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Abstract—This work focuses on the evaluation of the per-
formance of a Long Term Evolution (LTE) network through
the use of unsupervised automatic learning techniques. The
main objective is to detect groups of cells that show similar
performances and, consequently, identify the groups that perform
below the desired level.

Additionally, this work also aims to identify which cell config-
urations are associated with a better performance.

In order to fulfill the first objective, a methodology based on
the application of clustering algorithms to features extracted from
the original Key Performance Indicators (KPI) was developed.
The following algorithms were tested: K-means, Expectation-
Maximization (EM) using Gaussian Mixture Models (GMM), and
Spectral Clustering.

Regarding the second objective, Fisher’s exact test was used.
This test evaluates the independence between the configuration
values of the cells and the groups to which they belong.

Using this methodology it was verified that there is not a
significant difference in the results obtained using the different
algorithms. In the majority of the cases presented, only two
groups of cells were identified: one group consisting essentially
of the cells with the best performance and the other group
containing the worst performing cells.

As far as the connection between configuration data and
performance data is concerned, only one case, referring to a
parameter associated with the subscription capacity of the cells,
was detected.

I. INTRODUCTION

As the complexity of mobile networks increases due to
the increase of performance requirements and number of sub-
scribers, it becomes harder for the mobile network operators to
not only maintain but also optimize the performance of those
networks. As a result, mobile network operators are focusing
more and more in creating tools and procedures that aim to not
only assist radio engineers in the process of maintaining and
optimizing the mobile networks, but also making the network
itself more autonomous.

At the same time, Machine Learning (ML) and associated
technologies are revolutionizing the way current systems work,
by allowing machines to learn from available data and perform
actions that would normally be taken by humans. Thus, mobile
network operators can take advantage of this techniques to

assist in the network management and automation process,
increasing its efficiency and reducing costs.

The data used to evaluate the performance of a network is
composed by KPIs. Some work related with the application
of ML techniques to KPIs collected from mobile networks
has already been developed, as in [1], where unsupervised
learning techniques are used to automatically detect faults in
a LTE network

The main objective of this work is to develop a model that
is able to evaluate the performance of a LTE network, based
on KPIs collected from the network. The system should apply
unsupervised learning techniques in order to find cell groups
that present similar performances. Furthermore, the system
should classify those groups regarding the performance of the
cells that constitute them, depending on levels of performance
specified by the mobile network operator.

Additionally, this work also aims to analyze the relationship
between the configuration parameters and the obtained groups
of cells performance.

This work is organized as follows. Section II gives an
overview of the Performance Management (PM) and Con-
figuration Management (CM) data. Section III introduces the
algorithms and validation metrics used. Section IV presents the
methodology used. Section V summarizes the results regarding
the network performance evaluation. Section VI presents the
results regarding the correlation between performance and
configuration. Lastly, conclusions are drawn in Section VII.

II. PM AND CM DATA

The data used in this work was collected from a real LTE
network, deployed in a urban environment. It encompasses
both PM and CM data.

Each site may support from one up to three of the following
frequency bands: L800 (800 MHz), L1800 (1800 MHz) and
L2600 (2600 MHz).

A. PM Data

The PM data is composed by several KPIs, which were
collected periodically, every 15 minutes during 10 days, for
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each cell. Thus, the data collected for each cell is a multivariate
time-series.

In order to achieve the goals of this work it is necessary
to understand what each KPI represents and select the ones
that are more relevant to analyze the network performance.
Furthermore, each selected KPI is classified according to
KPI class to which it belongs: Accessibility, Integrity or
Availability. The description of each KPI is based on [2].

1) Accessibility:
• CB RACH fail% - indicates how often, in a Contention

Based (CB) Random Access Channel (RACH) procedure,
a transmitted RaMsg2 does not result in a successfully
received RaMsg3;

• Added E RAB Estab fail% - the fail rate for end-user
services that are carried by E-UTRAN Radio Access
Bearer (E-RAB)s included in the E-RAB setup procedure;

• Init E RAB Estab fail% - the fail rate for end-user
services that are carried by E-RABs included in the Initial
User Equipment (UE) Context setup procedure;

• RRC Estab fail% - the fail rate for Radio Resource
Control (RRC) connections establishment;

• S1 Estab fail% - the fail rate for the establishment of
signaling connections over the S1 interface.

