix is important as the unregularized matrix is singular [9].

The term − 1
4

∑
i,j wij(f

(k)
i − f

(k)
j )2 imposes a form of

feature smoothness, as two nodes i and j connected by a large
weight wij must have similar values of f (k) to maximize the
value of the likelihood function p(f (k)|W ). As the various
features f (k) are assumed to be independent, the likelihood
function pertaining to the full feature set D can be defined as

p(D|W ) =

m∏
k=1

p(f (k)|W ). (4)

Assuming each weight wij is independently drawn from an
exponential distribution p(wij) ∼ Exponential(β), the graph
weight prior can be defined as

p(W ) =
∏

1≤i<j≤n

p(wij) =
∏

1≤i<j≤n

βe−βwij . (5)

This prior results in sparse graphs by encouraging weights
close to zero due to the nature of the exponential distribution.

The MAP estimate of W can then be written as

(6)
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Using the result from (3) we have
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which gives us
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Maximizing the expression in (8) is equivalent to max-
imizing its logarithm, as the logarithm is a monotonically
increasing function. Therefore, we can solve

(9)
Ŵ = argmax

W
− nm

2
log 2π − m

2
log |∆̃−1|

− 1

2
Tr
(

∆̃DDT
)

+
n(n− 1)

2
log β − β

2
||W ||1,

with ||W ||1=
∑n
i,j=1|wij |.

As we are only interested in finding the matrix W that
maximizes (9), we can ignore constants that do not depend
on W , resulting in the final expression

(10)Ŵ = argmax
W

log |∆̃| − 1

m
Tr
(

∆̃DDT
)
− β

m
||W ||1.

This MAP estimation with a Gaussian likelihood function
and an exponential prior can also be seen as a Gaussian
maximum likelihood estimation with an `1-norm penalty term
similar to the commonly used Lasso regularization [10]. The
penalty parameter β controls the trade-off between the likeli-
hood of the data in matrix D and the sparsity inducing penalty
term, with larger values of β encouraging sparser graphs in
detriment of the likelihood.

The relationship between the regularized graph Laplacian
∆̃ and the weight matrix W can be written as ∆̃ = −W +
diag (qi) + diag

(
1/σi

2
)
, where diag (qi) is a diagonal matrix

with each entry being qi =
∑
j wij . As ∆̃ can be easily

obtained from W , discovering Ŵ is essentially equivalent
to discovering ˆ̃∆ and therefore solving (10) corresponds to
estimating the precision or inverse covariance matrix ∆̃ of
the normal distribution p(f (k)|W ) ∼ N(0, ∆̃−1). If this
distribution describes a Gaussian Markov random field [11]
then zero entries in its precision matrix indicate conditional
independence between variables - if ∆̃ij = 0 for i 6= j

then f
(k)
i and f

(k)
j are conditionally independent given all

other variables
{
f
(k)
a : a 6= i ∧ a 6= j

}
. Therefore by using

the empirical covariance matrix 1
mDD

T obtained from m

samples of p(f (k)|W ) ∼ N(0, ∆̃−1) we can estimate a sparse
precision matrix that defines a graphical model representing
the dependencies between the different nodes. This graphical
model is the graph we are estimating by solving (10), with
the absence of an edge connecting two nodes indicating
their conditional independence. Therefore this problem can
also be seen as the estimation of a sparse Gaussian Markov
random field by computing its precision matrix from empirical
covariance data.

The final optimization problem (10) can be solved using a
generic optimization solver. Different coordinate descent meth-
ods [12]–[15] have also been developed to solve optimization
problems of this type.

IV. TOPOLOGY ESTIMATION METHODS

The goal is to estimate a graph representing the hidden
paths, i.e., the paths not directly observable by the camera
network. This corresponds to paths travelled by a person



between their exit from a camera’s entry/exit node and their
entry into another camera’s entry/exit node.

In order to estimate the camera network topology two
different approaches were developed, based on the graph
estimation method detailed in section III. Subsection IV-A
describes a pairwise method that identifies correspondences
between pairs of events. In subsection IV-B a correspondence-
free method that estimates a single graph representing the
relations between all observed events is detailed.

