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After a great theoretical and experimental progress, it is now known that neutrinos have mass.
However, there is no theoretical explanation for their almost vanishing mass and other issues. The
Seesaw mechanism answers some of these and creates new phenomenology that can help answer
several other open problems in Particle Physics, like the matter-antimatter asymmetry. In this
thesis, a minimal extension to the Standard Model with three positive chirality neutrinos is devised,
under the Seesaw Type I framework. Notation is fixed and a novel parametrization is exploited.
This parametrization enables to control all deviations from unitarity through a single 3× 3 matrix,
which is denoted by X, that also connects the mixing of the light and heavy neutrinos in the context
of type I seesaw. This parametrization is adequate for a general and exact treatment, independent
of the scale of the right handed neutrino mass term. The models with controlled one-loop mass
corrections are classified according to the heavy neutrino mass hierarchies they must possess - cases
A, B and C. Cases B and C can have sizable deviations from unitarity. This means that if an almost
sterile neutrino is discovered in the near future, heavy neutrinos mass hierarchies might be like the
ones of case B - at least two almost degenerate neutrinos, or like the ones of case C - at least two
eV or KeV neutrinos.
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I. INTRODUCTION

The discovery of neutrino oscillations and at least
two non-vanishing neutrino masses, provides clear ev-
idence for Physics Beyond the Standard Model (SM).
The simplest extension of the SM accommodating two
non-vanishing neutrino masses involves the addition of
at least two right-handed neutrinos. The most general
gauge invariant Lagrangian includes a right-handed bare
Majorana mass matrix M . As a result, the scale of M
can be much larger than the electroweak scale, which
leads to an elegant explanation for the smallness of neu-
trino masses, through the seesaw mechanism [1], [2], [3],
[4], [5]. The seesaw mechanism necessarily implies vi-
olations from 3 × 3 unitarity of the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix, as well as Z-mediated
lepton flavour violating couplings. The introduction of
these heavy right-handed neutrinos can also have pro-
found cosmological implications since they are a crucial
component of the Leptogenesis mechanism to create the
observed Baryon Asymmetry of the Universe (BAU) [6].
At this stage, it should be emphasized that within the
seesaw type I framework, the observed pattern of neu-
trino masses and mixing does not require that all the
heavy neutrino masses be much larger than the elec-
troweak scale. In this paper, we carefully examine the
question of whether it is possible, within the seesaw type
I mechanism, to have experimentally detectable viola-
tions of 3 × 3 unitarity, taking into account the present
experimental constraints. In particular, we address the
following questions:

i) In the seesaw type I mechanism, is it possible to have
significant deviations from 3× 3 unitarity of the leptonic
mixing matrix? By significant, we mean deviations which
are sufficiently small to conform to all present stringent

experimental constraints on these deviations, but are suf-
ficiently large to be detectable in the next round of ex-
periments. These experimental constraints arise from
bounds on rare processes. ii) In the case the scenario de-
scribed in (i) can indeed be realised within the framework
of seesaw type I, what are the requirements on the pat-
tern of heavy neutrino masses? For definiteness, we will
work in a framework where three right-handed neutrinos
are added to the spectrum of the SM. Our analysis starts
with the introduction of the unitary 6× 6 mixing matrix
V, characterising all the leptonic mixing. We write this
6× 6 mixing matrix in terms of four blocks of 3× 3 ma-
trices. Using unitarity of V, we show that the full matrix
V can be expressed in terms of only three blocks of 3× 3
matrices. Then we apply these results to the diagonali-
sation of the 6× 6 neutrino mass matrix, including both
Dirac and Majorana mass terms. Through the use of a
specially convenient exact parametrisation of the 6 × 6
leptonic unitary mixing matrix, we evaluate deviations
from 3 × 3 unitarity and derive the maximum value of
the lightest heavy neutrino mass which is required in or-
der to generate significant deviations from unitarity in
the framework of the seesaw type I mechanism. The pa-
per is organised as follows. In the next section, we review
the seesaw mechanism, define our notation and introduce
a specially convenient exact parametrisation of the 6× 6
leptonic mixing matrix V. We evaluate the size of the de-
viations of 3× 3 unitarity in the present framework and
derive a constraint on the magnitude of the mass of the
heavy Majorana neutrinos, in order to have significant
deviations of unitarity. Sections IV and V dwell on the
importance of finite one-loops corrections for these kind
of models [7]. Numerical examples are given in section
VI. Finally we present our conclusions in the last section.
The research work on which part of this thesis is based
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on can be found at [8].

II. DEVIATIONS FROM UNITARITY IN THE
LEPTONIC SECTOR

A. Type I Seesaw mechanism

In the context of the Type I seesaw mechanism, with
only three right-handed neutrinos added to the La-
grangian of the SM, the leptonic mass terms are given
by:

Lm = −[νLM
ννR +

1

2
νTRC MνR + l0Lmll

0
R] + h.c.

= −[
1

2
χTLC M∗χL + lLmllR] + h.c. . (1)

There is no loss of generality in choosing a weak basis
where ml is already real and diagonal. The analysis that
follows is performed in this basis. The neutrino mass
matrix M is a 6× 6 matrix and has the form:

M =

(
0 Mν

MνT MR

)
. (2)

This matrix is diagonalised by the unitary transformation

VTM∗V = D i.e. V†M = DVT , (3)

where

D =

(
d 0
0 dR

)
, (4)

with d = diag.(m1,m2,m3) and dR = diag.(M1,M2,M3)
denoting respectively, the light and the heavy Majorana
neutrino masses. The unitary 6 × 6 matrix V is often
denoted in the literature as:

V =

(
K R
S Z

)
, (5)

where K, R, S and Z are 3 × 3 matrices. For K and Z
non singular, we may write

V =

(
K 0
0 Z

)(
1I Y
−X 1I

)
; −X = Z−1S; Y = K−1R .