2) Integrity:
• DL Throughput per UE(Mbps) - the average throughput

per user in the downlink, measured in Mbit/s;
• UL Throughput per UE(Mbps) - average throughput per

user in the uplink, measured in Mbit/s;
• DL Pdcp Cell Tput(Mbps) - average cell throughput

with respect to the Packet Data Convergence Protocol
(PDCP) layer in the downlink, measured in Mbit/s;

• UL Pdcp Cell Tput(Mbps) - average cell throughput
with respect to the PDCP layer in the uplink, measured
in Mbit/s;

• DL MAC Cell Tput(Mbps) - average cell throughput
with respect to the Medium Access Control (MAC) layer
in the downlink, measured in Mbit/s;

• UL MAC Cell Tput(Mbps) - average cell throughput
with respect to the MAC layer in the uplink, measured
in Mbit/s.

3) Availability:
• CellAvailMan perc - the percentage of time that a given

cell is available with respect to the time that has been
disabled due to a reconfiguration request performed by
the operator;

• CellAvailAuto perc - the percentage of time that the cell
is available with respect to the time that has been disabled
due to a fault;

• CellAvail perc - the overall percentage of time that the
cell is available.

The PM data goes through a preprocessing stage where any
artifacts and null values that the data may contain are removed.

Since the different frequency bands serve may serve dif-
ferent purposes, it was decided to split the PM dataset per
frequency band. Each resulting dataset is further divided per

KPI class, so the performance of the network is evaluated for
each frequency band and KPI class, individually.

B. CM Data

The CM data simply contains the configuration parameters
for each cell.

The original CM dataset contained 24 distinct configuration
features. However, since the performance of the network is
evaluated per frequency band, it was verified that, for each
frequency band, there were only 10 features that presented
two or more distinct values. Given that one of the goals of
this work is to analyze the link between the configuration
parameters and the performance of the obtained clusters, only
those 8 configuration parameters were considered. They are
the following:

• NOOFPUCCHCQIUSERS - number of Channel Qual-
ity Indicator (CQI) resources available on the Physical
Uplink Control Channel (PUCCH);

• NOOFPUCCHSRUSERS - number of Scheduling Re-
quest (SR) resources available on the PUCCH;

• NOCONSECUTIVESUBFRAMES - number of con-
secutive downlink sub-frames with positioning reference
signals;

• CELLSUBSCRIPTIONCAPACITY - normalized sub-
scription capacity of the cell. The value represents the
total capacity of the cell used for traffic load balancing
purposes;

• PDCCHCFIMODE - controls the Control Format Indi-
cator (CFI) used for the control region;

• LBTPNONQUALFRACTION - fraction of non-
qualified UEs at UE selection for throughput aware load
balancing;

• LBTPRANKTHRESHMIN - minimum threshold for
the relative gain at throughput aware load balancing;

• TRANSMISSIONMODE - defines the Transmission
Mode that shall be used for the UEs that are connected
to the cell;

• INTERFERENCETHRESHOLDSINRCLPC -
Threshold value for measured noise plus interference
level. If measured noise plus interference is higher
than interferenceThresholdSinrClpc, then the Signal to
Interference and Noise Ratio (SINR)-based UL Closed
Loop Power Control (CLPC) can be considered;

• RXSINRTARGETCLPC - SINR target value for the
Physical Uplink Shared Channel (PUSCH) SINR-based
CLPC;

III. CLUSTERING BACKGROUND

In order to find groups of cells with similar performances,
unsupervised clustering algorithms were used. Since different
clustering algorithms have distinct underlying principles and
assumptions, it is unclear which one fits the available data
the best. Consequently, different algorithms were considered:
K-means, EM using GMMs and Spectral Clustering.

Typically, the optimal number of clusters is unknown. In
such cases Clustering Validity Indexes (CVI) can be used.
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A. Clustering Algorithms

K-means [3] is a clustering algorithm that finds the clusters
by minimizing the sum of squared distances between each
cluster centroid and the respective cluster points, using a
greedy iterative approach. K-means is particularly suited for
convex shaped clusters, namely spherical shaped clusters, or
circular in two dimensions.

In EM clustering using GMMs [3], it is assumed that each
cluster follows a multivariate normal distribution, character-
ized by a mean and a covariance matrix. The EM approach
estimates the mean and covariance matrix associated with the
multivariate normal distribution of each cluster by maximizing
the probability of the observed points belonging, in fact,
to the estimated multivariate normal distribution. Since each
cluster is described by two parameters, mean and variance,
this approach is more flexible when compared to K-means,
being able to find elliptical shaped clusters.

The Spectral Clustering algorithm [4] is based on a simi-
larity graph, which is created using the Gaussian Radial Basis
Function (RBF) kernel as similarity measure [5]. A graph
Laplacian is then computed from the similarity matrix. From
the graph Laplacian, and assuming prior knowledge of the
desired number of clusters, k, the first k eigenvectors are
computed and used by the K-means to derive the final cluster
partition. The Spectral Clustering algorithm is able to find
non-convex clusters, as it is neither tied to any ideal cluster
spherical shape, as K-means, nor to elliptical shapes, as the
GMM approach.

