

Biofilm formation in *Candida glabrata:* the role of the Transcription Factor Tec1

Diana Gomes Pereira

Thesis to obtain the Master of Science Degree in

Biotechnology

Supervisor(s): Prof. Dr. Miguel Nobre Parreira Cacho Teixeira

Examination committee

Chairperson: Prof. Dr. Leonilde de Fátima Morais Moreira Supervisor: Prof. Dr. Miguel Nobre Parreira Cacho Teixeira Members of the Committee: Dr. Dalila Madeira Nascimento Mil-Homens

October 2018

"O saber não ocupa lugar" Avô Manuel Gomes

Acknowledgments

First of all, I want to specially thank my supervisor **Professor Miguel Nobre Parreira Cacho Teixeira** for giving me the opportunity to develop my thesis in his research team. Thank you for all the times that you put your work aside to help me whenever I knocked your office's door, all the guidance and support made this the most delightful experience.

I also want to thank **Professor Isabel Sá Correia** for my integration in the Biological Sciences Research Group, where I loved to develop my project.

For the collaboration in the transcriptomic analysis herein accomplished, I thank **Professor Geraldine Butler** and her team, from University College of Dublin. For the supply of *Candida glabrata* mutants used in this work, I must thank **Professor Hiroji Chibana**, from University of Chiba, Japan. For the study developed in HPLC analysis of ergosterol levels, I also thank **Professor Nuno Mira** for his availability and assistance. To **Professor Arsénio Fialho**, **PhD Dalila Mil-Homens** and **Msc Andreia Pimenta**, I must thank the help in the adhesion assays, providing the human vaginal epithelium cells.

MSc Mafalda Cavalheiro and **MSc Pedro Pais**, my growth and autonomy in the laboratory relied on your crucial help, thank you for the patient and your amazing friendship.

Also to my colleagues **Raquel Califórnia**, **Susana Vagueiro**, **Rita Simões** and **Romeu Viana**, thank you for the help during the development of this work.

My family, specially my father Aires Pereira and my aunt Natalina Gomes, you boosted my personal fulfillment and seek of knowledge through all the most decisive moments of my life. My twin, Inês Pereira, I have not the gift of words like you, but I could not even find a way to describe what you mean to me. I live to be your safe harbor, but no one knows how much I need you and how much I want you to be proud of me.

A special thank you for all my **friends**, who have been the people who support me no matter what and always are behind what makes me smile. **Rute Araújo**, **Melanie Domingues**, **Tânia Ferreira**, **Lara Alves**, **Sofia Santos**, **Mariana Horta** and **Oumaima Daiboun**, you were particularly closer to me during this step of my life, I owe you every moment of joy.

For all of these people and for the most dedicated, amazing, beautiful, perfect, warrior, loved and missed **mother** of all time, **Adília Pereira**. This was your dream and my goal was to follow it: to study. "Her death the dividing mark: Before and After. And though it's a bleak thing to admit all these years later, still I've never met anyone who made me feel loved the way she did, (...)" The goldfinch, Donna Tartt.

This work was financially supported by Fundação para a Ciência e Tecnologia (FCT), contracts PTDC/BBB-BIO/4004/2014, PTDC/BII-BIO/28216/2017 and UID/BIO/04565/2013, and Programa Operacional Regional de Lisboa 2020, contract LISBOA-01-0145-FEDER-022231.

Abstract

C. glabrata is the second most prevalent cause of human candidiasis. One of the factors underlying the successful colonization and infection by this pathogen is its ability to form resilient biofilms. It is, thus, important to understand the molecular basis behind this phenomenon, in order to guide the design of more successful therapeutic options.

The present work aimed to understand the role and the mechanisms of action of the transcription factor Tec1, encoded by ORF CAGL0M01716g, in biofilm formation. Phenotypic analysis showed that Tec1 is intimately involved in biofilm formation, adhesion to biotic surface and pseudohyphal growth. Subcellular localization assessment through fluorescence microscopy demonstrated that nuclear accumulation is not necessary for its activation. Motivated by these findings, the transcriptomic remodeling occurring in C. glabrata cells upon 24 h of biofilm formation, and the role of Tec1 in these changes, was analysed through RNA-sequencing. Tec1 was found to control roughly one third of the differentially expressed genes in biofilm cells, including genes related to adhesion, cell wall organization, ergosterol biosynthesis, carbon and nitrogen metabolism and stress and drug resistance. Specifically, Tec1 was found to control the step-wise up-regulation of the adhesin encoding genes CgAED2, CgPWP5 and CgAWP13, occurring upon 6 h, 24 h and 48 h of biofilm formation, suggesting a particularly important role in later stages of biofilm formation. Furthermore, Tec1 was shown to indirectly regulate the decrease in ergosterol content registered in biofilm cells, when compared to those growing in planktonic cultivation. Among the identified targets of Tec1, CgAUR1, CgAED2 and CgSUR2 genes were found to play a role in biofilm formation. Finally, in silico analysis revealed the most likely Tec1 recognition sequences "CAATGGBA", "CAMATACA", "CGATGSCC" and "GCGATGAS".

Altogether, these results highlight the important role played by the transcription factor Tec1 in *C. glabrata* biofilm formation, making it a promising new target for antifungal therapeutics.

Keywords: Candida glabrata, CgTEC1, biofilm formation, RNA-seq

Resumo

C. glabrata é a segunda causa mais prevalente de candidíase humana. Um dos fatores subjacentes ao sucesso da colonização e infeção por parte deste patógeno é a sua capacidade de formar biofilmes resilientes. É, portanto, importante entender a base molecular por trás deste fenómeno, a fim de orientar a conceção de novas opções terapêuticas mais bem-sucedidas.

O trabalho aqui apresentado destinou-se a estudar o papel e os mecanismos de ação do fator de transcrição Tec1, codificado pela ORF CAGL0M01716g, na formação de biofilme. Análises fenotípicas mostraram que o Tec1 está intimamente envolvido na formação de biofilme, adesão a superfícies bióticas e diferenciação de pseudohifas. A observação da localização subcelular do Tec1 feita com microscopia de fluorescência demonstrou que a acumulação no núcleo não é uma característica necessária à ativação deste fator de transcrição. Com base nestas observações, a remodelação transcriptómica que ocorre em células de C. glabrata após 24h de formação de biofilme, bem como o papel do Tec1 nestas alterações, foram analisadas com recurso à técnica de sequenciação de RNA. Tec1 revelou controlar cerca de um terço dos genes com expressão alterada em células crescidas em biofilme, os quais estão relacionados com adesão, organização da parede celular, biossíntese de ergosterol e resistência a stress e fármacos. Mais especificamente, o Tec1 mostrou controlar a ativação gradual dos genes CgAED2, CgPWP5 e CgAWP13, que codificam adesinas, ao longo de 6 h, 24 h e 48 h de formação de biofilme, sugerindo um papel particularmente importante em estágios mais avançados de desenvolvimento do biofilme. Para além disso, foi demonstrado que a diminuição do conteúdo de ergosterol observada em células de biofilme, quando comparadas com células após crescimento planctónico, é indiretamente regulada pelo Tec1. Dentro dos alvos do Tec1, os genes que indicaram ser relevantes na formação de biofilme CgAUR1, CgAED2 e CgSUR2. Por último, uma análise in silico revelou que as sequências de reconhecimento do Tec1 mais prováveis são "CAATGGBA", "CAMATACA", "CGATGSCC" e "GCGATGAS".

Todos estes resultados realçam o papel importante que o fator de transcrição Tec1 tem na formação de biofilme, fazendo deste um futuro alvo promissor para aplicações terapêuticas antifúngicas.

Palavras-chave: Candida glabrata, CgTEC1, formação de biofilme, RNA-seq

Table of contents

Acknowledgments				
Abstract	6			
Resumo	8			
list of Tables				
list of Figures				
ist of Abbreviations				
1- Introduction	21			
1.1- Candidiasis	21			
1.2- Candida species	23			
1.2.1- Candida glabrata 23				
1.3- Biofilm formation in <i>Candida</i> species	26			
1.4- The process of biofilm formation in <i>Candida glabrata</i>	28			
1.5- The complex transcriptional regulation of biofilm formation in <i>C. albicans</i> and <i>C. glabrata</i>	33			
1.5.1- Regulation of the adhesion process	33			
1.5.2- Ability of to undergo phenotypic switching from budding yeast to pseudohyphae	35			
1.5.3- Production of extracellular polymeric substances	36			
1.5.4- Additional biofilm-related transcription factors	37			
1.5.5- Biofilm formation boosts antifungal resistance	39			
1.6- The predicted role of the Tec1 transcription factors in biofilm formation	42			
1.7- Thesis outline and motivation45				
2- Experimental Procedures	47			
2.1- Cell cultures	47			
2.1.1- Strains	47			
2.1.2- Growth media	47			
2.1.3- Human epithelium cell line for adhesion assays	47			
2.2- Quantification of Biofilm Formation	48			
2.3- Adhesion to human vaginal epithelium cells assay	48			
2.4- C. glabrata transformation	48			
2.5- RNA-sequencing analysis	49			
2.5.1- Total RNA extraction	49			
2.5.2- Library preparation and RNA-sequencing4				
2.5.3- Computational analysis 50				
2.6- Transcriptomic data analysis 5				
2.7- Gene expression analysis 5				
2.7.1- Total RNA extraction and quantification 5				

2.7.2- Real Time RT-PCR	52
2.8- Quantification of total cellular ergosterol	54
2.9- Tec1 Subcellular localization assessment	55
2.10- Pseudohyphal growth induction	56
2.11- Statistical analysis	56
3- Results and Discussion	57
3.1- Tec1 is a determinant of biofilm formation in polystyrene surface	57
3.2- Tec1 is required for C. glabrata adhesion to human vaginal epithelium cells	58
3.3- Is Tec1 relevant in pseudohyphae differentiation by C. glabrata cells?	59
3.4- Nuclear accumulation is not an activation mechanism of Tec1 transcription factor	61
3.5- Transcriptomics analysis of the role of Tec1 in biofilm formation	62
3.5.1- Transcriptome-wide changes occurring upon 24 h of biofilm formation: general features	62
3.5.1.1- Up-regulation of adhesion-related genes in biofilm cells	66
3.5.1.2- Amino acid and nitrogen metabolism genes are differentially expressed in biofilm co	ells
	67
3.5.1.3- Changes in carbon and energy metabolism gene expression during biofilm format	tion
	70
0.5.4.4. One consistent to consistent biogenthesis and found to be differentially compared	
3.5.1.4- Genes related to ergosterol biosynthesis are found to be differentially expressed	
biofilm cells	13
3.5.1.5- Genes belonging to the functional group of cell wall metabolism present differen	ntial
expression pattern	75
3.5.1.6- Activation of multiple stress-responsive genes during biofilm development	77
3.5.1.7- Genes encoding multidrug resistance proteins are up-regulated during biofilm format	ion
	77
3.5.2- What is the role of the transcription factor Tec1 on <i>Candida glabrata</i> biofilm formation?	78
3.5.2.1- Tec1 controls the expression of adhesion related genes at different biofilm format	tion
stages.	82
2.5.2.2. Test controls the expression of games related to amine acid and nitrogen metaboli	icm
3.3.2.2. Tech controls the expression of genes related to annua and hitrogen metaboli	8/
	04
3.5.2.3- Carbon and energy metabolism genes are regulated by Tec1	84
3.5.2.4- Tec1 contributes to decreased ergosterol content in C. glabrata biofilms	84
3.5.2.5- Tec1 controls the expression of genes involved in stress response	86
3.5.2.6- Multidrug resistance genes are transcriptionally regulated by Tec1	86
3.6- Tec1 activated CgAUR1, CgAED2 and CgSUR2 genes also play a role in biofilm development	87

3.7-	In silico prediction of the CgTec1 recognition sequences	89
4-	Final Discussion	95
5-	References	99
6-	Annexe 1	106

List of Tables

Table 1- Summary of general features that characterize Candida glabrata. (Adapted from: Rodrigue	s,
Célia F. <i>et al.</i> (2014)9).	24
Table 2- Reaction mixture for the first step of the real time RT-PCR (Applied biosystems). S	53
Table 3- Thermal cycling parameters for the first step of the real time RT-PCR (Applied biosystems) 5	s). 53
Table 4- Reaction mixture for the second step of real time RT-PCR (Applied Biosystems). 5	54
Table 5- Thermal cycling parameters for the second step of the real time RT-PCR (Applied Biosystems) 5	3). 54

Table 6- Primers for CgACT1, CgAED2, CgPWP5 and CgAWP13 genes.54

Table 7- Number of up-regulated genes of the biofilm dataset found to have the sequence of the consensus recognized by Tec1 that are described for *S. cerevisiae* and *C. albicans*, respectively. The binding motif sequences were obtained in the Yeastract and PathoYeastract databases, respectively and *S. cerevisiae* consensus sequences are represented according to the IUPAC frequency table in Yeastract (Table A3).

Table 8- Number of up-regulated genes of the biofilm dataset found to have the sequence of theconsensus recognized by Tec1 that were retrieved in DREME. The number of genes was obtained inPathoYeastract database.94

 Table 9- Tec1 predicted binding motif candidates. The binding sequences were retrieved in DREME

 bioinformatic software. The up-regulated genes were chosen and the upstream sequences were

 obtained in FASTA format in PathoYeastract database. The best candidates were selected based on

 their similarities with the most conserved part of Tec1 binding motifs in S. cerevisiae and C. albicans

 and the number of targeted genes. The sequences are organized by predicted motif / complementary

 strand.
 94

List of Figures

Figure 1- Pathogenesis of Invasive Candidiasis. (from: Kullberg et al. (2015)6).22

Figure 2- The phylogenetic tree of some yeast species constructed by comparison of ERG11sequences. (from: Tam, Phyllix, et al. (2015)¹⁰).25

Figure 3- Overview of the sequence of biofilm development by Candida albicans and Candida glabrata.(Adapted from: Cavalheiro, M. & Teixeira (2018)²³).27

Figure 4- Dendrogram that shows the relationships between *EPA*-related sequences in the *C. glabrata* genome. All sequences are taken from strain BG2. The dendrogram is constructed from the amino acid sequence of the N-terminal ligand-binding domains using neighbor-joining methodology (MacVector). In bold are 8 *EPA* genes that are known to correspond to GPI-CWPs; for the others, the sequence of the full-length gene has not been completed in strain BG2. (from: Kaur, Rupinder, *et al.* (2005)¹²). 29

Figure 5- Representation of the development of pseudohyphae (left) and hyphae (right). (from: Sudbery,Peter, Neil Gow, and Judith Berman (2004)³⁷).31

Figure 6- CgEPA6 and CgEPA7 genes encoding important adhesins in Candida glabrata's biofilmformation and its transcriptional regulation.35

Figure 7- Transcription factors described to be involved in biofilm formation processes and its' regulatory networks, highlighting the difference between the current knowledge in *Candida albicans* (up image) and *Candida glabrata* species (down image). Green boxes indicate activators and red boxes indicate repressors. Participation of each transcription factor in these processes is indicated by the colored arrows: brown arrows correspond to adhesion, dark blue arrows correspond to EPS, light blue arrows correspond to filamentation, and yellow arrows correspond to biofilm formation. (from: Cavalheiro, M. & Teixeira (2018)²³).

Figure 8- The ergosterol biosynthetic pathway. (from M. Brad *et al.* (2005)⁶⁹). 41

Figure 9- Transcriptional network controlling biofilm formation in *Candida albicans*. Autoregulation is indicated by dotted arrows, direct binding interactions between two regulators that each regulate the activity of the other are indicated by double-headed dark grey arrows, and direct binding interactions where one regulator controls another regulator are indicated by single-headed light grey arrows. (from: Lohse, Matthew B., *et al.* (2018)⁵⁸). 42

Figure 10- Biofilm formation followed by Presto Blue Cell Viability Assay and measurements of absorbance at 570 nm and 600 nm for reference for the *C. glabrata* KUE100 and $\Delta tec1$ strains. Cells were grown for 24 h and the experiment was performed in RPMI medium pH 4 (A) and SDB medium pH 5.6 (B). In the scatter dot plot represented each dot corresponds to the level of biofilm formed in each sample. The indicated values are averages of at least three independent experiments. Error bars represent the corresponding standard deviations. ** *P*<0,01; * *P*<0,05. 57

Figure 11- Biofilm formation followed by Presto Blue Cell Viability Assay and measurements of absorbance at 570 nm and 600 nm for reference for the *C. glabrata* L5U1+vv and L5U1+*CgTEC1* strains. Cells were grown for 24 h and the experiment was performed in RPMI medium pH 4 (A) SDB medium pH 5.6 (B). In the scatter dot plot represented each dot corresponds to the level of biofilm formed in each sample. The indicated values are averages of at least three independent experiments. Error bars represent the corresponding standard deviations. (A) ***** *P*<0,0001; (B) **** *P*<0,0001.

Figure 12- Adhesion capacity to the human vaginal epithelium cells for the KUE100 and $\Delta tec1$ strains (A) and L5U1+vv and L5U1+*CgTEC1* (B). Cells were cultivated for 16±0.5 h in YEPD medium. *C. glabrata* cells were added to the human cells and incubated at 37°C, 5 % CO₂, for 30 min. The cell suspension in each well was then recovered and spread onto agar plates to determine CFU count. In the scatter dot plot represented each dot corresponds to the proportion of adherent cells to the human epithelium. The indicated values are averages of at least three independent experiments. Error bars represent the corresponding standard deviations. **P*<0.05. 59

Figure 13- The deletion mutant $\Delta tec1$ (B) displays reduced pseudohyphae differentiation than *C.* glabrata KUE100 strain (A) when stimulated with 0.5% of isoamyl alcohol. The bright field images were taken after 48 h of cellular growth in medium supplemented with 0.5% (v/v) isoamyl alcohol. The image represents the observed reduction of pseudohyphal cell number. 60

Figure 14- The transcription factor Tec1 plays a role in pseudohyphae differentiation in *C. glabrata* cells. Average percentage of pseudohyphal formation by *C. glabrata* KUE100 and Δ tec1 after 48 h of cellular growth in medium supplemented with 0.5 % (v/v) isoamyl alcohol. The displayed pseudohyphal percentage was calculated by the average of pseudohyphal cells of four independent experiments in relation to the total cells observed in each experiment, standard deviation being represented by the error bars. **P*<0,05.

Figure 15- The transcription factor Tec1 does not accumulates in the nucleus upon 24 hours of biofilm formation. Fluorescence of exponential-phase *C. glabrata* L5U1 cells harboring either the cloning vector pGREG576 (control) or the pGREG576_*PDC1_CgTEC1* (*CgTEC1_GFP*) after 24 h of recombinant

protein production in biofilm growth. The results indicate that the *CgTEC1-GFP* fusion protein localizes to the whole *C. glabrata* cells. 62

Figure 16- Categorization and frequency of the genes up-regulated in *C. glabrata* cells upon 24 hours of biofilm growth, given by the wild-type cells grown in biofilm in relation to wild-type cells grown in planktonic conditions, based on the biological process taxonomy of gene ontology (*P*-value<0.05). 63

Figure 17- Categorization and frequency of the genes down-regulated in *C. glabrata* cells upon 24 hours of biofilm growth, given by the wild-type cells grown in biofilm in relation to wild-type cells grown in planktonic conditions, based on the biological process taxonomy of gene ontology (*P*-value<0.05). 64

Figure 18- Distribution of differently expressed genes in wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells, identified by RNA-seq analysis to be related to amino acid biosynthesis. Green and red arrows: genes found, respectively, up- and down-regulated in both wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells datasets; yellow and brown arrows: genes found, respectively, up- and down-regulated in the wild-type biofilm vs planktonic growth dataset; blue and pink arrows: genes found, respectively, up- and down-regulated in the $\Delta tec1$ vs wild-type biofilm cells dataset. The image was retrieved in https://www.genome.jp/kegg/pathway.html. 68

Figure 19- Distribution of differently expressed genes in wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells, identified by RNA-seq analysis to be related to carbon metabolism. Green and red arrows: genes found, respectively, up- and down-regulated in both wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells datasets; yellow and brown arrows: genes found, respectively, up- and down-regulated in the wild-type biofilm vs planktonic growth dataset; blue and pink arrows: genes found, respectively, up- and down-regulated in the $\Delta tec1$ vs wild-type biofilm cells dataset. The image was retrieved in https://www.genome.jp/kegg/pathway.html. 71

Figure 20- Distribution of differently expressed genes in wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells, identified by RNA-seq analysis to be related to fatty acid metabolism. Green and red arrows: genes found, respectively, up- and down-regulated in both wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells datasets; yellow and brown arrows: genes found, respectively, up- and down-regulated in the wild-type biofilm vs planktonic growth dataset; blue and pink arrows: genes found, respectively, up- and down-regulated in the $\Delta tec1$ vs wild-type biofilm cells dataset. The image was retrieved in https://www.genome.jp/kegg/pathway.html. 72

Figure 21- Distribution of differently expressed genes in wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells, identified by RNA-seq analysis to be related to ergosterol biosynthesis. The genes found in the wild-type biofilm vs planktonic growth dataset are represented by the green (up-

regulated) and red (down-regulated) boxes. The genes found in the $\Delta tec1$ vs wild-type biofilm cells dataset are represented by the green (up-regulated) and red (down-regulated) arrows. 74

Figure 22- Distribution of differently expressed genes in wild-type biofilm vs planktonic growth and Δ tec1 vs wild-type biofilm cells, identified by RNA-seq analysis to be related to GPI-anchor biosynthesis. Green and red arrows: genes found, respectively, up- and down-regulated in both wild-type biofilm vs planktonic growth and Δ tec1 vs wild-type biofilm cells datasets; yellow and brown arrows: genes found, respectively, up- and down-regulated in the wild-type biofilm vs planktonic growth dataset; blue and pink arrows: genes found, respectively, up- and down-regulated in the Δ tec1 vs wild-type biofilm cells dataset. The image was retrieved in https://www.genome.jp/kegg/pathway.html. 75

Figure 23- Categorization and frequency of the genes up-regulated by Tec1 upon biofilm growth in *C.* glabrata, given by the $\Delta tec1$ deletion mutant cells in relation to wild-type cells grown in biofilm, based on the biological process taxonomy of gene ontology (*P*-value<0.05). 79

Figure 24- Categorization and frequency of the genes down-regulated by Tec1 upon biofilm growth in *C. glabrata*, given by the $\Delta tec1$ deletion mutant cells in relation to wild-type cells grown in biofilm, based on the biological process taxonomy of gene ontology (*P*-value<0.05). 80

 Figure 25- Venn diagram exhibiting the intersection of the number of up-regulated genes from the three datasets under study.
 81

Figure 26- Categorization and frequency of the Tec1 up-regulated genes in biofilm and up-regulated in cells under biofilm growth conditions, based on the biological process taxonomy of gene ontology (*P*-value<0.05).

Figure 27- The deletion of the *CgTEC1* gene leads to a biofilm evolution-related decrease in the expression of the adhesion encoding genes *CgPWP5*, *CgAED2* and *CgAWP13*. Comparison of the variation of the *CgPWP5*, *CgAED2* and *CgAWP13* transcript levels in wild-type *C. glabrata* KUE100 cells and *Δtec1* deletion mutant cells, after 6 h, 24 h and 48 h of biofilm growth. The presented transcript levels were obtained by quantitative RT-PCR and are *CgPWP; CgAED2; CgAWP13 mRNA / CgACT1 mRNA* levels, relative to the values registered in wild-type cells after the chosen growth times. The indicated values are averages of at least three independent experiments. Error bars represent the corresponding standard deviations. **P*<0,05; ***P*<0,01; *****P*<0,0001; ******P*<0,0001. 83

Figure 28- The ergosterol content in yeast cells is reduced when grown in biofilm and Tec1 is predicted to play a role in ergosterol content reduction in biofilm. Wild-type and single deletion mutant cells were harvested after 24 h of planktonic or biofilm growth and total ergosterol was extracted and quantified

through HPLC. The displayed ergosterol content is the average of at least three independent experiments, standard deviation being represented by the error bars. ***P<0,001; ****P<0,0001. 85

Figure 29- CgAUR1 gene plays a role in adherence and biofilm development in RPMI (pH4) (A) and SDB (pH5.6) (B). Wild-type and the indicated deletion mutant cells were growth for 24 h in microtiter plates, after which cell viability was assessed based on PrestoBlue assay. A scatter dot plot representation of the data is shown, where each dot represents the level of biofilm formed in each sample. The average level of formed biofilm in at least 15 independent experiments is indicated by the black the bars. line. standard deviation being represented by error ****P*<0,001;*****P*<0,0001;******P*<0,00001. 88

Figure 30- Top final Tec1 structure model predicted by I-TASSER. The C-score value for the predicted structure was -1. The structure was obtained in https://zhanglab.ccmb.med.umich.edu/I-TASSER/ with the protein FASTA format sequence of Tec1, retrieved from CGD. 90

Figure 31- I-TASSER predicted ligand binding sites of the transcription factor Tec1 predicted model, highlighting the ligand binding site residues Q106 and K109 (A), and Q100 and H104 (B). The predicted ligand binding residues were obtained in https://zhanglab.ccmb.med.umich.edu/I-TASSER/ with the protein FASTA format sequence of Tec1, retrieved from CGD. 90

Figure 32- Multiple sequence alignment of Tec1 from *S. cerevisiae*, *C. albicans* and *C. glabrata* reveals a conserved amino acid sequence of 61 residues from residue 48 to 109 of Tec1 protein sequence in *C. glabrata*. The alignment was performed in Clustal Omega, a multiple sequence alignment program (https://www.ebi.ac.uk/Tools/msa/clustalo/) using the protein sequences of Tec1 orthologs retrieved in CGD.

Figure 33- Hypothetical model of action of Tec1 transcription factor in *C. glabrata* biofilm formation. Upon biofilm formation initiation, the transcription factor Tec1 is activated and this induces the expression of 487 genes found in this work to be related to key biofilm development-related biological functions. These comprise adhesion, stress and multidrug resistance, the cell wall organization, activation of glyoxylate cycle and amino acid and nitrogen metabolism in response to nutrient deprivation and pseudohyphal growth.

Figure 34- Differentially expressed transcription factors found in RNA-seq analysis to be regulated by Tec1 in *C. glabrata* 24 h biofilms. *C. glabrata* ORFs directly or indirectly up (green) and downregulated (red) by the transcription factor Tec1. The ORFs downregulated by Tec1 are those demonstrated to be upregulated in $\Delta tec1$ 24 h biofilm cells, which transcriptome was analyzed through RNA-seq against wild-type *C. glabrata* 24 h biofilm cells. 98

List of Abbreviations

- IC Invasive candidiasis
- ICUs Intensive care units
- **ECM** Extracellular matrix
- NCA Non-Candida albicans
- VVC Vulvovaginal candidiasis
- 3D 3 dimensional
- **EPS** Extracellular polymeric substances
- GPI Glycosyl-phosphatidylinositol
- DNA Deoxyribonucleic acid
- eDNA Extracellular DNA
- **TEM** Transmission electron microscopy
- SAPs Secreted aspartyl proteases
- PKA Protein kinase A
- MAPK Mitogen-activated protein kinase
- YEPD Yeast extract peptone dextrose
- TF Transcription factor
- **bZIP** Basic leucine zipper domain
- ROS Reactive oxygen species
- **bHLH** Basic helix-loop-helix
- **ORF** Open reading frame
- ABC ATP-binding cassette
- MFS Major Facilitator Superfamily
- DHA drug:H+ antiporter
- GOF Gain-Of-Function
- SAGA Spt-Ada-Gcn5 acetyltransferase
- Sir silent information regulator
- TEA Transcriptional enhancer activator
- BSRG Biological sciences research group
- RNA Ribonucleic acid
- RNA-seq RNA-sequencing
- MMG Minimal growth medium
- SDB Sabouraud's dextrose broth
- **RPMI** Roswell Park Memorial Institute

EDTA - Ethylenediamine tetraacetic acid

CFU - Colony forming units

TE - Tris EDTA

cDNA – complementary DNA

CGD - Candida genome database

SGD - Saccharomyces genome database

GO - Gene ontology

KEGG - Kyoto gncyclopedia of genes and genomes

DREME - Discriminative regular expression motif elicitation

I-TASSER - Iterative threading ASSEmbly refinement

RT-qPCR - quantitative real time polymerase chain reaction

DEPC – diethylpyrocarbonate

Wt-Wild-type

Acetyl-CoA - acetyl coenzyme A

PPM - Phosphopeptidomannan

PLM - Phospholipomannan

B-Mans - β-mannosides

MDR – Multidrug resistance

IPC - Inositolphosphorylceramide

EC - Enzyme commission

1- Introduction

1.1- Candidiasis

Invasive fungal infections (pneumocystis, cryptococcosis, mucomycosis, candidiasis) have increased in the past few decades due to advances in the medical field and are known to affect more than 2 million people every year, being associated to up to 50% mortality rates.^{1,2,3} Surprisingly, fungal infections are estimated to be more deadly worldwide than tuberculosis or malaria.¹ The host immunity and physiological condition is decisive for the development and clinical manifestation of fungal infections.² Immunocompromised patients are the major group of risk, comprising patients with neutropenia, pancreatitis or renal insufficiency, or also those being subjected to treatment with systemic antibiotics, glucocorticosteroids, indwelling medical devices, total parenteral nutrition or major abdominal surgery.⁴

Candidiasis covers a wide range of diseases going from more moderate clinical manifestations (esophageal or oropharyngeal candidiasis) to serious infections, including blood-stream infections and disseminated candidiasis (renal, liver abscess, lung and nervous central system).^{2,5} Epidemiological studies have shown that more than 250.000 people worldwide are affected by invasive candidiasis (IC) annually, causing more than 50.000 deaths. Considering the intensive care units (ICUs), candidemia is described as the fourth most common bloodstream infection and this is considered the main manifestation of invasive candidiasis.⁷ IC also comprises other severe diseases such as endocarditis, central nervous system infections, endophthalmitis, osteomyelitis and disseminated infections. Although IC is tightly related to the hospital setting and the involvement of invasive interventions and long-term antibiotic use, the community-acquired cases cannot be ignored.⁵

Figure 1- Pathogenesis of Invasive Candidiasis. (from: Kullberg et al. (2015)⁶).

Figure 1 presents possible causes and consequences of IC. It could for example start from the gut colonizing *Candida* species, that may invade through translocation or anastomotic leakage after laparotomy, causing either localized, deep-seated infection as peritonitis, or candidemia. Furthermore, when candidemia originates from the gut or the skin, it can lead to the colonization of intravascular catheters in patients and form biofilms. These medical devices boost biofilm proliferation, where *Candida* spp. is most protected by the extracellular matrix (ECM) formed, resisting therapeutics.⁷ These also allow the release of the fungi and cause persistent candidemia. With the development of IC, metastatic infections in various organs may be derived and lead to secondary candidemia. Additionally, the fungi in the bloodstream may also enter the urinary tract and cause candiduria.⁶

The majority of the cases of IC are caused by *Candida albicans*, nevertheless there is increasing numbers of infections worldwide caused by non-*Candida albicans* (NCA) species.⁸

1.2- Candida species

The *Candida* genus comprises over 150 heterogeneous species, but only a few of them can cause human candidiasis. The majority (65%) of *Candida* species are unable to grow at body temperature, 37°C, thus they cannot become pathogens or commensals of humans.⁹ Indeed, only 16 species are currently being isolated from patients as infectious agents.^{5,9} These species are *Candida albicans*, *Candida glabrata*, *Candida tropicalis*, *Candida parapsilosis*, *Candida krusei*, *Candida guilliermondii*, *Candida lusitaniae*, *Candida dubliniensis*, *Candida pelliculosa*, *Candida kefyr*, *Candida lipolytica*, *Candida famata*, *Candida inconspicua*, *Candida rugosa*, *Candida auris* and *Candida norvegensis*.⁵

C. albicans colonizes various regions of the human body, such as the skin, oropharynx, lower respiratory tract, gastrointestinal tract and genitourinary system. This species has been the dominating isolated pathogen, among *Candida* species, but the relative prevalence of the various species is continuously changing, half of the strains currently isolated from candidiasis patients belonging to NCA species. The relative prevalence between *Candida* species also varies considerably with the site of infection and the host.⁶ For example *C. parapsilosis* is responsible for 30% of the cases of candidemia in newborns while in adults the percentage decreases to 10% - 15%; while *C. glabrata* infections occur mainly in older and neoplastic patients.⁵

1.2.1- Candida glabrata

Candida glabrata is taxonomically classified as a member of the Nakaseomyces phylome, being phylogenetically much closer to the baking yeast *Saccharomyces cerevisiae* than to *C. albicans.*¹¹ *C. glabrata* was at first placed in the *Torulopsis* genus as it lacks hyphae formation, which characterizes the *Candida* genera. However, in 1978 it was considered that this is not a definitive distinguishing factor, suggesting that *Torulopsis glabrata* should be classified in the *Candida* genus due to its growing evidence of pathogenicity in humans.^{9,10} Among the yeasts of the *Candida* genus, the species *C. glabrata* displays unique features, taking as example its haploid nature, resorting exclusively to asexual reproduction (contrasting with the diploid genome of *C. albicans*). It exists as blastoconidia and are much smaller (1-4 µm) than those of *C. albicans* (4-6 µm).^{9,11} Additionally, *C. glabrata* lacks genes related to galactose, phosphate, nitrogen and sulfur metabolism, and genes needed for pyridoxine biosynthesis. These inabilities are generally compensated by the mammalian host environment, that provides for example nicotinic acid, pyridoxine and thiamine.¹¹ A list of the main features is presented in **Table 1.**

Feature	Characteristics
Ploidy	Haploid
Hyphae	Absent
Colonies on SDA	Very small/cream-color
Cell size	1-4 µm
Growth on CHROMagar™	White, pink/purple
Biochemical reactions	Ferments and assimilates glucose and trehalose
Virulence	Opportunistic pathogen
Major sites of infection	Vaginal, oral, disseminated
Biofilm formation	Yes
Major adhesins	Lectins
Mating genes	Present
Sexual cycle	Unknown
Clonal population structure	Yes
Phenotypic switching	Present
Auxotrophy	Niacin, thiamine, pyridoxine
Mitochondrial function	Petite-positive
	Principally nosocomial (except vaginal)
	(frequently mixed fungal infection)
Enidomiology of infaction	Immunocompromised or debilitated host
Epidemiology of Infection	Specific risk factors: prolonged hospitalization,
	prior antibiotic use, use of fluconazole, patient
	exposure, hand carriage by hospital personnel

Table 1- Summary of general features that characterize *Candida glabrata*. (Adapted from: Rodrigues, Célia F. *et al.* (2014)9).