(6)
From the unitary relation V V† = 1I(6×6), we promptly
conclude that

Y = X† . (7)

The matrix V can thus be written:

V =

(
K KX†

−ZX Z

)
. (8)

We have thus made clear that the unitary 6 × 6 matrix
V can be expressed in terms of three independent 3 × 3
matrices. From the unitarity of V, we obtain:

K
(
1I +X†X

)
K† = 1I ,

Z
(
1I +X X†

)
Z† = 1I .

(9)

showing that the matrix X parametrizes the deviations
from unitary of the matrices K and Z. More explicitly:

K K† = 1I−K X†X K† ,
Z Z† = 1I− Z XX† Z† .

(10)

From Eq. (3) we derive:

−X†Z†MνT = dKT , (11)

K†Mν −X†Z†MR = −dXTZT , (12)

Z†MνT = dRX
∗KT , (13)

XK†Mν + Z†MR = dRZ
T , (14)

replacing Z†MνT from Eq. (13) into Eq. (11) we get

d = −XT dR X , (15)

which implies that:

X = ±i
√
d−1R Oc

√
d , (16)

where Oc is a complex orthogonal matrix, i.e., OTc Oc = 1I,
or explicitly:

|Xij | =
∣∣∣∣(Oc)ij√mj

Mi

∣∣∣∣ . (17)

It should be stressed that the parametrisation of the 6×6
unitary matrix V given by Eq. (8) has the especial prop-
erty of allowing to connect in a straightforward and sim-
ple way the masses of the light and the heavy neutrinos
through an orthogonal complex matrix Oc, as can be seen
from Eqs. (15) and (16). This is an important new result
which plays a crucial rôle in our analysis. Previously, in
a variety of contexts, there have been various attempts
at describing the possibility of having non-unitary lepton
mixing [23]. The key point of our analysis is its general-
ity. The parametrisation of Eq. (8) allows one to write
the unitary 6× 6 mixing matrix V in terms of two quasi-
unitary matrices K and Z and a matrix X which controls
the deviations from unitarity of both K and Z. This is
explicitly shown in Eq. (10). The analysis we present here
has the advantage of leading to a clearcut quantification
of the phenomenological non-unitarity bounds in terms
of the related 6 × 6 lepton mixing matrix parameters.
Another important point is the fact that, unlike in the
case of Ref. [25], we do not assume conservation of lepton
number. In the sequel, we shall also present a clear and
straightforward relation between the non-unitary devia-
tions and the scale of the neutrino Dirac mass matrix.

Since Oc is an orthogonal complex matrix, not all of
its elements need to be small; furthermore, not all the
Mi need to be much larger than the electroweak scale, in
order for the seesaw mechanism to lead to naturally sup-
pressed neutrino masses. These observations about the
size of the elements of X are specially relevant in view of
the fact that some of the important physical implications
of the seesaw model depend crucially on X. In particu-
lar, the deviations from 3× 3 unitarity are controlled by
X, as shown in Eq. (10).
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Given the importance of the matrix X, one may ask
whether it is possible to write the 6×6 unitary matrix V
in terms of 3×3 blocks, where only 3×3 unitary matrices
enter, together with the matrix X. It can be shown that
the matrix V can be written:

V =

(
K R
S Z

)

=

 Ω
(√

1I +X†X
)−1

Ω
(√

1I +X†X
)−1

X†

−Σ
(√

1I +X X†
)−1

X Σ
(√

1I +X X†
)−1


(18)

where Ω and Σ are 3× 3 unitary matrices given by:

Ω = UKU
† Σ = WZ W † (19)

and U , W are the unitary matrices that diagonalise re-
spectively X†X and XX†:

U† X†X U = d2X ; W †XX† W = d2X (20)

Where UK and WZ defined by:

UK ≡ K U
√

(1I + d2X) WZ ≡ Z W
√

(1I + d2X)

(21)
are in fact unitary matrices.

As will be explained in the next section, this will al-
low us, in our analysis, to trade the matrix K by the
combination UKU

† which we identify as the best fit for
UPMNS derived under the assumption of unitarity, mul-
tiplied by the remaining factor that parametrises the de-
viations from unitarity.

B. On the Size of Deviations from Unitarity

In the framework of the type I seesaw, it is the block K
of the matrix V that takes the rôle played by UPMNS ma-
trix at low energies in models with only Dirac-type neu-
trino masses. Clearly, in this framework, K is no longer a
unitary matrix. However, present neutrino experiments
are putting stringent constraints on the deviations from
unitarity. In our search for significant deviations from
unitarity of K, we must make appropriate choices for
the matrix X in order to comply with the experimental
bounds, while at the same time obtain deviations that
are sizeable enough to be detected experimentally in the
near future. Our aim is to show how one can achieve
this result with at least one of the heavy neutrinos with a
mass at most at the TeV scale, without requiring unnatu-
rally small Yukawa couplings and still have light neutrino
masses not exceeding one eV.