B. Clustering Validation

Internal CVIs can be used to find the optimal input param-
eters when the ground truth of the data is not available. In this
work, only internal CVIs that evaluate both the separation and
compactness of the clusters were considered. The compactness
is related to how closely related the objects in a cluster are,
while the separation measures how well-separated the clusters
are. The considered CVIs were the following [6]: Silhouette,
Calinski-Harabasz (CH), Davies-Bouldin Index (DB), I index,
Dunn’s index and S Dbw.

IV. PROPOSED METHOD

The proposed method consists in a feature-based approach,
where new features are extracted through the comparison
of each time-series against desired targets for each KPI.
Even though this approach results in the loss of information
regarding the cell behavior, in the time domain, it allows to
evaluate each cell overall performance level and group the
cells accordingly. The methodology flowchart is illustrated in
Figure 1.

A. Feature Engineering

The feature engineering step corresponds to the process of
extracting new features from the original data. The process of
feature extraction consists in defining a set of target values
T = [T1, T2, ..., TM ], where each Tp corresponds to the target
value for the pth KPI, from the M considered KPIs. Then, for

Figure 1: Methodology flowchart.

each cell, c, and KPI, p, each measure, xcp t, acquired in the
instant t of the time-series of size N , is compared against the
defined target, Tp, for that KPI.

If the KPI is from the Accessibility group then the target is
said to be fulfilled if xcp i is lower than the target, since each
Accessibility KPI in the PM dataset corresponds to a fail rate.
The value of xcp i is then changed to 0 or 1 accordingly:

xcp t =

{
1, if xcp t ≤ Tp

0, otherwise
(1)

Contrarily, for an Integrity or Availability KPI, it is desired
that xcp i is greater than the target value. Thus, the new value
for xcp i is given by:

xcp t =

{
1, if xcp t ≥ Tp

0, otherwise
(2)

Thereupon, for each cell, c, and KPI, p, the ratio between
the number of times that KPI satisfies its defined target and
the total number of times the KPI was measured is computed:

featurecp =
1

N

N∑
t=1

xcp t (3)

A visual interpretation of the feature engineering process is
shown in Figure 2. Considering one cell, the KPI RRC Estab
fail% is plotted over the time that was measured, against the
target value for that KPI. The new feature generated from
this KPI, and all the remaining extracted features for that
matter, can be interpreted as the time period over the total
considered time that the defined target for the original KPI
was satisfied. Since the KPI shown in Figure 2 corresponds
to a fail percentage then satisfying the target means that the
measured value for the KPI is below its target.

Figure 2: Feature engineering example.
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(a) PM data before the feature engineering process.

(b) PM data after the feature engineering process.

Figure 3: PM data before and after the feature engineering
process.

Intuitively, every value obtained for the generated features
is comprised between 0 and 1, with 1 representing a cell that
was compliant with the target set for a KPI during the total
period of time in which the time series were obtained.

As a result, for each pair, cell and KPI, the correspondent
time series is converted into a single value, thus the resulting
dataset is composed by only one row per cell. This is exem-
plified for one KPI in Figure 3.

B. Clustering Stage

The next step consists in applying a clustering algorithm to
the dataset generated in the previous stage in order to find
groups of cells that present similar behaviours. This is an
iterative process:

1) Choose the clustering algorithm;
2) Run the clustering algorithm with different input pa-

rameters and evaluate the clustering result using the
Kolmogorov-Smirnov test;

3) Select the set of input parameters that give the best
clustering results using the metrics presented in Section
III-B.

Regarding step 2 of the above process, each pair of clusters
must have a distinct statistical behaviour for at least one feature
in order to consider the clustering result relevant [1]. This is
verified using the two sample Kolmogorov-Smirnov test [7], to
test if the observed values for a feature of two different clusters
are generated by the same distribution (null hypothesis). The
null hypothesis is rejected when the resulting p-value is lower
than the selected significance level. If there is at least one pair
of clusters that present a similar statistical behaviour for every
feature, meaning that the null hypothesis is never rejected,
then the number of clusters that originated that partition is
automatically discarded. The significance level used to test
the null hypothesis was 0.01.

Each one of the clustering algorithms presented in Section
III-A requires the number of clusters to be specified before-

hand. In this work, it was chosen to run the chosen clustering
algorithm for set of number of clusters that ranges from 2 to
8, to ensure that a wide enough range of possible partitions is
analyzed by the system.