C. glabrata genome shows high similarity to *S. cerevisiae*, suggesting that these species share the same common ancestor (**Figure 2**).^{9,10,12} *S. cerevisiae* is a known food and drink fermenter and it is already known that it shares some features with *C. glabrata*, such as the Flo proteins, responsible for flocculation in beer fermentations, that in *C. glabrata* are closely related to Epa proteins, known to be the main adhesins involved in pathogenesis.¹⁰ On the other hand, *C. glabrata* and *C. albicans* are phylogenetically considerably distinct.¹²

Figure 2- The phylogenetic tree of some yeast species constructed by comparison of ERG11 sequences. (from: Tam, Phyllix, et al. (2015)¹⁰).

C. glabrata is a commensal colonist of the intestinal tract in humans, being the second most common cause of vulvovaginal candidiasis (VVC), right next to *C. albicans*. It is also an important agent of candidemia, but due to the absence of the hyphal form, it induces a less intense neutrophil response, when comparing to *C. albicans*.¹¹

The mechanisms underlying the pathogenesis of *C. glabrata* are nowadays still a field in discovery.¹³ It is already known that it has the ability to survive within macrophages, to synthesize adhesins, to secret phospholipases and, additionally, to limit phagosome maturation in macrophages, thus preventing acidification and limiting hydrolytic attack.^{13,14} In fact, *C. glabrata* exhibits an unusual capacity to multiply within phagocytic cells, and is reported to use macrophages as "Trojan-Horses" in order to infiltrate the host.¹³ Additionally, it is highly stress tolerant and very robust, since it can not only survive on host tissues but also on inanimate surfaces for more than 5 months and this is due to its capability to form multilayered biofilms.^{9,15}

Eradication of *C. glabrata* systemic infections and recurrent candidemia is currently a challenge, and this highlights the imperative need to find more promising strategies to limit biofilm formation or to eradicate mature biofilms. In line with this, there is increasing interest in understanding the transcriptional network mechanisms responsible for regulating this phenomenon, this study being

especially important for the discovery of new drug targets and further drug design in order to better treat infected patients.¹⁶

1.3- Biofilm formation in Candida species

Biofilms are organized 3 dimensional (3D) communities of microorganisms that may develop on both living and inert surfaces, inserted in an extracellular matrix synthesized by those microorganisms and with singular biological properties. It is known that 80% of the microorganisms live in biofilms in the environment.¹⁷

Human infections associated with biofilms are an increasing problem in the clinical setting, being responsible for 65% to 80% of the infections.^{17,18} With new microscopy and molecular tools, many studies have reported biofilms as a major cause of persistent human infections.¹⁸ The central significance of biofilms in the context of infections comes from the relationship of biofilms to device-associated infections.¹⁹ Medical devices can be venous and urinary catheters, artificial joints, stents, shunts, implants, endotracheal tubes and pacemakers. The use of these devices is growing, with approximately 10 million new recipients per year.¹⁷ After the infection, the eradication of a biofilm *in vivo* is an indubitable complicated procedure due to the administration of toxic concentrations of antimicrobials and the possible removal of the respective medical device. Besides being difficult, it is also an expensive process that is susceptible to clinical complications for the patient.¹⁸ The study of isolates from infected patient has demonstrated that *Candida* species are among the most common colonizers of implanted devices.¹⁹

This phenotype has been well characterized for *C. albicans*, being described as a multifactorial process that contains four sequential steps: the first is the adhesion to a foreign surface (the host tissue or a medical device), with following cell proliferation across the substrate surface to form a discrete colony with cell organization. This is followed by the second step, in which there is secretion of extracellular polymeric substances (EPS) by the now well-organized cells. The next step comprises the consequent 3D structure development, with formation of a mature biofilm. The last step is the possible dissemination of progeny biofilm cells, which allow the cells to migrate and form spread biofilms (**Figure 3**).^{20,21,22}

Figure 3- Overview of the sequence of biofilm development by *Candida albicans* and *Candida glabrata*. (Adapted from: Cavalheiro, M. & Teixeira (2018)²³).

Naturally, there are larger numbers of studies approaching biofilm formation in *in vitro* models. *C. albicans* biofilms have been described on polymethylmethacrylate strips as having three main phases: an early phase (0 to 11 h), which is characterized by the adherence and development of blastospores into distinct microcolonies; intermediate (12 to 30 h), being distinguished by the organized biofilm cells with a structure in bilayer and production of EPS; and the maturation (30 to 72 h), in which the biofilm is composed of a dense network of yeasts, pseudohyphae and hyphae cells embedded in a thick EPS layer.²² On the other hand, it was shown by Andes *et al.* (2004) that *Candida* biofilms' *in vivo* models follow the same sequence with some different features: the maturation phase occurs faster (24 h) and the thickness is greater.²⁴ Considering *C. glabrata*, the early phase was similar between *in vivo* and *in vitro* conditions, but after 24 h, *in vitro* biofilms presented a confluent layer of yeast cells while *in vivo* biofilms only exhibited patches of yeast cells aggregated. Finally, the maturation phase was observed at 48 h in serum-coated triple-lumen catheters in a rat subcutaneous model. Regarding the thickness, *C. glabrata* biofilms were found to have approximately half of the thickness of those formed by *C. albicans.*²⁵

Rajendran, Ranjith, *et al.* (2016) studied particularly the impact of biofilm formation in patient mortality and reported that biofilm-forming ability was significantly associated with *C. albicans* mortality (34 of 157 patients).²⁶ In *C. albicans*, hyphal differentiation is a critical feature in biofilm formation, playing roles on

its structure and function, but *C. glabrata* lacks this ability, being reported to form pseudo-hyphae, but, even so, not during biofilm formation. This aspect raises the question of the mechanistic similarities and peculiarities in biofilm formation between these two species.¹⁷

1.4- The process of biofilm formation in Candida glabrata

Biofilm formation in *C. glabrata* enables it to survive as commensal and pathogen and tolerate the competition from other microorganisms. Hence it represents an ecological advantage for *C. glabrata.*⁹ As an example, biofilm formation protects *C. glabrata* from detachment by salivary flow or by physical forces and consequent removal in denture and oral apparatus.¹⁰

An important initial step in the establishment of a biofilm is the adherence of yeast cells to the host epithelial tissue or to an abiotic medical device.^{12,15,27} The so-called adhesins are a group of specialized cell wall proteins that enable cells to adhere to surfaces and to other cells, crucial for the development of a layered, differentiated biofilm.^{21,22,27,28} The process of adhesion takes 1 to 2 hours and is, at first, mediated by non-specific interactions with the substratum and then, adhesins facilitate stronger adhesion.²²

Adhesins are generally glycosyl-phosphatidylinositol (GPI)-cell wall proteins, comprising three domains: a hydrophobic C-terminal containing a GPI anchor addition site, which binds the adhesin to the cell wall; the N-terminal is usually composed by carbohydrates or a peptide binding domain; lastly, serine- and threonine-rich repeats that compose the larger middle domain, serving as the factor of variability between adhesins.^{28,29}

In *C. glabrata*, the epithelial adhesin (Epa) family of adhesins is crucial for adhesion. The role of the Epa adhesins in *C. glabrata* is similar to that of the Als proteins in *C. albicans* biofilm formation.^{9,10,28,30} The *CgEPA* family is composed of 17 to 23 genes (**Figure 4**) depending on the strain, from which the most relevant and best studied are *CgEPA1*, *CgEPA6*, and *CgEPA7*.^{30,31,32} These three proteins have been reported to play roles in mediating adherence to human epithelial and endothelial cells.³¹

Figure 4- Dendrogram that shows the relationships between *EPA*-related sequences in the *C. glabrata* genome. All sequences are taken from strain BG2. The dendrogram is constructed from the amino acid sequence of the N-terminal ligandbinding domains using neighbor-joining methodology (MacVector). In bold are 8 *EPA* genes that are known to correspond to GPI-CWPs; for the others, the sequence of the full-length gene has not been completed in strain BG2. (from: Kaur, Rupinder, *et al.* (2005)¹²).

Despite recognizing a terminal galactose residue, Epa1, Epa6 and Epa7 adhesins bind to different specific glycan ligands, with Epa6 having the larger specificity range.¹⁹ Epa1 is a Ca²⁺-dependent lectin, presenting similarities with the Flo1 flocculin of S. cerevisiae and was shown to recognize host encoded N-acetyl-lactosamine-containing glycoconjugates and lactose.^{29,33} Furthermore, a fuller picture of the ligands recognized by Epa1 was obtained by resorting to a printed slide glycan microarray containing over 260 different glycans, covalently immobilized, which revealed that this adhesin also binds to glycans with a terminal galactose residue, glucose, N-acetylgalactosamine and N-acetylglucosamine.³⁴ The deletion of CgEPA1 alone was demonstrated to significantly reduce in vitro adherence to human epithelial cells.^{29,31,32} Epa1 was also shown to govern binding to innate immune cells.³¹ However, despite proof of Epa1 effective adherence, studies revealed that in murine vaginal and stomach tissues, this adhesin is not necessary for infection to occur. This may be because in these models the high affinity ligands were not exposed to the surface of host cells or the adhesion was mediated by other adhesins.³³ Epa6 is reported to be the main adhesin contributing for biofilm formation.¹⁵ CgEPA6 gene showed evidence of being transcribed during adherence to uroepithelial cells in vitro and during bladder colonization in a mouse urinary tract infection model.²⁷ Regarding biofilm formation, both CgEPA6 and CgEPA7 appear to be predominantly expressed in stationary phase cells, which are more prone to develop a biofilm, and upon biofilm formation, apart from CqEPA1, that is essentially expressed during the exponential phase of cell growth.¹⁹ Another adhesin known to be involved in adhesion to epithelial cells and biofilm formation is Epa3, since the expression of its encoding gene was found to be upregulated in *C. glabrata* biofilm cells.^{19,27} Furthermore, Epa2 was found to be related to oxidative stress response.¹⁹

Along with the Epa family, there are other predicted adhesins that seem to be involved in biofilm formation, associated with changes in *C. glabrata* cell wall, such as the Pwp subfamily. This family is composed of seven members that present high similarities between their N-terminal effector domain with the ones of Epa and Flo (from *S.cerevisiae*) families.^{19,31} Pwp proteins have other features as lectins, being related to aggregation processes, including host binding and biofilm formation.³¹ Desai *et al.* (2011) characterized the interaction of Pwp7 and Aed1 adhesins with human umbilical vein endothelial cells, coming to the observation of a significant reduction in adhesion to the host cells when compared with the wild type. Additionally, these adhesins are predominantly expressed in stationary phase of cell growth.³⁵ Furthermore, the expression of some *CgAWP* genes (encoding non-Epa adhesin-like cell wall proteins) was shown to be altered during adherence and biofilm formation both *in vitro* and in animal models.¹⁹

As already referred, after the first step of biofilm formation (adhesion), morphologic modifications then occur, together with increase in cell number and production of EPS, which are determinants of the final biofilm architecture. The multilayer composition of *C. glabrata*'s biofilm includes intimate packing of blastoconidia.^{12,36} In fact, this is a much deeply studied topic in *C. albicans*, where morphological differentiation to produce hyphae plays an important role in biofilm maturation and virulence of this species.²¹

Hyphae and pseudohyphae can be distinguished by their shape, for instance, a hyphae that develops from a bastospore does not present constriction at the neck of the mother cell and have parallel sides along their entire length, as depicted in **Figure 5** (right). On the other hand, pseudohyphae displays constriction at the neck of the mother cell and the bud, as well as in every subsequent septal junction. The left side of **Figure 5** represents the cell cycles 2 to 4 of pseudohyphae, after re-inoculation of unbudded yeast cells, where the synchrony of budding in the pseudohyphal mycelium can be noted. It must be considered that the structures shown in cycles 3 and 4 are unlikely to be observed when cultured in liquid due to the shear forces that ends up fragmenting longer filaments.³⁷

Figure 5- Representation of the development of pseudohyphae (left) and hyphae (right). (from: Sudbery, Peter, Neil Gow, and Judith Berman (2004)³⁷).

S. *cerevisiae* can undergo the morphological change from yeast to the filamentous invasive/pseudohyphal form, when starved for nitrogen.³⁸ This is hypothesized to be an adaptation mechanism that allows *S. cerevisiae* to search for nutrient-rich and therefore more optimal growth substrates. In response to nutrient deprivation, both the cAMP-protein kinase A (PKA) pathway and of the mating pheromone-responsive mitogen-activated protein kinase (MAPK) cascade were shown to be required for the establishment of the pseudohyphae phenotype.³⁹ This phenomenon can be induced by a number of environmental signals, which include nitrogen starvation, growth on a poor nitrogen source or growth in the presence of low concentrations (0.1–1%) of fusel alcohols. Fusel alcohols, such as isoamyl alcohol, are the products of the breakdown of essential amino acids, accumulating when nutrients become limiting. This is enough to induce filamentation in yeast cells even when grown in nutrient-rich yeast extract peptone dextrose (YEPD) medium.⁴⁰

In *C. albicans* both morphological change from yeast to hyphal or pseudohyphal growth happen in response to a wide variety of conditions, including nitrogen starvation and shifts in extracellular pH.³⁸ Additionally, during the establishment of a biofilm, cells use quorum sensing as intercellular communication, which is an essential mechanism of control of cell growth and dispersion. The main messenger molecules that modulate this phenomenon are tyrosol and farnesol, which play distinct roles: tyrosol acts in the initial stage of biofilm formation, promoting growth and hyphae formation; otherwise farnesol prevents the excessive growth of the biofilm and inhibits hyphal differentiation, promoting the dispersion of cells from the biofilm to other sites in the host body.⁴¹

In the case of *C. glabrata*, this species does indeed produce invasive pseudohyphae under nitrogen limiting conditions on solid media and it can also form invasive yeast cells on the same media supplemented with ammonium sulfate.³⁸ Additionally, *C. glabrata* was already observed to switch to pseudohyphal form in the host, as reported by Vandeputte *et al.* (2007), that studied a clinical isolate of *C. glabrata* with poor susceptibility to polyenes, recovered from a patient treated with amphotericin B. The cells were found to differentiate in pseudohyphae in different culture media and presented lack of ergosterol and an accumulation of late sterol intermediates, which was then related to a mutation in the *CgERG6* gene.⁴²

At this stage, the key mechanism for the development of a mature biofilm is the production of the ECM.³⁶ The matrix is essential as it protects *Candida* cells from phagocytic cells and also acts as a barrier to drugs and toxic substances.⁴³ *Candida* biofilm ECM is enriched in carbohydrates and proteins, consisting primarily of exopolysaccharides, with β -glucans as the main one. These are D-glucose-based polysaccharides with different types of glycosidic bonds, that are composed by β -D-glucose units linked to form linear chains (homoglucans), which can extend both from carbon 1 to carbon 3 ($\beta 1 \rightarrow 3$) and from carbon 1 to carbon 6 ($\beta 1 \rightarrow 6$).^{22,32,44} Formed biofilms are also dependent on the EPS that are produced in biofilm formation step 3, which give a gel-like hydrated 3D structure to the biofilm. EPS play important roles in the defense against phagocytosis, scaffold for biofilm integrity and prevention of drug diffusion.⁴⁵ The production of EPS is reported to vary according to some factors, such as species/strain, available carbon source and the flow rate of the medium.²² Moreover, the ECM also includes extracellular deoxyribonucleic acid (eDNA). eDNA is reported as an important component of fungal and also bacterial biofilm ECMs, playing roles in structural integrity and stability through the promotion of adhesion and binding to other biopolymers. In these biofilms there are low oxygen regions that support anaerobic growth due to the extracellular matrix.³⁶

Zarnowski. *et al.* (2014) studied the composition of the matrix of *C. albicans* through transmission electron microscopy (TEM) and biochemical assays, which proposed the following components: 55% of proteins, 25% of carbohydrates, 15% of lipids and 5% of noncoding DNA. This study went further by revealing that the major polysaccharide present on the matrix was a mannan-glycosyl complex. Other minor ECM components, but also important for its structure, are β -1,3-glucan and β -1,6-glucan.⁴⁶ In general *C. glabrata* biofilms present less total biomass yet relatively higher production of proteins and carbohydrates (*C. tropicalis* and *C. parapsilosis*)⁴⁷. The production of phospholipases contributes to host cell membrane damage as they hydrolyze phospholipids into fatty acids, promoting cell damage or exposition of receptors that facilitate adherence. Compared to *C. albicans*, which is known to hold ten genes encoding for lipases, *C. glabrata* has only been found to produce two, suggesting that phospholipase production is less important to *C. glabrata*'s pathogenicity.^{9,10}

After colonization on host cells, the last step of a biofilm formation cycle is the dissemination of *Candida* cells. *C. glabrata*'s invasive growth starts with the destruction of the host tissue by the secretion of

proteases, as the secreted aspartyl proteases (Saps) and phospholipases.⁴⁸ The extracellular glycosylphosphatidylinositol (GPI)-linked aspartyl proteases family (Yps proteases) also plays a role in *C. glabrata* virulence, being related to its survival within macrophages.^{48,49} Besides virulence, these proteases are important for the cell wall integrity maintenance and adherence. This is due to the processing of the GPI-linked adhesin, Epa1, which results in cell wall remodeling by removal and release of GPI-anchored cell wall proteins.⁴⁹

As mentioned above, the phenotype switching ability in *C. albicans* is considered crucial for virulence, as hyphae and pseudohyphae could allow tissue penetration during early stages of infection and boost the dissemination of the yeast cells in the bloodstream.³⁷ However a study conducted with *C. glabrata* reported that this species alone cannot easily invade the human vaginal-epithelium, unless there is a first colonization by *C. albicans* and tissue invasion mediated by its pseudohyphae and hyphae that would, then, allow *C. glabrata* cells to penetrate and disseminate in the bloodstream, promoting prolonged systemic infection.⁵⁰

When comparing the metabolic activity in *C. glabrata* biofilms with other *Candida* species, *C. glabrata* displays the lowest levels, even though it has the highest number of biofilm cultivable cells.^{9,10,36}. *C. glabrata* was observed to develop the thickest slim layer on acrylic resins strip when compared to other *Candida* species, including *C. albicans*. Additionally, the biofilm formation ability was also higher for *C. glabrata*.⁵¹

1.5- The complex transcriptional regulation of biofilm formation in *C. albicans* and *C. glabrata*

Biofilm formation includes several stages of development, as addressed before. This process has been viewed from the perspective of how gene expression is altered from that in free-living planktonic cells. Taking into account all different steps of biofilm formation, each one of them is tightly regulated at the molecular level. The study of these mechanisms of regulation is expected to lead to the discovery of good drug targets that would limit biofilm development in the host. However, this phenomenon is better understood in *C. albicans* than in *C. glabrata*. It is important to highlight that *C. albicans* biofilms differ considerably from *C. glabrata*'s, as it is composed by a mixed population of budding yeast and hyphae, mainly because of the formation of a sexual biofilm, while no filamentation has been yet observed in *C. glabrata* biofilms³⁸.

1.5.1- Regulation of the adhesion process

In *C. glabrata*, the regulation of the expression of many adhesins is intimately involved in biofilm formation, as already referred, being dependent on both environmental conditions and growth phase.²⁷ About two-thirds of the adhesin genes are located at sub-telomeric loci, that contains the coding regions of *CgEPA1-7*, which are regulated by transcriptional silencing.^{12,27,31} It is interesting to note that silencing

at sub-telomeres harboring *CgEPA* genes appears to vary from cell to cell as indicated by variation in the expression of the *CgURA3* gene inserted at different location in the sub-telomeric *CgEPA1-3*, *CgEPA4-5* and *CgEPA6* loci.¹⁹

Silencing depends on many of the orthologs of the trans-acting factors that are implicated in subtelomeric silencing in *S. cerevisiae*, including silent information regulator (Sir) Sir2, Sir3 and Sir4, Rap1 and Rif1 (involved in telomere length, which affects indirectly the sub-telomeric silencing and regulation of biofilm formation).^{12,52} Sub-telomeric silencing is initiated by Rap1p binding to the telomeric repeats and subsequent recruitment of the Sir complex by protein–protein interactions, starting with Sir2 (a NAD⁺-dependent histone deacetylase) that provides high affinity binding sites for Sir3 and Sir4.^{12,29} The binding of the Sir complex to hypoacetylated histones allows for the spread of the Sir complex from the telomere itself across the sub-telomeric region.¹² *CgEPA6* and *CgEPA7* were shown to be negatively regulated by Sir4 and Rif1 and induction of these genes upon biofilm growth to be dependent on the presence of an intact sub-telomeric silencing machinery.^{19,53} Furthermore, cells with silencing mutations apparently are hyper-adherent to various epithelial cell lines *in vitro*.¹² This suggests that *C. glabrata* biofilm formation requires the negative regulation of sub-telomeric silencing that in turns allows expression of the Epa6 and Epa7 adhesins.

The Yak1 kinase/Sir2-4 pathway was found to be an important intervenient in biofilm formation, similar to the role played by the orthologous pathway in the regulation of the *ScFLO* genes in *S. cerevisiae*. It was demonstrated that *CgEPA6* expression is regulated by Yak1, a kinase that controls Sir4 and Rif1-dependent sub-telomeric silencing.^{15,19} Also related with regulation of adhesion is the *C. glabrata* Cst6 transcription factor (TF), a basic Leucine Zipper Domain (bZIP) domain-containing protein involved in the negative regulation of *CgEPA6*, possibly intervening in chromosome stability and telomere maintenance and its deletion limits the development of biofilm.^{10,15,48} It has been proposed that Yak1 and Cst6 control *CgEPA6* expression, and consequently biofilm formation, independently.¹⁹

The Swi/Snf chromatin remodeling complex is yet another player in biofilm formation. Indeed, an insertion mutation near the *CgSNF6* gene was found to result in decreased biofilm formation and *CgEPA6* expression and a similar phenotype was observed upon deletion of *CgSNF2* gene encoding another component of the Swi/Snf complex. The Swi/Snf complex is involved in chromatin remodeling by destabilizing histone-DNA interactions, thereby modulating gene expression of a large number of genes in a positive or negative manner. Recruitment of the complex at specific sites is mediated by interaction with transcription activators and repressors. As the function of the Swi/Snf complex in biofilm formation is only observed when sub-telomeric silencing is intact, this complex must negatively modulate sub-telomeric silencing either through interaction with components of the silencing machinery or TFs necessary for the activation of *CgEPA6*. Interestingly, the Swi/Snf complex does not appear to impact *CgEPA1* expression.^{15,19}

Both Swi/Snf and Sir complexes appear to underlie the regulation of biofilm formation and these are specific of *C. glabrata*, when compared to other *Candida* species.²³ A schematic representation of the transcriptional regulation of *CgEPA6* and *CgEPA7* genes is presented in **Figure 6**.

Figure 6- CgEPA6 and CgEPA7 genes encoding important adhesins in Candida glabrata's biofilm formation and its transcriptional regulation.

1.5.2- Ability of to undergo phenotypic switching from budding yeast to pseudohyphae

In *C. albicans*, filamentous growth is a determinant feature of biofilm formation, leading to hyphal differentiation. There is a great number of TFs regulating biofilm formation that are known to be involved in filamentation, as represented in **Figure 7**, considering that hyphal differentiation occurs during biofilm development.²³ Current knowledge identifies at least five distinct signaling pathways activating hyphal development in *C. albicans*, and these are tightly controlled by an array of TFs, as the positive regulators Cph1 (also known as Acpr), Efg1, Rim101, Tec1, Cph2 and Czf1, and the negative regulators Tup1, Nrg1 and Rfg1.^{54,55}

The positive regulators Efg1 and Cph1 mainly regulate cell wall and adhesion-related genes, which include *CaECE1*, *CaHYR1*, *CaHWP1*, and *CaALS3*.^{16,23} This can be explained by the morphological alterations inherent to the yeast to hyphae transition that require cell wall remodeling.

One of the signaling cascades that regulate morphogenesis in *C. albicans* is the Cek1-mediated MAP kinase pathway. Cph1 is the terminal TF of this pathway, belonging to the STE-like TF family.^{23,54} Cph1 TF can act as both positive or negative regulator depending on the morphological state and physiological conditions, with a feedback regulation. Moreover, this TF was reported to mediate cellular reactive oxygen species (ROS) homeostasis and control morphogenesis under stressful conditions.⁵⁵
The ortholog of *C. albicans* Cph1 in *S. cerevisiae* and *C. glabrata* is the Ste12 TF. In haploid *S. cerevisiae* strains Ste12 - activated by a MAPK pathway - is known to regulate the response to mating pheromone and the invasive growth phenotype whereas in diploid cells it is involved in filamentous growth, in response to nitrogen starvation.⁵⁶

Ste12 in *C. glabrata* plays a role in the regulation of filamentation induced by nitrogen starvation as well.^{23,56} Moreover, a study that used a murine model of *C. glabrata* systemic infection demonstrated that Δ ste12 mutants show attenuated virulence when compared to *CgSTE12* reconstituted strains.⁵⁶ This TF plays an important role in cell wall structural components, regulating negatively the expression of *CgTIP1* and *CgCIS3* genes, which encode structural components of the cell wall in *C. glabrata* and *S. cerevisiae*.¹⁰

Cph1 may act together with the TF Efg1 in regulating morphogenesis in *C. albicans*. Efg1 is a basic helix-loop-helix (bHLH) TF that is crucial for Ras-cAMP signaling pathway regulation, in response to nutrient deprivation or serum.⁵⁵ Efg1 not only regulates the yeast-to-hyphae transition but is also required for the generation of chlamydospores and determination of cell shape during white-opaque switching.⁵⁷ Both the double $\Delta efg1\Delta cph1$ and the $\Delta efg1$ *C. albicans* deletion mutants display severe morphological defects *in vitro* and can only grew to form a monolayer of adherent elongated cells.^{23,54} Additionally, the $\Delta efg1\Delta cph1$ displayed highly attenuated virulence in a mouse model systemic infection, which was related to the inactivation of both Ras-cAMP and MAP kinase pathways.⁵⁴

Efg1 has two homologs in *C. glabrata*, encoded by the *CAGL0L01771g* and *CAGL0M07634g* open reading frame (ORF), however these remain uncharacterized.²³ Together with Efg1, Efh1 regulates genes known to be involved in filamentation.⁵⁷

1.5.3- Production of extracellular polymeric substances

Transcriptional regulators involved in biofilm matrix biogenesis in *C. albicans* include RIm1 and Zap1 (also known as Csr1). Deletion of *CaRLM1* gene results in reduced matrix formation, potentially through downregulation of the Gsc1 β -1,3-glucan synthase subunit, which catalyzes the formation of β -1,3-glucan.⁵⁸ Csr1 regulates adhesion and ECM development in *C. albicans* biofilms. Deletion of *CaCSR1* leads to increased matrix formation, which can be explained by the negative control of β -1,3-glucan present in the matrix by this TF, potentially through downregulation of *CaGCA1*, CaGCA2 and *CaADH5* genes, related to the conversion of long-chain polysaccharides into smaller-chain polysaccharides, and upregulation of *CaCSH1* and *CaIFD6*. Moreover, the deletion of the genes *CaALG11*, *CaMNN4-4*, *CaMNN9*, *CaMNN1*, *CaPMR1*, *CaVAN1* and Ca*VRG4* involved in mannan synthesis, *CaBIG1* and *CaKRE5* involved in β -1,6-glucan synthesis. Additionally, Csr1 has also been related to the control of filamentous growth.^{51,56}

C. glabrata carries a Csr1 homologue, Zap1, that remains uncharacterized.

1.5.4- Additional biofilm-related transcription factors

Schwarzmuller *et al.* (2014) studied biofilm formation adopting a large-scale reverse genetics approach with 619 *C. glabrata* deletion mutants. The TF Ace2 was found to decrease significantly *C. glabrata*'s virulence, being known to regulate genes involved in cell separation and biofilm formation processes, such as *CgCTS1*, *CgEGT2*, *CgTAL1* and *CgTDH3* genes.¹⁶ Moreover, Ace2 mutants showed to be hypervirulent in a murine model of candidiasis, causing much earlier mortality, comparing with the wild-type. This demonstrates that Ace2 plays a critical role in mediating the host-*Candida* interaction.⁵⁹ In *C. albicans*, an Ace2 TF was also found, conserving the C2H2 zinc finger domain.¹⁶ It has been shown to be required for biofilm formation in normoxia conditions⁶⁰ and filamentous growth under hypoxic conditions.⁶¹

Interestingly, the lack of Mig1 (a TF mediating glucose repression) results in increased biofilm development in *C. glabrata*. It is tempting to speculate that nutrient deprivation may to some extent favor biofilm formation, in line with the idea that this process constitutes a mean for this species to survive hostile environments.¹⁹

Lastly, deletion of the *CgMED12*, *CgMED13* and *CgMED15* genes encoding components of the Mediator complex has been shown to lead to increased biofilm formation.⁶² The Mediator complex connects specific transcription regulators and the general TFs. Specifically, Med15 (Gal11) is a component of the tail domain of Mediator involved in the interaction with several TFs while Med12 (Ssn8) and Med13 (Ssn2) are components of the kinase module. When this kinase module is lacking, it can provoke positive and negative effects on expression of genes induced by nutrient deprivation, which may explain the associated increase in biofilm formation in *C. glabrata*, as discussed above.¹⁹

Figure 7- Transcription factors described to be involved in biofilm formation processes and its' regulatory networks, highlighting the difference between the current knowledge in *Candida albicans* (up image) and *Candida glabrata* species (down image). Green boxes indicate activators and red boxes indicate repressors. Participation of each transcription factor in these processes is indicated by the colored arrows: brown arrows correspond to adhesion, dark blue arrows correspond to EPS, light blue arrows correspond to filamentation, and yellow arrows correspond to biofilm formation. (from: Cavalheiro, M. & Teixeira (2018)²³).

1.5.5- Biofilm formation boosts antifungal resistance

Currently, there are efforts to decrease the mortality associated with Candida species, namely through prophylactic or empirical antifungal treatments administered to ICU patients without documented candidiasis. This has boosted the use of antifungal drugs, as triazoles and echinocandins, leading to an increase in the selective pressure for drug resistant strains. However, cases of therapeutic failure are expanding due to resistance to these drugs, which is alarming considering the limited number of drug classes, that target different fungal components, available for clinical use.²² The major classes of antifungals used are azoles, echinocandins and polyenes, which are categorized based on their mechanism of action on the yeast pathogen. Cells grown as biofilm exhibit typically lower susceptibility to antimicrobial agents, when compared to planktonic cells, and this is also the case with C. glabrata.¹⁰ The biofilm structure results in resistant cells to one or several antifungals. Different mechanisms of resistance vary among drugs, typically because of the mode of action of each class of antifungal. Azoles are known to have fungistatic activity, targeting the ergosterol biosynthetic pathway, by binding to the Cyp51 family of cytochrome P450, the 14- α sterol demethylases that are encoded by CgERG11 leading to changes in membrane fluidity.^{20,32} The polyenes bind to the membrane ergosterol provoking transmembrane aggregates and pores, which lead to osmotic imbalance. Finally the echinocandins target the cell wall synthesis by inhibiting β -1,3-glucan synthesis, interfering with cell wall integrity.³² Biofilm drug resistance in C. glabrata holds various general mechanisms, such as the up-regulation of efflux pumps, changes in cell wall composition, presence of an extracellular matrix, adhesion and activation of stress response genes.