Deviations from unitarity [26], [27], [28],[29], [30], [32]
of K have been parametrised as the product of an Her-
mitian matrix by a unitary matrix [30]:

K = (1I− η)V (22)

where η is an Hermitian matrix with small entries. In
order to identify the different components of our matrix
K, given in Eq. (18), with the parametrisation of Eq. (22)
we rewrite K as:

K = UKU
†
(√

1I +X†X
)−1

=

[
UKU

†
(√

1I +X†X
)−1

UU†K

]
UKU

†
(23)

inside the square brackets we wrote the Hermitian matrix
that we identify with (1I−η), and which will parametrise
the deviations from unitarity. The matrix V ≡ UKU

† is
a unitarity matrix which is identified with UPMNS ob-
tained from the standard parametrisation [33] for a uni-
tary matrix. One can also write:[

UKU
†
(√

1I +X†X
)−1

UU†K

]
≡

[
UK

(√
1I + d2X

)−1
U†K

] (24)

where d2X is a 3 × 3 diagonal matrix, introduced in
Eq. (20). Identifying the second expression of Eq. (24)
to (1I− η) we derive:

η = 1I− UK
(√

1I + d2X

)−1
U†K ≈

1

2
UK d2X U†K (25)

for small d2X . The matrix UPMNS is then fixed making
use of the present best fit values obtained from a global
analysis based on the assumption of unitarity. As pointed
out in [30], from the phenomenological point of view it
is very useful to parametrise K with the unitary matrix
on the right, due to the fact that experimentally it is
not possible to determine which physical light neutrino is
produced, and therefore, one must sum over the neutrino
indices. As a result, most observables depend on KK†

which depends on the following combination:(
KK†

)
αβ

= δαβ − 2ηαβ +O(η2αβ) (26)

In Ref. [30] global constraints are derived on the ma-
trix η through a fit of twenty eight observables including
the W boson mass, the effective mixing weak angle θW ,
several ratios of Z fermionic decays, the invisible width of
the Z, several ratios of weak decays constraining EW uni-
versality, weak decays constraining CKM unitarity and
some radiative lepton flavour violating (LFV) processes.
It can be shown that, using the properties of orthogonal
complex matrices, only one of the dXi , which we take
for definiteness as dX3

, can have a significant value (e.g.
dX3
≈ 10−2), while the other two are negligible. In fact

from the eigenvalue equation of X we find:

d2X1
d2X2

d2X3
= m1m2m3

M1M2M3

d2X1
d2X2

+d2X1
d2X3

+d2X2
d2X3

d2X1
+d2X2

+d2X3

/ O(m3

M1
)

(27)
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choosing d2X3
large enough to be experimentally relevant

forces the other two eigenvalues to be extremely small.
Using this in Eq. (25), one obtains:

η =
1

2
dX

2
3 ·

 |UK13|2 UK13 · U∗K23 UK13 · U∗K33

UK23 · U∗K13 |UK23|2 UK23 · U∗K33

UK33 · U∗K13 UK33 · U∗K23 |UK33|2

 .

(28)
With this one sees that when dX

2
3 approaches 0, all en-

tries of η will approach zero. Furthermore, if the entries
of UK are of same order of magnitude, such that every
product of UKij yields ∼ 1, η is a democratic matrix,
dominated by dX

2
3. The experimental bounds given in

Ref. [30] constrain much more the entries that are pro-
portional to UK23 than the rest. Looking at Eq. (26), one
concludes that KK†−I ∼ −2η, for a small η. Therefore:

|η| ≤

 1.25× 10−3 1.20× 10−5 1.35× 10−3

1.20× 10−5 2.00× 10−4 6.00× 10−4

1.35× 10−3 6.00× 10−4 2.8× 10−3

 .

(29)
Thus, to achieve such non-democratic deviations from
unitarity like in [eq. 29], one will need a non-democratic
UK matrix. This suggests that, if one wants a model that
has deviations from unitarity matching the experimental
bounds, one will need to find a UK with the 23 entry
small enough such that the entries proportional to it are
controlled by it and the rest is controlled by dX

2
3.

One identifies UK .U
† with the best fit for UPMNS ,

which contains the Majorana phases, αi, without any
constrain. Therefore, to achieve a small UK23 one needs
to control the quantity:

Line2[UPMNS ]× Column3[U ] =

U21
PMNS · U13 + U22

PMNS · eiα1 · U23 + U23
PMNS · eiα2 · U33 .

(30)

Thus, one can choose the αi such that there is a cancel-
lation and the above quantity is small.

For an Oc of the form:

Oc =

0
√
x2 + 1 ix

0 ix −
√
x2 + 1

1 0 0

 , (31)

one gets U13 = 0. This puts too much strain on the
process of controlling UK23. Thus, the following Oc can
be used:

Oc = O′c.O =

0
√
x2 + 1 ix

0 ix −
√
x2 + 1

1 0 0

 ·
 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


(32)

This angle θ will generate a controllable non-zero U13

without changing the eigenvalues of X. This procedure
proves that that the Majorana phases may have a crucial
role on the size of a given entry of η.

The main conclusion of this section is that, for Mi

mj
>>

1, the only eigenvalue of X†X that contributes to the

deviations from unitarity is dX
2
3. For a fixed light and

heavy mass scale, this variable depends on the parameter
x, which is totally free. Thus, the conclusion seems to
be that one can generate any size of deviations from uni-
tarity, independently of the masses involved. However,
there is a catch. In this general approach to the seesaw
mechanism, the Dirac mass matrix, Mν , is proportional
to the matrix X, and, thus, also depends on the param-
eter x. In conclusion, the desirable size of the Yukawa
couplings constrains the parameter space.