A. Pairwise method

In the first method specific trips made by a person
between two nodes were identified and the color descriptors
of the person at the entry and exit from a camera’s field
of view were used as corresponding features for each of
the two nodes. This is done by considering only entry
and exit events, denoted by e+ and e− respectively.
The algorithm starts by iterating over the various exit
events, which are the start points of the hidden trips. For
each exit event ei−, the corresponding entry event a(ei−)

that completes the trip must be found. First, the set Ŝi+ ={
ej+ : dBHATT (f(ei−), f(ej+)) < εcolor, t(e

j
+)− t(ei−) > 0

}
containing all the entry events pertaining to what can be
considered the same person and taking place after the chosen
exit event is found. This is done by selecting only entry
events where a distance metric dBHATT (f(ei−), f(ej+)) based
on a modified Bhattacharya coefficient [16] between the color
descriptors f(ei−) and f(ei+) is below a certain similarity
threshold εcolor. This accounts for small differences in color,
but it is assumed that the color descriptors of the same person
in different events will be mostly similar. Then, the end of
the trip is chosen as

a(ei−) = argmin
ej+∈Ŝi

+

t(ej+)− t(ei−), (11)

where t(ei) is the instant when event ei takes place.
If no entry events are found within the acceptable threshold

and Ŝi+ = ∅, no path is considered and the chosen exit event
ei− is ignored.

Once the trips are identified, a feature matrix D as described
in section III is built for each pair of nodes using the color
descriptors associated with the exit and entry events of all
trips between the two nodes. As only two nodes are being
considered, each feature matrix is a 2×pq matrix of the form

D =

[
f11 f21 . . . fp1
f12 f22 . . . fp2

]
, where f ji is a row vector of length

q containing the color descriptor associated with the entry/exit
event of the jth trip at the ith node of the trip, and p is the
total number of trips between the two nodes.

These feature matrices are then used to compute the weight
matrix W as described in section III. The optimization
problem defined in (10) was solved using CVX, a package
for specifying and solving convex programs [17], [18]. This
process is memory intensive but can be applied in this case
due to the reduced size of the graphs being estimated. As only
two nodes are being considered at a time, this corresponds to

computing a single weight wij , which is the weight of the
connection between nodes i and j, for each pair of nodes.
In effect this means that rather than using the event data to
estimate a single graph representing the full camera network,
one graph is inferred for each pair of nodes, which consists
in determining whether or not the nodes are connected by an
edge. The final camera network graph is the union of all the
graphs obtained through this method.

While this approach does not make use of all the properties
of the sparse inverse covariance estimation due to considering
each pair of nodes individually, the sparsity penalty does
provide an advantage over using a more typical distance metric
to compare the color descriptors associated with two nodes
by avoiding the need for further thresholding, as the penalty
term β

m ||W ||1 in expression (10) helps eliminate weights
connecting dissimilar nodes.

B. Event graph method

Unlike the method described in subsection IV-A, the second
approach does not need to establish one-to-one correspon-
dences between events. Rather than identifying events belong-
ing to the same trip, each entry or exit event is used as a node
to estimate a graph representing connections between events.
The data pertaining to all the observed events is stored in a
2n× (q + 1) matrix of the form

D =



f(e1+) τt(e1+)
f(e1−) τt(e1−)
f(e2+) τt(e2+)
f(e2−) τt(e2−)
. . .

f(en+) τt(en+)
f(en−) τt(en−)


,

where f(ei+) is a row vector of length q containing the color
descriptor associated with the ith entry event and f(ei−)
is a row vector of length q containing the color descriptor
associated with the ith exit event. It is important to note that
two events ei+ and ei− are not necessarily corresponding entry
and exit events, they are simply the ith entry event to be
recorded and the ith exit event to be recorded, respectively.
Maintaining this ordering of the matrix rows is not necessary
to obtain the event graph, but having a consistent order
facilitates the treatment of the resulting data. The instant when
each event takes place is used as an additional feature. These
time values are multiplied by a parameter τ in order to control
the trade-off between the weights of the color descriptors and
the moments when the events take place, with larger values
of τ placing a larger emphasis on the temporal factor over the
color descriptors in the trade-off. Two corresponding entry and
exit events (events belonging to the same trip) should have
similar color descriptors, and it is considered that most trips
should be relatively short. Therefore, the value of τ should be
such that among events with similar color descriptors those
that are closer in time should be more likely to be connected
in the final graph but with the color similarity being the more
important factor.