Drug extrusion mediated by membrane transporters has been strongly associated with both ATPbinding cassette (ABC) and Major Facilitator Superfamily (MFS) transporters, playing a determinant role in cellular drug resistance. Overexpression of the efflux pump genes *CgCDR1*, *CgCDR2* and *CgTPO1_2*, encoding multidrug resistance transporters, as well as the multidrug resistance zinc clustercontaining TF, encoded by the gene *CgPDR1*, have been observed in *C. glabrata* biofilms, and are thought to be one of the key causes of antifungal drug resistance in biofilm cells during early-phase of biofilm development.^{63,64} Tpo1_2 is a drug:H+ antiporter (DHA) belonging to the MFS that is not only related to antifungal resistance, but is also necessary for the normal expression of *CgALS1*, *CgEAP1* and *CgEPA1* genes involved in adhesion.^{13,65}

Fluconazole resistance in *C. glabrata* is thought to be almost exclusively caused by Gain-Of-Function (GOF) mutations in the *CgPDR1* gene, resulting in upregulation of the ABC transporter genes *CgCDR1*, *CgPDH1*, and *CgSNQ2* responsible for increased fluconazole efflux.⁶⁶ Recent studies have provided new insights into the regulation of Pdr1. Site-directed mutagenesis of Pdr1 binding sites in the *CgPDR1* promoter demonstrated that autoregulation of *CgPDR1* is required for its normal function.⁶⁴ Moreover, Jjj1 was shown to be a negative regulator of fluconazole resistance in *C. glabrata* acting through

inhibition of the TF Pdr1, which turns into a decreased expression of the ABC transporter gene *CgCDR1*.⁶⁶

Studies have shown that in early-phase biofilms, efflux pumps contributed to antifungal resistance, as mentioned above, while in intermediate and mature phase biofilms azole resistance was associated with changes in the levels of ergosterol biosynthesis intermediates.^{20,22} Taking the target of azole molecules, it is expected that the genes involved in ergosterol biosynthesis are up-regulated upon its presence. These include *CgERG1*, *CgERG3*, *CgERG6*, *CgERG7*, *CgERG9* and especially Cg*ERG11*, whose product is the direct target of azole drugs and converts lanosterol into 4,4-dimethylcolesta-8,14,24-trienol, as can be seen in **Figure 8**.⁹ Depletion of the ergosterol content in a *CgERG1* mutant was shown to increase the levels of susceptibility to azoles and further complementation of the *CgERG1* mutation restored drug sensitivity to wild-type levels.⁶⁷ Additionally, Ada2, a component of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, appears to mediate antifungal drug tolerance and cell wall integrity through the control of its downstream target *CgERG6*, that encodes a C24 sterol methyltransferase involved in ergosterol biosynthesis, as its deletion increases echinocandin susceptibility similar to *CgADA2* mutants.⁴⁸

It was shown that progression of drug resistance in *Candida* biofilms was associated with parallel increase in metabolic activity of the developing biofilm. This observation came to confirm that increased drug resistance is not because of lower metabolic activity of cells in maturing biofilms, but is more related to the maturation process.²² By isolation of membrane sterols from biofilms and analysis through gas liquid chromatography, it was shown that ergosterol levels of biofilms grown to the intermediate and mature phases were reduced by 41% and 50%, respectively, in *C. glabrata* when compared to *C. albicans* biofilm formation the levels of sterols is modulated, contributing to drug resistance in a phase-specific manner.²⁰

A developed biofilm is also implicated in prevention of antifungal drug penetration through formation of the ECM, which acts as a diffusion barrier.³² β -1,3-glucans are present in *C. glabrata* matrices, similarly to *C. albicans*, functioning to secure biofilm cells to a surface and enabling the development of antifungal drug resistance.⁶⁸ The expression of various genes associated with matrix production (*CgBGL2*, *CgXOG1*, *CgFKS1*, *CgFKS2*, *CgGAS2*, *CgKNH1*, *CgUGP1* and *CgMNN2*) was analyzed in presence of fluconazole, amphotericin B, caspofungin, or micafungin. Among these, *CgBGL2*, *CgXOG1*, *CgGAS2* genes, related to production of β -1,3-glucans, showed the highest expression levels induced by micafungin.⁶⁸ There is also evidence that β -1,3-glucans can bind specifically to amphotericin B, giving the biofilm the ability to sequester this drug.³²

Farnesyl Pyrophosphate ERG9 squalene synthase Squalene ERG1 squalene epoxidase Squalene Epoxide ERG7 lanosterol synthase Lanosterol <u>ERG11</u> lanosterol C-14 demethylase 4,4-dimethylcholesta-8,14,24-trienol ERG24 sterol C-14 reductase Ψ 4,4-dimethylzymosterol ERG25 sterol C-4 methyloxidase ERG26 sterol C-3 dehydrogenase (C-4 decarboxylase) ERG27 sterol C-3 keto reductase Zymosterol ERG6 sterol C-24 methyltransferase Fecosterol ERG2 sterol C-8 isomerase Episterol ERG3 sterol C-5 desaturase Ergosta-5,7,24(28)-trienol ERG5sterol C-22 desaturase Ergosta-5,7,22,24(28)-tetraenol ERG4 sterol C-24 reductase ERGOSTEROL

Figure 8- The ergosterol biosynthetic pathway. (from M. Brad et al. (2005)⁶⁹).

Other specific genes up-regulated during biofilm formation are also important in stress response: peroxisomal catalase (*CgCTA1*), tyrosine biosynthetic genes (*CgARO*), the muscle creatine kinase (*CgMSK*), the heat shock protein 90 (*CgHSP90*), the sphingolipid biosynthesis genes (*CgSKN1* and *CgKRE1*), SIR and telomere-binding protein (RIF), both involved in telomeric silencing, and the ECM regulators: zinc regulated genes (*ZAP1*), g-carbonic anhydrase (*CgGCAL1*), alcohol dehydrogenase (*CgADH5*), and also cell surface hydrophobicity (*CgCSH1*).³² Some of these alterations were linked to modifications in the structure of *C. glabrata* biofilms by creating cell clusters, which could be a possible mechanism of biofilm tolerance to the antifungal fluconazole.^{32,70}

1.6- The predicted role of the Tec1 transcription factors in biofilm formation

Biofilm formation is a highly regulated phenomenon, where various TFs play an important role in activating biofilm-related genes as well as interacting with other TFs, as a complex regulatory network. Nobile *et al.* carried out a study with a collection of *C. albicans* deletion mutants where nine regulators were identified as essential for biofilm development both *in vitro* on polystyrene plates and on silicone squares, and *in vivo* in rat catheter and denture models: Bcr1, Brg1, Efg1, Flo8, Gal4, Ndt80, Rob1, Rfx2 and Tec1. All these mutants were shown to form defective biofilms. Resorting to chromatin Immunoprecipitation assays it was possible to conclude that these regulators form a transcriptional network (**Figure 9**), affecting the expression of each other, along with approximately 1000 target genes.^{43,58,71}

Figure 9- Transcriptional network controlling biofilm formation in *Candida albicans.* Autoregulation is indicated by dotted arrows, direct binding interactions between two regulators that each regulate the activity of the other are indicated by double-headed dark grey arrows, and direct binding interactions where one regulator controls another regulator are indicated by single-headed light grey arrows. (from: Lohse, Matthew B., *et al.* (2018)⁵⁸).

Tec1 is a member of the transcriptional enhancer activators (TEA/ATTS) family of TFs that was shown to be a positive regulator of morphogenesis upon serum induction, macrophage evasion and expression of aspartyl proteinase genes, required for hyphal formation and virulence in *C. albicans*.^{16,43,23} The DNA-binding region is contained in 66–76 conserved amino acids in the N-terminus.⁴³

Tec1 is involved in the regulation of hyphal growth in planktonic cells, together with some of the previously mentioned core regulators of biofilm formation, such as Efg1, Ndt80 and Rob1. The deletion

of any one of these genes implicated a significant reduction of hyphae development.⁵⁸ Depending on the environmental cues and cell type, the MAPK signal activates filamentation programs transduced by Tec1.⁷²

By resorting to ChIP-chip, it was possible to infer a statistically significant motif for Tec1 (RCATTCY), which is identical to that determined for its homolog, Tec1, in *S. cerevisiae*. This motif differs from the one previously reported in the white-specific pheromone response element, AAAAAAAAAAAAAAAGAAAG in *C. albicans*.⁷¹

A study carried by Daniels, Karla J., *et al.* (2015) intended to analyze the role of *C. albicans* Tec1 by comparing the effects of deleting *CgTEC1* gene on initial adhesion to silicone elastomer, high-resolution confocal microscopy assessments of the stages and cellular phenotypes during the 48 h of a *MTL*-homozygous mature sexual biofilm development, human white cell penetration, and integrity of the biofilms. The results showed that Tec1 plays a minor role in initial adhesion to silicone elastomer but to be relevant in the growth of the basal yeast cell polylayer, vertical extension of hyphae and matrix deposition in the upper portion of the biofilm, final biofilm thickness, penetrability of human white blood cells, and final biofilm integrity.⁷³

There are a modest number of studies that aimed to disclose Tec1 transcriptional networks in *C. albicans.* One was performed by Sahni, Nidhi, *et al.* (2010) using the increase in adhesion associated with white cell pheromone response as an assay, that demonstrated that Tec1 was the only factor among 107 TFs to induce adhesion when overexpressed in the absence of pheromone. Tec1 revealed to be the TF regulated by the MAP kinase cascade in the white cell pheromone response pathway and was shown to belong to an ancestral filamentation pathway, taking its conserved role in both *C. albicans* and *S. cerevisiae* filamentation. Tec1 binds selectively to WPRE-containing promoters of the genes upregulated by α -pheromone in white cells (*CaCSH1, CaPBR1, CaRBT5, CaWH11, CaSTE2* and *CaRBT1*).⁷⁴

Tec1 expression is directly regulated by Efg1 and Cph2 TFs, functioning to mediate hyphal gene transcription in *C. albicans.* ^{16,43,23} Furthermore, Bcr1 is positively regulated by Tec1 and was predicted to have a role in hyphal development. Bcr1 is a C2H2 zinc finger transcriptional activator of cell-surface protein and adhesion genes such as *CaECE1*, *CaALS3*, *CaHWP1*, and *CaHYR1*.¹⁶

Glazier, V. E. *et al.* (2017) study adressed the functional consequences of the integration of the TFs in *C. albicans* biofilm network (composed of Bcr1, Brg1, Efg1, Ndt80, Rob1, and Tec1) and the identities of pairs of TFs that functionally interact. This TF network revealed to be efficient, but not robust, in relation to Tec1 expression regulation. The deletion of each of the regulator genes, except for *CaNDT80*, led to a decrease in *CaTEC1* expression, indicating that this TF is an important output of the network and highly connected to its functional state. The importance of Tec1 to the function of the newtwork was highlited in this study, which discloses that a significant portion of biofilm formation reduction is due to the reduced network mediated *CaTEC1* expression in the deletion mutants. This shows the ability of this transcriptional network to answer to small perturbations at a number of nodes by communicating to regulate the expression of a functionally important member of the network.

If the biofilm network functioned in a robust manner, the *CaTEC1* expression would be less susceptible to small changes in the network instead of provoking significant changes in phenotype.⁷⁵

Moreover, $\Delta tec1$ deletion mutant also displayed a significant reduction in acetylation-stimulating protein protein production, which is a major component of the ECM of *C. albicans* biofilms, as was observed for $\Delta efg1$ deletion mutants as well.⁷⁶

Considering S. *cerevisiae*, van der Felden, Julia, *et al.* (2014) studied the mechanisms by which Tec1 and Ste12 confer promoter-specific transcriptional control. Tec1, together with Ste12 TF, controls development, including cell adhesion and biofilm/filament formation. Tec1-Ste12 complexes control target genes through Tec1 binding sites (TEA consensus sequences) that can be further combined with Ste12 binding sites (pheromone response elements) for cooperative DNA binding. The activity of Tec1-Ste12 complexes is known to be negatively controlled by Dig1 and Dig2 transcriptional corepressors, that confer regulation by upstream signaling pathways. This complex was shown to associate *in vitro* and *in vivo* with the regulatory proteins Msa1 and Msa2, which were previously found to interact with cell cycle-related TFs (Swi4 and Mbp1). Tec1-Ste12-Msa1-Msa2 complexes activate a subset of genes involved in adhesion and biofilm/filament formation. Msb2 and Tec1, together with Msa proteins, are proposed to form a positive-feedback loop that controls the activity of the invasive/filamentous MAPK cascade, which helps to stably maintain cells in an invasive or filamentous growth mode under stress conditions, such as lack of nutrients.⁷⁷

Additionally, Zhang, Qiuyu, *et al.* (2016) identified about 20 enhancers and 20 repressors of filamentation that included Tec1 between a number of highly conserved TFs, in *C. tropicalis.* This was performed by screened an overexpression library of 156 TFs. Most of the regulators (e.g., Tec1, Gat2, Nrg1, Sfl1, Sfl2 and Ash1) were demonstrated to have a conserved role in the regulation of filamentation, as in *C. albicans* or *S. cerevisiae*, but some TFs (e.g., Wor1, Bcr1, Stp4, Efh1, Csr1 and Zcf17) were found to play a specific role in *C.tropicalis* filamentation process only.⁷⁸

In *C. parapsilosis*, *TEC1* gene seems not to play the same role as in *C. albicans*, since biofilm formation was not significantly reduced in the case of *C. parapsilosis* $\Delta tec1$ mutant.⁴³ Nevertheless, it is an important transcription regulator promoting filamentation in this species.²³

Despite this knowledge, little is known about the influence of the predicted Tec1 homolog, Tec1 TF (encoded by ORF *CAGL0M01716g*) in biofilm formation, in the case of *C. glabrata*.⁴³

The transcriptional network found to control biofilm formation in *Candida albicans*, by Nobile, Clarissa J., *et al.* (2012), motivated our research group to find if these TFs were also related to biofilm formation in *C. glabrata*. Based on sequence homology, the *CgTEC1*, *CgTEC2*, *CgBCR1* and *CgNDT80* genes were found in *C. glabrata*, as homologues of the *C. albicans CaTEC1*, *CaBCR1* and *CaNDT80* genes. The possible involvement of these TFs in *C. glabrata* biofilm development on polystyrene wells was demonstrated. The deletion of *CgTEC1* was shown to affect biofilm formation the most (Santos *et al.*, unpublished results).

A Blast analysis was performed using the Candida Genome Database (CGD) and two homologous of the *CaTEC1* gene were found: was named *CgTEC1* (ORF *CAGL0M01716*) with 44.6% of identity and the second with 46.5% identity was named *CgTEC2* (ORF *CAGL0F04081*), which despite having shown a minor impact in biofilm formation, it was the one displaying the highest identity score.

1.7- Thesis outline and motivation

C. glabrata is a commensal colonist of the intestinal tract in humans, being an opportunistic pathogen. Biofilm formation ability contributes to *C. glabrata* persistence and results in a low therapeutic response and serious recurrent candidiasis. For their complex organization, biofilms are very resistant to antifungal treatment. Additionally, *C. glabrata* is a high stress tolerant and very robust species, since it can not only survive on host tissues but also on inanimate surfaces for more than 5 months and this is due to its capability to form multilayered biofilms. Even though there is a high amount of information available regarding the mechanisms that control biofilm formation in *C. albicans*, scarce information is available for *C. glabrata*.

The *C. albicans* TF Tec1 is a positive regulator of morphogenesis, required for hyphal differentiation and also an important regulator of biofilm formation, recently considered a member of the TEA/ATTS family of TFs. Contrasting with the knowledge on the biological roles played by *C. albicans* Tec1 TF, in *C. glabrata* the biological functions of its predicted orthologs Tec1 and Tec2 remain unclear. However, preliminary unpublished results suggest that Tec1 is also related to biofilm formation in *C. glabrata*. Motivated by this hypothesis, this dissertation was outlined in order to clarify and improve the knowledge about the role and the mechanisms of action of the *C. glabrata* Tec1 TF in its ability to form stable biofilms and to unveil possible targets for the future development of strategies to prevent biofilm-based pathogenicity by *C. glabrata*.

This thesis starts with a first chapter introducing the main topics addressed in this study, such as the increasing relevance of *C. glabrata* as an opportunistic pathogen and its main features. A description of known biofilm formation mechanisms is given, comprising each stage of development. The importance of biofilm formation for virulence in *Candida* species is also addressed, giving special attention to the transcriptional control underlying this phenomenon. Lastly, the role of the transcription regulatory network controlling biofilm formation in *C. albicans* and other related yeast species, including the Tec1 TFs in particular, is overviewed, highlighting the lack of knowledge on the transcriptional control of biofilm formation in *C. glabrata*.

The second chapter presents the materials and methods required for the development of this work.

The third chapter describes the results and discussion of the functional characterization of the *C. glabrata* TF Tec1. This functional characterization encompasses biofilm formation and adhesion assays

to polystyrene surfaces and human vaginal epithelium cells, respectively, where the behavior of a wildtype (wt) is compared to $\Delta tec1$ deletion mutant or the *CgTEC1* overexpressing strain. The subcellular localization of Tec1 was assessed, as well as its involvement in pseudohyphal differentiation. To understand the role of Tec1 in *C. glabrata* biofilm formation, when compared to planktonic growth, ribonucleic acid (RNA)-sequencing (RNA-seq) analysis of the effect of deletion of the *CgTEC1* gene on the transcriptome in both conditions is presented. Based on the indications obtained from the transcriptomics analysis, some adhesion-related genes were studied in relation to their relevance in biofilm formation. The deletion of 9 genes found to be upregulated by Tec1 during biofilm development on polystyrene surface was evaluated along with 3 other genes up-regulated in biofilm cells. This chapter also includes the study of the effect of deleting the *CgTEC1* gene in the concentration of ergosterol present in *C. glabrata* cells grown under biofilm and planktonic conditions. At last, an *in silico* prediction of the Tec1 binding sequences, structure and conserved domains was performed and presented. The obtained results are discussed in comparison with current knowledge in other species.

The thesis ends with the fourth section, Final Discussion, focusing on the most significant aspects of our findings. Some final remarks and future perspectives are also discussed.

2- Experimental Procedures

2.1- Cell cultures

2.1.1- Strains

The parental strain *C. glabrata* KUE100 and derived single deletion mutants: $\Delta tec1$, $\Delta pup1$, $\Delta aur1$, $\Delta aed2$, $\Delta pwp5$, $\Delta bmt1$, $\Delta bmt7$, $\Delta awp13$ and were kindly provided by Prof. Hiroji Chibana, Medical Mycology Research Center, Chiba University, Chiba, Japan. *C. glabrata* L5U1 strain ($\Delta cgura3\Delta cgleu2$) was kindly provided by John Bennett⁷⁹ of the National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD. Additionally, the CBS138 *C. glabrata* strain, whose genome sequence was released in 2004, was used in this study for gene amplification purposes. The plasmid pGREG576 was obtained from the Drag & Drop collection (**Figure A1**)⁸⁰.

2.1.2- Growth media

C. glabrata cells were batch-cultured at 30°C with orbital agitation (250 rpm) in different growth media according to the following protocols:

- The yeast extract peptone dextrose (YEPD) growth media was used as a rich medium, with the following composition (per liter): 20 g glucose (Merck), 10 g yeast extract (HIMEDIA) and 20 g bacterial-peptone (Dickson).
- The minimal growth medium (MMG) used contained per liter: 20 g glucose (Merck); 2.7 g (NH₄)₂SO₄ (Merck); 1.7 g yeast nitrogen base without amino acids and (NH₄)₂SO₄ (Difco).
- Also used was Sabouraud's dextrose broth (SDB) pH 5.6 containing 40 g glucose (Merck) and 10 g peptone (LioChem) per liter.
- Roswell Park Memorial Institute (RPMI) 1640 growth medium pH 4 contained per 600 mL: 6.24 g RPMI 1640 (Sigma); 20.72 g 3-(N-morpholino) propanesulfonic acid (MOPS) (Sigma); 10.8 g glucose (Merck).

2.1.3- Human epithelium cell line for adhesion assays

The VK2/E6E7 human epithelium cell line ATCC[®] CRL-2616[™], used for adhesion assays, is derived from the vaginal mucosa of a healthy premenopausal female submitted to vaginal repair surgery. VK2/E6E7 cell maintenance was achieved with Keratinocyte-Serum Free medium, containing 0.1 ng/mL human recombinant EGF, 0.05 mg/mL bovine pituitary extract and additional 44.1 mg/L calcium chloride. Subculturing of cells was performed using 75 cm² flasks, beginning with the removal of the culture medium, rinsing the cell layer with 0.25% (w/v) Trypsin-0.03% (w/v) Ethylenediamine tetraacetic acid (EDTA) solution to remove all traces of serum that contains trypsin inhibitor. Afterwards, 3.0 ml of Trypsin-EDTA solution was added to the flask, following observation of cells under an inverted microscope until the cell layer was dispersed. Trypsin was neutralized by adding 8.0 mL of a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F12 medium (DMEM:F-12), containing 10% fetal

bovine serum. Subsequently, cells were aspirated and transfer to a centrifuge tube, for centrifugation at 125 x g for 10 min. Cells were resuspended in fresh serum-free growth medium and divided in aliquots to add to new culture vessels, which were incubated at 37°C, with 95% air and 5% CO₂.

2.2- Quantification of Biofilm Formation

In order to assess the capacity of biofilm formation of *C. glabrata* cells, the Presto Blue assay (**Figure A2**) was used. Cells were grown in SDB medium or MMG-U medium (composed of minimal medium supplemented with 60 mg/L Leucine) and collected at mid-exponential phase. A cell suspension was prepared with an OD₆₀₀ of 0.1. Cells were then inoculated in 96-well polystyrene titter plates (Greiner), which were previously filled with the appropriated medium, SDB at pH 5.6 or RPMI at pH 4, in order to have an initial OD_{600nm} = 0.05±0.005. Afterwards, cells were sealed with a membrane (Greiner Bio-One) and cultivated at mild orbital shaking (70 rpm), for 24h, at 30°C. Subsequently, each well was washed two times with 100 µL of sterile PBS pH 7.4 [PBS contained per liter: 8 g NaCI (Panreac), 0.2 g KCI (Panreac), 1.81 g NaH₂PO₄.H₂O (Merck), and 0.24 g KH₂PO₄ (Panreac)] to remove the cells that were not attached to the formed biofilm. After washing, Presto Blue reagent was prepared in a 1:10 solution in the medium used for biofilm formation, adding 100 µL of the solution to each well. Plates were incubated at 37°C for 30 min. Afterwards, absorbance reading was determined in a microplate reader (SPECTROstar Nano, BMG Labtech) at the wavelength of 570 nm and 600 nm for reference.

2.3- Adhesion to human vaginal epithelium cells assay

For the epithelium adhesion assays, VK2/E6E7 human epithelium cells were grown adhered to an abiotic surface and further detached in order to be inoculated in 24-well polystyrene plates (Greiner) with a density of 2.5×10^5 cell/mL. Additionally, *Candida glabrata* cells were inoculated with an initial OD_{600nm} = 0.05 ± 0.005 , cultivated at 30 °C, during 16±0.5 h, with orbital shaking (250 rpm). In order to initiate the assay, the culture medium of mammalian cells was removed and substituted by new culture medium, in each well, and, subsequently, *C. glabrata* cells were added to each well, with a density of 12.5×10^5 CFU/well. The plate was centrifuged for 1 min at 1000 rpm and room temperature. Then, cells were incubated at 37° C, 5% CO₂, for 30 min. Afterwards, each well was washed 3 times with 500 µL of PBS pH 7.4, following the addition of 500 µL of Triton X-100 0.5% (v/v) and incubation at room temperature for 15 min. The cell suspension in each well was then recovered and spread onto agar plates to determine Colony Forming Units (CFU) count, which represent the proportion of adherent cells to the human epithelium.

2.4- C. glabrata transformation

For transformation purposes, cells were batch-cultured at 30°C, with orbital agitation (250 rpm) in liquid rich medium YEPD.

All transformation reactions were performed using the Alkali-Cation Yeast Transformation Kit (MP Biomedicals), according to the manufacturer's instructions. Mid-exponential *C. glabrata* L5U1 cells were batch-cultured at 30°C with orbital shaking (250 rpm) in YEPD liquid medium until a standard OD_{600nm} 0.4 ± 0.04 was reached. The cells were harvested by centrifugation at 7 000 rpm for 5 min at 4°C and the resulting pellets were resuspended in 2.7 mL of Tris EDTA (TE) buffer, pH 7.5. After a second centrifugation step, the cells were harvested and rinsed with 1.5 mL of 0.15 M Lithium Acetate solution and shaken gently (100 rpm) at 30°C for 25 min. Cells were harvested by centrifugation (7 000 rpm, 5 min, 4 °C) and resuspended in 300 µL TE buffer, pH 7.5. Cells were then transferred to microcentrifuge tubes, combining: 100 µL yeast cells, 5 µL Carrier DNA, 5 µL Histamine Solution and 100-200 ng plasmid DNA. Cells were gently mixed and incubated at room temperature for 15 min. A mixture of 0.8 mL PEG and 0.2 mL TE/Cation MIXX solution was added to each transformation reaction, followed by 10 min incubation at 30 °C and heat shock at 42°C for 10 min. Cells were then pelleted in a microcentrifuge and resuspended in 100 µL YEPD liquid medium before plating in appropriate medium agar plates.

2.5- RNA-sequencing analysis

2.5.1- Total RNA extraction

Cells for RNA-seq analysis were grown in SDB medium. Planktonic cells were cultured at 30°C with orbital agitation (250 rpm), while biofilm cells were cultured at 30°C, in square Petri dishes, with orbital agitation (70 rpm). Three independent total RNA isolates were extracted from wild type and single deletion mutant cells during planktonic exponential growth and upon 24h of biofilm growth. Total RNA was isolated using an Ambion Ribopure-Yeast RNA kit, according to manufacturer's instructions. Cell cultures and RNA extraction were performed by Mafalda Cavalheiro.

2.5.2- Library preparation and RNA-sequencing

Strand specific RNA-seq library preparation and sequencing was carried out as a paid service by the NGS core from Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA. Prior to RNA-seq analysis quality control measures was implemented. Concentration of RNA was ascertained via fluorometric analysis on a Thermo Fisher Qubit fluorometer. Overall quality of RNA was verified using an Agilent Tapestation instrument. Following initial QC steps sequencing libraries were generated using the Illumina Truseq Stranded Total RNA library prep kit with ribosomal depletion via RiboZero Gold according to the manufacturer's protocol. Briefly, ribosomal RNA was depleted via pull down with bead-bound ribosomal-RNA complementary oligomers. The RNA molecules were then chemically fragmented and the first strand of (cDNA) was generated using random primers. Following RNase digestion, the second strand of cDNA was generated replacing dTTP in the reaction mix with dUTP. Double stranded cDNA then underwent adenylation of 3' ends following ligation of Illumina-specific adapter sequences. Subsequent PCR enrichment of ligated products further selected for those strands

not incorporating dUTP, leading to strand-specific sequencing libraries. Final libraries for each sample were assayed on the Agilent Tapestation for appropriate size and quantity. These libraries were then pooled in equimolar amounts as ascertained via fluorometric analyses. Final pools were absolutely quantified using qPCR on a Roche LightCycler 480 instrument with Kapa Biosystems Illumina Library Quantification reagents. Sequencing was performed on an Illumina HiSeq 3000, producing 2x150 bp paired-end reads, 2 gigabases (GB) clean data, yielding 52 million reads per sample.

2.5.3- Computational analysis

Paired-end reads were obtained from wild type (*C. glabrata* KUE100) and correspondent deletion mutant strain (*CAGL0M01716g*). Two replicates of each sample were obtained from three independent RNA isolations, subsequently pooled together. Samples reads were trimmed using Skewer⁸¹ and aligned to the *C. glabrata* CBS138 reference genome, obtained from the *Candida* Genome Database (CGD)⁸², using TopHat. HTSeq⁸³ was used to count mapped reads per gene. Differentially expressed genes were identified using DESeq2⁸⁴ with an adjusted *P*-value threshold of 0.01 and a log2 fold change threshold of -1.0 and 1.0. Default parameters in DESeq2 were used. Significantly differentially expressed genes were clustered using hierarchical clustering in R⁸⁵. *Candida albicans* and *Saccharomyces cerevisiae* homologs were obtained from the CGD and Saccharomyces Genome Database (SGD)⁸⁶, respectively. Raw data pre-treatment was performed by Pedro Pais, in collaboration with Geraldine Butler, University College Dublin.

2.6- Transcriptomic data analysis

The RNA-sequencing analysis provided two datasets: wild type vs *Δtec1* deletion mutant in planktonic growth and wild type planktonic vs wild type biofilm growth. The genes of each dataset were submitted to several analysis using different databases and bioinformatic tools, so they could be grouped according to their biological functions. This was accomplished mainly by resorting to the description of the *C. glabrata* genes found on the CGD (http://www.candidagenome.org/). The uncharacterized genes were clustered based on the description of ortholog genes in *S. cerevisiae* or in *C. albicans*, according to the SGD or in CGD, respectively. Go-Stats from GoToolBox web server⁸⁷ allowed the determination of the main Gene Ontology (GO) terms to which the genes were related. The bioinformatic tool Kyoto Encyclopedia of Genes and Genomes (KEGG) Mapper⁸⁸ was used to analyze the main metabolic pathways to which the genes were related to. The KEGG organism code chosen was "cgr" for *C. glabrata*. The functional protein association networks tool, STRING⁸⁹, helped to understand the protein-protein interactions and its cellular functions. From this organization, several genes related to cell adhesion were chosen for the following gene expression analysis.

For the analysis of the possible Tec1 recognition sequences, a search for consensus sequences in the upstream regions of each positively regulated gene in biofilm was performed. By resorting to

PathoYeastract⁹⁰ database, these upstream regions were obtained and then, these were used in DREME (Discriminative Regular Expression Motif Elicitation)⁹¹ informatic tool.

I-TASSER (Iterative Threading ASSEmbly Refinement)⁹² approach was used for Tec1 structure and ligand binding residues prediction. The InterPro⁹³ database was used to search for conserved domains in Tec1 and Clustal Omega⁹⁴ program (https://www.ebi.ac.uk/Tools/msa/clustalo/) allowed the multiple alignment of the three TEC1 orthologs from C. albicans, S. ceresiviae and C. glabrata.

2.7- Gene expression analysis

The quantitative Real Time Polymerase Chain Reaction (RT-gPCR) technique was used in order to estimate the expression levels of CqPWP5, CqAED2 and CqAWP13 genes encoding adhesins, by visualizing the abundance of mRNA transcripts in each sample.

For the planktonic growth condition, C. glabrata KUE100 and $\Delta tec1$ single deletion mutant strains were grown in YEPD medium, at 30 °C, with an orbital agitation of 250 rpm until an OD_{600nm} of 0.8±0.08 was achieved. For the biofilm growth condition, the same strains were grown in SDB medium and collected at mid-exponential phase. Cells were then inoculated in square polystyrene titter plates filled with 40 mL of SDB medium at pH 5.6, to have an initial $OD_{600nm} = 0.05 \pm 0.005$. Afterwards, cells were cultivated at mild orbital shaking (70 rpm), for 24 h and 48 h, at 30°C. The cultures were conducted in triplicates. Afterwards, the planktonic cells were harvested with a centrifugation of 7000 rpm, at 4°C for 7 min, obtaining the desired pellets. Then, the pellets were resuspended in 1 mL of supernatant and centrifuged at 9000 rpm for 2 min. The pellets obtained were stored at -80°C until further use. Biofilm cells were harvested by discarding the medium, leaving only biofilm cells in the plates, then 3 mL of sterile water were added and the plate was scraped. The resultant suspension of cells was transferred to a centrifuge tube. This process was repeated and the suspension was centrifuged at 7000 rpm, at 4 °C for 5 min, obtaining the desired pellets. Then, the pellets were resuspended in 1 mL of supernatant and centrifuged at 13500 rpm for 2 min. The pellets obtained were stored at -80 °C until further use.