In step 3, the set of input parameters that give the best par-
titioning of the data is attained using an election mechanism.
Each CVI presented in Section III-B contributes with one vote,
and the set of input parameters that gets more votes is the one
selected.

Once the set of input parameters that give the best partition-
ing result, according to the election mechanism, is identified,
the algorithm is performed again with the optimal input in
order to assign a label to each cell, identifying to which cluster
that cell belongs. Thus, this is called the labelling stage.

C. PM Analysis

After each cell has been labelled according to the cluster
to which it belongs, PM analysis is performed. This stage
includes the following actions:

• Data visualization - t-Distributed Stochastic Neighbour
Embedding (t-SNE) [8] is used for dimensionality re-
duction and the resulting points are plotted in a two-
dimensional space for visual inspection;

• Cluster scoring and classification - a score for each
cluster is computed. A higher score indicates a better
performance. The clusters are then classified based on
the obtained score;

• Feature distribution analysis - the distribution of each
feature per cluster is plotted allowing the user to gain
insight about the performance of each cluster regarding
each KPI.

The cluster score is a weighted average of the scores
computed for each feature considered, and is given by:

scorecluster =
1

M

M∑
p=1

αpscorefeature p (4)

where αp corresponds to a weight given to featurep and∑M
p=0 αp = 1 and scorefeature p is the score for the pth

feature of the considered cluster and is given by:

scorefeature = P (feature ≥ timethreshold) (5)

where timethreshold is a parameter that can take values
between 0 and 1 and is specified by the user depending on
the level of exigency desired. This score can be interpreted as
the probability of a cell in the cluster being compliant with
the target set for the feature being evaluated, for a period of
time above the timethreshold. This is illustrated in Figure 4,
where the timethreshold was set at 0.8. The intersection of the
vertical red line, representing the threshold, with the Empirical
Cumulative Distribution Function (ECDF) of a cluster gives
the value of P (feature < timethreshold). It is straightforward
to see that the probability of a cell belonging to cluster 1 being
compliant with the target defined for the RRC Estab fail% for
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more than 80% of the total period of time of the original time-
series, is greater than for a cell belonging to cluster 0. This
probability gives the scorefeature for each cluster.

Figure 4: Visual interpretation of the cluster feature score.

Through the combination of the cluster scoring and the
feature distribution analysis, one is able to immediately tell
which clusters have better performance and what are the most
distinct performance features.

D. CM Independence Evaluation

Regarding the CM features, the goal is to find the set
of configuration parameters that are most distinct between
clusters and evaluate if, for the class of KPIs being analyzed,
there is a correlation between them and the performance of
the cluster.

The process of identifying the most distinct configuration
parameters is based on the Fisher’s exact test of independence
[9] while the process of evaluating if there is a correlation be-
tween the configuration parameters and the performance relies,
at this stage, on the expertise of radio network engineers.

V. PM RESULTS

This section presents the results obtained by applying the
methodology described in Section IV. Given the high amount
of results due to the division per frequency band a KPI class,
only a few selected cases are discussed.

Additionally, the results for different clustering algorithms
are summarized and compared. Only the Accessibility and
Integrity classes were tested, as the Availability class, due to
the reduced number of features and nature of the same, is quite
straightforward to analyze.

The clustering and the t-SNE algorithms used are from the
Scikit-learn library [10].

The scores obtained for each cluster using Equation 4 were
computed with timethreshold = 0.8, unless explicitly stated
otherwise.

A. Targets

A reasonable choice regarding the targets for the KPIs is,
perhaps, the most influential step when applying the method-
ology presented in Section IV, as the dataset resulting from
the feature engineering step depends on that choice.

The targets should be defined taking into account the knowl-
edge of experts and the performance level that the operator
wants to provide.

The targets used in this work for the Accessibility class of
KPIs are presented in Table I.

Since all cells operating in the L800 frequency band have
a 10 MHz bandwidth, while all cells operating in both
L1800 and L2600 have a 20 MHz bandwidth, two sets of
Integrity targets, shown in Table II, were defined. Due to
the inherent difficulties in defining throughput targets, as
throughputs depend on multiple factors and a low throughput
is not necessarily bad, the approach taken for this case was
to compute, for each Integrity KPI, the 25th percentile with
respect to the 10 MHz and 20 MHz bandwidths.

For each one of the Availability KPIs, the target was set at
99.7%.

KPI Target [%]

CB RACH fail% 5
Added E RAB Estab fail% 0.01

Init E RAB Estab fail% 0.05
RRC Estab fail% 0.25
S1 Estab fail% 0.25

Table I: Targets for Accessibility KPIs.