III. CONSTRAINING THE DEVIATIONS FROM
UNITARITY USING THE ENTRIES OF THE

DIRAC MASS MATRIX

In this section, it will become clear that the entries of
the Dirac mass matrix constrain the possible deviations
from unitarity for a given value of the lightest heavy neu-
trino mass. In other words, it is shown that there is a
correlation among:

• The size of deviations from 3 × 3 unitarity of the
leptonic mixing matrix K

• The mass of the lightest heavy neutrino, M1.

From Eq. (13) one obtains:

Mν = KX†dR (Z∗)
−1

. (33)

As said before, the experimental fact that K is almost
unitary implies that Z is also almost unitary. Therefore
the Dirac mass matrixMν is of the same order asX times
dR. Notice that the scale of dR may be of the order of
the top quark mass, so that indeed the Yukawa couplings
need not be extremely small.

The elements of the neutrino Dirac mass matrix, Mν ,
are connected to the deviations from unitarity of the lep-
tonic mixing matrix, K, in the following way:

Mν = UK

(√
(1I + d2X)

)−1

dX W † dRW
∗
(√

(1I + d2X)

)
WT
Z ,

(34)

where Eqs. (20), (21), (23), (24) were used. An inter-
esting quantity that gives an insight on the order of the
entries of Mν is:

Tr
[
M
ν
M
ν†]

= Tr

(√(1I + d2
X

) )−1

dX W
†
dR W

∗ (
1I + d

2
X

)
W
T
dR W dX

(√(
1I + d2

X

) )−1
 .

(35)

As previously emphasized, deviations from 3× 3 unitar-
ity in the leptonic mixing matrix, K, are controlled by
the matrix X. For X = 0, there are no deviations from
unitarity. Small deviations from unitarity correspond to
dX small and, in that case, one has, in a very good ap-
proximation:

Tr
[
MνMν†] ≈ Tr [dX W †d2RW dX

]
= Tr

[
d2X W †d2RW

]
,

(36)
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where the terms with powers higher than 2 of dX were
neglected. This can be written as:

Tr
[
MνMν†] = d2X1

(
M2

1 |W11|2 +M2
2 |W21|2 +M2

3 |W31|2
)

+ d2X2

(
M2

1 |W12|2 +M2
2 |W22|2 +M2

3 |W32|2
)

+ d2X3

(
M2

1 |W13|2 +M2
2 |W23|2 +M2

3 |W33|2
)
.

(37)
Thus, one finds in good approximation:

Tr
[
MνMν†] ≈ d2X3

(
M2

1 |W13|2 +M2
2 |W23|2 +M2

3 |W33|2
)
.

(38)
Using the unitary of W :

Tr
[
MνMν†] ≈

d2X3
M2

1

(
1 +

(
M2

2

M2
1

− 1

)
|W23|2 +

(
M2

3

M2
1

− 1

)
|W33|2

)
,

(39)

which, with the choice M3 ≥M2 ≥M1, leads to:

d2X3
M2

1 ≤ Tr
[
MνMν†] =

∑
i,j

|Mν
ij |2 . (40)

From Eq. (40), it is clear that for significant values of
dX3

, M1 cannot be too large in order to avoid a too large
value of Tr

[
MνMν†], which in turn would imply that

at least one of the
∣∣Mν

ij

∣∣2 is too large. This can be seen

in Fig. (1), where the plot of 1
2d

2
X3

versus M1 is pre-

sented. This is done for a large x2, the parameter of the
matrix Oc. For the case when x2 << 1,the deviations
from unitarity are totally controlled by the heavy mass
scale. Both cases yield similar plots. Significant values
of d2X3

can only be obtained for M1 ≤ 1 TeV , in the
large x region. Of course that for a very small M1, to
obtain deviations from unitarity of this order (∼ 10−3),
Tr
[
MνMν†] would yield a very small result and this is

also not wanted.
Thus, the quantity Tr

[
MνMν†] constrains the light-

est heavy neutrino mass by giving a lower and an up-
per bound, for a given quantity of d2X3

. In the following

plot, it is required that Tr
[
MνMν†] ≤ m2

t . To create
them, the case of normal ordering was considered, and
the values of light neutrinos masses mi, were varied up
to m3 = 0.5 eV. Concerning the heavy Majorana masses
Mi, M3 was allowed to reach values of the order of 104mt

and the Oc were randomly generated with a large x. In
Fig. (1), the condition |η12| ≤ 2× 10−5 is imposed.

IV. THE IMPORTANCE OF LOOP
CORRECTIONS

Loop corrections can be of two kinds: renormalizable
and intrinsically finite. The renormalizable pieces con-
sist of corrections to the tree level parameters already
present in the Lagrangian. In the case of corrections to

FIG. 1: Maximum deviations from unitarity as a
function of M1, generated under the condition that

Tr(MνMν†) ≤ m2
t and |η12| ≤ 2× 10−5.

the masses, these are suppressed with respect to the tree
level ones by the loop factor 1

16π2 and by being propor-
tional to leptonic Yukawa couplings [31]. The intrinsi-
cally finite corrections are terms which need to be finite
since there are no counterterms that could be used to
absorb possible divergences arising from them. They are
only suppressed by the loop factor, and, thus, can be po-
tentially large. At one-loop level, the generalized mass
matrix, M from Eq. (2) turns into:

M = M tree +M loop , (41)

where

M tree =

(
0 Mν

MνT MR

)
, M loop =

(
δML δMν

(δMν)T δMR

)
.

(42)
Using the previous equation one can conclude that δML

will be the potentially dangerous correction, since it is
the one without a tree level counterpart. The renormal-
izable and suppressed corrections are given by δMν . Dis-
cussing δMR is cumbersome since MR and Mi are free
parameters of the theory.