2.7.1- Total RNA extraction and quantification

The total RNA extraction was performed for C. glabrata KUE100 and $\Delta tec1$ single deletion mutant strains cells grown in planktonic and biofilm growth conditions, according to the Hot-phenol method described by Kohrer & Domdey⁹⁵. For the first step of this method, the pellets were resuspended in 900 µL of AE buffer (50 mM NaAc (Sigma), 10mM EDTA (Aldritch), pH=5.3; 0.1% (v/v) diethylpyrocarbonate (DEPC) treated). Afterwards, it was added 90 µL of SDS 10% (w/v) (Sigma) and 800 µL of phenol, following a short vortex of 5 sec. Then, samples were incubated at 65 °C for 4 min and transferred into dry ice until the formation of crystals was identified. The mixtures were centrifuged at 15000 rpm, at 4 ^oC for 5 min. The upper phase was collected to new microcentrifuge tubes. Subsequently, a two-step extraction with phenol was performed where for each step 400 µL of a 25:24:1 phenol/chloroform/isoamilic acid solution (Sigma) was added. A short vortex was carried out, following

a centrifugation at 15000 rpm, at 4 °C for 5 min. The top phase was collected to new microcentrifuge tubes. Then, a final extraction was performed, using 800 μ L of 24:1 chloroform/isoamilic acid solution (Sigma), following vortex and centrifugation in the same conditions, finishing with the collection of the top phase.

After this stage, a 1/10 of the final volume of the mixture obtained by centrifugation of sodium acetate 3 M (Merck, pH=5.3, 0.1% DEPC treated) was added. Then a purification step was performed by adding 1 mL of cold ethanol 100%. After a short vortex, the samples were stored in -20°C for 20 min. Then, a prolonged centrifugation was carried out at 15000 rpm, at 4°C for 20 min. The liquid phase was discarded and the remaining precipitates were washed with 750 μ L of cold ethanol 70% (v/v) and centrifuged at 15000 rpm, at 4 °C for 20 min. The liquid phase was carefully discarded, and afterwards, in order to preserve the formed precipitates, a drying step at Speed Vacuum Concentrator Plus (Eppendorf) was performed for 15 min. Then, the material was resuspended in 50 μ L of sterile deionized water 0.1% (v/v) DEPC treated and the volume was divided by two aliquots of 10 μ L and 40 μ L. The aliquots of 10 μ L were used to assess the purity and quantify total RNA concentration in a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies).

At last, the samples were diluted in order to have a concentration of 500 ng/ μ L for the real time RT-PCR.

2.7.2- Real Time RT-PCR

The SYBR® Green fluorescence is detected by the 7500 Real-Time PCR Systems (Applied Biosystems®), following the registration performed by the software 7500 Systems SDS Software from Applied Biosystems in the amplification plot. The detection is considered at a threshold level when the signal is slightly greater than the background. The purpose is to find the number of cycles (Ct) necessary to achieve a given level of fluorescence above the threshold^{96.}

Therefore, the signal level is registered in an amplification plot, from which Ct is estimated by the intersection between exponential phase curve and threshold line. The normalization of the Ct values is performed using an internal control as shown in **Equation 1**.

$$\Delta C_t = C_t(target) - C_t(control)$$
 Equation 1

Afterwards, each normalized value correspondent to each gene is compared with the physiological calibrator considered, as demonstrated in **Equation 2**.

$$\Delta\Delta C_t = \Delta C_t(sample) - \Delta C_t(calibrator)$$
 Equation 2

Then, the gene expression level can be estimated using the **Equation 3**.

$2^{-\Delta\Delta Ct}$

Equation 3

In order to start this technique, it is necessary to synthesize cDNA from the total RNA extracted from *C. glabrata* strains. In this first step of the procedure, a reaction using MultiScribeTM reverse transcriptase according to the mixture present in **Table 2** was performed in the conditions described in **Table 3**.

Volume per reaction (µL)
1.0
2.2
2.0
0.5
0.2
0.25
2.0
1.85
10.0

Table 2- Reaction mixture for the first step of the real time RT-PCR (Applied biosystems).

Table 3- Thermal cycling parameters for the first step of the real time RT-PCR (Applied biosystems).

Step	Time (min)	Temperature (°C)
Incubation	10	25
Reverse transcription	30	48
Reverse transcriptase inactivation	5	95

After the first step was completed, the cDNA samples were stored at -20°C. Afterwards, each sample was diluted 1:4.

For the second step of RT-PCR, it is necessary to consider a housekeeping gene like *CgACT1*, which encodes actin, in order to have an internal control. For the preparation of this second step, a mixture for each reaction was prepared according to the internal control and *CgAED2*, *CgPWP5* and *CgAWP13* genes (See **Table 4**).

Component	Volume per reaction (µL)
SYBR®Green PCR Master Mix (2x)	12.5
Foward Primer (4 pmol/µL)	2.5
Reverse Primer (4 pmol/µL)	2.5
cDNA sample	2.5
ddH ₂ O	5.0
Total	25.0

Table 4- Reaction mixture for the second step of real time RT-PCR (Applied Biosystems).

Each reaction of the second step was performed in a thermal cycler block (7500 Real-Time PCR System – Applied Biosystems), according to the parameters present in **Table 5**.

Table 5- Thermal cycling parameters for the second step of the real time RT-PCR (Applied Biosystems).

	Step	Time	Temperature (°C)
AmpliTaq gold® DNA polymerase activation		10 min	95
PCR (40 cycles)	Reverse transcription	15 sec	95
	Reverse transcription inactivation	1 min	60

The primers used in the second step of RT-PCR are present in Table 6.

Table 6- Primers for CgACT1, CgAED2, CgPWP5 and CgAWP13 genes.

Gene	Primer	Sequence
CgACT1	Forward	5'-AGAGCCGTCTTCCCTTCCAT-3'
_	Reverse	5'-TTGACCCATACCGACCATGA-3'
CgAED2	Forward	5'-AAAGCCTCAATGGTATGACAGAAGAC-3'
_	Reverse	5'-CAGATGAATTTTGGAATGGGAAA-3'
CgPWP5	Forward	5'-GGCTGGCTTTCGTGCAATA-3'
_	Reverse	5'-CGACGGACCCTTGTAAGATTGT-3'
CgAWP13	Forward	5'-TTAATATCTTGCTGGGCTTTTGG-3'
_	Reverse	5'-AGCGTAGCACTGTCTATGATTATTTCTT-3'

2.8- Quantification of total cellular ergosterol

Total ergosterol content was extracted from *C. glabrata* KUE100 and $\Delta tec1$ single deletion mutant cells using the method of physical disruption⁹⁷ with some adjustments. Planktonic growth condition cells were cultivated in 100 mL of YEPD and with an orbital agitation of 250 rpm until stationary phase was reached. Biofilm growth condition cells were grown in SDB medium and collected at mid-exponential phase. Cells

were then inoculated in square polystyrene titter plates filled with 40 mL of SDB medium at pH 5.6, to have an initial $OD_{600nm} = 0,05\pm0.005$. Afterwards, cells were cultivated at mild orbital shaking (70 rpm), for 24h, at 30°C. The cultures were conducted in triplicates. Planktonic cells were harvested by centrifugation and ressuspended in 5 mL of methanol and biofilm cells were harvested by discarding the medium, leaving only biofilm cells in the plates, then 3 mL of sterile water were added and the plate was scraped. The resultant suspension of cells was transferred to a centrifuge tube. This process was repeated and the suspension was centrifuged and and ressuspended in 5 mL of methanol. The Cholesterol, used as an internal standard to allow quantification of the yield of ergosterol extraction, was added in order to have a final concentration of 1 mg/mL in each sample. Afterwards, glass beads were added approximately in the same weight as the cell pellet. Then, each sample was homogenized in 30 sec, following an orbital agitation of 320 rpm for 1 h. The samples were centrifuged at 8000 rpm for 7 min at 4°C. 1.7 mL of supernatant was extracted to an eppendorf, following another centrifugation at 11000 rpm for 10 min at 4°C. 1 mL of the supernatant was then collected and stored until analysis.

The extracts obtained were analyzed by High Pressure Liquid Chromatography with a 250 mm x 4 mm C18 column (LiChroCART Purospher STAR RP-18 end- capped 5 mm) at 30°C. The samples were eluted in 100% methanol at a flow rate of 1 mL methanol per min. Cholesterol was detected at 210 nm corresponding to a retention time of 14.08±0.21 min. Ergosterol was detected at 282 nm with a retention time of 11.71±0.17 min.

The corresponding results are presented as the ratio between the average concentration of ergosterol of the KUE100 strain or $\Delta tec1$, according to each case, and the concentration of the other samples tested.

2.9- Tec1 Subcellular localization assessment

The subcellular localization of the Tec1 protein was determined based on the observation of L5U1 *C. glabrata* cells transformed with the pGREG576-Pdc1-*CgTEC1* and pGREG576 (for control) plasmids. The cells transformed with the first, express the *CgTEC1_GFP* fusion protein, whose localization may be determined using fluorescence microscopy.

C. glabrata cells were grown at 30°C, with an orbital agitation of 250 rpm, until to mid-exponential phase in minimal growth medium, and then inoculated to the same medium to have an initial $OD_{600nm} =$ 0.02±0.005, for planktonic growth condition. For biofilm growth condition, cells were inoculated in square polystyrene titter plates filled with 40 mL of SDB medium at pH 5.6, to have an initial $OD_{600nm} =$ 0,05±0.005. Afterwards, biofilm cells were cultivated at mild orbital shaking (70 rpm), for 6h and 24h, at 30°C. After around 22 hours, the distribution of *CgTEC1_GFP* in planktonic living cells was inspected through fluorescence microscopy in a Zeiss Axioplan microscope (Carl Zeiss MicroImaging, Oberkochen, Germany), using excitation and emission wavelength of 395 and 509 nm, respectively. Fluorescence images were captured using an Axiocam 503 Color (Zeiss). The same was executed after 6 and 24 hours of biofilm growth.

2.10- Pseudohyphal growth induction

Filamentation of the *Candida glabrata* KUE100 and $\Delta tec1$ deletion mutant strains was achieved by incorporating 0.5% (v/v) of isoamyl alcohol (Sigma) to the growth media, following what had already been described in *Saccharomyces cerevisiae*⁹⁸. Cells grew overnight in YEPD without isoamyl alcohol. The inoculum was made to an initial OD_{600nm}=0.1±0.01 in YEPD supplemented with 0.5% (v/v) of isoamyl alcohol, and cells grew at 30°C with orbital agitation (250 rpm) for 48 hours. After the 48 h of incubation 7 µL of the cell suspension was observed by optical microscopy (Zeiss Axioplan Microscope, Carl Zeiss Microimaging). Pictures were captured using a Axiocam 503 Color (Zeiss) and cells and filaments were counted with Fiji Is Just ImageJ tool.

2.11- Statistical analysis

Statistical analysis of all data was performed using Graphpad Prism Software version 6.0 (La Jolla, CA, USA). *P*-values were calculated performing one-way ANOVA tests on Microsoft® EXEL 2016. *P*-values equal or inferior to 0,05 were considered statistically significant.

3- Results and Discussion

3.1- Tec1 is a determinant of biofilm formation in polystyrene surface

Based on the observation that the Tec1 TF is a key regulator of biofilm formation in *Candida albicans*⁷¹ a similar role for the homologous *C. glabrata* TFs, Tec1 (ORF *CAGLOM01716*) and Tec2 (ORF *CAGL0F04081*), was investigated. Preliminary results from our group had hinted that the deletion of *CgT*s to decreased biofilm formation on polystyrene wells, using the crystal-violet method. (Santos *et al.*, unpublished results).

To consolidate the previous observations, quantification of biofilm formation in polystyrene surface upon the deletion mutant $\Delta tec1$ was performed using the PrestoBlue cell viability assay, in both SDB and RPMI media. The deletion of this TF in *C. glabrata* was found to reduce biofilm formation in 30% or 10%, in cells cultivated in SDB or RPMI media, respectively (**Figure 10**).

Figure 10- Biofilm formation followed by Presto Blue Cell Viability Assay and measurements of absorbance at 570 nm and 600 nm for reference for the *C. glabrata* KUE100 and *Atec1* strains. Cells were grown for 24 h and the experiment was performed in RPMI medium pH 4 (A) and SDB medium pH 5.6 (B). In the scatter dot plot represented each dot corresponds to the level of biofilm formed in each sample. The indicated values are averages of at least three independent experiments. Error bars represent the corresponding standard deviations. ** P<0,01; * P<0,05.

To further assess if the over-expression of the *CgTEC1* gene would lead to an increase in biofilm formation on polystyrene surface, the quantification of biofilm formation was performed using the L5U1+vv (*C. glabrata* L5U1 cells transformed with the pGREG576 plasmid) and L5U1+*CgTEC1* (*C. glabrata* L5U1 cells transformed with the pGREG576 plasmid containing *PDC1* promotor and *CgTEC1* gene) strains, through the Presto Blue assay. The overexpression of *CgTEC1* resulted in a significant increase in biofilm formation in both media, 73% in SDB and 28% in RPMI, when compared to the parental strain, harboring the empty vector pGREG576 (**Figure 11**).

Figure 11- Biofilm formation followed by Presto Blue Cell Viability Assay and measurements of absorbance at 570 nm and 600 nm for reference for the *C. glabrata* L5U1+vv and L5U1+*CgTEC1* strains. Cells were grown for 24 h and the experiment was performed in RPMI medium pH 4 (A) SDB medium pH 5.6 (B). In the scatter dot plot represented each dot corresponds to the level of biofilm formed in each sample. The indicated values are averages of at least three independent experiments. Error bars represent the corresponding standard deviations. (A) ***** *P*<0,00001; (B) **** *P*<0,0001.

Both experiments reinforce the notion that Tec1 is a key player in C. glabrata biofilm formation.

3.2- Tec1 is required for C. glabrata adhesion to human vaginal epithelium cells

Recently, *C. glabrata* biofilms have also been implicated in VVC, particularly in the setting of treatment failure and recurrence.⁹⁹

As an attempt to understand the impact of Tec1 on the capacity of *C. glabrata* cells to adhere to the human vaginal epithelium cells, *C. glabrata* KUE100 and $\Delta tec1$ deletion mutant strains were cultivated at 30 °C, during 16±0.5 h, with orbital shaking (250 rpm). These cell suspentions were added, with a density of 12.5x10⁵ CFU/well, to VK2/E6E7 human epithelium cells previously inoculated in 24-well polystyrene plates with a density of 2.5x10⁵ cell/mL. The percentage of adhesion was then calculated for each replicate, representing the percentage of adhered *C. glabrata* cells, by the ratio between the CFU/ml recovered after incubation with the epithelial cells and the initial CFU/ml for each suspension (**Figure 12 A**). The further assessment of the effect of over-expressing the *CgTEC1* gene on adhesion to human vaginal epithelium cells was performed with the L5U1+vv (*C. glabrata* L5U1 cells transformed with the pGREG576 plasmid) and L5U1+*CgTEC1* strains (*C. glabrata* L5U1 cells transformed with the pGREG576 plasmid containing *PDC1* promotor and *CgTEC1* gene) (**Figure 12 B**).

Figure 12- Adhesion capacity to the human vaginal epithelium cells for the KUE100 and $\Delta tec1$ strains (A) and L5U1+vv and L5U1+CgTEC1 (B). Cells were cultivated for 16±0.5 h in YEPD medium. *C. glabrata* cells were added to the human cells and incubated at 37°C, 5 % CO₂, for 30 min. The cell suspension in each well was then recovered and spread onto agar plates to determine CFU count. In the scatter dot plot represented each dot corresponds to the proportion of adherent cells to the human epithelium. The indicated values are averages of at least three independent experiments. Error bars represent the corresponding standard deviations. **P*<0.05.

The deletion of *CgTEC1* was found to lead to a 18% reduction in the biofilm formed on top of the epithelial cell layer. This highlights the importance of the TF Tec1 in regulating cell adhesion, even to biotic surfaces. On the other hand, the over-expression of *CgTEC1* gene did not led to an increase in adhesion of cells to the human vaginal epithelium cells.

In the first part of this work, Tec1 was confirmed to be a determinant of biofilm formation in *C. glabrata* and shown to be required for biofilm formation in abiotic surfaces, but also to favor adhesion to epithelial cells.

3.3- Is Tec1 relevant in pseudohyphae differentiation by C. glabrata cells?

C. albicans ability to form hyphal cells both in planktonic cultures and during the maturation step of biofilm formation is well documented,¹⁰⁰ but although the pseudohyphal differentiation phenomenon has already been reported to happen in *C. glabrata*, this field remains scarcely explored.

Tec1 has been linked to the formation of pseudohyphae in *C. albicans* along with other transcriptional regulators. Therefore, this motivated an assay to find whether Tec1 is controlling pseudohyphal differentiation of *C. glabrata cells*. Similarly to the adopted procedure for pseudohyphae formation induction in *S. cerevisiae*¹⁰¹, KUE100 and $\Delta tec1$ cells were cultivated in rich YEPD medium supplemented with 0.5 % (v/v) of isoamyl alcohol. After 48 h of growth with this fusel alcohol, 7 µL of the suspensions were observed under the microscope, and the desired differentiation was observed (**Figure 13**).

Figure 13- The deletion mutant $\Delta tec1$ (B) displays reduced pseudohyphae differentiation than *C. glabrata* KUE100 strain (A) when stimulated with 0.5% of isoamyl alcohol. The bright field images were taken after 48 h of cellular growth in medium supplemented with 0.5% (v/v) isoamyl alcohol. The image represents the observed reduction of pseudohyphal cell number.

Figure 13 illustrates what could be observed for both strains. From the wild type image (A), the different shapes that cells may adopt in a pseudohyphal state can also be highlighted, including polar and axial growth.

A total of 10018 cells from the wild type strain and 15204 cells from the $\Delta tec1$ strain were analyzed. For each isolated assay, the percentage of pseudohyphal cells was computed for each strain, by counting the number of cells contained in each filament. The deletion of *CgTEC1* gene was shown to results in a 72% decrease in the percentage of pseudohyphae cells in the overall population (**Figure 14**). Despite these observations, pseudohyphal differentiation was not yet reported as required for development of *C. glabrata* biofilms, as it is for *C. albicans*.

Figure 14- The transcription factor Tec1 plays a role in pseudohyphae differentiation in *C. glabrata* cells. Average percentage of pseudohyphal formation by *C. glabrata* KUE100 and Δ tec1 after 48 h of cellular growth in medium supplemented with 0.5 % (v/v) isoamyl alcohol. The displayed pseudohyphal percentage was calculated by the average of pseudohyphal cells of four independent experiments in relation to the total cells observed in each experiment, standard deviation being represented by the error bars. **P*<0,05.

3.4- Nuclear accumulation is not an activation mechanism of Tec1 transcription factor

One of the activation mechanisms known to modulate the activity of TFs is its accumulation to the nucleus where it can bind to the target genes, in response to some condition.¹⁰² To evaluate if this could be one of the mechanisms of activation of Tec1 its subcellular localization was assessed, using a GFP fusion. *C. glabrata* cells expressing the *CgTEC1_GFP* fusion gene were evaluated under control conditions, that is in planktonic cultivation, when compared to the expected activating conditions, that is during biofilm development.

To observe the subcellular localization of the TF Tec1, *C. glabrata* cells harboring the pGREG576 plasmid (L5U1+vv) and cells harboring pGREG576_*PDC1_CgTEC1* plasmid (L5U1+*CgTEC1*) were grown in SDB medium and subcellular localization was assessed in planktonic cultivation, and during the early stage (6 h) and the mature phase (24 h) of biofilm formation. *C. glabrata* cells expressing Tec1_GFP fusion protein were observed by fluorescence microscopy. **Figure 15** represents the cells that could be observed under the microscope, as 6 h biofilms did not present significative changes in fluorescence of the cells, these are not shown in the figure.

Figure 15- The transcription factor Tec1 does not accumulates in the nucleus upon 24 hours of biofilm formation. Fluorescence of exponential-phase *C. glabrata* L5U1 cells harboring either the cloning vector pGREG576 (control) or the pGREG576_*PDC1_CgTEC1* (*CgTEC1_GFP*) after 24 h of recombinant protein production in biofilm growth. The results indicate that the *CgTEC1-GFP* fusion protein localizes to the whole *C. glabrata* cells.

The GFP fluorescence is observed to fill the entire cell in all tested conditions, suggesting that Tec1 activation does not involve nuclear accumulation.

3.5- Transcriptomics analysis of the role of Tec1 in biofilm formation

Herein, the effect of $\Delta tec1$ deletion in the transcriptome-wide response of *C. glabrata* cells to biofilm growth was assessed through RNA-sequencing. The RNA-seq analysis started with the global gene expression changes observed in cells cultivated as biofilm for 24 h, when compared to the gene expression profile of planktonic cultivation. This was followed by the analysis of the genes whose expression was found to be controlled by Tec1 in biofilm cells. The most significant differentially expressed genes in the wild-type strain grown in biofilm relatively to planktonic growth are displayed in **Table A1**, while those differentially expressed in the $\Delta tec1$ mutant relatively to the wild-type strain in biofilm growth are displayed in **Table A2**. The complete datasets are provided in supplementary material.

3.5.1- Transcriptome-wide changes occurring upon 24 h of biofilm formation: general features

RNA-seq analysis was used for the comparison of the transcriptome of biofilm cells, cultivated in SDB medium for 24 h in polystyrene dishes, in relation to the same cells grown in planktonic conditions, in the same medium.

A total of 3070 genes were found to have altered expression levels. Among these, 1565 were found to be up-regulated and 1505 down-regulated upon 24 hours of biofilm formation. Since the C. glabrata genome includes 5293 identified ORFs, these numbers highlight the tremendous changes that *C. glabrata* cells must undergo during biofilm development, suggesting also a high degree of transcription regulation complexity.

In order to uncover the main biological processes underlying biofilm formation, the up- and downregulated genes were clustered by biological function. This was performed based on the description of the *C. glabrata* genes, found on CGD and, for the large number of uncharacterized genes, based on the description of ortholog genes in *S. cerevisiae* or in *C. albicans*, as registered in SGD or in CGD, respectively. This strategy was adopted due to the lack of specific enriched GO terms, given by the Gene Ontology term enrichment analysis, using the Gene Ontology (GO) term finder from CGD. The retrieved GO terms involved mostly processes related to "RNA metabolic process", but also other general processes as "transport" or "regulation of biological process". The poor GO term enrichment results are likely due to the large number of genes under analysis, which are related to many pathways linked to the different biological functions present in a living cell.

Figure 16- Categorization and frequency of the genes up-regulated in *C. glabrata* cells upon 24 hours of biofilm growth, given by the wild-type cells grown in biofilm in relation to wild-type cells grown in planktonic conditions, based on the biological process taxonomy of gene ontology (*P*-value<0.05).

Figure 16 displays the main biological functions of the 1565 up-regulated genes, which were: "RNA metabolism and translation" (26.2%), "Unknown function" (21.6%), "Carbon and energy metabolism" (6.7%), "Cell cycle" (5.1%) and "Response to stress" (5.1%). Among the 1505 down-regulated genes, the more enriched were: "RNA metabolism and translation" (13.5%), "Unknown function" (12.8%), "Cell cycle" (12.2%), "Intracellular trafficking" (9.6%), "DNA metabolism and repair" (9%), "Carbon and energy metabolism" (7.4%) and "Protein metabolism" (7.5%) (**Figure 17**).

Figure 17- Categorization and frequency of the genes down-regulated in *C. glabrata* cells upon 24 hours of biofilm growth, given by the wild-type cells grown in biofilm in relation to wild-type cells grown in planktonic conditions, based on the biological process taxonomy of gene ontology (*P*-value<0.05).

An initial investigation into the transcription profiles of *C. albicans* biofilms grown in plastic surfaces was performed by García-Sánchez *et al.* (2004)¹⁰³ which revealed gene expression in biofilm cells significantly differ from gene expression in planktonically grown cells. This study was performed with different biofilm-forming conditions, including 72 h of biofilm formation in microtiter plates. Transcriptome profiles were determined using macroarrays with probes for 2002 ORFs randomly chosen as representing the whole genome of *C. albicans*. The authors found a 325 genes, within a total of 1850 tested. These genes were then assigned to 25 functional groups based on homology to *S. cerevisiae* genes. Among these, the most relevant functional groups were found to be "Amino acid metabolism", "Nucleotide metabolism", "Lipid, fatty acid, and isoprenoid metabolism", "Transcription", "Protein synthesis", "Cell fate", "Control of cellular organization", "Subcellular localization" and "Unclassified".

considering our RNA-seq results, the functional groups that we found to be more enriched in both up and down-regulated genes were "RNA metabolism and translation" and "Unknown function", which is consistent with what was observed by García-Sánchez *et al.* Nevertheless, our findings differ in the most important groups, concerning "Cell cycle", "Intracellular trafficking", "DNA metabolism and repair", "Carbon and energy metabolism" and "Response to stress", which can be explained by the variance between species, the large number of 741 genes that were not distributed by having no homology to *S. cerevisiae*, and at last the number of genes under study only comprised roughly 1/3 of *C. albicans*

genome, which may have influenced the overall perception of the transcriptional behavior of the biofilm cells.

A more recent investigation on the transcriptional consequences of biofilm formation in C. albicans conducted by Nett et al. (2009)¹⁰⁴ was carried out with an in vivo central venous catheter model at two time points, 12 and 24 hours of biofilm formation. Oligo microarrays and RT-PCR were used to measure RNA abundance, and these were compared with the ones obtained with *in vitro* grown planktonic cells. Since our RNA-seq analysis was carried out with a mature biofilm stage (24 h), the following comparison will focus on the 24 hours' results. Among all the 6354 genes under study, the results obtained with the 24 hours biofilms revealed that 1034 transcripts (16.3%) were differentially regulated, including 523 upregulated and 511 down-regulated genes. The functional groups found to be enriched in the upregulated gene list were "Unknown function", "Transcription and protein synthesis", followed by "Energy and metabolism", "Transport", "DNA/cell cycle", and "Carbohydrate processing". Again, the abundancy of genes related to RNA metabolism in our study is in agreement with Nett et al. (2009) findings. Additionally, there were many genes with no attributed function. Other consistent up-regulated gene clusters were related to cell cycle and energy and carbohydrate metabolism. The up-regulation of carbohydrate metabolism might not only serve for energy purposes but also for EPS biosynthesis, which is corroborated by the extensive accumulation of ECM material already observed to be characteristic of the final maturation step of Candida biofilms.¹⁰⁵ However, we have found stress response as one of the most important biological functions attributed to a large number of up-regulated genes in biofilm, and the same did not happen in Nett et al. study. Considering that C. glabrata biofilms are characterized by having about half of the thickness of C. albicans biofilms, these might be more easily exposed to stress conditions induced by fluctuations in the surrounding environment, leading to a stronger defense mechanism that requires the activation of stress response-related genes.

Lastly, Nett et al. (2009) described "Unknown function", "Transcription and protein synthesis", "DNA/cell cycle" and "Transport" as the most down-regulated genes enriched functional groups, as observation which is in agreement with our observations. It is important to highlight the huge number of genes with no attributed biological function present in both the discussed studies and our work. This can be explained by the lack of homology with S. cerevisiae or C. albicans genes and by the very high number of genes that remain uncharacterized, in both C. albicans (70%) and C. glabrata (95%) genomes.

The following section will focus on the analysis of selected gene clusters, based on their foreseen importance in biofilm formation.

3.5.1.1- Up-regulation of adhesion-related genes in biofilm cells

One of the most important *C. glabrata* biofilm-establishment factors is its capacity to adhere to a host surface or abiotic medical device and the subsequent formation of a biofilm.²⁷ Such properties were expected to be found in the present transcriptomic analysis, where a significant number of adhesion-related genes were up-regulated in biofilm cells. These comprised genes encoding members of cluster I Epa adhesins: *CgEPA1*, *CgEPA2*, *CgEPA3*, *CgEPA9*, *CgEPA10*, *CgEPA12*, *CgEPA20*, *CgEPA23*; followed by cluster II Pwp adhesins: *CgPWP1*, *CgPWP2*, *CgPWP3*, *CgPWP5*; cluster III adhesins: *CgAED1* and *CgAED2*; and cluster IV Awp adhesins: *CgAWP1*, *CgAWP3*, *CgAWP4*, *CgAWP6*, *CgAWP13*. Other important up-regulated genes are *SNF2* encoding a component of the chromatin remodeling Swi/Snf complex, and *CgCST6* encoding a bZIP domain-containing protein involved in the negative regulation of *CgEPA6*.

Kraneveld *et al.* (2011)²⁷ conducted a study that aimed to disclose the level of gene expression and cell wall incorporation of adhesins in *C. glabrata* biofilm cells with 24 hours of biofilm development, in comparison to planktonically grown cells. In this study, tandem mass spectrometry allowed the identification of six adhesins in *C. glabrata* cell walls: Awp2, Awp4-6, Epa3 and Epa6. Then, expression levels of these and other relevant adhesins (*CgEPA1, CgEPA3, CgEPA6, CgEPA7, CgEPA22, CgAWP1, CgAWP2, CgAWP3, CgAWP4, CgAWP5, CgAWP6, CgAWP7*) were investigated through real-time qPCR analysis. The results showed a significant up-regulation of most adhesin genes, except for *CgEPA6* and *CgAWP2*, which were shown to be abundantly present in planktonic cultures as well. This is consistent with our transcriptomic data, where *EPA6* and *AWP2* genes appear not to suffer changes in expression.

As already discussed in the Introduction section of the thesis, Swi/snf complex negatively modulates sub-telomeric gene expression either through interaction with components of the silencing machinery or TFs necessary for the activation of *CgEPA* genes. The up-regulation of the Swi/Snf complex component *CgSNF2* gene is explained here as many of the adhesin genes analyzed in this study are located at sub-telomeric loci and thus possibly subjected to transcriptional regulation by this complex. On the other hand, the *CgCST6* gene up-regulation might act to moderate *CgEPA6* gene transcription, since it was observed not to follow the increase of other adhesins expression on 24 h biofilms.

Two other ORFs with a predicted role in adhesion, *CAGL0M01716g* and *CAGL0M07634g*, were found to be up-regulated. They encode, respectively, the predicted *C. albicans* Tec1 and Efg1 orthologs. These are known TFs recently found to incorporate the biofilm formation transcriptional network in *C. albicans*.⁵⁸ The *CgTEC1* (ORF *CAGL0M01716g*) gene holds the first place of the most up-regulated genes in the "Adhesion and biofilm formation" cluster, while the expression of its predicted paralog encoded by ORF *CAGL0F04081* (*CgTEC2* gene) remained constant. This is consistent with the results obtained in our group, which revealed no significant decrease in biofilm formation upon *CgTEC2* deletion. A similar observation was made regarding the *CaEFG1* orthologs in *C. glabrata*. *CgEFG1* (*CAGL0M07634g*) was demonstrated to be up-regulated in biofilm cells and required for its formation,

while *CgEFG2* (*CAGL0L01771g*) showed no role in biofilm formation and no change in expression in biofilm cells.

3.5.1.2- Amino acid and nitrogen metabolism genes are differentially expressed in biofilm cells

The expression of 127 genes related to amino acid and nitrogen metabolism were found to be changed in cells undergoing biofilm formation, when compared to planktonic cells, including 86 up-regulated and 41 down-regulated genes. In order to understand the role of these gene expression changes in the biofilm development context, KEGG PATHWAY tool (https://www.genome.jp/kegg/pathway.html) was used (Figure 18). The up-regulated genes (represented by the green and yellow arrows in Figure 18) are mostly involved in the biosynthesis of positively charged histidine and arginine amino acids, but also phenylalanine, threonine and aspartate. Additionally, there seems to be up-regulation of some deamination steps that lead to the formation of pyruvate from alanine, glutamate from glutamine, 2oxoglutarate, 2-oxoisovalerate and 3-methyl-2-oxopentanoate. Interestingly, these α -oxoacids and other intermediates might be accumulating since its conversion to the respective amino acid (amination steps) is down-regulated, as for example valine, leucine, isoleucine and proline. Other down-regulated genes interfere with the biosynthesis of the sulfur-containing amino acids cystein and methionine, along with lysine and glycine. Overall, these results suggest that biofilm cells might be experiencing lack of available nutrients within the biofilm, including to nitrogen limitation/starvation. This is likely a consequence of the thick cell layers and ECM that characterize biofilms, leaving at least the most inner cells with decreased access to the nutrients in the media. As a consequence, cells might be going through a metabolic shift that favors the energetic metabolism instead of the biosynthesis of amino acids.