Target [Mbps]
KPI L800 L1800, L2600

DL Tput per UE(Mbps) 12.6 15.8

DL Pdcp Cell Tput(Mbps) 7.2 8.6

DL MAC Cell Tput(Mbps) 8.1 9.5

UL Tput per UE(Mbps) 0.4 0.5

UL Pdcp Cell Tput(Mbps) 0.59 0.68

UL MAC Cell Tput(Mbps) 0.75 0.99

Table II: Targets for Integrity KPIs per frequency band.

B. Clustering using K-means

K-means was the first algorithm used to cluster the PM data
due to its simplicity.

The performance evaluation results presented in this section
include the Accessibility class for L800, and the Integrity and
Availability classes for L1800.

L800

The PM dataset for the L800 frequency band is constituted
by 219 cells.

Accessibility: Applying the K-means algorithm to the Ac-
cessibility data resulting from the feature engineering step with
the Accessibility targets presented in Table I, the most voted
number of optimal clusters was k = 2. The clusters can be
observed in Figure 5.

There are 79 cells belonging to cluster 0 while cluster 1
contains 140 cells.
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Figure 5: Clustering visualization for K-means in L800 (Ac-
cessibility).

The operator may choose to qualitatively classify the overall
cluster performance based on the obtained score. In this work,
to ease the result analysis, the following qualitative levels
of performance were considered: unsatisfactory, for a cluster
score below 0.25; below average, for a score between 0.25
and 0.5; average, for a cluster score between 0.5 and 0.75;
and above average for a cluster score greater than 0.75. The
quantitative and qualitative scores obtained for the clusters are
presented in Table III.

Cluster Number
of Cells Score Classification

0 79 0.32 Below average
1 140 0.57 Average

Table III: Cluster classification for K-means in L800 (Acces-
sibility).

Even though the main goal of the Kolmogorov-Smirnov
test is to guarantee that the obtained clusters are statistically
significant, it is also possible to gain knowledge regarding the
features that contribute the most for the attained clustering
partitions. The features that have a lower p-value for a pair of
clusters are the ones that better explain the difference between
those clusters. Furthermore, the visual comparison of the
histograms of each feature gives a more intuitive understanding
of the features that are more distinct between clusters. Figure
6 shows the histograms of each cluster for the features that
presented the lowest p-values for the Kolmogorov-Smirnov
test.

Even though Figure 6 presents the three most distinct
features between the two clusters, these features are not
necessarily the ones that better explain the obtained scores for
the clusters. The visualization of the ECDFs of the features for
each cluster allows one to understand which are the features
that most contribute to lower the score of the clusters. In Figure
7 are presented the ECDFs of the features that better explain
the scores presented in Table III.

It can be verified that the cells of both clusters have a
poor performance regarding the CB RACH fail% KPI. For
the other two features it can be seen that approximately half
of the cells belonging to cluster 1 are compliant with the

(a) S1 Estab fail target com-
pliance ratio.

(b) Init E RAB Estab fail
target compliance ratio.

(c) RRC Estab fail target
compliance ratio.

Figure 6: Histograms of Accessibility features for K-means in
L800.

(a) CB RACH fail target
compliance ratio.

(b) Init E RAB Estab fail
target compliance ratio.

(c) RRC Estab fail target
compliance ratio

Figure 7: ECDFs of Accessibility features for K-means in
L800.

timethreshold while none of the cells belonging to cluster 0
are compliant with that same value.

Since the behaviour that each cell presents is heavily in-
fluenced by its location, it can be interesting to observe if
there are geographical areas with a high density of similarly
performing cells. Figure 8, obtained with [11], shows where
the cells are located, with each cell being identified with the
color of the cluster to which it belongs.

It is possible to identify a few areas where the concentration
of cells belonging to one of the clusters, is predominant.
Moreover, there is a specific area, highlighted in the figure
with a blue circle, which is mainly populated with cells from
cluster 0, thus being a zone with accessibility issues for the
800 MHz frequency band.
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Figure 8: Clusters geographical distribution for Accessibility
KPIs (L800).

L1800

The PM dataset for the L1800 frequency band contains 69
cells.

Integrity: In this scenario, two clusters were obtained.
Cluster 1 only contains 9 cells while cluster 0 contains 60
cells, thus being the most representative cluster of the dataset.
Table IV shows the score for each cluster as well as its overall
performance classification, regarding the Integrity class.

Cluster Number
of Cells Score Classification

0 60 0.99 Above average
1 9 0.72 Average

Table IV: Cluster classification for K-means in L1800 (In-
tegrity) and timethreshold = 0.8.