The corrections stem from the two point function
known as neutrino self energy, Σ(p), where p is the neu-
trino momentum. This is calculated in the mass basis,
then Eq. (3) is used to transform it to the interaction
basis:

M loop = V Σ(p)V T . (43)

The diagrams one should consider in order to calculate
Σ(p) at one-loop are given in Fig. 2. Fig. 2 should be
seen in the following way: if A = Z,H, φZ then B = χK
or else if A = φ±,W±, then B = l∓ and

χ =

(
n
N

)
, ν0L = (K R)PLχ , ν

′
L
0 = (S Z)PLχ , (44)

as in Eq. (1) and where n are the light neutrino states
and N the heavy neutrino states.
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FIG. 2: Loop Diagrams used to calculate the neutrino
self energy.

V. HOW TO CONTROL LIGHT NEUTRINO
LOOP MASS CORRECTIONS

In very good approximation the loop generated mass
term is given by:

δML ≈
g2

64π2m2
W

R
[
3LM (mZ) + LM (mH)

]
RT , (45)

where

LM (mB) =


M3

1
log(M2

1/m
2
B)

M2
1/m

2
B
−1

0 0

0 M3
2

log(M2
2/m

2
B)

M2
2/m

2
B
−1

0

0 0 M3
3

log(M2
3/m

2
B)

M2
3/m

2
B
−1

 .

(46)

Controlling light neutrino loop mass corrections, reduces
to control the quantity given in Eq. (45). Since LM (mB)
are, in general, large there are only three possibilities in
order to generate a small δML:

A Having a very small R, such that R
(
LM (mB)

)
RT is

suppressed.

B Having a R with entries of arbitrary order of magni-
tude but with a given structure such that combined
with a proper choice of LM (mB) it yields a small
R
(
LM (mB)

)
RT due to cancellations.

C Having two small heavy neutrino masses (of the or-
der of the eV or KeV , for example), such that two of
the columns of LM (mB) are small while the remain-
ing heavy neutrino has a large mass. Along with the
choice of a special type of Oc such that one of the rows
of X has small entries, leading to a column with small
entries in R. This column should match the one col-
umn of LM (mB) that is not small, i.e., the one that
corresponds to the heavy neutrino with large mass.
This way, R

(
LM (mB)

)
RT is suppressed. 1

1 A scenario with 3 light heavy neutrino would also work but it is
disfavoured due to always leading to unnaturally small neutrino
Yukawa couplings, independently of the chosen deviations from
unitarity.

VI. NUMERICAL EXAMPLES AND THE
EFFECT OF DEVIATIONS FROM UNITARITY

ON LOOP CORRECTIONS

This section is organized as follows. First, examples for
the three models in which light neutrino loop mass cor-
rections are controlled are presented: For case A- small
R, and, thus, small deviations from unitarity, type II -
sizable deviations from unitarity with quasi-degenerate
heavy neutrinos and type III - sizable deviations from
unitarity with two light heavy neutrinos.

The case A example is given for normal ordering and
includes an analysis of the effect of the deviations from
unitarity on the variation of the heaviest light neutrino
mass after loop corrections.

The case B examples are given for normal and inverted
ordering, each for a different pattern of deviations from
unitarity. For the normal ordering scenario, an analy-
sis of the effect of the deviations from unitarity on the
variation of the heaviest light neutrino mass after loop
corrections is also given.

A final case C example is given for normal ordering
with M1 of the order of the eV , M2 of the order of the
KeV and a large M3, with sizable deviations from uni-
tarity.

The numerical examples are given in the following ta-
bles, where the deviations from unitarity are expressed
by the hermitian matrix η, defined in Eq. (25). The first
row contains quantities that are the same at tree and loop
level - heavy neutrino masses, Dirac mass matrix, Mν

and Heavy neutrino mass matrix, MR. The second row
contains relevant quantities - the light neutrino masses,
the matrix X and the mixing matrix that connects light
and heavy neutrinos through electroweak processes, R -
at tree level. The third row contains the same quantities
as the second row, but at one-loop level. The mixing ma-
trix K has entries in the UPMNS 1σ allowed range, both
for tree and one loop level. The differences of the squared
light neutrino masses, ∆m2

ij , at one loop level are in the
1σ range of the values given in [34]. All quantities with
units of mass, except the light neutrino masses which are
in eV , are expressed in terms of the top quark mass mt.
The matrix WZ , defined in Eq. (21), was chosen to be

WZ =

 1 0 0
0 0 1
0 1 0

 , (47)

since there are no experimental bounds for the Z matrix.

A. Case A: Small Deviations from Unitarity

For the example given in Table I the used Oc was of the
type given in Eq. (32) with θ = π

3 and x = 4.8. The Ma-
jorana phases were taken to be α1 = α2 = 0. The loop
corrections become controlled near the minimum possi-
ble value for the deviations from unitarity d2X3 ∼ m

M , as
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FIG. 3: m3 after loop corrections as a function of d2X3,
generated in the example given in Tab. I, varying the
value of the parameter x, while Tr[MνMν†] ≤ m2

t and
with everything else kept constant.

for small x one has X ≈ −i
√

d
dR

. Higher level loop cor-

rections on the example given in Tab. I are not expected
to be very big due to the smallness of the entries of the
R matrix.

B. Case B: Sizable Deviations from Unitarity with
two Quasi-degenerate Heavy Neutrinos

For the example given in Table II the used Oc was of
the type given in [eq. 32] with θ = π

3 and x = 2.36×105.