The feature matrix D is then used to estimate a weight
matrix W ev representing the graph of all events Gev =
(V (Gev) , E (Gev)) as described in section III using the R
package dpglasso [19], [13], as, unlike in subsection IV-A
the size of the graph being estimated makes using CVX
impossible due to memory constraints. In the resulting graph
each vertex represents an event, with an edge between two
vertices indicating that both events form a trip. In order
to obtain the final graph Gnet = (V (Gnet) , E (Gnet))
representing the camera network, a new matrix Wnet is
initialized with every entry wnetij set to 0. For each edge
{u, v} ∈ E (Gev) the entry/exit zones za and zb associated
with the events represented by vertices u and v are identified,
and the absolute value of the weight wevuv of edge {u, v}
is added to entry wnetab of matrix Wnet. The edge set of
the final camera network graph is given by E (Gnet) ={
{u, v} ∈ (V (Gnet))

2
: u 6= v, wnetuv > εthr

}
. The threshold

εthr is important to remove false positives from the final
graph. As the original graph being estimated is a graph of
single events, a single false positive can result in a connection
between unrelated events. It is assumed that for large enough
data sets real paths will be travelled multiple times and large
numbers of false positives are unlikely to occur in the same
path. As the final weight values in matrix Wnet are the sums of
every edge weight associated with each possible path, applying
the threshold εthr allows us to exclude most false positives
while not affecting real paths.

Unlike the pairwise method described in subsection IV-A,
this method makes no distinction between visible and hidden
paths. As the goal is to find the hidden paths, after obtaining
the full network graph we simply consider only connections
between entry/exit zones belonging to different cameras. This
ensures that visible paths are not included in the final graph.

V. RESULTS

To test the performance of the developed methods multiple
tests were run with different sets of simulated data. This data
was generated with an event simulator originally developed for
[20], adapted to generate Black-Value-Tint histograms [21] as
the color descriptors associated with the different events. This
simulator generates data according to the transition probabili-
ties and temporal distributions obtained from the HDA+ data
set [22]. The use of the simulator was necessary to generate
additional data as the real camera footage data from the HDA+
data set contains a relatively small number of events for which
favorable results could not be obtained.

The number of generated events can be controlled by
adjusting two simulation parameters: tsim defines the total run
time of the simulation in seconds and pnew is the probability
of a new person being added to the simulation in each second.
It is also possible to add uniformly distributed random noise to
the simulated color descriptors with a variable maximum am-
plitude defined by rmax. While different simulations can have
different trajectories, they are based on the same environment
and therefore the possible paths are the same for every test.
The total number of existing edges in the ideal graph is 15.

We want to maximize the number of correctly detected
edges while minimizing the number of false positives and
missing connections. To evaluate these results we rely on
precision and recall metrics [23] and we use the F-measure
to optimize the trade-off between the two by computing the
harmonic mean of the two ratios [24]. We also present the total
number of edges included in each estimated graph to evaluate
the sparsity of the obtained estimates.

A. Pairwise method

In this subsection the results obtained through the approach
detailed in subsection IV-A are presented. The first test had
no added noise, and the test parameters were tsim = 10800 s
and pnew = 0.01. The values of β used for this test were
β = {0, 1000, 1500, 2000, 3000}. The results of this test can
be seen in table I.

β Number of detected edges Precision Recall F-measure

0 15 1 1 1
1000 15 1 1 1
1500 15 1 1 1
2000 15 1 1 1
3000 12 1 0.8 0.889

TABLE I
RESULTS OF THE PAIRWISE METHOD FOR tsim = 10800 s WITHOUT

ADDED NOISE.