Figure 18- Distribution of differently expressed genes in wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells, identified by RNA-seq analysis to be related to amino acid biosynthesis. Green and red arrows: genes found, respectively, up- and down-regulated in both wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells datasets; yellow and brown arrows: genes found, respectively, up- and down-regulated in the wild-type biofilm vs planktonic growth dataset; blue and pink arrows: genes found, respectively, up- and down-regulated in the $\Delta tec1$ vs wild-type biofilm cells dataset. The image was retrieved in https://www.genome.jp/kegg/pathway.html.

A very interesting study by Rajendran *et al.* (2016)¹⁰⁷ describes the central metabolic pathways driving biofilm heterogeneity, through a RNA-seq analysis to 24 h grown biofilms of high and low biofilm forming isolates. By resorting to an integrated KEGG pathway analysis, the authors identified amino acid, pyruvate and fatty acid metabolism pathways to be crucial in high biofilm forming isolates. Genes related to arginine, proline, purine, alanine, aspartate and glutamate metabolism were shown to be upregulated. Except for proline, this goes in agreement with our obtained results. The exact mechanisms

regulating this amino acid metabolism are not clear yet, nevertheless, the general amino acid control response transcription factor Gcn4 is known to be activated upon amino acid starvation, and this is required for normal biofilm formation in *C. albicans* and *S. cerevisiae*. Although *CgGCN4* gene remains uncharacterized, this is found up-regulated in *C. glabrata* biofilm cells in the present study.

Furthermore, a study carried out by Yeater *et al.* (2007) intended to identify the changes in gene expression in three *C. albicans* biofilm developmental phases: early (6 h), intermediate (12 h), and mature (48 h).¹⁰⁸ Similar to the studies of García-Sánchez *et al.* (2004) and Murillo *et al.* (2005), the authors report differential regulation of genes involved in the synthesis of branched-chain amino acids, glutamate and glycine. According to our data, the glutamate biosynthetic pathway from glutamine is up-regulated, but the glycine biosynthesis is down-regulated. Additionally, biosynthesis of the branched-chain amino acids valine, leucine and isoleucine is down-regulated in our data. Interestingly, these down-regulated genes are all involved in amination steps of the respective α -oxoacid precursors, which is consistent with the hypothesis of nitrogen starvation experience.

Lastly, considering the *in vivo* study carried out with *C. albicans* biofilms by Nett *et al.* (2009), changes in expression of genes involved in methionine and cysteine biosynthesis were predominant in early and intermediate stages of biofilm growth, but not in mature biofilms. Instead of these, mature biofilms were found to activate genes encoding amino acid permeases, such as *CaDAO2, CaDIP5, CaGAP6*, and *CaGNP1*. In our RNA-seq data, only the *C. glabrata* ortholog *CgDIP5* is present, and found up-regulated. However, from a total of 66 up-regulated genes related to amino acid metabolism, 22% codify for amino acid transporters: *CAGL0L07546g, CAGL0B04455g, CAGL0J08162g, CAGL0D02178g, CgDIP5, CAGL0A02508g, CAGL0J08184g, CAGL0I07689g, CAGL0K05753g, CgCYN1, CAGL0L06710g, CgGAP1, CAGL0E05632g, CAGL0K10362g, and CAGL0H08393g.* The idea that increased intracellular levels of pyruvate, pentoses and amino acids in early biofilms contributes to increased biomass in maturation phase is consistent with Yeater *et al.* (2007) and Nett *et al.* (2009) findings.^{107,108}

The functional group of "Nitrogen metabolism" comprise 20 up-regulated genes from a total of 28 genes found to be differentially expressed under biofilm growth conditions. The activated genes are mainly composed of ammonium and polyamine encoded transporters. *CgDUR3*, CAGL0H09152g, and *CgDUR31* genes are related to polyamine transport and the up-regulated genes that are involved in the ammonium transport are *CAGL0M03465g* (*ATO2*), *CAGL0A03212g* (*ScATO3*), *CAGL0110747g* (*ScMPE1*), *CgMEP2* and *CAGL0D04928g* (*Sc*). Altogether, our results from amino acid and nitrogen metabolism strongly suggest that *C. glabrata* is exposed to nitrogen limitation in mature biofilms.

3.5.1.3- Changes in carbon and energy metabolism gene expression during biofilm formation

As metabolic adaptation is a key process for biofilm cells¹⁰⁷, we wanted to investigate the transcriptional changes of genes related to carbon and energy metabolism. For this, KEGG PATHWAY tool (https://www.genome.jp/kegg/pathway.html) was again used to better understand the distribution of these genes on carbon metabolism pathways. **Figure 19** highlights the up-regulation of genes encoding glyoxylate cycle enzymes, and down-regulation of some glycolytic pathway related genes. This leads us to speculate that biofilm cells are suffering glucose deprivation and trying to use alternative carbon sources, such as the final products of β -oxidation.¹⁰⁴ β -oxidation is a multistep process in which fatty acid molecules are broken down by removing two-carbon units from the carboxyl-end of a fatty acid molecule to produce acetyl coenzyme A (acetyl-CoA). In fact, Nett *et al.* (2009) also noted an up-regulation of the glyoxylate cycle, specially the transcripts of *CaMLS1* and *CaICL1* genes, encoding respectively for malate synthase and isocitrate lyase enzymes. These were found 2.4- and 2.3-fold more abundant in mature biofilms. Our *C. glabrata* biofilm cells showed the orthologs of these genes *CAGL0L030982g* and *CAGL0J03058g* had its expression increased in 5.2- and 5.0-fold, comparing to cells grown in planktonic conditions.

As fatty acids are important constituents of lipids, they play diverse functions in the cells, from integrity and dynamics of cell membrane and adhesion to host cells, to energy storage.¹⁰⁷ To further investigate if biofilm cells are using fatty acids as an alternative to produce energy, the genes found to be associated to lipid metabolism were inserted in KEGG PATHWAY tool (**Figure 20**). Every step of long-chain fatty acid production was found to be down-regulated in biofilm cells, while the pathway leading to fatty acid degradation is up-regulated. The products of fatty acid β -oxidation can enter the glyoxylate cycle, thus supporting our hypothesis about the need of biofilm cells to use alternative carbon sources for energy purposes.

Figure 19- Distribution of differently expressed genes in wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells, identified by RNA-seq analysis to be related to carbon metabolism. Green and red arrows: genes found, respectively, up- and down-regulated in both wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells datasets; yellow and brown arrows: genes found, respectively, up- and down-regulated in the wild-type biofilm vs planktonic growth dataset; blue and pink arrows: genes found, respectively, up- and down-regulated in the $\Delta tec1$ vs wild-type biofilm cells dataset. The image was retrieved in https://www.genome.jp/kegg/pathway.html.

Figure 20- Distribution of differently expressed genes in wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells, identified by RNA-seq analysis to be related to fatty acid metabolism. Green and red arrows: genes found, respectively, up- and down-regulated in both wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells datasets; yellow and brown arrows: genes found, respectively, up- and down-regulated in the wild-type biofilm vs planktonic growth dataset; blue and pink arrows: genes found, respectively, up- and down-regulated in the $\Delta tec1$ vs wild-type biofilm vs planktonic growth dataset; blue and pink arrows: genes found, respectively, up- and down-regulated in the $\Delta tec1$ vs wild-type biofilm cells dataset. The image was retrieved in https://www.genome.jp/kegg/pathway.html.

Significantly, 13 out of the 18 genes required for the biogenesis of peroxisomes (the organelles where fatty-acid β-oxidation takes place), namely *CgPEX3*, *CgPEX5*, *CgPEX6*, *CgPEX10*, *CgPEX12*, *CgPEX21*, *CgPEX21B*, *CgPEX24*, *CgPEX25*, *CgPEX32*, *CAGL0D00352g*, *CAGL0M02387g*, and *CAGL0M03245g*, were found to be up-regulated in biofilm cells.

3.5.1.4- Genes related to ergosterol biosynthesis are found to be differentially expressed in biofilm cells

A total of 30 ergosterol biosynthesis-related genes were found to be differentially expressed in biofilm cells, including 18 up- and 12 down-regulated genes. These included mainly genes from the ERG gene family: *CgERG1*, *CgERG3*, *CgERG11*, *CAGL0F03861g* (ortholog of *CaERG12*) and *CAGL0K04477g* (ortholog of *CaERG25*) among the up-regulated, and *CgERG2*, *CgERG4*, *CgERG8*, *CgERG9*, *CAGL0L12364g* (ortholog of *CaERG10*), *CAGL0I02970g* (ortholog of *CaERG24*) and *CAGL0M11506g* (ortholog of *CaERG27*) among the down-regulated. Figure 21 schematically presents the distribution of the enzymes encoded by these genes in the ergosterol biosynthetic pathway (colored boxes). Biofilm growth appears to induce the transcription of some genes related to ergosterol biosynthesis, but on the other hand, other genes are down-regulated in these conditions. This prevented us from reaching a clear conclusion about the ergosterol content regulation in biofilm cells, when compared to cells grown in planktonic conditions.

In addition to ERG gene family, *CgAUS1* gene can also be found among the up-regulated genes in this dataset. *CgAUS1* gene encodes a plasma membrane sterol transporter of the ABC family of transporters. This is required for uptake of exogenous sterols and their incorporation into the plasma membrane. Furthermore, sterol uptake is required for the cell to grow in anaerobic conditions⁶⁷, since sterol biosynthesis requires oxygen. Therefore, the up-regulation of *CgAUS1* is in agreement with the idea that the most internal biofilm cells are subjected to low oxygen availability.

Figure 21- Distribution of differently expressed genes in wild-type biofilm vs planktonic growth and $\Delta tec1$ vs wild-type biofilm cells, identified by RNA-seq analysis to be related to ergosterol biosynthesis. The genes found in the wild-type biofilm vs planktonic growth dataset are represented by the green (up-regulated) and red (down-regulated) boxes. The genes found in the $\Delta tec1$ vs wild-type biofilm cells dataset are represented by the green (up-regulated) and red (down-regulated) boxes. The genes found in the $\Delta tec1$ vs wild-type biofilm cells dataset are represented by the green (up-regulated) and red (down-regulated) arrows.

Some of the observations made in other studies with *C. albicans* are consistent with what we describe in this study relatively to ergosterol biosynthesis-related gene expression in biofilm cells. García-Sánchez *et al.* (2004) reported overexpression of *CaERG16* and *CaERG25* genes in 72 h *C. albicans* biofilms, whose orthologs in *C. glabrata* are *CgERG11* and *CAGL0K04477g*, both up-regulated in our dataset. Furthermore, Nett *et al.* (2009) also identified altered regulation of ergosterol and β -glucan pathways associated with *in vivo C. albicans* biofilm growth at both intermediate and mature phases. They found *CaERG25* gene to be up-regulated in the mentioned conditions, but down-regulation of *CaERG7* gene. *CaERG7* ortholog in *C. glabrata CAGL0J10824g* was found to have no altered expression in 24 h biofilms, when compared to planktonic growth. The *C. glabrata* ortholog of *CaERG25*, *CAGL0K04477g* is a putative C-4 methyl sterol oxidase with a role in C4-demethylation of ergosterol biosynthesis intermediates. In fact, the up-regulation of genes intervening in intermediate steps of ergosterol biosynthesis is observed, which could lead to an accumulation of intermediate compounds. The authors proposed that *CaERG25* up-regulation may allow for increased conversion of lanosterol to nonergosterol intermediates, such as eburicol and 14-methyl fecosterol. However, there is still no attributed role for these intermediates.

<u>3.5.1.5- Genes belonging to the functional group of cell wall metabolism present differential expression pattern</u>

Fungal biofilm formation implies some structural changes at the cell wall level in order to allow cellsubstrate and cell-cell adhesion. In this study, *C. glabrata* cells were found to change the expression of 98 genes related to cell wall organization during biofilm formation. These were used in KEGG PATHWAY tool to get further clues on their activity, and a pathway that stood out was the biosynthesis of GPI-anchor.

Figure 22- Distribution of differently expressed genes in wild-type biofilm vs planktonic growth and Δ tec1 vs wild-type biofilm cells, identified by RNA-seq analysis to be related to GPI-anchor biosynthesis. Green and red arrows: genes found, respectively, up- and down-regulated in both wild-type biofilm vs planktonic growth and Δ tec1 vs wild-type biofilm cells datasets; yellow and brown arrows: genes found, respectively, up- and down-regulated in the wild-type biofilm vs planktonic growth dataset; blue and pink arrows: genes found, respectively, up- and down-regulated in the Δ tec1 vs wild-type biofilm cells dataset. The image was retrieved in https://www.genome.jp/kegg/pathway.html.

Significantly, all the differentially expressed genes involved in GPI-anchor biosynthesis are downregulated in biofilm cells (**Figure 22**). Nett *et al.* (2009) also identified genes related to cell wall organization in both 12 h and 24 h *in vivo C. albicans* biofilms, however, only one was found to be involved in GPI-anchor biosynthesis, *CaCWH43*, which despite being found down-regulated in their study, in our data this gene was not differentially expressed. Moreover, Yeater *et al.* (2007) reported many GPI-linked cell wall protein genes among the up-regulated genes at both 6 h and 12 h time points of *C. albicans* biofilm formation. Considering these results, it leads us to speculate that GPI-anchor biosynthesis might be phase-specific, being required for the cell at earlier stages of biofilm formation, when cells need to adhere to a surface and to other cells. As biofilms develop, it might be advantageous for cells to be released and start colonizing other places, being associated to the final dispersal phase.

Another set of genes found in the cell wall metabolism cluster is composed of β -mannosyltransferaseencoding genes, such as *CgBMT1-4*, *CgBMT6* and *CgBMT7*. These enzymes were recently identified in several yeast species, including *C. albicans, C. glabrata* and *C. tropicalis*.¹⁰⁹ The central core of their cell walls is composed of branched β -(1,3)-, β -(1,6)-glucan linked to chitin via a β -(1,4)-glucan linkage. This structure is found close to the cell membrane, with chitin as the innermost element, and the β -(1,6)glucan structure displayed outwards and being a linker to a mannose-rich glycoconjugate outer layer composed of PPM (phosphopeptidomannan, or just 'mannan'), mannoproteins and PLM (phospholipomannan). *N*- and O-linked mannans and the presence of β -mannosides (β -Mans) are major pathogen-associated molecular features and, along with β -glucans, are important for triggering host innate immunity.^{110,111} *C. albicans* β -mannosyltransferases have been more extensively studied, being involved in transferring β -(1,2)-linked mannose units to β -(1,2) linkage-containing side chains, or attach β -(1,2)-linked mannose units to β -linked mannooligosaccharides. These enzymes were found to be encoded by nine *BMT* genes in this species.¹¹² From these, six were phenotypically analyzed and it was found that *CaBMT1* and *CaBMT3* act on the acid-stable moiety of PPM, *CaBMT2–4* on the acid-labile moiety of PPM, and *CaBMT5* and *CaBMT6* act on PLM.¹¹¹

Jawhara, S. *et al.* $(2012)^{112}$ aimed to understand the role of β -Mans in *C. glabrata* colonization and virulence in a murine model of dextran sulfate sodium induced colitis, using *C. glabrata* strains deficient in five genes encoding β -mannosyltransferases. A western blot experiment showed a significant reduction in of β -(1,2)-mannoside residues in $\Delta bmt2$ -bmt6 cluster deletion mutant. Furthermore, *C. glabrata* wild-type strain in colitis mice models led to reduced survival rates, when compared to those infected with the mutant stain. Additionally, after 7 days of infection, lower numbers of colonies of $\Delta bmt2$ -6 cells were recovered from stools. Based on these observations, the authors report that these enzymes are determinant for *C. glabrata*'s capacity of gastrointestinal tract colonization. Overall, β -Mans were proposed to play an important role in colonization and virulence of *C. glabrata* cells. Besides these results, no studies have been yet conducted in order to disclose the possible involvement of *BMT* genes

in biofilm formation. However, it can be proposed a role in the a role in host recognition and adhesion process.

3.5.1.6- Activation of multiple stress-responsive genes during biofilm development

The expression of 80 genes related to stress response was found to be up-regulated in biofilm cells, when compared to those cultivated planktonically. These comprise diverse classes of stress response genes, including those encoding for heat-shock proteins, as *CgHSP12*, *CgSSA3*, *CgSSB2*, *CgPDR13* and *CgSSE*, and other chaperones, required for the response to protein denaturation and aggregation. A number of oxidative stress response genes (11 genes), such as two superoxide dismutase encoding genes, *CgSOD1* and the ortholog to *C. albicans CaSOD2* encoded in ORF *CAGL0E04356g*, and other genes responsible for maintaining the redox balance in the cell, as for example *CgTSA1*, *CgGSH1*, the ortholog of *C. albicans CaGRX3* encoded by the ORF *CAGL0G08151g* and *CgTRR1* genes, were also found to be up-regulated in biofilm cells. The up-regulation of these genes is consistent with the up-regulation of known stress response TFs, as Yap6, Yap7, Cad1 and Ap1, responsible for oxidative and metal stress response, Msn1 and Msn4, regulators of the general stress response, Rim101, Haa1, War1, involved in the response to acid/alkaline stress, Hac1, controlling the unfolded protein response and Hot1, regulator of the osmotic stress response.

From the observations of Nett *et all.* (2009), stress-responsive genes were also found to be up-regulated in both intermediate (12 h) and mature (24 h) biofilms. Several stress-responsive genes were also found to be up-regulated in biofilm cells by Yeater *et al.* (2007). Overall, the up-regulation of a large array of stress responsive gene suggest that *C. glabrata* biofilm cells, are either sensing environmental stress conditions, or, at least, prepared to deal with it, if it comes.

3.5.1.7- Genes encoding multidrug resistance proteins are up-regulated during biofilm formation

In this transcriptomic analysis some of multidrug resistance (MDR)-related genes were found to be upregulated upon biofilm formation, namely some genes belonging to the Major Facilitator Superfamily (MFS) of MDR transporters that include *CgQDR2*¹¹³, *CgAQR1*¹¹⁴, *CgTPO1_2*¹³ and *CgTPO3*¹¹⁵, already described as being determinant of fungal drug resistance in *C. glabrata*, and two uncharacterized ORFs *CAGL0B02343g* (*ScATR1* homolog) and *CAGL0J00363g* (*ScYHK8* homolog) predicted to belong to this family of transporters. It is important to highlight that Tpo1_2 multidrug transporter was found to play a role in biofilm formation, as its deletion impaired *C. glabrata* biofilm development, although the underlying molecular connection is unclear.¹³

Among the down-regulated genes *CgCDR1* gene deserves particular attention. This gene encodes a major ATP binding cassette (ABC) drug efflux pump involved in azole resistance and it was reported in *C. glabrata* (similar to what was observed in *C. albicans*) to exhibit time-dependent increase on its

expression in biofilm cells. For instance, the levels of expression of this gene were investigated during the early (6 h), intermediate (15 h), and mature (48 h) phases of biofilm development. At 6 h and 15 h, the biofilms exhibited approximately 1.5- and 3.3-fold upregulation of *CgCDR1* when compared to planktonic cells.^{63,104,116}

Nett *et al.* (2009) also reported the up-regulation of drug resistance-related genes in *in vivo C. albicans* biofilms. The authors report the up-regulation of *CaCDR2* at 12 h of biofilm formation, and of *MDR1* at both 12 h and 24 h. Interestingly, Mdr1 belongs to the Drug:H+ Antiporter family, displaying homology to the above referred MFS MDR transporters, whose gene expression was found to be up-regulated in *C. glabrata* biofilm cells. Moreover, Yeater *et al.* (2007) study highlights some genes encoding efflux pumps which were found differently expressed throughout the development of *C. albicans* biofilm, namely *CaQDR1*, which is the ortholog of *C. glabrata*'s *CgQDR2* up-regulated in our dataset; *CaNAG3/MDR97* and *CaCDR4*, both with no described orthologs in *C. glabrata*.

However, the reason why biofilm cells display increased expression of multidrug transporters in the absence of drug exposure is still unknown.

3.5.2- What is the role of the transcription factor Tec1 on Candida glabrata biofilm formation?

Given the importance of Tec1 in biofilm formation, the transcriptomic changes occurring during planktonic growth and after 24 hours of biofilm formation upon the deletion of *CgTEC1* were analyzed. The expression of a total of 417 or 1082 genes is affected by Tec1 in planktonic cultivation or in 24 h biofilm cells, respectively. Considering biofilm cells alone, 487 genes were found to be activated, while 595 genes were repressed by Tec1. Further grouping of the Tec1 regulated genes by its biological function allowed the construction of **Figures 23** and **24**. The most enriched groups among the upregulated genes were: "Unknown function" (28%), "Response to stress" (8%), "Protein metabolism" (6%), "Cell cycle" (6%), "Carbon and energy metabolism" (6%) and "Cell wall organization" (5%) (**Figure 23**).

Figure 23- Categorization and frequency of the genes up-regulated by Tec1 upon biofilm growth in *C. glabrata*, given by the $\Delta tec1$ deletion mutant cells in relation to wild-type cells grown in biofilm, based on the biological process taxonomy of gene ontology (*P*-value<0.05).

The most represented biological functions among the down-regulated genes are: "Cell cycle" (15 %), "Unknown function" (12 %), "DNA metabolism and repair" (11%), "RNA metabolism and export" (8 %), "Amino acid metabolism" (7 %) and "Protein metabolism" (6%) (**Figure 24**).

Figure 24- Categorization and frequency of the genes down-regulated by Tec1 upon biofilm growth in *C. glabrata*, given by the $\Delta tec1$ deletion mutant cells in relation to wild-type cells grown in biofilm, based on the biological process taxonomy of gene ontology (*P*-value<0.05).

Furthermore, it is important to evaluate especially whether Tec1 is responsible for activating the expression of genes found to be up-regulated in biofilm cells (**Figure 25**). From this analysis, it was possible to conclude that this TF contributes to the transcriptional remodeling of biofilm cells by positively regulating the expression of 389 out of the 1565 genes up-regulated in wild-type cells after 24h of biofilm formation. These 389 genes correspond to ³/₄ the total Tec1 up-regulated genes and about ¹/₄ of the up-regulated genes in biofilm cells, highlighting the relevance of Tec1 in biofilm formation in *C. glabrata*. As expected, it can also be noted that Tec1 is responsible for the activation of much more genes in biofilm, than in planktonic growth.

Figure 25- Venn diagram exhibiting the intersection of the number of up-regulated genes from the three datasets under study.

The 389 Tec1 activated genes found to up-regulated in wild-type cells grown in biofilm, when compared to planktonic growth, were then clustered according to their biological functions (**Figure 26**). The most relevant categories were found to be: "Unknown function" (30%), "Response to stress" (8%), "Protein metabolism" (6%), "Cell cycle" (6%) and "Carbon and energy metabolism" (6%).

Figure 26- Categorization and frequency of the Tec1 up-regulated genes in biofilm and up-regulated in cells under biofilm growth conditions, based on the biological process taxonomy of gene ontology (*P*-value<0.05).

Altogether, the results suggest that the most important mechanisms underlying biofilm formation by the TF Tec1 *in C.* glabrata are mainly related to adhesion, amino acid and nitrogen metabolism, carbon source and energy metabolism, ergosterol biosynthesis, cell wall organization, stress response and multidrug resistance. In the next section, these selected functional groups are discussed in the context of their role in biofilm formation.

3.5.2.1- Tec1 controls the expression of adhesion related genes at different biofilm formation stages.

Among the 19 adhesion-related genes found to be activated by Tec1 during biofilm formation, there are six adhesin encoding genes: *CgAED1*, *CgAED2*, *CgAWP13*, *CgEPA9*, Cg*EPA10* and *CgPWP5*. Interestingly, Tec1 was also found to control the expression of the TF encoding gene *CgEFG1*, another key biofilm formation regulator in *C. glabrata*¹¹⁷. This complex regulatory association controlling biofilm formation seems to be similar to what was reported in *C. albicans*, where Tec1 and Efg1 were shown to be mutually controlling each other's expression during biofilm development.⁷¹

Biofilm formation is initiated when planktonic cells find a surface where they can adhere and take advantage of the nutrients and other advantages.⁹⁹ The ability to adhere is a fast process, and even though our transcriptomic analysis gives us information about the adhesion-related genes expression of a mature biofilm, it would also be interesting to explore the transcriptomic variations of genes known to be important for biofilm formation in *C. glabrata* cells during all its developmental process. Thereupon, in an attempt to understand the variation of the level of transcripts at different time points of biofilm development, correspondent to some of the most important adhesins found in this study to be strongly regulated in biofilm cells by Tec1 TF, we chose *CgAED2*, *CgPWP5* and *CgAWP13* genes to be quantified by RT-qPCR. Gene expression was measured in wild-type and $\Delta tec1$ cells after 6 h, 24 h and 48 h of biofilm development (**Figure 27**).

The expression of *CgAED2*, *CgPWP5* and *CgAWP13* was found to increase progressively in the wildtype strain, as the biofilm develops overtime. The results can be interpreted as the growing need for the biofilm cells to attach to each other, as it starts growing and developing the thick cell layers that are characteristic of this species. On the other hand, in the absence of *CgTEC1* expression levels are kept in relatively low levels, even decreasing slightly with time, suggesting that Tec1 is a crucial intervenient in regulating the adhesion phenomenon, gaining importance especially in the later stages of biofilm formation.

Figure 27- The deletion of the *CgTEC1* gene leads to a biofilm evolution-related decrease in the expression of the adhesion encoding genes *CgPWP5*, *CgAED2* and *CgAWP13*. Comparison of the variation of the *CgPWP5*, *CgAED2* and *CgAWP13* transcript levels in wild-type *C. glabrata* KUE100 cells and $\Delta tec1$ deletion mutant cells, after 6 h, 24 h and 48 h of biofilm growth. The presented transcript levels were obtained by quantitative RT-PCR and are *CgPWP; CgAED2; CgAWP13 mRNA / CgACT1 mRNA* levels, relative to the values registered in wild-type cells after the chosen growth times. The indicated values are averages of at least three independent experiments. Error bars represent the corresponding standard deviations. **P*<0,05; ***P*<0,001; ****P*<0,0001; *****P*<0,00001.

83

3.5.2.2- Tec1 controls the expression of genes related to amino acid and nitrogen metabolism

Another functional category found to be important in biofilm formation is amino acid and nitrogen metabolism, which holds 24 up- and 45 down-regulated genes, in a total of 69 genes controlled by Tec1. This TF appears as repressing, possibly in an indirect fashion, the biosynthesis of some amino acids, namely lysine, arginine, proline, methionine, serine, glycine, valine, leucine, isoleucine, tryptophan, tyrosine, phenylalanine and histidine. On the other hand, Tec1 activates a number of genes involved in glutamate, pyruvate and cysteine biosynthesis (Figure 18). Among the Tec1 regulated genes are *CAGL0B00286g* (*ScCHA1*), *LEU2*, *BAT2*, *CAGL0F01749g* (*CaSHM2*), *CAGL0K00825g* (with no described orthologs in *S. cerevisiae* and *C. albicans*), *MET6*, *CAGL0M12837g* (*ScSER33*), *HOM6*, *CAGL0J07062g* (*CaCAR1*) and *CAGL0K07788g* (*CaLYS2*), which are repressed by Tec1; and *CAGL0L12254g* (*CaALT1*), *GLT1* and *MET15*, which are activated by Tec1. Overall, Tec1 was found to control amino acid metabolism, partially contributing for the accumulation α -oxoacids, in response to nitrogen starvation.

3.5.2.3- Carbon and energy metabolism genes are regulated by Tec1

Wild-type cells showed a shift in energy metabolism during biofilm formation, probably to adapt to the microenvironment of the biofilm, where it is supposed to be lack of nutrients, including glucose. Our RNA-seq data shows that Tec1 is responsible for regulating 53 genes involved in carbon and energy metabolism. These were organized in KEGG PATHWAY software to better understand its impact on carbon metabolism pathways (Figure 19). Within the genes involved in carbon metabolic pathways, Tec1 was found to activate the expression of 7 genes: *ZWF1*, *GND1*, *CAGL0E05610* (*ScPYK2*), *CAGL0H06633* (*ScPCK1*), *CAGL0L03982* (*CaMLS1*), *ACO1*, *CAGL0B04917* (*CaIDP2*); and repress, possibly in an indirect fashion, 1 gene, CAGL0B02717 (*ScACS2*). The great majority of the Tec1 activated genes encode glyoxylate cycle enzymes. Moreover, Tec1 was found to exert a repressing effect over a great number of genes involved in long-chain fatty acid biosynthesis in biofilm cells (Figure 20). According to the information gathered in the PathoYeastract database, only the *C. albicans* orthologs *CIT1*, *CDC19* and *PCK1* were found to be under CaTec1 control in this species, driving us to conclude that Tec1 is not responsible for controlling carbon metabolism for energy production as it seems to happen in *C. glabrata*.

3.5.2.4- Tec1 contributes to decreased ergosterol content in C. glabrata biofilms

Ergosterol is the main sterol found in fungi and has been shown to be an important component of the cell membrane of biofilm cells and more recently proven to play a role on biofilm ECM composition.⁴⁶

Tec1 was found, through RNA-seq analysis, to regulate the expression of 7 ergosterol biosynthesisrelated genes (**Figure 21**). Tec1 seems to act on decreasing ergosterol biosynthesis through the repression of *CgERG2*, *CgERG8* and *CAGL0L12364g* (ortholog of *CaERG10*) genes in biofilm cells. In an attempt to confirm these transcriptomic observations, and to uncover the final outcome of the changes in ergosterol biosynthesis genes found to be up- and down- regulated in biofilm cells (Section 3.5.1.4), total ergosterol was extracted from biofilm and planktonic cells and quantified by HPLC. The ergosterol of the mutant cells $\Delta tec1$ was compared to that of the wild-type KUE100 strain (**Figure 28**).

Figure 28- The ergosterol content in yeast cells is reduced when grown in biofilm and Tec1 is predicted to play a role in ergosterol content reduction in biofilm. Wild-type and single deletion mutant cells were harvested after 24 h of planktonic or biofilm growth and total ergosterol was extracted and quantified through HPLC. The displayed ergosterol content is the average of at least three independent experiments, standard deviation being represented by the error bars. ****P*<0,001; *****P*<0,0001.

From the ergosterol quantification results it is possible to ascertain that *C. glabrata* cells grown in biofilm suffer a significant reduction (almost 3-fold) of total ergosterol content. Additionally, Tec1 in fact acts on contributing for the reduction of ergosterol biosynthesis, as hypothesized by the RNA-seq data, as the deletion mutant cells displays a 31% increase on ergosterol content in biofilm cells. No significant differences were noted between both strains during planktonic growth.

The reduction of total ergosterol content in 24 h biofilm cells was observed in *C. albicans*, Fox et al. (2015) reported the down-regulation of genes related to ergosterol biosynthesis in mature biofilms.¹¹⁸ Furthermore, *C. albicans* biofilms were observed to show high levels of ergosterol in early phases of biofilm formation, however this decreased in 50% when biofilms reached mature phase of growth. The same might be happening in *C. glabrata* biofilms.^{108,119} Additionally, the low oxygen concentrations that the innermost cells might be subjected to may explain the need of these cells to control ergosterol biosynthesis. In this context, the observed decrease ergosterol content might be a required biofilm formation feature, which is favored by the presence of Tec1.

3.5.2.5- Tec1 controls the expression of genes involved in stress response

Tec1 seems to be determinant of cell defense against stress conditions, as this is the second most attributed biological function to the Tec1 activated genes. Tec1 activates 37 stress response genes, including the biofilm induced *HSP12* and *SSA5* encoding for chaperones involved in heat-shock response; *SOD1*, *CTA1*, *TSA1* and YHB1, encoding oxidative stress response enzymes; and *HAA1*, *HAP5* and *CNA1*, encoding TFs controlling various aspects of stress response.

The genes documented in PathoYeastract to be regulated by Tec1 in *C. albicans* biofilm cells comprise *HSP70* encoding a heat-shock protein, *GAC1* encoding a putative regulatory subunit of serine/threonine phosphoprotein phosphatase 1 involved in activation of heat-shock proteins, *SFL1* encoding a TF that negatively regulates flocculation and *YHB1* acting in nitric oxide scavenging/detoxification, which in our dataset appear as up-regulated by Tec1 in *C. glabrata* biofilm cells. Among the down-regulated genes of our dataset, *SKN7* required for oxidative stress response and *HSP70* encoding a heat-shock protein, were all found as also being regulated by Tec1 in *C. albicans*. Therefore, Tec1 is found in both species to be important in regulation of stress response of cells grown in biofilm.