It is interesting to see how the classification of a clus-
ter changes by changing the value of timethreshold. Let
us consider a more demanding cluster evaluation by setting
timethreshold = 0.9 instead of timethreshold = 0.8, which
was the value used thus far. The scores and classification
obtained in this case are presented in Table V.

Cluster Number
of Cells Score Classification

0 60 0.83 Above average
1 9 0.25 Unsatisfactory

Table V: Cluster classification for K-means in L1800 (In-
tegrity) and timethreshold = 0.9.

Comparing Tables IV and V, it can be verified that cluster
0 still has an above average performance. However, the score
of cluster 1 drops drastically after changing the value of
timethreshold, being classified as unsatisfactory.

Figure 9 exemplifies the difference in the score obtained for
the feature UL Tput per UE target compliance ratio with
timethreshold set to 0.8 and 0.9.

It can be verified that the ECDF of cluster 1 is shifted to the
right of the red line, representing timethreshold = 0.8, thus the

Figure 9: Score comparison for different timethreshold values.

score obtained with respect to that value is 1. Contrarily, for
timethreshold = 0.9, identified with the green line, the score
for cluster 0 is nearly 0, with only one cell being compliant
with the target for a period of time above the timethreshold.

Availability: Regarding the Availability KPIs, it could be
argued that only the Cell Avail perc could be used, as this
KPI presents the overall availability of the cell, thus containing
the information provided by the other two KPIs. However, this
KPI also provides insight about the cell sleep mode. Thus, if
one would analyze the availability of the cells, based solely
on the Cell Avail perc KPI, it could be mislead into thinking
that the cell was unavailable due to a fault or a reconfiguration
request when in fact it was in sleeping mode.

The optimal number of clusters obtained for each CVI was
k = 2.

The resulting clusters can be visualized in Figure 10. Cluster
0 contains 44 cells while cluster 1 contains 25 cells.

Figure 10: Clustering visualization for K-means in L1800
(Availability).

Through the visualization of the histograms for each feature,
in Figure 11, the situation explained above is verified.

It can be observed that even though both clusters would
present a score close to 1 for the features CellAvailAuto tar-
get compliance ratio and CellAvailMan target compliance
ratio, the same would not be verified for cluster 0 in regard to
CellAvail target compliance ratio.

Thus, the overall score for the Availability should be com-
puted taking into account only the features CellAvailAuto tar-
get compliance ratio and CellAvailMan target compliance
ratio. In this case it is straightforward to see that both clusters
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(a) CellAvailAuto target
compliance ratio.

(b) CellAvailMan target
compliance ratio.

(c) CellAvail target
compliance ratio.

Figure 11: Histograms of Availability features for K-means in
L1800.

would have a score near 1, even for a value of timethreshold
as high as 0.995.

Clustering Results Comparison

The results obtained with the three tested algorithms regard-
ing the Accessibility and Integrity KPIs for each frequency
band is summarized in Tables VI, VII and VIII.

KPI Class Algorithm Clusters Number of cells Score Classification

Accessibility

K-means 2
79 0.32 Below average
140 0.57 Average

EM with
GMM

2
15 0.2 Unsatisfactory
204 0.5 Average

Spectral 2
89 0.33 Below average
130 0.58 Average

Integrity

K-means 2
89 0.11 Unsatisfactory
130 0.67 Average

EM with
GMM

2
68 0.09 Unsatisfactory
151 0.6 Average

Spectral 2
90 0.11 Unsatisfactory
129 0.68 Average

Table VI: Results comparison for L800.

KPI Class Algorithm Clusters Number of cells Score Classification

Accessibility

K-means 3
4 0.7 Average

26 0.8 Above average
39 0.85 Above average

EM with
GMM

3
5 0.76 Above average

31 0.86 Above average
33 0.83 Above average

Spectral 2
18 0.81 Above average
51 0.85 Above average

Integrity

K-means 2
9 0.72 Average

60 0.99 Above average
EM with

GMM
2

6 0.58 Average
63 0.99 Above average

Spectral 2
20 0.85 Above average
49 1 Above average

Table VII: Results comparison for L1800.

KPI Class Algorithm Clusters Number of cells Score Classification

Accessibility

K-means 3
6 0.57 Average

35 0.79 Above average
80 0.89 Above average

EM with
GMM

2
14 0.71 Average
107 0.86 Above average

Spectral 3
8 0.63 Average

32 0.8 Above average
81 0.88 Above average

Integrity

K-means 2
20 0.56 Average
101 0.99 Above average

EM with
GMM

2
15 0.53 Average
106 0.97 Above average

Spectral 2
21 0.57 Average
100 0.99 Above average

Table VIII: Results comparison for L2600.