The ideal simulated data without added noise results in
perfect estimations for most lower values of the sparsity
coefficient β. For higher values of β, the sparsity encouraging
term grows large enough to exclude correct connections from
the estimated graph, resulting in a lower recall value. The
precision was 1 for all tested values of β as no false positive
connections are identified. As there is no random noise added
to the color descriptors, all events associated with the same
person have the exact same descriptor. This means that in order
for a false positive connection to be obtained, the random color
descriptors generated for two different people must be within
the chosen similarity threshold of εcolor = 0.1, which is highly
unlikely.

The results obtained for a second simulation with rmax =
2 × 10−3 using tsim = 86400 s, pnew = 0.01 and β =
{0, 3500, 7000, 10000, 20000} are presented in table II.

β Number of detected edges Precision Recall F-measure

0 84 0.179 1 0.303
3500 21 0.714 1 0.833
7000 15 1 1 1
10000 13 1 0.867 0.929
20000 10 1 0.667 0.8

TABLE II
RESULTS OF THE PAIRWISE METHOD FOR tsim = 86400 s.

Unlike the results obtained with the noiseless data, in this
test the precision value is no longer 1 for every value of β. This
happens because as each instance of a person’s color descriptor



is altered with significant random additive noise, it is possible
for the noisy data to result in false positives. As the sparsity
coefficient β increases, the number of edges in the estimated
graph decreases. Lower values of β result in low precision
and high recall, with the opposite occurring for higher values
of β. For β = 7000 it was possible to estimate a graph that
perfectly represents all the hidden paths, as indicated by the
fact that both precision and recall have a value of 1. This
means that there are no false positives or false negatives -
all existing paths are identified in the estimate, and no false
paths are incorrectly identified. Figure 2 shows the resulting
estimated graph for this value of β, which corresponds to the
ideal graph of hidden paths.

Fig. 2. Estimated graph of hidden paths obtained with the pairwise method
for tsim = 86400 s and β = 7000. Green lines represent correctly identified
paths.

A third test was run with the parameters pnew = 0.01,
tsim = 10800 s and rmax = 2×10−3. The results for this test
for β = {0, 1000, 1500, 2000, 3000} can be seen in table III.

β Number of detected edges Precision Recall F-measure

0 38 0.395 1 0.566
1000 19 0.79 1 0.882
1500 15 0.933 0.933 0.933
2000 11 1 0.733 0.846
3000 9 1 0.6 0.75

TABLE III
RESULTS OF THE PAIRWISE METHOD FOR tsim = 10800 s.

As with the previous test, increasing the value of the
sparsity coefficient β decreases the number of edges in the
estimated graph as well as the recall value, while increasing
the precision. However, due to the smaller amount of data
available for the estimation of the graph, in this test it was not
possible to obtain a completely correct estimation, i.e. a graph
with both precision and recall values of 1. In this case the
results represent a trade-off between both metrics, with lower
values of β resulting in a recall of 1 but lower precision values,
higher values of β resulting in lower recall but a precision of
1, and β = 1500 resulting in a high value for both metrics
but with neither of them being perfect. Figure 3 shows the
resulting estimated graph for β = 1500, where both one false
positive and one false negative can be seen.

Fig. 3. Estimated graph of hidden paths obtained with the pairwise method
for tsim = 10800 s and β = 1500. Green lines represent correctly
identified paths, blue lines represent false negatives and red lines represent
false positives.

B. Event graph method

In this subsection the results obtained through the approach
detailed in subsection IV-B are presented.

An initial test was run with noiseless data with a test
duration of tsim = 10800 s and pnew = 0.01 for β =
{0, 0.025, 0.075, 0.125, 0.2}. The value used for the time co-
efficient was τ = 2 × 10−4. The results of this test can be
seen in table IV.