3.5.2.6- Multidrug resistance genes are transcriptionally regulated by Tec1

Tec1 was also found to activate a subset of 13 MDR genes, including those encoding for the MFS of drug transporters: *TPO1_2*, *TPO3*, *QDR2*, *CAGL0B02079g* (ortholog of *ScAZR1*); and genes belonging to the ABC transporters superfamily, as *CDR1* and *PDH1*. Additionally, other Tec1 activates MDR genes include *CAGL0M10307g* (ortholog of *CaAUR1*) and *CAGL0G05566g* (ortholog of *CaFMP45*), both intervening on sphingolipid biosynthesis and cell wall organization, respectively. These results seem to propose a role for Tec1 on increasing *C. glabrata* cells' resistance to drugs, especially azoles. Yet the same role is not suggested for the CaTec1, as none of the *C. albicans* orthologs of the genes from this group appears to be activated by this TF in cells cultured under biofilm conditions, given by the PathoYeastract database.

3.6- Tec1 activated CgAUR1, CgAED2 and CgSUR2 genes also play a role in biofilm development

Among the Tec1 activated genes up-regulated in biofilm cells, 8 were selected for further analysis for a role in C. glabrata biofilm formation, namely AED2, PWP5, AWP13 genes encoding adhesins; BMT1 and BMT7 encoding beta-mannosyltransferases; SUR2 gene, related to sphingolipid biosynthesis; PUP1, an uncharacterized gene encoding a mitochondria-localized protein and CAGL0M10307g (ortholog of CaAUR1 and ScAUR1 genes) related to drug resistance. As a first approach about the role of these genes on biofilm development, deletion mutants devoid of each of the mentioned genes, kindly provided by Dr. Hiroji Chibana, Chiba University, Japan, were grown to form biofilms in both RPMI and SDB media and compared to the wild-type KUE100 strain, grown in the same conditions. All deletion mutants tested, except for Δpup_1 , display decreased levels of biofilm formation, when compared to the wild-type population, when cultivated in RPMI medium (Figure 29 A). On the other hand, this observation is only confirmed for the $\Delta aur1$ cells in SDB medium (Figure 29 B). Indeed, Aur1 appears to be a clear new determinant of biofilm formation in C. glabrata. CgAUR1 (ORF CAGL0M10307g), however, remains uncharacterized in this species. In S. cerevisiae, Aur1 has been related to antifungal drug resistance, being determinant of Aureobasidin A (AbA) resistance, among other drugs. Genetic approaches allowed to identify AUR1 gene as required for formation of inositolphosphorylceramide (IPC) in yeast, suggesting that this gene encodes part or all of the IPC synthase, which is essential for fungal sphingolipid biosynthesis.¹²⁰ Whether this is the role of C. glabrata's Aur1 and whether IPC synthesis is required for biofilm formation remains uncharted.

Other genes that might deserve further investigations are the *CgAED2* and *CgSUR2* genes, since although they did not show a significant difference in the formed biofilms, compared to the wild-type strain, when grown in SDB medium, their absence was found to affect *C. glabrata* biofilm formation in RPMI medium.

Interestingly, the multidrug resistance transporter encoding genes *CgQDR2*, *CgTPO1_2*¹³, found in this study to be activated by Tec1, had been previously shown to be required for biofilm formation, through unknown mechanisms.

Figure 29- CgAUR1 gene plays a role in adherence and biofilm development in RPMI (pH4) (A) and SDB (pH5.6) (B). Wild-type and the indicated deletion mutant cells were growth for 24 h in microtiter plates, after which cell viability was assessed based on PrestoBlue assay. A scatter dot plot representation of the data is shown, where each dot represents the level of biofilm formed in each sample. The average level of formed biofilm in at least 15 independent experiments is indicated by the black line, standard deviation being represented by the error bars. ****P*<0,001;*****P*<0,0001;*****P*<0,0001.

Α

3.7- In silico prediction of the CgTec1 recognition sequences

Since the nucleotide sequences targeted by Tec1 in *C. glabrata* are still unknown, a search for consensus sequences within the Tec1-activated genes, unveiled in this study, was performed. By resorting to the PathoYeastract database, these upstream regions were obtained and scanned for conserved sequences using the DREME (Discriminative Regular Expression Motif Elicitation) informatic tool (http://meme-suite.org/doc/dreme.html). 25 consensus sequences were obtained with high scores, as illustrated in **Figures A3** and **A4**. Given the high number of predicted motifs, the list was narrowed down to 18 consensus sequences, by both excluding the motifs containing TATA boxes, or long AAA/TTT stretches. To narrow down this list even further, the possible comparison to *C. albicans* and *S. cerevisiae* Tec1 motifs was hypothesized. To do that, however, we needed to check for conservation in the DNA-binding domain of the Tec1 proteins.

Aiming to inspect the possible 3D structure of Tec1, as well as its ligand binding sites and conserved domains, comparing to the Tec1 orthologs in *C. albicans* and *S. cerevisiae*, we sought to understand if we could rely on what is already described about these orthologs' ligand sequences. The I-TASSER (Iterative Threading ASSEmbly Refinement) bioinformatic tool was used to study the possible structures of CgTec1. After retrieving the protein FASTA sequence from the PathoYeastract database, the predicted model given by I-TASSER that presented higher score was obtained (**Figure 30**). For each target, I-TASSER simulations generate a large ensemble of structural conformations, called decoys. To select the final models, I-TASSER uses the SPICKER program to cluster all the decoys based on the pair-wise structure similarity and reports up to five models which corresponds to the five largest structure clusters. The confidence of each model is quantitatively measured by the C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of a higher value suggests a model with a higher confidence and vice-versa.

Figure 30- Top final Tec1 structure model predicted by I-TASSER. The C-score value for the predicted structure was -1. The structure was obtained in https://zhanglab.ccmb.med.umich.edu/I-TASSER/ with the protein FASTA format sequence of Tec1, retrieved from CGD.

I-TASSER can also be used to predict ligand binding sites in the predicted structure model. Thus, this software provided us biological annotations of the target protein by COFACTOR and COACH based on the I-TASSER structure prediction. While COFACTOR deduces protein functions (ligand-binding sites, Enzyme Commission [EC] and GO) using structure comparison and protein-protein networks, COACH is a meta-server approach that combines multiple function annotation results (on ligand-binding sites) from the COFACTOR, TM-SITE and S-SITE programs. The results are shown in **Figure 31** illustrating the two most confident ligand binding sites predicted for the first model.

Figure 31- I-TASSER predicted ligand binding sites of the transcription factor Tec1 predicted model, highlighting the ligand binding site residues Q106 and K109 (A), and Q100 and H104 (B). The predicted ligand binding residues were obtained in https://zhanglab.ccmb.med.umich.edu/I-TASSER/ with the protein FASTA format sequence of Tec1, retrieved from CGD.

Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1

Afterwards, the InterPro database was used to search for conserved domains in Tec1 protein. InterPro recognized a single conserved domain, from residue 35 to residue 115, belonging to TEA/ATTS domain superfamily, responsible for DNA-binding TF activity.

A multiple alignment of the three (*C. glabrata, C. albicans* and *S. ceresiviae*) Tec1 orthologs protein sequences, resorting to Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/), enabled the identification of conserved regions (**Figure 32**). A particularly conserved region was found from residue 48 to residue 109 of *C. glabrata* Tec1 (61 amino acid residues). This is in agreement with the idea that these orthologs share a TEA/ATTS domain and also agrees with the result given by the InterPro database, since these regions are overlapped. Lastly, this region potentially contains the ligand binding site, predicted by I-TASSER to be in residues 106 and 109, a glutamine and a lysine, respectively.

Figure 32- Multiple sequence alignment of Tec1 from *S. cerevisiae*, *C. albicans* and *C. glabrata* reveals a conserved amino acid sequence of 61 residues from residue 48 to 109 of Tec1 protein sequence in *C. glabrata*. The alignment was performed in Clustal Omega, a multiple sequence alignment program (https://www.ebi.ac.uk/Tools/msa/clustalo/) using the protein sequences of Tec1 orthologs retrieved in CGD.

1 C3_04530C_B 2 CAGL0M01716g 3 TEC1	cc 100.0 g 51.4 55.6	ov pid∃ ೫ 100.0% ₩ 15.3% ೫ 14.2%	21 KSLGFSDS+KR - IM <mark>G</mark> NYPAFAI - LPSV <mark>SDS</mark> GSL	KS THRPVLCPPNS TPKNLYVSNNSSGLS	<mark>DSMPMHLPATKRI</mark> TL <mark>PLPLP</mark> TGQQWFY SVHSKLLTPIT <mark>A</mark> SNEK	/APQEGYYYQNQN -KIENFIKTNAASQA	LN <mark>KTKFSNFFRSVNDQYGMNP</mark> SNS <mark>I</mark> NYAGHQUTPNNGGNQNQ KTPLIYAKHIYENI <mark>D</mark> G <mark>V</mark>	4 400 1 M
1 C3_04530C_B 2 CAGL0M01716g 3 TEC1	cc 100.0 g 51.4 55.0	0V pid 4 0% 100.0% 1% 15.3% 5% 14.2%	01 VUTI-QONGND DYMANDRNIE KCVPSKRPLEQ	<mark>XKSLKLKDNANISSE</mark> INNMKLKSGSG LSPTE <mark>L</mark> HQGDR	REPGLISDERSCENTITI MPMNTENQR <mark>P</mark> NKASESNK	INNV <mark>GILLPOLPESYS</mark> OONVO <mark>OLP</mark> <mark>K</mark> AI <mark>L</mark> ESAK	IDDGFSSSYAL <mark>KYEEPEN S</mark> P YPYP	. 480 -
1 C3_04530C_B 2 CAGL0M01716g 3 TEC1 consensus/10	cc 100.0 g 51.4 55.6	ov pid 4 % 100.0% % 15.3% % 14.2%	81 . HTSIISSSRT MISTQGQ KIE hIp	5 SLFTCVYSYGKETV NSHQFLYHNGSNVD - I E- 1	<mark>(FDEDGIQLNQDREFIPC)</mark> -HK-V	EWKFFFS1EGDQSEG PM <mark>S</mark> NT IINKY hsph	GL <mark>SAAFKGVI</mark> IK GNSANGNGNISSPQENNSSNT QRISRIQEHESNPEFSSNSNS tuthptp	. 560 P G
1 C3_04530C_B 2 CAGL0M01716g 3 TEC1	cc 100.0 g 51.4 55.6	ov pid 5 3% 100.0% 1% 15.3% 3% 14.2%	61 ILYESSPDSVK G SE <mark>YES</mark> EEEV <mark>V</mark> P	KEQDASKVNKSK VNNMHSNG RSATVTQLQSRPVPY	6 <mark>VKLVLLWEFAKVSBC</mark> X SGFGM <mark>L</mark> YQYQQYPNQS (YKNNGMPYSLS <mark>XV</mark> RG	DALITTIKLVLPPRA SYYM-QQSS <mark>L</mark> PI P PSI SYPM-PRPMYPRP	SASSS <mark>XTTEEVFEYSEPAL</mark> NS V	. 640 I - -
C3_04530C_B CAGL0M01716g TEC1	cov 100.0% 51.4% 55.6%	pid 641 100.0% 15.3% 14.2%	GGTPTDTTSPNMD	LNNONLSAAATSIPC	STROTTHS ASMPDINELI	SSAR QVR QKTFQ	<mark>▼QHLQPHQ1WQQQQQQQDSQ Q E</mark>	720
C3_04530C_B CAGL0M01716g TEC1	cov 100.0% 51.4% 55.6%	pid 721 100.0% 15.3% 14.2%	GAYTSSVASOS NS <mark>YINNNTINITT DAY</mark> NANYIQGL	<mark>LNTSLSSPYAQYGMF</mark> TPM <mark>SL</mark> PNVMSQF <mark>G</mark> -PQYQT <mark>S</mark> YFS <u>Q</u> LLLS	<mark>: PLPQQT</mark> <mark>IGTFVPI QNGQSKTTNNLPPI SS<mark>PQ</mark>HYEHSPHQRN<mark>-</mark>TP</mark>	<mark>PTSQTEGVSYTHNSQ</mark> TRQPDILNKE <mark>N</mark> K- S-N <mark>Q</mark> SH <mark>G</mark>	8 PSANMDLMMLSSMNTGYGNI 9Uvkneei-NPYNek NFY	800
C3_04530C_B CAGL0M01716g TEC1	cov 100.0% 51.4% 55.6%	pid 801 100.0% 15.3% 14.2%	TNNQDYQFGNIGY KE	.] 821 TEGETSEF VQ <mark>G</mark> IQ <mark>S</mark> N-				

Figure 32 (continuation)- Multiple sequence alignment of Tec1 from *S. cerevisiae*, *C. albicans* and *C. glabrata* reveals a conserved amino acid sequence of 61 residues from residue 48 to 109 of Tec1 protein sequence in *C. glabrata*. The alignment was performed in Clustal Omega, a multiple sequence alignment program (https://www.ebi.ac.uk/Tools/msa/clustalo/) using the protein sequences of Tec1 orthologs retrieved in CGD.

With this information, it is possible to hypothesize that *C. glabrata* Tec1 is likely to have recognition sequences similar to those recognized by its orthologs in *S. cerevisiae* and *C. albicans*. Thus, the Tec1 described binding motifs in *S. cerevisiae* and *C. albicans* (retrieved in Yeastract and PathoYeastract databases, respectively) were used to further narrow down the number of *C. glabrata* Tec1 binding motifs (**Table 7**).

The number of consensus regions described for *S. cerevisiae* were found to be 8, contrasting with only 3 for *C. albicans*. Interestingly, the consensus sequences **CATTC**T, **CATTC**C and **RMATTC**YY from *S. cerevisiae* Tec1 and **CATTC**Y and WR**CATTC**YH from *C. albicans* Tec1 appear to share a core region with each other (**Table 7**). Comparing them with the predicted *C. glabrata* Tec1 recognition sites (**Table 8**), and considering the complementary strands, the most similar sequence appears in motif T(C/G/T)C**CATT**G. Three additional motifs can also be considered (**Table 9**). It seems that the predicted DNA binding sites in *C. glabrata* have diverged from those identified in *C. albicans* and *S. cerevisiae*. However, it must be taken in consideration the evolution of the species and the possible synonymous mutations episodes. Still, this is a field that deserves to be more deeply investigated.

Table 7- Number of up-regulated genes of the biofilm dataset found to have the sequence of the consensus recognized by Tec1 that are described for *S. cerevisiae* and *C. albicans*, respectively. The binding motif sequences were obtained in the Yeastract and PathoYeastract databases, respectively and *S. cerevisiae* consensus sequences are represented according to the IUPAC frequency table in Yeastract (Table A3).

S. cerevisiae consensus	Number of genes
TTCTCACATTCTTC	0
CATTCT	208
CATTCC	159
CATTCTT	84
RMATTCYY	219
tcRRGAATGTtgxt	0
VRGAATgt	84
gRGAATGY	42
C. albicans consensus	Number of genes
WRCATTCYH	90
CATTCY	291
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2

Tec1 predicted consensus	Number of genes
GGGGRGGM	141
GCGATGAS	104
CYCCCCYC	162
CACMCRCA	124
CACAGARR	152
AGARAGAR	206
SMAGAGA	285
CAATGGBA	96
CAMATACA	100
CYTCTC	362
AARGRAAA	273
CGGGTAM	72
CGATGSCC	41
AGAABAGC	78
CCHCCCC	211
GCAYAGAA	73
AGCAMTAC	61
ACAAGMA	239

 Table 8- Number of up-regulated genes of the biofilm dataset found to have the sequence of the consensus recognized by Tec1 that were retrieved in DREME. The number of genes was obtained in PathoYeastract database.

Table 9- Tec1 predicted binding motif candidates. The binding sequences were retrieved in DREME bioinformatic software. The up-regulated genes were chosen and the upstream sequences were obtained in FASTA format in PathoYeastract database. The best candidates were selected based on their similarities with the most conserved part of Tec1 binding motifs in S. cerevisiae and C. albicans and the number of targeted genes. The sequences are organized by predicted motif / complementary strand.

Predicted Tec1 binding motifs
CAATGG(C/G/T)A / T(A/C/G)C CATT G
CA(A/C)ATACA / TGTCT(G/T)TG
CGATG(G/C)CC / GG(C/G)CATCG
GCGATGA(G/C) / (C/G)T CAT CGC

4- Final Discussion

The present thesis describes an in-depth analysis of the involvement of TF Tec1 in *C. glabrata* biofilm formation. Several studies have characterized *Candida* biofilm transcriptomes. Although many different growth conditions and comparison conditions were utilized, there is good overall agreement, especially among many of the most highly induced genes in biofilm formation. Most importantly, these transcriptome studies have provided leads for functional analysis.

In the first part of this work, Tec1 was found to be required for adhesion to human vaginal epithelial cells and for biofilm formation in polystyrene surface. However, the over-expression of CgTEC1 gene did not result in increased adhesion of *C. glabrata* cells to the human vaginal epithelium cells. Tec1 showed in this study to be more determinant for activating adhesin-encoding genes in later stages of biofilm formation, and considering that the time to which cells were allowed to contact and adhere was 30 min, in the future it would be interesting to evaluate adhesion to the human vaginal epithelium cells for longer time periods. Additionally, the induction of *CgTEC1* expression may not necessarily result in the intensification of adhesion, as it will act in many other cellular biological functions.

Considering that Tec1 is undoubtedly related to hyphal differentiation in *C. albicans*, this feature was analyzed for *C. glabrata* Tec1. The pseudohyphal differentiation was observed to be, at least in part, regulated by Tec1. Despite these findings, the conditions to which the cells were exposed do not reproduce what would be the natural behavior of *C. glabrata* cells *in vivo* and no pseudohyphae differentiation was yet reported to be a natural feature in biofilm formation in this species. Furthermore, Tec1 does not show nuclear accumulation as an activation mechanism for biofilm formation. Thus, the molecular mechanisms underlying Tec1 activation are still to be elucidated.

RNA-seq has been revolutionizing transcriptome profiling with deep-sequencing technologies. With this approach the transcriptome-wide changes of cells undergoing biofilm formation, in relation to planktonic cells, were assessed. This yielded a total of 3070 genes with altered expression, highlighting the multifactorial and complex nature of biofilm formation. The genes with altered expression levels were found to belong to multiple biological functions, but many (17%) remain uncharacterized, making the task of analyzing biofilm formation mechanisms more difficult.

Among the functional groups found to be important in biofilm development, some were highlighted such as adhesion, which included up-regulation of a great number of adhesion-related genes including those encoding for families I (EPA genes), II (PWP genes), III (AED genes) and IV (AWP genes) adhesins. This is in agreement with the key role of cell-substrate and cell-cell adhesion on biofilm establishment and development. Nitrogen and carbon metabolism were also shown to undergo crucial changes, presumably in response to nutrient deprivation. For example, biofilm cells displayed repression of genes encoding enzymes required for amination steps and activation of some required for deamination steps, suggesting that the respective α -oxoacids intermediates are favoring the energetic metabolism. An energetic shift is also induced in these cells observed by activation of glyoxylate cycle related genes. The down-regulation of fatty acid biosynthesis and up-regulation of β -oxidation pathway might be

supplying 2-carbon molecules to this alternative energetic pathway. Furthermore, activation of peroxisomes' assembly is also suggested by the transcriptomics data, reinforcing this hypothesis.

Results regarding the ergosterol biosynthesis pathway were found to be puzzling. Some genes encoding enzymes of this biosynthetic pathway were found to be activated, while others were found to be repressed, with an expected consequent accumulation of intermediate metabolites. Interestingly, however, the overall outcome of these genes was experimentally shown to be a decreased level of ergosterol in *C. glabrata* biofilm cells. Additionally, two orthologs of Tec1 and Efg1 of *C. albicans* encoded by ORFs *CAGL0M01716g* and *CAGL0M0763*, respectively, were also found up-regulated in our *C. glabrata* biofilm cells.

Another functional group found to be important in biofilm formation was stress response, with upregulation of several TFs, such as *CgYAP6, CgYAP7, CgCAD1* and *CgAP1*, responsible for oxidative and metal stress response, *CgMSN1* and *CgMSN4*, controlling the general stress response, *CgRIM101*, *CgHAA1, CgWAR1*, involved in the acid/alkaline stress response, *CgHAC1*, controlling the unfolded protein response and *CgHOT1*, required for the osmotic stress response. This observation suggests a highly regulated response to environmental stress conditions is activated in biofilm cells. Additionally, biofilm cells also displayed increased expression of MDR genes, namely *CgCDR1*, *CgQDR2*, *CgAQR1*, *CgTPO1_2* and *CgTPO3*, with *CgQDR2* and *CgTPO1_2* already shown by our group to be important for biofilm formation. Although biofilm cells have been shown to be particularly resistant to antifungals, this fact might result not only from the overexpression of MDR transporters, but also from the action of the ECM that limits the diffusion of antifungals towards inner biofilm cells.

RNA-seq approach was also used to unveil the role of Tec1 in C. glabrata biofilm formation. Tec1 was found to up-regulate ¼ of the activated genes in biofilm cells, suggesting that this is a key regulator of biofilm-induced changes in C. glabrata. The observed reduction of biofilm formation and adhesion to vaginal epithelium cells is hypothesized to be due to the high number of adhesion-related genes found to be up-regulated by this TF. The transcript levels of CgAED2, CgPWP5 and CgAWP13 genes, encoding adhesins, showed further that the action of Tec1 appears to be particularly crucial in later stages of biofilm formation. Among the Tec1 targets studied for a possible role in biofilm formation, Aur1, suggested to play a role in sphingolipid metabolism, was found to be crucial in this process. It will be interesting to assess the mechanism underlying this Tec1 dependent phenotype. Interestingly, Tec1 was also found to affect many other processes that occur during biofilm formation, including increased drug and stress resistance, and carbon and nitrogen metabolism remodeling. Indirectly, Tec1 also appears to inhibit ergosterol biosynthesis in biofilm cells. Interestingly, biofilm cells were found to contain decreased levels of ergosterol when compared to planktonically grown cells, which might be due to low oxygen levels felt by C. glabrata cells in the inner parts of the biofilm. As ergosterol is also present in C. albicans biofilm matrix⁴⁶, it would be interesting to perform a molecular analysis of the C. glabrata biofilm ECM, as it could shed more light about the contribution of possible extracellular ergosterol presence in biofilms, as well as for the effect of CgTEC1 deletion in this context.

Further *in silico* analysis allowed the prediction of Tec1 protein structure and the search for conserved domains revealed the TEA/ATTS domain, which is described to be present in *C. albicans* and *S. cerevisiae* Tec1 orthologs, containing the predicted DNA binding residues. These observations encouraged the analysis of the promoter regions of Tec1 activated genes, which enabled the identification of possible binding sequences for this TF, similar to the ones already described in *S. cerevisiae* and *C. albicans*. The most probable were found to be "CAATGGBA", "CAMATACA", "CGATGSCC" and "GCGATGAS" (with B=C/G/T, M=A/C and S=G/C).

In this work, Tec1 is strongly suggested to be a key player in biofilm development in *C. glabrata*. **Figure 33** illustrates a model of the main Tec1 induced responses in a biofilm cell.

Figure 33- Hypothetical model of action of Tec1 transcription factor in *C. glabrata* biofilm formation. Upon biofilm formation initiation, the transcription factor Tec1 is activated and this induces the expression of 487 genes found in this work to be related to key biofilm development-related biological functions. These comprise adhesion, stress and multidrug resistance, the cell wall organization, activation of glyoxylate cycle and amino acid and nitrogen metabolism in response to nutrient deprivation and pseudohyphal growth.

Many studies have focused on the regulatory processes underlying biofilm-induced genes in yeasts, other than *C. glabrata*. Perhaps the most elegant approach was undertaken by Nobile *et al.* (2012), who disclosed a transcriptional regulatory network underlying biofilm formation in *C. albicans*. Tec1 was found in their study to be part of this complex regulatory network. In our work, Tec1 showed to control the expression of 1082 genes, with some genes found to encode for putative TFs (**Figure 34**). Based

on this observation, it is likely that Tec1 is one of the key players in the very complex regulatory network regulating biofilm formation in *C. glabrata*.

Figure 34- Differentially expressed transcription factors found in RNA-seq analysis to be regulated by Tec1 in *C. glabrata* 24 h biofilms. *C. glabrata* ORFs directly or indirectly up (green) and downregulated (red) by the transcription factor Tec1. The ORFs downregulated by Tec1 are those demonstrated to be upregulated in $\Delta tec1$ 24 h biofilm cells, which transcriptome was analyzed through RNA-seq against wild-type *C. glabrata* 24 h biofilm cells.

Despite many open questions, the overall picture obtained with these results revealed the complexity and multifactorial nature of biofilm formation. The importance of Tec1 on regulating this phenomenon in *C. glabrata* is highlighted, placing this TF in a possible new drug target scenario, aiming to develop novel therapies that would prevent and overcome biofilm formation.

5- References

- Underhill, D. M. & Pearlman, E. Immune Interactions with Pathogenic and Commensal Fungi: A Two-Way Street. *Immunity* 43, 845–58 (2015).
- 2. Badiee, P. & Hashemizadeh, Z. Opportunistic invasive fungal infections: diagnosis & clinical management. *Indian J. Med. Res.* **139**, 195–204 (2014).
- 3. Ifrim, D. C. *et al.* Role of Dectin-2 for host defense against systemic infection with *Candida glabrata*. *Infect. Immun.* **82**, 1064–73 (2014).
- 4. Netea, M. G., Joosten, L. A. B., van der Meer, J. W. M., Kullberg, B.-J. & van de Veerdonk, F. L. Immune defence against *Candida* fungal infections. *Nat. Rev. Immunol.* **15**, 630–42 (2015).
- 5. Yapar, N. Epidemiology and risk factors for invasive candidiasis. *Ther. Clin. Risk Manag.* **10**, 95–105 (2014).
- 6. Kullberg, B. J. & Arendrup, M. C. Invasive Candidiasis. *N. Engl. J. Med.* **374**, 794–5 (2016).
- 7. Lewis, K. Riddle of biofilm resistance. *Antimicrob. Agents Chemother.* **45**, 999–1007 (2001).
- 8. Merseguel, K. B. *et al.* Genetic diversity of medically important and emerging *Candida* species causing invasive infection. *BMC Infect. Dis.* **15**, 57 (2015).
- 9. Rodrigues, C. F., Silva, S. & Henriques, M. *Candida glabrata*: a review of its features and resistance. *Eur. J. Clin. Microbiol. Infect. Dis.* **33**, 673–88 (2014).
- 10. Tam, P., Gee, K., Piechocinski, M. & Macreadie, I. *Candida glabrata*, Friend and Foe. *J. fungi* (*Basel, Switzerland*) **1**, 277–292 (2015).
- 11. Glöckner, A. & Cornely, O. A. *Candida glabrata*--unique features and challenges in the clinical management of invasive infections. *Mycoses* **58**, 445–50 (2015).
- 12. Kaur, R., Domergue, R., Zupancic, M. L. & Cormack, B. P. A yeast by any other name: *Candida glabrata* and its interaction with the host. *Curr. Opin. Microbiol.* **8**, 378–84 (2005).
- Santos, R. *et al.* The multidrug resistance transporters CgTpo1_1 and CgTpo1_2 play a role in virulence and biofilm formation in the human pathogen *Candida glabrata*. *Cell. Microbiol.* 19, (2017).
- 14. Gilbert, A. S., Wheeler, R. T. & May, R. C. Fungal Pathogens: Survival and Replication within Macrophages. *Cold Spring Harb. Perspect. Med.* **5**, a019661 (2014).
- 15. Riera, M., Mogensen, E., D'Enfert, C. & Janbon, G. New regulators of biofilm development in *Candida glabrata. Res. Microbiol.* **163**, 297–307 (2012).
- Pais, P., Costa, C., Cavalheiro, M., Romão, D. & Teixeira, M. C. Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison. *Front. Cell. Infect. Microbiol.* 6, 131 (2016).
- 17. Sardi, J. D. C. O. et al. Highlights in pathogenic fungal biofilms. Rev. Iberoam. Micol. 31, 22-9
- 18. Desai, J. V, Mitchell, A. P. & Andes, D. R. Fungal biofilms, drug resistance, and recurrent infection. *Cold Spring Harb. Perspect. Med.* **4**, (2014).
- 19. d'Enfert, C. & Janbon, G. Biofilm formation in Candida glabrata: What have we learnt from

functional genomics approaches? FEMS Yeast Res. 16, fov111 (2016).

- 20. Chandra, J. & Mukherjee, P. K. *Candida* Biofilms: Development, Architecture, and Resistance. *Microbiol. Spectr.* **3**, (2015).
- 21. Blankenship, J. R. & Mitchell, A. P. How to build a biofilm: a fungal perspective. *Curr. Opin. Microbiol.* **9**, 588–94 (2006).
- 22. Seneviratne, C. J., Jin, L. & Samaranayake, L. P. Biofilm lifestyle of *Candida*: a mini review. *Oral Dis.* **14**, 582–90 (2008).
- 23. Cavalheiro, M. & Teixeira, M. C. *Candida* Biofilms: Threats, Challenges, and Promising Strategies. *Front. Med.* **5**, 28 (2018).
- 24. Andes, D. *et al.* Development and characterization of an in vivo central venous catheter *Candida albicans* biofilm model. *Infect. Immun.* **72**, 6023–31 (2004).
- 25. Kucharíková, S. *et al.* In vivo *Candida glabrata* biofilm development on foreign bodies in a rat subcutaneous model. *J. Antimicrob. Chemother.* **70**, 846–56 (2015).
- 26. Rajendran, R. *et al.* Biofilm formation is a risk factor for mortality in patients with *Candida albicans* bloodstream infection-Scotland, 2012-2013. *Clin. Microbiol. Infect.* **22**, 87–93 (2016).
- 27. Kraneveld, E. A. *et al.* Identification and differential gene expression of adhesin-like wall proteins in *Candida glabrata* biofilms. *Mycopathologia* **172**, 415–27 (2011).
- 28. Verstrepen, K. J. & Klis, F. M. Flocculation, adhesion and biofilm formation in yeasts. *Mol. Microbiol.* **60**, 5–15 (2006).
- 29. De Las Peñas, A. *et al.* Virulence-related surface glycoproteins in the yeast pathogen *Candida glabrata* are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. *Genes Dev.* **17**, 2245–58 (2003).
- 30. Modrzewska, B. & Kurnatowski, P. Adherence of *Candida* sp. to host tissues and cells as one of its pathogenicity features. *Ann. Parasitol.* **61**, 3–9 (2015).
- 31. de Groot, P. W. J., Bader, O., de Boer, A. D., Weig, M. & Chauhan, N. Adhesins in human fungal pathogens: glue with plenty of stick. *Eukaryot. Cell* **12**, 470–81 (2013).
- 32. Rodrigues, C. F., Rodrigues, M. E., Silva, S. & Henriques, M. *Candida glabrata* Biofilms: How Far Have We Come? *J. fungi (Basel, Switzerland)* **3**, (2017).
- Cormack, B. P., Ghori, N. & Falkow, S. An adhesin of the yeast pathogen *Candida glabrata* mediating adherence to human epithelial cells. *Science* 285, 578–82 (1999).
- Zupancic, M. L. *et al.* Glycan microarray analysis of *Candida glabrata* adhesin ligand specificity. *Mol. Microbiol.* 68, 547–59 (2008).
- 35. Desai, C., Mavrianos, J. & Chauhan, N. *Candida glabrata* Pwp7p and Aed1p are required for adherence to human endothelial cells. *FEMS Yeast Res.* **11**, 595–601 (2011).
- Hirota, K. *et al.* Pathogenic factors in *Candida* biofilm-related infectious diseases. *J. Appl. Microbiol.* **122**, 321–330 (2017).
- Sudbery, P., Gow, N. & Berman, J. The distinct morphogenic states of *Candida albicans*. *Trends Microbiol.* 12, 317–24 (2004).