The used Majorana phases were α1 = 53
58π, α2 = 19

34π.
The loop corrections are essentially constant, indepen-
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FIG. 4: m3 after loop corrections as a function of d2X3,
generated in the example given in Tab. II, varying the
value of the parameter x, while Tr[MνMν†] ≤ m2

t and
with everything else kept constant.

dently of the size of the deviations from unitarity d2X3.
This happens due to the cancelling structure of R and
because of the quasi-degeneracy of M1 and M2. Higher
level loop corrections on the example given in Tab. II
are not expected to be very big due to the persistence of
structure of R after loop corrections.

For the example given in Table III the used Oc was of

the type:

Oc =

0 0 1
1 0 0
0 1 0

·
√x2 + 1 0 ix

ix 0 −
√
x2 + 1

0 1 0

·
 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ,

(48)

with θ = π
10 and x = 2.44 × 105. The used Majorana

phases were α1 = 3
2π, α2 = 47

80π.

C. Case C: Sizable Deviations from Unitarity with
two Light Heavy Neutrinos

For the example given in Table IV the used Oc was of
the type given in Eq. (32) with θ = π

3 and x = 0.78. The

used Majorana phases were α1 = 52
125π, α2 = 389

200π.
This situation is possible because of the interplay of

three things. The order of magnitude of the masses M1

and M2, the big deviations from unitarity and the Oc
chosen to be like in Eq. (32). As the deviations from
unitarity are sizable, and X is of this type, its third row
is very small, thus cancelling the effect of a very large
M3 on eq. (45). Furthermore, because of the smallness
of M1 and M2, the first two entries of Eq. (46) are small,
thus controlling the loop generated mass matrix δML.

Studying the effect of the variation of the parameter
x in these type of models, as done in Figs. (3, 4), is
cumbersome, since x doesn’t control the deviations from
unitarity for these type of models. This happens because
these models achieve sizable deviations from unitarity for
x ∼ 1. The only way to decrease the deviations from
unitarity is increasing the heavy neutrino masses, and
this, of course, has a big effect on the loop corrections.
Summarizing, it’s not possible to isolate the effect of the
deviations of unitarity on the loop corrections for these
type of models.
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TABLE I: Example for case A, with Normal Ordering of light neutrino masses. This example gives the following
phenomenological important quantities: |mββ | = 5.97× 10−3 eV , mβ = 9.67× 10−3 eV , and Nν = 2.999.

Heavy Neutrino Masses (mt) |Mν | (mt) Tr
[
MνMν†] (m2

t ) |MR| (mt)M1 = 30

M2 = 60

M3 = 100


 1.02× 10−5 6.08× 10−8 1.10× 10−6

1.19× 10−5 3.52× 10−7 3.41× 10−6

7.97× 10−6 3.72× 10−7 4.32× 10−6

 3.41×10−10

 3.03× 101 4.20× 101 6.77

4.20× 101 7.64× 10−1 9.38

6.77 9.38 9.90× 101


Tree Level Light Neutrino Masses (eV ) |η|tree Xtree Rtreem1 = 0.0062

m2 = 0.00902

m3 = 0.0542


 2.89× 10−14 3.40× 10−14 2.29× 10−14

3.40× 10−14 4.06× 10−14 2.72× 10−14

2.29× 10−14 2.72× 10−14 1.91× 10−14


 −1.46× 10−7

(
−2.04× 10−7

)
i 2.30× 10−7(

−1.06× 10−7
)
i 1.41× 10−7

(
1.66× 10−7

)
i(

−8.85× 10−9
)
i 0

(
−4.94× 10−8

)
i


 1.3× 10−7 −

(
1.47× 10−7

)
i 1.02× 10−7 +

(
9.37× 10−8

)
i 6.9× 10−9 −

(
4.97× 10−9

)
i

−1.97× 10−7 −
(
1.19× 10−7

)
i 8.24× 10−8 −

(
1.43× 10−7

)
i 6.68× 10−10 −

(
2.85× 10−8

)
i

−1.01× 10−7 +
(
1.19× 10−7

)
i −8.29× 10−8 −

(
7.32× 10−8

)
i 7.69× 10−10 −

(
4.04× 10−8

)
i


One Loop Light Neutrino Masses (eV ) |η|loop Xloop Rloopm1 = 0.00543

m2 = 0.0102

m3 = 0.0505


 2.92× 10−14 3.41× 10−14 2.27× 10−14

3.41× 10−14 4.09× 10−14 2.72× 10−14

2.27× 10−14 2.72× 10−14 1.88× 10−14


 1.39× 10−7 +

(
6.56× 10−9

)
i 1.98× 10−9 −

(
2.16× 10−7

)
i −2.24× 10−7 +

(
4.54× 10−10

)
i

4.60× 10−9 −
(
1.00× 10−7

)
i −1.50× 10−7 −

(
1.44× 10−9

)
i 2.90× 10−10 +

(
1.62× 10−7

)
i

2.90× 10−10 +
(
8.15× 10−9

)
i −4.07× 10−10 +

(
4.82× 10−10

)
i 5.04× 10−11 +

(
4.95× 10−8

)
i


 1.3× 10−7 −

(
1.47× 10−7

)
i 1.02× 10−7 +

(
9.37× 10−8

)
i 6.9× 10−9 −

(
4.97× 10−9

)
i

−1.97× 10−7 −
(
1.19× 10−7

)
i 8.24× 10−8 −

(
1.43× 10−7

)
i 6.68× 10−10 −

(
2.85× 10−8

)
i

−1.01× 10−7 +
(
1.19× 10−7

)
i −8.29× 10−8 −

(
7.32× 10−8

)
i 7.69× 10−10 −

(
4.04× 10−8

)
i



TABLE II: Example for case B, with Normal Ordering of light neutrino masses. This example gives the following
phenomenological important quantities: |mββ | = 6.58× 10−3 eV , mβ = 1.01× 10−2 eV and Nν = 2.989.