β Number of detected edges Precision Recall F-measure

0 175 0.086 1 0.158
0.025 29 0.517 1 0.681
0.075 14 1 0.933 0.966
0.125 13 1 0.867 0.929
0.2 10 1 0.667 0.8

TABLE IV
RESULTS OF THE EVENT GRAPH METHOD FOR tsim = 10800 s WITHOUT

ADDED NOISE.

For the lower values of β, the resulting graph is less sparse
than those resulting from the pairwise method. This happens
because while the pairwise method utilized a thresholding
based on the color descriptors associated with each event
prior to applying the graph estimation algorithm, this method
relies only on the sparsity penalty to eliminate connections
in the resulting graph. This means that when using β = 0
every possible hidden path is included in the estimated graph,
resulting in an extremely low precision value. The graph
obtained for this value of β simply corresponds to all paths
between two entry/exit zones in different cameras.

It is also worth nothing that despite the fact that the color
descriptors used for this test had no added noise, it was not
possible to obtain a perfect estimate. This is due to the usage of
the time of the event as an additional feature, which can result
in real paths that take a particularly long time to walk being
excluded from the estimate. Figure 4 shows the estimated
graph obtained for β = 0.075, which was the best result
obtained as it includes no false positives while missing only a
single connection. This missing connection is a path between



two different floors, which takes longer to walk than other
paths in the network.

Fig. 4. Estimated graph of hidden paths obtained with the event graph method
for tsim = 10800 s and β = 0.075 without added noise. Green lines
represent correctly identified paths and blue lines represent false negatives.

A second test was run, this time with uniform additive noise
of amplitude r = 2×10−3 being added to the color descriptors.
The test parameters used were tsim = 10800 s and pnew =
0.01 and the test was run for β = {0, 0.025, 0.075, 0.125, 0.2},
once again with τ = 2× 10−4. The results of this test can be
seen in table V.

β Number of detected edges Precision Recall F-measure

0 175 0.086 1 0.158
0.025 35 0.429 1 0.6
0.075 14 1 0.933 0.966
0.125 13 1 0.867 0.929
0.2 8 1 0.533 0.696

TABLE V
RESULTS OF THE EVENT GRAPH METHOD FOR tsim = 10800 s.

For β = 0 we obtain a graph containing every possible
invisible path again. As before, increasing the value of β
increases the sparsity of the obtained graphs while also in-
creasing the precision and decreasing the recall value of the
estimate. For β = 0.075 it was possible to achieve a precision
of 1 and a recall of 0.933. In addition to having the same
precision and recall values as the result obtained from the
noiseless data, this constitutes an improvement over the results
obtained with the pairwise method. The graph obtained for this
value of β is represented in figure 5, where it can be seen only
one existing path was not included in the estimated graph.

As with the previous test using noiseless data, the path that
the algorithm failed to identify connects two different floors
of the testing environment. As the moment when each event
takes place is used as a feature in this method, paths that take
a long time to complete (such as the path in question) are less
likely to be included in the estimated graph, as the difference
between the temporal features in two events that form a trip
between two particularly distant nodes will be large. Reducing
the value of the time coefficient τ can help include these paths
in the estimated graph, but it also makes it more likely that
incorrect paths will be included.

Fig. 5. Estimated graph of hidden paths obtained with the event graph method
for tsim = 10800 s and β = 0.075. Green lines represent correctly identified
paths and blue lines represent false negatives.

In order to evaluate the effect of the time coefficient
τ another set of tests was run with τ = 1 × 10−4 for
tsim = 10800 s and β = {0, 0.025, 0.075, 0.125, 0.2} with
r = 2×10−3. The results of these tests can be seen in table VI.

β Number of detected edges Precision Recall F-measure

0 175 0.086 1 0.158
0.025 35 0.429 1 0.6
0.075 15 0.933 0.933 0.933
0.125 13 1 0.867 0.929
0.2 8 1 0.533 0.696

TABLE VI
RESULTS OF THE EVENT GRAPH METHOD FOR tsim = 10800 s AND

τ = 1× 10−4 .

While the results are mostly identical to those obtained with
τ = 2×10−4, for β = 0.075 the precision value is lower. The
graph obtained for this value of β can be seen in figure 6.