- Csank, C. & Haynes, K. *Candida glabrata* displays pseudohyphal growth. *FEMS Microbiol. Lett.* 189, 115–20 (2000).
- 39. Gagiano, M., Bauer, F. F. & Pretorius, I. S. The sensing of nutritional status and the relationship to filamentous growth in *Saccharomyces cerevisiae*. *FEMS Yeast Res.* **2**, 433–70 (2002).
- Kern, K., Nunn, C. D., Pichová, A. & Dickinson, J. R. Isoamyl alcohol-induced morphological change in *Saccharomyces cerevisiae* involves increases in mitochondria and cell wall chitin content. *FEMS Yeast Res.* 5, 43–9 (2004).
- 41. Cuéllar-Cruz, M., López-Romero, E., Villagómez-Castro, J. C. & Ruiz-Baca, E. *Candida* species: new insights into biofilm formation. *Future Microbiol.* **7**, 755–71 (2012).
- Vandeputte, P. *et al.* Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of *Candida glabrata* with pseudohyphal growth. *Antimicrob. Agents Chemother.* **51**, 982–90 (2007).
- 43. Araújo, D., Henriques, M. & Silva, S. Portrait of *Candida* Species Biofilm Regulatory Network Genes. *Trends Microbiol.* **25**, 62–75 (2017).
- 44. Rodrigues, C. F. & Henriques, M. Oral mucositis caused by *Candida glabrata* biofilms: failure of the concomitant use of fluconazole and ascorbic acid. *Ther. Adv. Infect. Dis.* **4**, 10–17 (2017).
- 45. Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–33 (2010).
- 46. Zarnowski, R. *et al.* Novel entries in a fungal biofilm matrix encyclopedia. *MBio* **5**, e01333-14 (2014).
- 47. Monteiro, D. R. *et al.* Silver colloidal nanoparticles: effect on matrix composition and structure of *Candida albicans* and *Candida glabrata* biofilms. *J. Appl. Microbiol.* **114**, 1175–83 (2013).
- 48. Yu, S.-J., Chang, Y.-L. & Chen, Y.-L. Deletion of ADA2 Increases Antifungal Drug Susceptibility and Virulence in *Candida glabrata*. *Antimicrob*. *Agents Chemother*. **62**, (2018).
- Kaur, R., Ma, B. & Cormack, B. P. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of *Candida glabrata*. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 7628–33 (2007).
- 50. Alves, C. T. *et al. Candida albicans* promotes invasion and colonisation of *Candida glabrata* in a reconstituted human vaginal epithelium. *J. Infect.* **69**, 396–407 (2014).
- 51. Pathak, A. K., Sharma, S. & Shrivastva, P. Multi-species biofilm of *Candida albicans* and non-*Candida albicans Candida* species on acrylic substrate. *J. Appl. Oral Sci.* **20**, 70–5 (2012).
- 52. Castaño, I. *et al.* Telomere length control and transcriptional regulation of subtelomeric adhesins in *Candida glabrata. Mol. Microbiol.* **55**, 1246–58 (2005).
- 53. Iraqui, I. *et al.* The Yak1p kinase controls expression of adhesins and biofilm formation in *Candida glabrata* in a Sir4p-dependent pathway. *Mol. Microbiol.* **55**, 1259–71 (2005).
- 54. Gow, N. A. R., Brown, A. J. P. & Odds, F. C. Fungal morphogenesis and host invasion. *Curr. Opin. Microbiol.* **5**, 366–71 (2002).
- 55. Maiti, P. *et al.* Mapping of functional domains and characterization of the transcription factor Cph1 that mediate morphogenesis in *Candida albicans. Fungal Genet. Biol.* **83**, 45–57 (2015).

- 56. Calcagno, A.-M. *et al. Candida glabrata* STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation. *Mol. Microbiol.* **50**, 1309–18 (2003).
- 57. Doedt, T. *et al.* APSES proteins regulate morphogenesis and metabolism in *Candida albicans*. *Mol. Biol. Cell* **15**, 3167–80 (2004).
- 58. Lohse, M. B., Gulati, M., Johnson, A. D. & Nobile, C. J. Development and regulation of singleand multi-species *Candida albicans* biofilms. *Nat. Rev. Microbiol.* **16**, 19–31 (2018).
- 59. Kamran, M. *et al.* Inactivation of transcription factor gene ACE2 in the fungal pathogen *Candida glabrata* results in hypervirulence. *Eukaryot. Cell* **3**, 546–52 (2004).
- 60. Stichternoth, C. & Ernst, J. F. Hypoxic adaptation by Efg1 regulates biofilm formation by *Candida albicans. Appl. Environ. Microbiol.* **75**, 3663–72 (2009).
- Mulhern, S. M., Logue, M. E. & Butler, G. *Candida albicans* transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. *Eukaryot. Cell* 5, 2001–13 (2006).
- 62. Schwarzmüller, T. *et al.* Systematic phenotyping of a large-scale *Candida glabrata* deletion collection reveals novel antifungal tolerance genes. *PLoS Pathog.* **10**, e1004211 (2014).
- 63. Song, J. W. *et al.* Expression of CgCDR1, CgCDR2, and CgERG11 in *Candida glabrata* biofilms formed by bloodstream isolates. *Med. Mycol.* **47**, 545–8 (2009).
- Khakhina, S., Simonicova, L. & Moye-Rowley, W. S. Positive autoregulation and repression of transactivation are key regulatory features of the *Candida glabrata* Pdr1 transcription factor. *Mol. Microbiol.* **107**, 747–764 (2018).
- Pais, P. *et al.* Membrane Proteome-Wide Response to the Antifungal Drug Clotrimazole in *Candida glabrata*: Role of the Transcription Factor CgPdr1 and the Drug:H+ Antiporters CgTpo1_1 and CgTpo1_2. *Mol. Cell. Proteomics* 15, 57–72 (2016).
- 66. Whaley, S. G. *et al.* Jjj1 Is a Negative Regulator of Pdr1-Mediated Fluconazole Resistance in *Candida glabrata. mSphere* **3**,
- Li, Q. Q. *et al.* Sterol uptake and sterol biosynthesis act coordinately to mediate antifungal resistance in *Candida glabrata* under azole and hypoxic stress. *Mol. Med. Rep.* **17**, 6585–6597 (2018).
- 68. Rodrigues, C. & Henriques, M. Portrait of Matrix Gene Expression in *Candida glabrata* Biofilms with Stress Induced by Different Drugs. *Genes (Basel)*. **9**, 205 (2018).
- 69. Bard, M. *et al.* Sterol uptake in *Candida glabrata*: rescue of sterol auxotrophic strains. *Diagn. Microbiol. Infect. Dis.* **52**, 285–93 (2005).
- 70. Fonseca, E. *et al.* Effects of fluconazole on *Candida glabrata* biofilms and its relationship with ABC transporter gene expression. *Biofouling* **30**, 447–57 (2014).
- 71. Nobile, C. J. *et al.* A recently evolved transcriptional network controls biofilm development in *Candida albicans. Cell* **148**, 126–38 (2012).
- 72. Regan, H. *et al.* Negative regulation of filamentous growth in *Candida albicans* by Dig1p. *Mol. Microbiol.* **105**, 810–824 (2017).

- 73. Daniels, K. J., Srikantha, T., Pujol, C., Park, Y.-N. & Soll, D. R. Role of Tec1 in the development, architecture, and integrity of sexual biofilms of *Candida albicans*. *Eukaryot*. *Cell* **14**, 228–40 (2015).
- Sahni, N. *et al.* Tec1 mediates the pheromone response of the white phenotype of *Candida albicans*: insights into the evolution of new signal transduction pathways. *PLoS Biol.* 8, e1000363 (2010).
- 75. Glazier, V. E. *et al.* Genetic analysis of the *Candida albicans* biofilm transcription factor network using simple and complex haploinsufficiency. *PLoS Genet.* **13**, e1006948 (2017).
- Panariello, B. H. D., Klein, M. I., Pavarina, A. C. & Duarte, S. Inactivation of genes TEC1 and EFG1 in *Candida albicans* influences extracellular matrix composition and biofilm morphology. *J. Oral Microbiol.* 9, 1385372 (2017).
- 77. van der Felden, J., Weisser, S., Brückner, S., Lenz, P. & Mösch, H.-U. The transcription factors Tec1 and Ste12 interact with coregulators Msa1 and Msa2 to activate adhesion and multicellular development. *Mol. Cell. Biol.* 34, 2283–93 (2014).
- 78. Zhang, Q. *et al.* Regulation of filamentation in the human fungal pathogen *Candida tropicalis*. *Mol. Microbiol.* **99**, 528–45 (2016).
- 79. Chen, K.-H., Miyazaki, T., Tsai, H.-F. & Bennett, J. E. The bZip transcription factor Cgap1p is involved in multidrug resistance and required for activation of multidrug transporter gene CgFLR1 in *Candida glabrata. Gene* **386**, 63–72 (2007).
- 80. Jansen, G., Wu, C., Schade, B., Thomas, D. Y. & Whiteway, M. Drag&Drop cloning in yeast. *Gene* **344**, 43–51 (2005).
- 81. Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for nextgeneration sequencing paired-end reads. *BMC Bioinformatics* **15**, 182 (2014).
- Skrzypek, M. S. *et al.* The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. *Nucleic Acids Res.* 45, D592–D596 (2017).
- 83. Anders, S. & Huber, W. Differential expression analysis for sequence count data. *Genome Biol.*11, R106 (2010).
- 84. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNAseq data with DESeq2. *Genome Biol.* **15**, 550 (2014).
- 85. Gentleman, R. C. *et al.* Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol.* **5**, R80 (2004).
- 86. Cherry, J. M. *et al.* Saccharomyces Genome Database: the genomics resource of budding yeast. *Nucleic Acids Res.* **40**, D700-5 (2012).
- 87. Martin, D. *et al.* GOToolBox: functional analysis of gene datasets based on Gene Ontology. *Genome Biol.* **5**, R101 (2004).
- 88. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Res.* **44**, D457-62 (2016).

- 89. Jensen, L. J. *et al.* STRING 8--a global view on proteins and their functional interactions in 630 organisms. *Nucleic Acids Res.* **37**, D412-6 (2009).
- Monteiro, P. T. *et al.* The PathoYeastract database: an information system for the analysis of gene and genomic transcription regulation in pathogenic yeasts. *Nucleic Acids Res.* 45, D597– D603 (2017).
- 91. Bailey, T. L. *et al.* MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res.* **37**, W202-8 (2009).
- Yang, J. *et al.* The I-TASSER Suite: protein structure and function prediction. *Nat. Methods* 12, 7–8 (2015).
- Finn, R. D. *et al.* InterPro in 2017-beyond protein family and domain annotations. *Nucleic Acids Res.* 45, D190–D199 (2017).
- 94. Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* **7**, 539 (2011).
- 95. Köhrer, K. & Domdey, H. Preparation of high molecular weight RNA. *Methods Enzymol.* **194**, 398–405 (1991).
- 96. Quellhorst, G., Han, Y. & Blanchard, R. Validating Microarray Data Using R2 RT-PCR. *SABiosciences manuals* (2010).
- 97. Gong, Ping, Xin Guan, and E. W. A rapid method to extract ergosterol from soil by physical disruption. *Appl. Soil Ecol.* **17**, 285–289 (2001).
- 98. Dickinson, J. R. Filament formation in *Saccharomyces cerevisiae--a* review. *Folia Microbiol.* (*Praha*). **53**, 3–14 (2008).
- 99. Muzny, C. A. & Schwebke, J. R. Biofilms: An Underappreciated Mechanism of Treatment Failure and Recurrence in Vaginal Infections. *Clin. Infect. Dis.* **61**, 601–6 (2015).
- 100. Lohse, M. B., Gulati, M., Johnson, A. D. & Nobile, C. J. Development and regulation of singleand multi-species *Candida albicans* biofilms. *Nat. Rev. Microbiol.* **16**, 19–31 (2018).
- 101. Dickinson, J. R. 'Fusel' alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts. *Microbiology* **142 (Pt 6,** 1391–7 (1996).
- 102. Vandromme, M., Gauthier-Rouvière, C., Lamb, N. & Fernandez, A. Regulation of transcription factor localization: fine-tuning of gene expression. *Trends Biochem. Sci.* **21**, 59–64 (1996).
- 103. García-Sánchez, S. *et al. Candida albicans* biofilms: a developmental state associated with specific and stable gene expression patterns. *Eukaryot. Cell* **3**, 536–45 (2004).
- 104. Nett, J. E., Lepak, A. J., Marchillo, K. & Andes, D. R. Time course global gene expression analysis of an in vivo *Candida* biofilm. *J. Infect. Dis.* **200**, 307–13 (2009).
- 105. Chandra, J. *et al.* Biofilm formation by the fungal pathogen *Candida albicans*: development, architecture, and drug resistance. *J. Bacteriol.* **183**, 5385–94 (2001).
- 106. Murillo, L. A. *et al.* Genome-wide transcription profiling of the early phase of biofilm formation by *Candida albicans. Eukaryot. Cell* **4**, 1562–73 (2005).
- 107. Rajendran, R. et al. Integrating Candida albicans metabolism with biofilm heterogeneity by

transcriptome mapping. Sci. Rep. 6, 35436 (2016).

- Yeater, K. M. *et al.* Temporal analysis of *Candida albicans* gene expression during biofilm development. *Microbiology* **153**, 2373–85 (2007).
- 109. Hurtaux, T. *et al.* Evaluation of monovalent and multivalent iminosugars to modulate *Candida albicans* β-1,2-mannosyltransferase activities. *Carbohydr. Res.* **429**, 123–7 (2016).
- 110. West, L. *et al.* Differential virulence of *Candida glabrata* glycosylation mutants. *J. Biol. Chem.* 288, 22006–18 (2013).
- 111. Fabre, E. *et al.* Characterization of the recombinant *Candida albicans* β-1,2-mannosyltransferase that initiates the β-mannosylation of cell wall phosphopeptidomannan. *Biochem. J.* 457, 347–60 (2014).
- Jawhara, S. *et al.* Murine model of dextran sulfate sodium-induced colitis reveals *Candida* glabrata virulence and contribution of β-mannosyltransferases. *J. Biol. Chem.* 287, 11313–24 (2012).
- Costa, C. *et al. Candida glabrata* drug:H+ antiporter CgQdr2 confers imidazole drug resistance, being activated by transcription factor CgPdr1. *Antimicrob. Agents Chemother.* **57**, 3159–67 (2013).
- 114. Costa, C. *et al.* The dual role of *candida glabrata* drug:H+ antiporter CgAqr1 (ORF CAGL0J09944g) in antifungal drug and acetic acid resistance. *Front. Microbiol.* **4**, (2013).
- 115. Costa, C. *et al. Candida glabrata* drug:H+ antiporter CgTpo3 (ORF CAGL0I10384g): role in azole drug resistance and polyamine homeostasis. *J. Antimicrob. Chemother.* **69**, 1767–76 (2014).
- 116. Ramage, G., Rajendran, R., Sherry, L. & Williams, C. Fungal biofilm resistance. *Int. J. Microbiol.* **2012**, 528521 (2012).
- 117. Leitão, A. Biofilm formation by the human pathogen *Candida glabrata*: The regulator CgEfg2 and its targets. (Instituto Superior Técnico, 2018).
- 118. Fox, E. P. *et al.* An expanded regulatory network temporally controls *Candida albicans* biofilm formation. *Mol. Microbiol.* **96**, 1226–39 (2015).
- Mukherjee, P. K., Chandra, J., Kuhn, D. M. & Ghannoum, M. A. Mechanism of fluconazole resistance in *Candida albicans* biofilms: phase-specific role of efflux pumps and membrane sterols. *Infect. Immun.* **71**, 4333–40 (2003).
- Heidler, S. A. & Radding, J. A. The AUR1 gene in *Saccharomyces cerevisiae* encodes dominant resistance to the antifungal agent aureobasidin A (LY295337). *Antimicrob. Agents Chemother.* 39, 2765–9 (1995).

6- Annexe

Figure A1- Schematic representation of the basic pGREG vector system. (A) The inducible *GAL1* promoter controls the expression of tags or generated fusion proteins. Downstream of the tags a *HIS3* stuffer fragment is located flanked by specific sites for recombination, rec1 and rec2. The vectors contain one of the selectable yeast markers *URA3*, *LEU2*, *TRP1* and *HIS3* as well as an additional KanMX cassette flanked by loxP sites. Sequences of rec1 and rec2 used for the targeted *in vivo* recombination of DNA fragments into the vector, including the translated sequence encoded by the rec1 linker between tag and protein of interest. (B) An example for targeted recombination into pGREG vectors. Gene *X*, flanked by rec1 and rec2 replaces the *HIS3* stuffer fragment by successful gene integration, and a screen for loss of the selection marker identifies potential recombinants. (C) Subsequent replacement of the *GAL1* promoter by other promoters, e.g. the own promoter of gene *X* (*PX*)⁸⁰.

FAST FACTS

Product Information Sheet

PrestoBlue[™] Cell Viability Reagent Protocol

Catalog Number: A13261 and A13262 Literature Lot Number: V1 Literature Part Number: MAN0003232 Revision date: 11 October 2010

PrestoBlue[®] Cell Viability Reagent is a ready-to-use reagent for rapidly evaluating the viability and proliferation of a wide range of cell types. PrestoBlue[®] reagent is quickly reduced by metabolically active cells, providing a quantitative measure of viability and cytotoxicity in as little as 10 minutes. Protect reagent from long term exposure to light and avoid contamination, as this can reduce sensitivity.

Catalog no.	Amount	Storage and Handling
A13261	25 mL	Store at 4°C, protected
A13262	100 mL	contamination.

Quick Reference Protocol

 PrestoBlue[™] Cell Viability Reagent is supplied as a 10X solution. Add PrestoBlue[™] Reagent directly to cells in culture medium. See below for example volumes:

Format	Volume of Cells + Media	Volume of PrestoBlue [™] Reagent
Cuvette	900 µL	100 µL
96 well plate	90 µL	10 µL
384 well plate	36 µL	4 µL

Note: Correct for background fluorescence by including control wells containing only cell culture media (no cells) on each plate.

 Incubate ≥10 minutes at 37° C. Longer incubation times will increase sensitivity of detection. As this is a live cell assay, readings may be taken at multiple time points to determine optimal performance in your lab.

Format	Recommended Incubation Time
Bottom-read fluorescence	10 minutes – 2 hours
Top-read fluorescence	30 minutes – 2 hours
Absorbance	20 minutes – 2 hours
Room temperature incubation	10 minutes – 2 hours
Low cell number (< 5,000 cells/100 µL)	20 minutes – 24 hours

 Read fluorescence or absorbance. Fluorescence is more sensitive than absorbance and is the preferred detection method.

Format	Excitation	Emission	
General	540-570 nm	580-610 nm	
Fluorescence (Monochrometer)	560 nm (10 nm bandwidth)	590 nm (10 nm bandwidth)	
Fluorescence (Filter)	535 nm (25 nm bandwidth)	615 nm (10 nm bandwidth)	
Absorbance	570 nm	600 nm (reference wavelength for normalization)	

 Calculate and plot the results. Higher fluorescence or absorbance values correlate to greater total metabolic activity.

Format	Instructions
Fluorescence	a. Optional: Average the fluorescence values of the no-cell control wells and
	subtract from the fluorescence value of each experimental well.
	 Plot fluorescence vs. experimental condition (cell number, compound
	concentration).
Absorbance	a. Normalize the 570 nm values to the 600 nm values for the experimental wells.
	b. Plot the normalized 570 nm absorbance values vs. experimental condition (cell
	number, compound concentration).

restoBlue reagent

(3) Read fluorescence

For Technical Support, email probestech@invitrogen.com or phone (800) 438-2209 or (541) 335-0353

Corporate Headquarters • 5791 Van Allen Way • Carlsbad, CA 92008 • Phone: 760 603 7200 • FAX: 760 602 6500 • www.invitrogen.com

Figure A2- PrestoBlue[™] cell viability assay protocol by Invitrogen. PrestoBlue[®] is a ready to use cell permeable resazurinbased solution that functions as a cell viability indicator by using the reducing power of living cells to quantitatively measure the proliferation of cells. When added to cells, the PrestoBlue[®] reagent is modified by the reducing environment of the viable cell and turns red in color, becoming highly fluorescent. This color change can be detected using fluorescence or absorbance measurements.
Table A1- Gene ID, S. cerevisiae orthologous, description and wild-type planktonic vs wild-type biofilm (log2FoldChange) for each differentially expressed gene in the most relevant functional groups. Full table is provided in supplementary material (CD).

	Gene ID	Sc orthologous	Description	log2FoldChange
	CAGL0D01034g	PSA1	GDP-mannose pyrophosphorylase involved in the synthesis of GDP-mannose for protein glycosylation	-4.93594858006695
	CAGL0I06160g	CIS3	Pir protein family member, putative cell wall component	-4.82148975996513
	CAGL0I04818g	CHS2	Ortholog(s) have chitin synthase activity	-4.47519652715729
	CAGL0M08756g	EXG2	Putative exo-1,3-beta-glucanase; predicted GPI-anchor	-4.30761975874411
	CAGL0M03773g	TOS6	Predicted GPI-linked adhesin-like protein	-4.20169530946103
	CAGL0G08668g	SIM1	Ortholog(s) have role in fungal-type cell wall organization and endoplasmic reticulum, fungal-type cell wall localization	-4.14430758196996
	CAGL0M08514g	PIR3	Pir protein family member, putative cell wall component	-4.12752890530874
	CAGL0I06204g	YJL160C	Pir protein family member, putative cell wall component	-4.01975282184051
c	CAGL0E04620g	PST1	Ecm33-family protein with a predicted role in cell wall biogenesis and organization; predicted GPI-anchor	-3.95772286333688
atio	CAGL0F07601g	CWP2	GPI-linked cell wall protein	-3.85174628512212
niza	CAGL0G09449g	CRH1	Putative glycoside hydrolase; predicted GPI-anchor	-3.66916834753834
rga	CAGL0M05599g	TOS1	Ortholog(s) have cell surface, endoplasmic reticulum, extracellular region, fungal-type vacuole, hyphal cell wall localization	-3.51483315562939
vall o	CAGL0M13321g	SVP26	Ortholog(s) have COPII adaptor activity and role in ER to Golgi vesicle-mediated transport, fungal-type cell wall organization, protein glycosylation, protein retention in Golgi apparatus	-3.18692790048584
ell	CAGL0A01474g	SCW11	Ortholog(s) have cell surface, extracellular region, fungal-type cell wall localization	-3.05786625560811
Ŭ	CAGL0C02101g	KEG1	Ortholog(s) have role in (1->6)-beta-D-glucan biosynthetic process, chromosome organization and integral component of endoplasmic reticulum membrane localization	-3.02484802403914
	CAGL0M08448g	MCD4	Ortholog(s) have mannose-ethanolamine phosphotransferase activity and role in ATP transport, GPI anchor biosynthetic process, conidium formation, regulation of growth rate	-3.01924879476438
	CAGL0G00286g		Putative glycoside hydrolase of the Gas/Phr family; predicted GPI-anchor	-2.98954753774317
	CAGL0M11572g	LCL2	Ortholog(s) have role in ER-associated ubiquitin-dependent protein catabolic process and fungal-type vacuole localization	-2.92247163646063
	CAGL0L12232g	GAA1	Ortholog(s) have role in attachment of GPI anchor to protein and GPI-anchor transamidase complex localization	-2.9195676294234
	CAGL0J05236g	LAS21	Ortholog(s) have mannose-ethanolamine phosphotransferase activity	-2.91543631206463
	CAGL0100484g	EXG1	Ortholog(s) have cell adhesion molecule binding, glucan endo-1,6-beta-glucosidase activity, glucan exo-1,3-beta- glucosidase activity	-2.89290396335411
	CAGL0I06182g	HSP150	Pir protein family member, putative cell wall component	-2.84150618383928

IST | 108

CAGL0F01287g	GAS5	Putative transglycosidase with a predicted role in the elongation of 1,3-beta-glucan	-2.77620336043602
CAGL0F01485g	TIR4	Putative GPI-linked cell wall mannoprotein of the Srp1p/Tip1p family	-2.74518440530592
CAGL0G00814g	CHS5	Ortholog(s) have small GTPase binding activity	-2.74049186503539
CAGL0L00979g	TED1	Ortholog(s) have role in ER to Golgi vesicle-mediated transport and endoplasmic reticulum localization	-2.63188065382928
CAGL0M05841g	KTR2	Ortholog(s) have alpha-1,2-mannosyltransferase activity, mannosylphosphate transferase activity, role in cell wall mannoprotein biosynthetic process, protein N-linked glycosylation and Golgi apparatus localization	-2.61792009529716
CAGL0M05027g	BCH1	Ortholog(s) have small GTPase binding activity and role in Golgi to plasma membrane transport, fungal-type cell wall chitin biosynthetic process	-2.58497864918708
CAGL0C01727g	ALG7	Ortholog(s) have UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase activity	-2.52468164014426
CAGL0H07403g	KRE2	Ortholog(s) have alpha-1,2-mannosyltransferase activity	-2.3536307761802
CAGL0I04532g	MNN2	Alpha-1,2-mannosyltransferase, involved in protein mannosylation in Golgi	-2.30949816280454
CAGL0K06281g	GUK1	Ortholog(s) have guanylate kinase activity, role in GDP biosynthetic process, GMP metabolic process and biofilm matrix, cytoplasm, nucleus localization	-2.26964058049449
CAGL0M11880g	PER1	Ortholog(s) have role in GPI anchor biosynthetic process, cellular manganese ion homeostasis and Golgi apparatus, endoplasmic reticulum, fungal-type vacuole membrane localization	-2.23608233653413
CAGL0G04015g	GPI13	Ortholog(s) have mannose-ethanolamine phosphotransferase activity	-2.0596719240596
CAGL0J05544g	END3	Ortholog(s) have protein binding, bridging activity, role in ascospore wall assembly, endocytosis and cell periphery, mating projection tip localization	-1.90777077081539
CAGL0A04081g	YLR194C	Predicted GPI-linked cell wall protein	-1.76708368006806
CAGL0M00220g	PMT4	Ortholog(s) have dolichyl-phosphate-mannose-protein mannosyltransferase activity	-1.73620420776413
CAGL0K00979g	PMT6	Ortholog(s) have role in cellular response to drug, cellular response to neutral pH, cellular response to starvation and filamentous growth of a population of unicellular organisms in response to neutral pH, more	-1.70547182632086
CAGL0A01452g	CWH41	Putative glucosidase I; glycoside hydrolase; predicted GPI-anchor	-1.69931077260549
CAGL0M13453g	GPI16	Ortholog(s) have GPI-anchor transamidase activity and role in attachment of GPI anchor to protein, conidium formation, fungal-type cell wall organization, fungal-type cell wall polysaccharide biosynthetic process, regulation of growth rate	-1.68410915628385
CAGL0K12408g	BST1	Ortholog(s) have phosphatidylinositol deacylase activity	-1.65353589331546
CAGL0I08459g	RHO1	Ortholog(s) have GTP binding, GTPase activity, signal transducer activity	-1.60842413609808
CAGL0G00858g	MID2	Ortholog(s) have transmembrane signaling receptor activity	-1.54551276440998
CAGL0B04565g	KTR1	Ortholog(s) have alpha-1,2-mannosyltransferase activity	-1.53568008957537
CAGL0G00220g	BGL2	Ortholog(s) have 1,3-beta-glucanosyltransferase activity, glucan endo-1,3-beta-D-glucosidase activity	-1.27269624912657
CAGL0E01419g	MKC7	Putative aspartic protease; predicted GPI-anchor; member of a YPS gene cluster that is required for virulence in mice; induced in response to low pH and high temperature	-1.24871904784173
CAGL0L03520g	BCK1	Ortholog(s) have MAP kinase kinase kinase activity	-1.24057376008064
CAGL0L01243g	GDA1	Ortholog(s) have guanosine-diphosphatase activity, uridine-diphosphatase activity	-1.235981536971

CAGL0B04389g		Putative class IV chitin synthase; mutants display a significantly thickened cell wall mannoprotein layer; mutants are delayed in cell wall formation during protoplast regeneration	-1.21799419592839
CAGL0M13827g	FKS3	Putative 1,3-beta-d-glucan synthase component	-1.17265170712495
CAGL0I04092g	SHE10	Ortholog(s) have role in ascospore wall assembly and endoplasmic reticulum localization	-1.17210286421784
CAGL0C02453g	YPT31	Ortholog(s) have GTPase activity and role in early endosome to Golgi transport, exocytosis, fungal-type cell wall organization or biogenesis, mitotic cytokinesis, vacuole fusion, non-autophagic	-1.17039109607557
CAGL0C04235g	GPI18	Ortholog(s) have dolichyl-phosphate-mannose-glycolipid alpha-mannosyltransferase activity and role in GPI anchor biosynthetic process	-1.09060747245746
CAGL0J00539g	SLT2	Mitogen-activated protein kinase with a role in cell wall integrity	-1.07458474052331
CAGL0K09548g	SMP3	Ortholog(s) have alpha-1,2-mannosyltransferase activity, dolichyl-phosphate-mannose-glycolipid alpha-mannosyltransferase activity and role in GPI anchor biosynthetic process, fungal-type cell wall biogenesis, plasmid maintenance	-1.05937267507407
CAGL0G00308g	SCW4	Putative transglycosidase with a predicted role in the modification of 1,3-beta-glucan	1.03049120229629
CAGL0J06182g	SKO1	bZIP domain-containing protein	1.06788393036006
CAGL0H05621g	RLM1	Putative transcription factor with a predicted role in cell wall integrity	1.06899210429789
CAGL0H09592g		Putative GPI-linked cell wall protein	1.08630654571261
CAGL0G01034g	FKS1	Putative 1,3-beta-glucan synthase component; functionally redundant with Fks2p; "hot spot" mutations in FKS1 confer resistance to echinocandins	1.13671087959852
CAGL0K03399g	YPK2	Ortholog(s) have protein serine/threonine kinase activity, protein serine/threonine kinase inhibitor activity	1.16616739667233
CAGL0A02431g	YPS7	Putative aspartic protease; predicted GPI-anchor; expression induced at high temperature	1.25976982754294
CAGL0L03289g	UTH1	Ortholog(s) have role in fungal-type cell wall biogenesis, fungal-type cell wall organization, mitophagy and cell surface, extracellular region, extrinsic component of mitochondrial inner membrane, fungal-type cell wall localization	1.26348378688395
CAGL0I10054g	SKN1	Ortholog(s) have glucosidase activity, role in (1->6)-beta-D-glucan biosynthetic process, fungal-type cell wall organization, sphingolipid biosynthetic process and integral component of membrane localization	1.28523441082997
CAGL0M04169g	KRE1	Putative cell wall protein with similarity to S. cerevisiae Kre1p; predicted role in cell wall biogenesis and organization; predicted GPI-anchor	1.31750054557928
CAGL0A04411g	SKT5	Ortholog(s) have enzyme activator activity and role in barrier septum assembly, cellular protein localization, fungal-type cell wall chitin biosynthetic process, regulation of fungal-type cell wall beta-glucan biosynthetic process	1.33289782716021
CAGL0L10670g	ROT1	Predicted GPI-linked cell wall protein	1.35595821588016
CAGL0B02904g		Beta mannosyltransferase	1.36614484787957
CAGL0L01331g	ANP1	Alpha-1,6-mannosyltransferase with a role in protein N-linked glycosylation in Golgi	1.39787307487688
CAGL0B00616g	SPS22	Ecm33-family protein with a predicted role in cell wall biogenesis and organization; predicted GPI-anchor	1.44685229159603
CAGL0J05896g	PGA1	Ortholog(s) have mannosyltransferase activity, role in GPI anchor biosynthetic process and integral component of endoplasmic reticulum membrane, mannosyltransferase complex, nuclear envelope localization	1.46780582824048
CAGL0J03828g	MKK1	Ortholog(s) have MAP kinase kinase activity, protein tyrosine kinase activity, structural constituent of cell wall activity	1.51769445991745
CAGL0B02948g		Beta mannosyltransferase	1.66963324741013