Heavy Neutrino Masses (mt) |Mν | (mt) Tr
[
MνMν†] (m2

t ) |MR| (mt) M1 = 3

M2 = 3 + 1× 10−10

M3 = 50


 0.140 4.12× 10−13 6.49× 10−7

0.000876 2.06× 10−12 2.32× 10−6

0.171 1.84× 10−12 3.17× 10−6

 0.0488

 7.15× 10−10 2.99 1.76× 10−4

2.99 2.14× 10−11 3.85× 10−5

1.76× 10−4 3.85× 10−5 5.00× 101


Tree Level Light Neutrino Masses (eV ) |η|tree Xtree Rtreem1 = 0.00507

m2 = 0.0100

m3 = 0.0522


 1.09× 10−3 6.82× 10−6 1.33× 10−3

6.82× 10−6 4.27× 10−8 8.34× 10−6

1.33× 10−3 8.34× 10−6 1.63× 10−3


 −0.0206 −0.0328i 0.0351

−0.0206i 0.0328 0.0351i(
−1.13× 10−8

)
i 0

(
−6.85× 10−8

)
i


 −0.0262− 0.0201i −0.0201 + 0.0262i 4.78× 10−9 +

(
4.53× 10−10

)
i

0.000137 + 0.000154i 0.000154− 0.000137i −4.46× 10−8 −
(
1.28× 10−8

)
i

−0.0066 + 0.0398i 0.0398 + 0.0066i −5.12× 10−8 −
(
4.92× 10−9

)
i


One Loop Light Neutrino Masses (eV ) |η|loop Xloop Rloopm1 = 0.00491

m2 = 0.0100

m3 = 0.0504


 1.09× 10−3 6.82× 10−6 1.33× 10−3

6.82× 10−6 4.27× 10−8 8.33× 10−6

1.33× 10−3 8.33× 10−6 1.63× 10−3


 −0.0203 +

(
9.27× 10−6

)
i 6.29× 10−6 + 0.0330i −0.0350 +

(
5.33× 10−7

)
i

−9.27× 10−6 − 0.0203i −0.0330 +
(
6.29× 10−6

)
i −5.33× 10−7 − 0.0350i

2.77× 10−14 −
(
1.14× 10−8

)
i 9.27× 10−11 +

(
2.11× 10−12

)
i 2.68× 10−15 +

(
6.85× 10−8

)
i


 −0.0262− 0.0201i −0.0201 + 0.0262i 4.78× 10−9 +

(
4.53× 10−10

)
i

0.000137 + 0.000154i 0.000154− 0.000137i −4.46× 10−8 −
(
1.28× 10−8

)
i

−0.0066 + 0.0398i 0.0398 + 0.0066i −5.12× 10−8 −
(
4.92× 10−9

)
i



TABLE III: Example for case B, with Inverted Ordering of light neutrino masses. This example gives the following
phenomenological important quantities: |mββ | = 1.76× 10−2 eV , mβ = 4.97× 10−2 eV and Nν = 2.991.

Heavy Neutrino Masses (mt) |Mν | (mt) Tr
[
MνMν†] (m2

t ) |MR| (mt) M1 = 3

M2 = 9

M3 = 9 + 1× 10−10


 0.425 3.23× 10−12 5.56× 10−7

0.00434 1.49× 10−12 5.31× 10−7

0.432 1.93× 10−12 5.47× 10−7

 0.367

 1.54× 10−10 8.98 1.48× 10−7

8.98 5.35× 10−11 5.61× 10−8

1.48× 10−7 5.61× 10−8 3.00


Tree Level Light Neutrino Masses (eV ) |η|tree Xtree Rtreem1 = 0.0509

m2 = 0.0516

m3 = 0.00852


 1.12× 10−3 1.14× 10−5 1.13× 10−3

1.14× 10−5 1.16× 10−7 1.16× 10−5

1.13× 10−3 1.16× 10−5 1.15× 10−3



(
9.66× 10−8

)
i
(
−2.99× 10−7

)
i 0

−0.0420i −0.0137i 0.0181

0.0420 0.0137 0.0181i


 1.68× 10−7 −

(
7.89× 10−8

)
i 0.00532 + 0.0330i 0.0330− 0.00532i

1.69× 10−7 +
(
5.18× 10−8

)
i −0.000225− 0.000256i −0.000256 + 0.000225i

−1.80× 10−7 −
(
2.80× 10−8

)
i −0.0148 + 0.0305i 0.0305 + 0.0148i


One Loop Light Neutrino Masses (eV ) |η|loop Xloop Rloopm1 = 0.0501

m2 = 0.0508

m3 = 0.00828


 1.11× 10−3 1.14× 10−5 1.13× 10−3

1.14× 10−5 1.16× 10−7 1.16× 10−5

1.13× 10−3 1.16× 10−5 1.15× 10−3


 1.10× 10−9 +

(
7.73× 10−8

)
i 2.78× 10−10 +

(
3.05× 10−7

)
i 1.94× 10−11 −

(
1.74× 10−11

)
i

−0.0000374 + 0.0428i 0.000154− 0.0110i 0.0180−
(
5.06× 10−6

)
i

0.0428 + 0.0000374i −0.0110− 0.000154i −5.06× 10−6 − 0.0180i


 1.68× 10−7 −

(
7.89× 10−8

)
i −0.00532− 0.033i 0.033− 0.00532i

1.69× 10−7 +
(
5.18× 10−8

)
i 0.000225 + 0.000256i −0.000256 + 0.000225i

−1.8× 10−7 −
(
2.8× 10−8

)
i 0.0148− 0.0305i 0.0305 + 0.0148i



TABLE IV: Example for case C, with Normal Ordering of light neutrino masses. This example gives the following
phenomenological important quantities: |mββ | = 1.13× 10−3 eV , mβ = 1.03× 10−2 eV and Nν = 2.999.