Through the comparison of the results obtained for each
clustering algorithm, it can be verified that, using the pro-
posed mechanism to find the values of the input parameters
which give the optimal partitioning, there were no significant
differences between the clustering algorithms. As such, the
K-means algorithm was considered the best out of the three
tested algorithms, since it has less input parameters to tune,
thus making it easier to use.

In addition, the proposed election mechanism with multiple
CVIs to acquire the optimal configuration parameters, and
therefore the optimal number of clusters, predominantly selects
k = 2 for the optimal partitioning. This selection allows to
capture the overall performance of the network, by identifying
a cluster mostly composed of the best performing cells and
a cluster mostly composed of the worst performing cells.
However, it fails to find clusters of cells with more specific
behaviours.

Lastly, it can be interesting to compare the results for the
different frequency bands. The L800 frequency band shows
an overall worse performance, for the Integrity and Acces-
sibility classes, with the obtained clusters being classified
as unsatisfactory, below average or average. On the other
hand, the L1800 and L2600 frequency bands show a better
performance, with all clusters having either average or above
average performance.

VI. CM RESULTS

This section presents the process used to correlate the
performance of the clusters with the configuration parameters
of the cells that constitute those clusters and, consequently,
finding the optimal cell configuration.

The CM independence evaluation is performed after the
clustering and PM analysis stages, as seen in Figure 1. Thus,
the cells are labelled with the cluster to which they belong
and those clusters have already been classified with respect to
their performance for the KPI class being evaluated.

As briefly explained in Section IV, firstly, it is applied an
independence test, for each configuration feature, to test if
there are distinct configurations regarding that feature for cells
belonging to different clusters. In this regard, Fisher’s exact
test was used.
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Then, in case a correlation between a CM feature and the
clusters is found, i.e. the values for that feature are dependent
of the cluster, an engineer should evaluate that result to
conclude if that configuration parameter as, in fact, any impact
on the performance of class of KPIs being evaluated. If yes,
then it should be straightforward to understand which values
of the configuration feature are associated with the clusters
that exhibit better performances.

A. Fisher’s Exact Test

Fisher’s exact test of independence is used when one has
two nominal variables and wants to know, with a level of
certainty defined through the significance level, whether the
proportions of one variable change depending on the values
of the other variable. The null hypothesis then corresponds
to the relative proportions of one variable being independent
of the value of the other variable. This test can be used
in the problem of connecting the configuration parameters
with the performance of each cluster because both the labels
that identify the cluster and the configuration features can be
considered nominal variables, since the optimal number of
clusters k is forced to be small (between 2 and 8) and the
observations of each one of the available CM features can be
classified into a small number of categories.

Furthermore, the null hypothesis in this context is that,
for each configuration feature, its relative proportions are
independent of the labels (i.e. clusters). When this null hypoth-
esis is rejected it means that different clusters have different
proportions regarding the values of the configuration parameter
being evaluated which, in turn, might indicate that there is a
direct correlation between that configuration parameter and
the performance of each cluster. In such case, that should be
further investigated by an expert to identify if there is, in fact,
a direct influence of the parameter value on the behaviour of
the cells regarding the KPI class being evaluated and also what
is the configuration that results in a better performance.

B. Use Case: Cell Subscription Capacity

The use case presented in this section is related to the
clustering results obtained using K-means, for both the 800
MHz and 2600 MHz frequency bands, when evaluating the
performance of the respective cells regarding the Accessibility
KPI class. The significance level used for the Fisher’s exact
test was 0.05. If the p-value obtained for a CM feature when
testing the null hypothesis is lower than the significance level,
the null hypothesis is rejected, otherwise is accepted. If the
null hypothesis is rejected than it can be inferred that there is
a correlation between the performance level of a cluster and
the configuration of the cells.

Let us consider the 800 MHz frequency band first. For this
frequency band and accessibility features, two clusters were
obtained. As presented in Table III, cluster 1 has an average
performance with a score of 0.57, while cluster 0 has below
average performance with a score of 0.32.

Fisher’s exact test was then applied for each CM feature
with respect to the obtained clusters. The results are presented
in Table IX.

CM Feature p-value Independent?

CELLSUBSCRIPTIONCAPACITY 0.000004 No
LBTPNONQUALFRACTION 0.058 Yes

LBTPRANKTHRESHMIN 0.058 Yes
RXSINRTARGETCLPC 0.14 Yes

INTERFERENCETHRESHOLDSINRCLPC 0.31 Yes
NOCONSECUTIVESUBFRAMES 0.41 Yes

NOOFPUCCHCQIUSERS 0.54 Yes
NOOFPUCCHSRUSERS 0.54 Yes

PDCCHCFIMODE 0.75 Yes

Table IX: Fisher’s exact test results for L800 (Accessibility).