Fig. 6. Estimated graph of hidden paths obtained with the event graph method
for tsim = 10800 s, τ = 1 × 10−4 and β = 0.075. Green lines represent
correctly identified paths, red lines represent false positives and blue lines
represent false negatives.

In addition to the fact that the missing path between the two
floors is still not included in the estimated graph, there are
two new incorrect paths in the estimate. This means that even
relaxing the time coefficient τ enough to match events that do
not directly follow one another is still not enough to include



paths with such a long travel time as the one connecting the
two opposing stairwells on different floors.

These results demonstrate that while the event graph method
can not be as easily used with large data sets as the pairwise
method, for smaller amounts of data it can obtain more precise
results. Moreover, while the pairwise method showed a better
performance with the ideal noiseless color descriptors due to
not using temporal features, the event graph method is more
robust to noisy data, being able to obtain the same estimated
graph when using noiseless data as well as color descriptors
with uniform additive noise of amplitude r = 2× 10−3.

VI. CONCLUSIONS AND FUTURE WORK

In this work two automated methods for camera network
topology estimation were tested with different sets of sim-
ulated data. The graphs obtained during the testing were
compared with the ideal graphs containing all the off-camera
trajectories within the network, and the test results were
evaluated based on precision and recall metrics. For each test
multiple values of the sparsity coefficient β were tested with
the goal of finding the values of β that result in the best
estimated graph. In general there is a trade-off between the
two metrics we want to maximize so we used the F-measure
to select the best value of β for each test.

We were able to obtain favorable results with both methods,
with the event graph method demonstrating more robustness
to noise in the color descriptor data but performing worse
than the pairwise method with ideal data due to the effect
of using the event time as a feature. This suggests that the
pairwise method may be a better option for data with lower
noise values, while the event graph method can be used when
there is more noise in the data.

For the pairwise method, data sets with different numbers
of events were used for testing. The best values of β depend
on the number of events, with larger data sets requiring larger
values of the sparsity coefficient to obtain similar results. As
future work it would be important to test this method with
data from a different environment to evaluate how the same
values of β perform with different data sets. While we used
different simulations with different parameters and different
randomly generated trajectories, they were all based on the real
data from the HDA+ data set and shared the same transition
probabilities and temporal distributions, which means that the
method was not tested with varied data containing different
types of trajectories in different environments.

The event graph method was only tested with smaller sets
of data due to its greater computational complexity making
it impractical to use larger simulations for testing. The best
results were consistently obtained for the same value of β
across all the different tests, although as with the pairwise
method it would be useful to use data from a different
environment for future testing.

Both of the methods perform more poorly with smaller data
sets, requiring a sizeable amount of data to provide favorable
results. As the real data from the HDA+ data set amounts to a
relatively small number of events it was impossible to obtain

adequate estimates of the camera network topology from the
real data. Testing with a larger amount of real data would be
an important next step for future testing, as all the testing done
so far used simulated color descriptors with additive uniform
noise which do not properly reproduce all the challenges of
using real color descriptors obtained from camera images.
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Técnico, 2017.

[21] D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and V. Murino,
“Custom pictorial structures for re-identification,” in Proceedings of the
British Machine Vision Conference. BMVA Press, 2011, pp. 68.1–68.11.

[22] D. Figueira, M. Taiana, A. Nambiar, J. Nascimento, and A. Bernardino,
“The hda+ data set for research on fully automated re-identification
systems,” in European Conference on Computer Vision. Springer, 2014,
pp. 241–255.

[23] M. Buckland and F. Gey, “The relationship between recall and preci-
sion,” Journal of the American society for information science, vol. 45,
no. 1, pp. 12–19, 1994.

[24] N. Chinchor, “Muc-4 evaluation metrics,” in Proceedings of the 4th
conference on Message understanding. Association for Computational
Linguistics, 1992, pp. 22–29.


	Introduction
	Problem Definition
	Graph Estimation Method
	Topology Estimation Methods
	Pairwise method
	Event graph method

	Results
	Pairwise method
	Event graph method

	Conclusions and future work
	References