Heavy Neutrino Masses (mt) |Mν | (mt) Tr
[
MνMν†] (m2

t ) |MR| (mt)M1 = 2.88× 10−11

M2 = 1.44× 10−8

M3 = 5.76× 1012


 0.226 3.62× 10−13 3.24× 10−11

0.749 2.25× 10−12 8.69× 10−11

1.02 1.73× 10−12 1.22× 10−10

 1.66

 5.76× 1012 9.01 4.93× 102

9.01 1.54× 10−11 1.43× 10−9

4.93× 102 1.43× 10−9 5.66× 10−8


Tree Level Light Neutrino Masses (eV ) |η|tree Xtree Rtreem1 = 0.00500

m2 = 0.00987

m3 = 0.0627


 1.30× 10−3 1.86× 10−5 1.32× 10−3

1.86× 10−5 1.58× 10−6 1.88× 10−5

1.32× 10−3 1.88× 10−5 1.35× 10−3


 −0.0217 −0.0562i 0.0407

−0.00158i 0.00154 0.00297i(
−3.31× 10−14

)
i 0

(
−2.21× 10−13

)
i


 −0.0488 + 0.0141i 0.000655 + 0.00218i −3.21× 10−14 +

(
2.26× 10−14

)
i

−0.000699 + 0.000381i −0.000271− 0.00156i 2.22× 10−14 +
(
1.28× 10−13

)
i

0.0486− 0.0179i −0.000815− 0.00230i 2.55× 10−14 +
(
1.76× 10−13

)
i


One Loop Light Neutrino Masses (eV ) |η|loop Xloop Rloopm1 = 0.00467

m2 = 0.00986

m3 = 0.0504


 1.23× 10−3 6.91× 10−6 1.32× 10−3

6.91× 10−6 1.35× 10−6 6.92× 10−6

1.32× 10−3 6.92× 10−6 1.34× 10−3


 0.0202− 0.0000320i 0.0000754 + 0.0559i −0.0418− 0.000156i

9.71× 10−7 + 0.00147i −0.00153 +
(
2.86× 10−6

)
i 5.67× 10−6 − 0.00305i

1.75× 10−16 −
(
4.22× 10−14

)
i 5.20× 10−18 −

(
3.55× 10−16

)
i −3.82× 10−17 −

(
2.20× 10−13

)
i


 0.0488− 0.0141i −0.000655− 0.00218i −3.21× 10−14 +

(
2.26× 10−14

)
i

0.000305− 0.00015i 0.000282 + 0.00158i 2.21× 10−14 +
(
1.28× 10−13

)
i

−0.0485 + 0.0179i 0.000815 + 0.0023i 2.55× 10−14 +
(
1.76× 10−13

)
i


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VII. CONCLUSIONS

In this work, a novel parametrization, adequate for
the exact treatment of Seesaw Type I models indepen-
dent of the scale of MR was exploited. This revealed a
matrix, X, defined in Eq. (16), responsible for the de-
viations from unitarity of the leptonic mixing matrix K.
This parametrization clarifies the relation between heavy
neutrino masses and deviations from unitarity which is
explained in section III and can be summarized in Eq.
(40), which means that to achieve natural values for the
Yukawa couplings one needs to take both the size of
the deviations from unitarity and the scale of the heavy
neutrino masses into account. The possibly dangerously
large one-loop corrections were studied, and from that,
three types of models with controlled loop corrections
were suggested.

Case A models, with small deviations from unitarity,
without constraints on the heavy neutrinos masses and
with unnaturally small Yukawa couplings. These are very
complicated to falsify experimentally.

Case B models, with two quasi-degenerate heavy neu-
trino masses of the order of the top mass, sizable de-
viations from unitarity and without unnaturally small
Yukawa couplings. These are appealing because they can

be observed in the next round of experiments at the LHC.
Moreover, it would be interesting to study if the existence
of at least two quasi-degenerate heavy neutrinos enables
the possibility of resonant Leptogenesis, providing an ex-
planation to the observed matter-anti matter asymmetry
[38, 39].

Case C models, with two light heavy neutrinos, siz-
able deviations from unitarity and without unnaturally
small Yukawa couplings. These are appealing because
KATRIN will be able to explore the existence of at least
one heavy (mostly sterile) neutrino in the mass range of
1− 18.5 KeV , with a mixing to the active neutrino νe as
|R11|2 ≥ 10−6 [40]. Furthermore, they can explain the
anomalies from short baseline oscillation experiments [41]
and can give explanations to other Physics puzzles like
dark matter (when M2 has a mass on the KeV scale like
in the example given in [Tab. IV]) as pointed out in [41].

The question of the possibility of Thermal Leptogene-
sis for case A and case C is highly relevant, and requires
further study. All models explain the smallness of light
neutrino masses and case C models have a dark matter
candidate. Experimental input from KATRIN, the LHC
and neutrino oscillation experiments will be fundamen-
tal to discern which, if any, of these models might match
with Nature.
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