From IX it can be verified that the only feature that is depen-
dent on the cluster is the CELLSUBSCRIPTIONCAPACITY.
Figure 12 shows the percentage of cells, for each one of the
clusters, with respect to the configuration they have for the
CELLSUBSCRIPTIONCAPACITY feature.

Figure 12: Proportions for CELLSUBSCRIPTIONCAPACITY
per cluster in L800 (Accessibility).

It can be seen that cluster 0, that has a lower score, contains
a higher percentage of cells with the CELLSUBSCRIPTION-
CAPACITY feature set to 75000 when compared to cluster
1.

For the 2600 MHz frequency band and accessibility fea-
tures, a similar situation is verified, where the clusters with
worse accessibility performance have a higher proportion of
cells with CELLSUBSCRIPTIONCAPACITY higher than the
default value, which is 1000.

Taking these two cases into account, it seems that setting
a higher value for CELLSUBSCRIPTIONCAPACITY results
in a lower performance regarding the accessibility.

The CELLSUBSCRIPTIONCAPACITY is a feature
that impacts the load balancing in a cell. Let
cellSubscriptionCapacity be the variable associated
with the CELLSUBSCRIPTIONCAPACITY feature.
The cellSubscriptionCapacity is used to compute the
SubscriptionRatio as follows:

SubscriptionRatio =

∑
qciSubscriptionQuanta

cellSubscriptionCapacity
(6)

where qciSubscriptionQuanta is a weight given to
an established E-RAB based on its CQI. Thus, the
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SubscriptionRatio can be viewed as the load in the cell.
A higher value of cellSubscriptionCapacity will cause the
value of SubscriptionRatio to drop, meaning that the cell
will try to accommodate more users which may cause acces-
sibility issues.

The CELLSUBSCRIPTIONCAPACITY feature is only
taken into account when another CM feature, that controls
the load balancing process, is active. Since there was no
information available regarding the feature that activates the
load balancing mechanism, it was assumed in this work that
that feature was, in fact, activated.

VII. CONCLUSION

Since the dataset to which the clustering algorithms are ap-
plied depend on the set of targets defined, it is straightforward
to understand that the definition of these targets is a key aspect
of the methodology proposed. Thus, the targets for each KPI
should be specified by the mobile network operator according
to the desired level of performance for the network.

Moreover, it was also presented a possible qualitative clas-
sification for the clusters based on their score. Yet again, the
score depends on a target, timethreshold, that should be set
in agreement with the requirements of the network operator
regarding the level of performance of the network. It was
verified, for the 1800 MHz frequency band and Integrity KPIs,
that a slight change in the value of timethreshold results in
a very distinct classification for one of the clusters obtained
using K-means.

Regarding the clustering results using K-means, it was
observed that the optimal number of clusters is given by the
election mechanism with multiple CVIs is predominantly two,
with one cluster mainly containing the best overall performing
cells, for the KPI class and frequency band being evaluated,
while the other is predominantly composed by the poorest
performing cells.

Through the visualization of the attained clustering, using
t-SNE, it is possible to infer about the separability of the data.
For the Accessibility class of KPIs in L800 it was observed
that it did not exist a clear separation between the two attained
clusters.

Spectral Clustering and EM using GMM were also tested
regarding the Accessibility and Integrity in the three frequency
bands. It was verified that there were no significant differences
in the results obtained with both EM with GMM and Spectral
Clustering, when compared to the ones obtained with K-
means. Therefore, given the simplicity in tuning the input
parameters for the K-means algorithm, this was considered
as the best out of the three.

Regarding the performance per frequency band, it was
observed that the L800 exhibits a worse performance, for the
Integrity and Accessibility classes, with the obtained clusters
being classified as unsatisfactory, below average or average.
The clusters obtained for both the L1800 and L2600 frequency
bands are classified with either average or above average
performance, thus it can be inferred that the cells operating

in these frequency bands exhibit better overall performance
when compared to the ones operating in L800.

The obtained results showed that the system is able to find
different groups of cells regarding their performance and most
importantly, is able to detect clusters of cells that show a
performance level that is below the desired. However, it mostly
captures the overall performance regarding the features being
evaluated, having trouble to find clusters with more specific
behaviours.

Regarding the configuration parameters, only a use case,
related with the feature CELLSUBSCRIPTIONCAPACITY,
was detected. For the L800 and L2600 frequency bands it was
verified that the clusters with better performance, regarding the
Accessibility features, are constituted by a higher percentage
of cells with a lower configuration value for CELLSUB-
SCRIPTIONCAPACITY, while for the clusters with lower
performance, the opposite happens.
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