	CAGL0E02255g	ZEO1	Ortholog(s) have role in fungal-type cell wall organization and extrinsic component of plasma membrane, mitochondrial outer membrane localization	1.78899510911196
	CAGL0G06072g	ECM14	Ortholog(s) have endoplasmic reticulum, fungal-type vacuole localization	1.80587747558472
	CAGL0E05126g	CDC43	Ortholog(s) have CAAX-protein geranylgeranyltransferase activity, role in glucan biosynthetic process, protein geranylgeranylgeranylation and CAAX-protein geranylgeranyltransferase complex, cytosol, nucleus localization	1.85874617414368
	CAGL0H10120g	YBR056W	Ortholog(s) have glucan endo-1,6-beta-glucosidase activity and role in fungal-type cell wall beta-glucan metabolic process, fungal-type cell wall disassembly involved in conjugation with cellular fusion	1.86345850277581
	CAGL0H09614g	TIR1	Putative GPI-linked cell wall protein	1.8712003512191
	CAGL0K05247g	CSR2	Ortholog(s) have ubiquitin protein ligase binding activity, role in fungal-type cell wall organization, regulation of transcription from RNA polymerase II promoter and cytosol, nucleus localization	1.99085652775695
	CAGL0K12980g		Beta mannosyltransferase	2.11811102379457
	CAGL0107249g	BAG7	Putative GTPase-activating protein involved in cell wall and cytoskeleton homeostasis; gene is upregulated in azole-resistant strain	2.28345142229744
	CAGL0B00594g	YCL048W-A	Predicted GPI-linked protein	2.32202602787528
	CAGL0F03883g	GAS3	Putative glycoside hydrolase of the Gas/Phr family; predicted GPI-anchor	2.44579153925499
	CAGL0H01661g	SPS2	Ecm33-family protein with a predicted role in cell wall biogenesis and organization; predicted GPI-anchor	2.44983280295166
	CAGL0J11462g	YNL190W	Predicted GPI-linked cell wall protein	2.48250508756196
	CAGL0B02882g		Beta mannosyltransferase; transmembrane domain protein similar to C. albicans WRY family; gene is downregulated in azole-resistant strain	2.67134972647007
	CAGL0C03872g	TIR3	Putative GPI-linked cell wall protein involved in sterol uptake	2.72420426487234
	CAGL0H07997g		Protein involved in cell wall beta 1,6-glucan synthesis, similar to Kre9p,	2.74194393008807
	CAGL0L05434g	NCA3	Ortholog(s) have role in fungal-type cell wall organization or biogenesis, mitochondrion organization and fungal-type cell wall, fungal-type vacuole localization	2.8924796867853
	CAGL0G08602g	RPI1	Ortholog(s) have GTPase regulator activity, role in Ras protein signal transduction, fungal-type cell wall biogenesis, positive regulation of transcription from RNA polymerase II promoter and nucleus localization	2.89620155616948
	CAGL0G05984g	SPS100	Ortholog(s) have role in ascospore wall assembly	2.99469240521345
	CAGL0D00286g		Beta mannosyltransferase	3.15181303629568
	CAGL0J06050g	YGP1	Ortholog(s) have role in cell wall assembly and extracellular region localization	3.15261108672318
	CAGL0H02563g	HOR7	Predicted GPI-linked protein	3.54441087715188
	CAGL0F03003g	HKR1	Ortholog(s) have osmosensor activity and role in (1->3)-beta-D-glucan biosynthetic process, cellular bud site selection, fungal-type cell wall organization, hyperosmotic response, osmosensory signaling pathway via Sho1 osmosensor	3.90341026006541
	CAGL0E01595g	GAS4	Putative glycoside hydrolase of the Gas/Phr family; predicted GPI-anchor	3.97718252846192
	CAGL0F00891g	LDS2	Ortholog(s) have role in ascospore wall assembly and ascospore wall, ascus lipid particle, cytoplasm, prospore membrane localization	4.79146601654687
	CAGL0B02926g		Beta mannosyltransferase	5.16840053283222
6 12	CAGL0G03795g	SSA2	Heat shock protein of the HSP70 family	-3.50042939310893

CAGL0A02530g	TRR1	Thioredoxin reductase	-3.40364178913331
CAGL0A04301g	PTC3	Ortholog(s) have MAP kinase threonine phosphatase activity, protein serine/threonine phosphatase activity	-3.35254039587457
CAGL0G01925g	YKR070W	Ortholog(s) have role in hyperosmotic response, response to antibiotic, response to salt stress and mitochondrion localization	-2.79585658309549
CAGL0F08833g	MSB2	Putative adhesin-like protein	-2.7259183920443
CAGL0J09834g	PTC4	Ortholog(s) have protein serine/threonine phosphatase activity, role in protein dephosphorylation and mitochondrion localization	-2.71617828897327
CAGL0J02750g	CAJ1	Ortholog of <i>S. cerevisiae</i> : CAJ1, C. albicans SC5314 : C4_05810W_A, C. dubliniensis CD36 : Cd36_45380, C. parapsilosis CDC317 : CPAR2_500650 and Candida tenuis NRRL Y-1498 : CANTEDRAFT_132273	-2.51486108142404
CAGL0L00495g	HSC82	Putative heat shock protein	-2.29757582245609
CAGL0E04906g	AHA1	Ortholog(s) have ATPase activator activity, chaperone binding activity, role in cellular response to heat, protein folding and cytosol localization	-2.20186510941179
CAGL0M09185g	EMC2	Ortholog(s) have role in protein folding in endoplasmic reticulum and ER membrane protein complex, cell division site, cytosol, mitotic spindle pole body, nucleus localization	-2.18526717776661
CAGL0E04114g	AFG1	Ortholog(s) have role in cellular response to oxidative stress, misfolded or incompletely synthesized protein catabolic process, protein import into peroxisome matrix and mitochondrial inner membrane localization	-2.13379058608997
CAGL0B03685g		Putative flavodoxin	-2.13142441306128
CAGL0G07271g	TSA1	Putative thioredoxin peroxidase; protein differentially expressed in azole resistant strain	-2.08185233653904
CAGL0F00825g	GSH2	Putative glutathione synthetase; role in redox homeostasis and detoxification of the cell of metal ions	-2.07803917417526
CAGL0H08283g	HSP10	Ortholog(s) have chaperone binding, unfolded protein binding activity, role in chaperone-mediated protein complex assembly, protein import into mitochondrial intermembrane space, protein refolding and mitochondrial matrix localization	-2.01408355613194
CAGL0D05522g	EMC6	Ortholog(s) have role in protein folding in endoplasmic reticulum and ER membrane protein complex localization	-1.89650235177832
CAGL0K05423g	TIP41	Ortholog(s) have role in TOR signaling and positive regulation of phosphoprotein phosphatase activity, more	-1.86778407916782
CAGL0J05566g	MKT1	Ortholog(s) have role in cellular response to DNA damage stimulus, interspecies interaction between organisms and P-body, cytoplasmic stress granule, cytosol, nuclear periphery, polysome localization	-1.84323949579915
CAGL0J00561g	YHI9	Ortholog(s) have role in chromatin silencing by small RNA, endoplasmic reticulum unfolded protein response and cytosol, nucleus localization	-1.7468426106686
CAGL0G04961g	GRX8	Ortholog(s) have glutathione-disulfide reductase activity and cytoplasm localization	-1.63226322647135
CAGL0F09097g	SKN7	Predicted transcription factor, involved in oxidative stress response; required for induction of TRX2, TRR1 and TSA1 transcription under oxidative stress	-1.56776360895858
CAGL0E02739g	SGT2	Ortholog(s) have protein complex scaffold activity, role in posttranslational protein targeting to membrane, response to heat and TRC complex, nucleus localization	-1.5663249159307
CAGL0I04026g	PBP4	Ortholog(s) have cytoplasmic stress granule, nucleus localization	-1.54308917772077
CAGL0C04631g	AIM25	Ortholog(s) have role in cellular response to heat, cellular response to oxidative stress, chronological cell aging, negative regulation of mitophagy and mitochondrion localization	-1.52552088031311
CAGL0H01815g	CBF1	Centromere binding factor; basic helix-loop-helix leucine zipper DNA-binding protein; binds in vitro to centromere DNA element I sequence GTCACATG; complements the methionine biosynthesis defect of a Saccharomyces cerevisiae cbf1 mutant	-1.51585754782999

CAGL0M10829g	SSK2	Ortholog(s) have MAP kinase kinase kinase activity, actin binding activity	-1.47662037818126
CAGL0B02761g	DCR2	Ortholog(s) have phosphoprotein phosphatase activity and role in negative regulation of endoplasmic reticulum unfolded protein response, protein dephosphorylation, traversing start control point of mitotic cell cycle	-1.4358951930504
CAGL0M04697g	RDL2	Ortholog(s) have thiosulfate sulfurtransferase activity and mitochondrion localization	-1.4275007665402
CAGL0C02233g	MXR1	Ortholog(s) have L-methionine-(S)-S-oxide reductase activity, peptide-methionine (S)-S-oxide reductase activity and role in L-methionine salvage from methionine sulphoxide, cellular response to hydrogen peroxide	-1.36839783564363
CAGL0G03597g	SHO1	S. cerevisiae ortholog SHO1 has role in establishment of cell polarity, osmosensory signaling pathway, signal transduction involved in filamentous growth, cellular response to heat; osmosensitivity of CBS138 strain not seen in other strains	-1.31720315917977
CAGL0M06325g	SMP1	Ortholog(s) have DNA binding, bending, sequence-specific DNA binding activity, role in positive regulation of transcription from RNA polymerase II promoter in response to osmotic stress and cytoplasm, nucleus localization	-1.28226765630935
CAGL0H03443g	HSF1	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	-1.28074124867603
CAGL0C02123g	ERJ5	Ortholog(s) have role in protein folding and endoplasmic reticulum localization	-1.26769728819215
CAGL0K06743g	YBP1	Protein involved in resistance to hydrogen peroxide; S. cerevisiae ortholog Ybp1p has role in cellular response to oxidative stress and localizes to cytoplasm	-1.26112912738279
CAGL0H08195g	STI1	Ortholog(s) have ATPase inhibitor activity, Hsp70 protein binding, Hsp90 protein binding, mRNA binding activity, role in protein folding, protein targeting to mitochondrion and cytosol, nucleus localization	-1.25446117427624
CAGL0C02035g	DUG1	Ortholog(s) have metallodipeptidase activity, omega peptidase activity, role in glutathione catabolic process and biofilm matrix, cytosol, mitochondrion, nucleus, ribosome localization	-1.25008995890291
CAGL0J02068g	EPS1	Ortholog(s) have protein disulfide isomerase activity, protein-disulfide reductase (glutathione) activity, unfolded protein binding activity	-1.23863054528179
CAGL0M06171g	UMP1	Ortholog(s) have role in cellular response to DNA damage stimulus, proteasome assembly, ubiquitin-dependent protein catabolic process and cytosol, nucleus localization	-1.22601039735976
CAGL0K03201g	YHL018W	Ortholog(s) have role in ascospore formation, cellular response to biotic stimulus and cellular response to starvation, more	-1.21053696061009
CAGL0K05813g	GRX2	Ortholog(s) have glutathione disulfide oxidoreductase activity, glutathione peroxidase activity, glutathione transferase activity and role in glutathione metabolic process, pathogenesis, removal of superoxide radicals	-1.11777408545519
CAGL0L10956g	RIM20	Ortholog(s) have role in cellular response to lithium ion, cellular response to neutral pH, entry into host and filamentous growth of a population of unicellular organisms in response to pH, more	-1.09586852543284
CAGL0H03707g	SIS1	Ortholog(s) have misfolded protein binding activity	-1.09418941157117
CAGL0I03322g	ECM10	Ortholog(s) have role in protein refolding, protein targeting to mitochondrion, spore germination and mitochondrial membrane, mitochondrial nucleoid localization	-1.07223781649004
CAGL0H04125g	ALO1	Ortholog(s) have D-arabinono-1,4-lactone oxidase activity	-1.04488701646285
CAGL0K08756g	YAP5	bZIP domain-containing protein	-1.02433419772652
CAGL0100836g	SIP5	Ortholog(s) have role in cellular response to glucose starvation and Golgi apparatus, endoplasmic reticulum, fungal-type vacuole membrane localization	-1.01586998706293
CAGL0D03234g	PSR2	Ortholog(s) have role in cellular response to salt stress, response to heat and cytosol localization	1.00113372627324
CAGL0G02893g	POS5	Ortholog(s) have NADH kinase activity, role in NADP biosynthetic process, cellular response to oxidative stress and mitochondrial matrix localization	1.0118937198993
CAGL0I05038g	PTC2	Ortholog(s) have MAP kinase threonine phosphatase activity, protein serine/threonine phosphatase activity	1.02613984593142

CA	GL0G02101g	ECM4	Putative omega class glutathione transferase; gene is downregulated in azole-resistant strain	1.06702911587737
CA	GL0K01177g	PAC10	Ortholog(s) have tubulin binding activity, role in response to cold, tubulin complex assembly and cytosol, nucleus, polysome, prefoldin complex localization	1.07691908836272
CA	GL0L10186g	TMC1	Putative stress-induced protein; gene is upregulated in azole-resistant strain	1.14471542042427
CA	GL0M06083g	SSE2	Heat shock protein of HSP70 family	1.15940715316127
CA	GL0H06567g	SLN1	Ortholog(s) have histidine phosphotransfer kinase activity, osmosensor activity, phosphorelay response regulator activity, protein histidine kinase activity	1.16688424233361
CA	GL0M04763g	YOR289W	Ortholog(s) have role in cellular response to drug and cytosol, nucleus localization	1.22141136502121
CA	GL0H08866g	HOT1	Putative transcription factor involved in osmostress response; gene is upregulated in azole-resistant strain	1.23021955183358
CA	GL0F05329g	YDR210W	Ortholog of S. cerevisiae : YDR210W and Saccharomyces cerevisiae S288C : YDR210W	1.23074740147241
CA	GL0H04631g	YAP1	Protein with a basic leucine zipper (bZip) domain involved in drug resistance and the response to oxidative stress; activates multidrug transporter FLR1	1.26784914225026
CA	GL0E05962g	FMP40	Ortholog(s) have cytosol, mitochondrion, nucleus localization	1.30268583060988
CA	GL0L11110g	CMP2	Catalytic subunit of calcineurin, calcium/calmodulin-dependent Ser/Thr-specific protein phosphatase; regulates stress- responding transcription factor Crz1p; involved in thermotolerance, response to ER stress, cell wall integrity, virulence	1.35111732415506
CA	GL0H10076g	YRO2	Ortholog(s) have cellular bud, endoplasmic reticulum, mitochondrion, plasma membrane localization	1.35551336477638
CA	GL0H04367g	WAR1	Ortholog(s) have sequence-specific DNA binding activity	1.4285641602271
CA	GL0F03245g	IRE1	Putative protein kinase and endonuclease required for response to ER stress independently of Hac1p; involved in nonspecific degradation of ER-localized mRNAs but not in unfolded protein response via activation of Hac1p	1.42958748558098
CA	GL0D05610g	PSR1	Ortholog(s) have phosphoprotein phosphatase activity, role in cellular response to salt stress, filamentous growth, response to heat and cytosol, plasma membrane localization	1.44137055807843
CA	GL0K02145g	COM2	Ortholog(s) have sequence-specific DNA binding activity and role in cellular response to acetate, cellular response to drug, regulation of transcription from RNA polymerase II promoter in response to stress	1.44383878036487
CA	GL0F03069g	CAD1	bZIP domain-containing protein	1.49387105075052
CA	GL0H08129g	DFG16	Ortholog(s) have role in cellular response to pH, filamentous growth of a population of unicellular organisms in response to pH, pathogenesis, protein processing, pseudohyphal growth, regulation of intracellular pH	1.52802410418038
CA	GL0F08745g	STF2	Ortholog(s) have role in cellular response to desiccation and cytoplasm localization	1.62970064883327
CA	GL0M08404g	ТРК3	Ortholog(s) have cAMP-dependent protein kinase activity and role in Ras protein signal transduction, mitochondrion organization, protein kinase A signaling, protein phosphorylation	1.63760268427101
CA	GL0G06578g	OCA1	Ortholog(s) have role in cellular response to oxidative stress and cytoplasm localization	1.65661330562945
CA	GL0G08151g	GRX3	Ortholog(s) have 2 iron, 2 sulfur cluster binding, RNA polymerase II activating transcription factor binding, glutathione disulfide oxidoreductase activity	1.67866010087762
CA	GL0K09834g	NST1	Ortholog(s) have role in response to salt stress and cytoplasm localization	1.68007135893622
CA	GL0L02827g	PTP2	Ortholog(s) have protein tyrosine phosphatase activity	1.69839482840551
CA	GL0L03630g	GSH1	Putative gamma glutamylcysteine synthetase, essential for viability; role in glutathione biosynthesis; required to keep the redox homeostasis and to detoxify the cell of metal ions	1.72495555954918

CAGL0H02827g	JEM1	Ortholog(s) have chaperone binding, unfolded protein binding activity and role in ER-associated ubiquitin-dependent protein catabolic process, karyogamy involved in conjugation with cellular fusion, protein folding in endoplasmic reticulum	1.75993905697335
CAGL0I01166g	TRR2	Thioredoxin reductase (NADPH)	1.86695712954673
CAGL0I10582g	YGR127W	Ortholog(s) have role in filamentous growth and intracellular localization	1.94012033308356
CAGL0L05258g	SRX1	Ortholog(s) have sulfiredoxin activity, role in cellular protein localization, cellular response to oxidative stress and cytosol, nucleus localization	1.95536397728113
CAGL0H07425g	CNS1	Ortholog(s) have Hsp70 protein binding, Hsp90 protein binding, ribosome binding activity, role in cellular response to drug, protein folding and cytosol, nucleus localization	1.97206259332195
CAGL0E03762g	RIM101	Ortholog(s) have sequence-specific DNA binding, transcriptional repressor activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	2.09579515032475
CAGL0H00935g	YAR1	Ortholog(s) have unfolded protein binding activity	2.12429401995742
CAGL0I05934g	YJL144W	Ortholog(s) have role in cellular response to water deprivation and cytoplasm localization	2.1511214680126
CAGL0F06545g	RIM9	Ortholog(s) have role in ascospore formation, cellular response to alkaline pH, cellular response to lithium ion, cellular response to neutral pH and cellular response to starvation, more	2.18060575714489
CAGL0B03509g	RCK2	Ortholog(s) have protein serine/threonine kinase activity	2.20509194878687
CAGL0C04741g	SOD1	Cytosolic copper-zinc superoxide dismutase	2.2328449476456
CAGL0H06611g	ESL1	Ortholog of <i>S. cerevisiae</i> : ESL1, C. albicans SC5314 : C4_01020C_A, C. dubliniensis CD36 : Cd36_41030, C. parapsilosis CDC317 : CPAR2_401340 and Candida tenuis NRRL Y-1498 : CANTEDRAFT_104645	2.23407388551108
CAGL0F07513g	MBR1	Ortholog(s) have role in aerobic respiration	2.31486717673838
CAGL0H04499g	HLJ1	Ortholog(s) have ATPase activator activity, role in ER-associated ubiquitin-dependent protein catabolic process and endoplasmic reticulum membrane localization	2.3207447690831
CAGL0H08580g		Has domain(s) with predicted FMN binding, iron ion binding, oxidoreductase activity and role in oxidation-reduction process	2.3290642948095
CAGL0K10604g	CMK1	Ortholog(s) have calmodulin-dependent protein kinase activity, role in protein phosphorylation, signal transduction and cytoplasm localization	2.36925466639635
CAGL0B00836g	MXR2	Ortholog(s) have peptide-methionine (R)-S-oxide reductase activity, role in cellular response to oxidative stress and cytosol, mitochondrion, nucleus localization	2.40996079054349
CAGL0G08019g	YDR090C	Ortholog(s) have role in cellular response to biotic stimulus, cellular response to starvation and filamentous growth of a population of unicellular organisms in response to biotic stimulus, more	2.46162849951114
CAGL0H04037g	GAC1	Ortholog(s) have heat shock protein binding, protein phosphatase regulator activity and role in glycogen metabolic process, meiotic nuclear division, mitotic spindle assembly checkpoint, response to heat	2.50413380071585
CAGL0K00759g	ZPR1	Protein with similarity to M. musculus zinc finger protein Zpr1p	2.62068663117656
CAGL0H07667g	PDE1	Ortholog(s) have 3',5'-cyclic-AMP phosphodiesterase activity, 3',5'-cyclic-GMP phosphodiesterase activity	2.64415771469504
CAGL0E02079g	MSN1	Ortholog(s) have sequence-specific DNA binding activity	2.66545147802133
CAGL0L10560g	SSZ1	Protein with a predicted role in pleiotropic drug resistance	2.68569921374983
CAGL0L04092g	NMA111	Ortholog(s) have serine-type peptidase activity, role in apoptotic process, cellular lipid metabolic process, cellular response to heat, protein catabolic process and nucleus localization	2.73541173223969
CAGL0L06666g	YHB1	Putative flavohemoglobin, involved in nitric oxide detoxification	2.77313099207695

IST | 115 Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1 |

CAGL0M03663g	RIM21	Ortholog(s) have role in ascospore formation, cellular response to alkaline pH, cellular response to lithium ion and cellular response to neutral pH, more	2.78202222073425
CAGL0D01584g	JID1	Ortholog(s) have mitochondrion localization	2.87557812996913
CAGL0K12540g	HAC1	bZIP domain-containing transcription factor, activates transcription of genes involved in unfolded protein response; activation does not require cleavage of HAC1 mRNA by Ire1p	2.87611384311831
CAGL0E04356g	SOD2	Ortholog(s) have manganese ion binding, superoxide dismutase activity	2.9274617438716
CAGL0F01265g	YAP7	bZIP domain-containing protein involved in regulation of nitric oxide detoxification	2.95317447690549
CAGL0K12144g	FES1	Putative Hsp70p nucleotide exchange factor; protein abundance decreased in ace2 mutant cells	3.03245682764208
CAGL0M13189g	MSN4	Putative transcription factor similar to S. cerevisiae Msn4p; involved in response to oxidative stress	3.07089329535443
CAGL0L09339g	HAA1	Putative transcription factor, involved in regulation of response to acetic acid stress	3.09819616148218
CAGL0K10868g		Putative catalase A; gene is downregulated in azole-resistant strain; regulated by oxidative stress and glucose starvation; protein abundance increased in ace2 mutant cells	3.1273987349684
CAGL0H03971g	YCP4	Ortholog(s) have role in cellular response to oxidative stress, pathogenesis and membrane raft, mitochondrion, plasma membrane localization	3.1450757175513
CAGL0K06259g	TSA2	Thiol-specific antioxidant protein; predicted thioredoxin peroxidase involved in oxidative stress response; protein abundance decreased in ace2 mutant cells	3.15723604029932
CAGL0J07502g	YNL234W	Putative protein similar to globins with a heme-binding domain; gene is upregulated in azole-resistant strain	3.25308834294313
CAGL0M08800g	YAP6	bZIP domain-containing protein	3.30626270021698
CAGL0K04741g	SSB2	Heat shock protein of HSP70 family	3.41306848161002
CAGL0J00891g		Putative protein required for growth at low temperature; gene is downregulated in azole-resistant strain	3.43404518040423
CAGL0G03289g	SSA4	Heat shock protein of the HSP70 family	3.5804695886548
CAGL0J09966g	YDJ1	Putative mitochondrial and ER import protein; protein abundance increased in ace2 mutant cells	3.76561983562898
CAGL0K03459g	SPG4	Ortholog of S. cerevisiae : SPG4 and Saccharomyces cerevisiae S288C : YMR107W	4.53911641858522
CAGL0J04202g	HSP12	Heat shock protein; gene is upregulated in azole-resistant strain; expression upregulated in biofilm vs planktonic cell culture	4.57725517268747
CAGL0L00583g	USV1	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	4.5907372626125
CAGL0F07953g	SPG1	Ortholog(s) have endoplasmic reticulum, mitochondrion localization	4.82926510946983
CAGL0G02783g	SHQ1	Ortholog(s) have unfolded protein binding activity, role in box H/ACA snoRNP assembly and cytosol, nucleoplasm localization	5.17516707251316
CAGL0F08195g	MGA1	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	5.29010363214814
CAGL0F08217g	YGR250C	Ortholog(s) have mRNA binding activity and cytoplasmic stress granule localization	5.46519663031966
CAGL0D00154g	AQY1	Has domain(s) with predicted transporter activity, role in transport and membrane localization	7.0175707992169
CAGL0G05269g	FMP16	Putative mitochondrial protein; gene is downregulated in azole-resistant strain	8.96836792746183
CAGL0E05984g	GRE1	Ortholog of S. cerevisiae : GRE1 and Saccharomyces cerevisiae S288C : YPL223C	9.87413342381116

	CAGL0K00737g	SLI1	Ortholog(s) have N-acetyltransferase activity, role in response to drug and nuclear envelope, plasma membrane localization	-3.46009213750262
	CAGL0E03003g	NAT2	Ortholog(s) have role in N-terminal peptidyl-methionine acetylation, cellular response to drug and mitochondrion localization	-2.07231668877769
	CAGL0I02552g	STB5	Predicted sequence-specific DNA binding transcription factor, negative regulator of azole resistance; acts as transcriptional repressor of ATP-binding Cassette (ABC) transporter genes	-1.43746699128384
	CAGL0M01760g		Multidrug transporter of ATP-binding cassette (ABC) superfamily, involved in resistance to azoles; expression regulated by Pdr1p; increased abundance in azole resistant strains; expression increased by loss of the mitochondrial genome	-1.15119804906066
	CAGL0J04774g	TDA5	Ortholog(s) have role in response to drug and cytosol, endoplasmic reticulum, mitochondrion localization	-1.11097128908204
	CAGL0J09944g	AQR1	Plasma membrane drug:H+ antiporter involved in resistance to drugs and acetic acid	1.02804784342591
	CAGL0I04862g		Predicted plasma membrane ATP-binding cassette (ABC) transporter, putative transporter involved in multidrug resistance; involved in Pdr1p-mediated azole resistance	1.04543897830221
S	CAGL0L04576g	YRM1	Ortholog(s) have RNA polymerase II transcription factor activity, sequence-specific DNA binding, sequence-specific DNA binding activity and role in regulation of transcription from RNA polymerase II promoter	1.06424253697549
	CAGL0M01078g	YDR338C	Ortholog(s) have fungal-type vacuole membrane localization	1.5718635563175
drug	CAGL0I08019g	YOL075C	Ortholog(s) have role in cellular response to drug and cell periphery, extrinsic component of fungal-type vacuolar membrane localization	1.60005425398319
to	CAGL0H00440g	YJR124C	Ortholog(s) have fungal-type vacuole membrane localization	1.75586187397337
nse	CAGL0B02343g	ATR1	Putative multidrug efflux pump of major facilitator superfamily; gene is downregulated in azole-resistant strain	2.01580198869693
lespo	CAGL0B02079g	AZR1	Ortholog(s) have azole transporter activity, role in asperfuranone biosynthetic process, azole transport and plasma membrane localization	2.81646712843933
Re	CAGL0G01122g	YLR346C	Putative protein; gene is upregulated in azole-resistant strain	2.98342002217262
	CAGL0M05445g	COS111	Ortholog(s) have role in signal transduction and mitochondrion localization	3.04009620373924
	CAGL0K03069g	IRC21	Ortholog(s) have role in response to drug and cytosol, nucleus localization	3.55461150214479
	CAGL0E03674g		Putative drug:H+ antiporter, involved in efflux of clotrimazole; required for resistance to clotrimazole and other drugs	3.58753098506812
	CAGL0L10912g	TPO4	Ortholog(s) have spermidine transmembrane transporter activity, spermine transmembrane transporter activity, role in spermidine transport, spermine transport and fungal-type vacuole membrane, plasma membrane localization	3.63271315923149
	CAGL0H10450g	YDL114W	Ortholog(s) have endoplasmic reticulum localization	4.00524143335671
	CAGL0I10384g	TPO2	Predicted polyamine transporter of the major facilitator superfamily; required for azole resistance	4.64338261710025
	CAGL0M01870g		Putative zinc finger protein; gene is upregulated in azole-resistant strain	4.83933730317767
	CAGL0G08624g	QDR1	Drug:H+ antiporter of the Major Facilitator Superfamily, confers imidazole drug resistance, involved in quinidine/multidrug efflux; gene is activated by Pdr1p; upregulated in azole-resistant strain	5.25389419552867
	CAGL0J00363g	YHK8	Putative protein of major facilitator superfamily; gene is downregulated in azole-resistant strain	6.67898449512817
ule	CAGL0E01771g		Putative aspartic protease; predicted GPI-anchor; member of a YPS gene cluster that is required for virulence in mice; gene is downregulated in azole-resistant strain	-3.66347538867643
Viru nce	CAGL0E01859g		Putative aspartic protease; predicted GPI-anchor; member of a YPS gene cluster that is required for virulence in mice; induced in response to low pH and high temperature	1.29347776157894

IST | 117 Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1 |

	CAGL0E01881g		Putative aspartic protease; member of a YPS gene cluster that is required for virulence in mice; induced in response to low pH and high temperature	1.90900835695974
	CAGL0E01727g		Putative aspartic protease; predicted GPI-anchor; member of a YPS gene cluster that is required for virulence in mice	3.4464680148029
	CAGL0E01749g		Putative aspartic protease; member of a YPS gene cluster that is required for virulence in mice; induced in response to low pH and high temperature	3.79943918914773
	CAGL0K09130g	SRL1	Putative adhesin-like protein	-5.317380929373
	CAGL0L13332g		Sub-telomerically encoded lectin-like adhesin with a role in cell adhesion; contains multiple tandem repeats; predicted GPI- anchor; belongs to adhesin cluster I	-4.9199580385345
	CAGL0L13299g		Putative adhesin; belongs to adhesin cluster I	-4.19032202657194
	CAGL0G05896g	DSE2	Putative adhesin-like protein	-3.78221615282249
	CAGL0E02915g		Putative adhesin-like protein	-3.69958855463031
	CAGL0G09537g	IES4	Putative adhesin-like protein	-2.55836734251073
	CAGL0B03399g		Protein involved in sub-telomeric silencing and regulation of biofilm formation; involved in regulation of telomere length; mutants display increased colonization of mouse kidneys relative to wild-type; required for silencing at MTL3	-2.4918006069107
c	CAGL0L00227g		Putative adhesin with glycine and serine rich repeats; belongs to adhesin cluster V	-2.10136043878248
natio	CAGL0G03487g	TMN3	Ortholog(s) have role in cellular copper ion homeostasis, cellular response to drug, invasive growth in response to glucose limitation, pseudohyphal growth, vacuolar transport and COPI-coated vesicle, Golgi apparatus localization	-2.00699317032467
n for	CAGL0H00110g		Adhesin-like protein with internal repeats; predicted GPI-anchor; likely a C-terminal fragment of a single ORF with CAGL0H00132g; belongs to adhesin cluster V	-1.74664544115037
filc	CAGL0C01133g		Adhesin-like protein; belongs to adhesin cluster VII; predicted GPI anchor	-1.69653361005933
iq	CAGL0K00170g		Putative adhesin-like protein; belongs to adhesin cluster I	-1.27449964771154
anc	CAGL0E01661g		Adhesin-like protein with tandem repeats; predicted GPI-anchor; belongs to adhesin cluster III	-1.19666550535911
ion	CAGL0F09273g		Putative adhesin-like protein; belongs to adhesin cluster V	1.00376643232775
nes	CAGL0I10246g		Adhesin-like protein with tandem repeats; contains a PA14 domain; belongs to adhesin cluster II	1.06461007650106
Adl	CAGL0100220g		Predicted GPI-linked adhesin-like protein; belongs to adhesin cluster I	1.06661636964225
	CAGL0J05159g		Putative adhesin-like protein	1.09216224132623
	CAGL0J00253g	MTL1	Putative adhesin-like protein	1.21215045156334
	CAGL0J11990g		Putative adhesin-like protein with internal repeats; identified in cell wall extracts by mass spectrometry; ORF appears artificially broken into fragments due to sequencing errors; belongs to adhesin cluster V; predicted GPI anchor	1.2318423860663
	CAGL0H08844g	DDR48	Putative adhesin-like protein	1.47032033932445
	CAGL0A01366g		Putative adhesin; belongs to adhesin cluster I	1.66457728491842
	CAGL0K13024g		Adhesin-like protein required for adherence to endothelial cells; identified in cell wall extracts by mass spectrometry; belongs to adhesin cluster III; predicted GPI anchor; 6 tandem repeats; expressed more in stationary growth phase	1.70531136817866
	CAGL0E06644g		Sub-telomerically encoded adhesin with a role in cell adhesion; GPI-anchored cell wall protein; N-terminal ligand binding domain binds to ligands containing a terminal galactose residue; belongs to adhesin cluster I	1.71570142900477

CAGL0I05170g	CST6	bZIP domain-containing protein involved in regulation of biofilm formation; negatively regulates expression of the EPA6 adhesin independently of Yak1p/Sir4p signaling; regulates carbonic anhydrase Nce103p in response to carbon dioxide	1.7350955824476
CAGL0L00157g		Putative adhesin-like protein; multiple tandem repeats; predicted GPI-anchor; belongs to adhesin cluster III	1.74550576250933
CAGL0M00132g		Putative adhesin-like cell wall protein; belongs to adhesin cluster I	1.76472681897738
CAGL0D06226g		Putative adhesin-like protein	1.79728021397183
CAGL0J11891g		Putative adhesin-like protein; identified in cell wall extracts by mass spectrometry; belongs to adhesin cluster VI	1.81870612717552
CAGL0G05808g	YDL211C	Putative adhesin-like protein	1.88269759498482
CAGL0A01284g		Putative adhesin-like protein; belongs to adhesin cluster I	1.89222333915883
CAGL0J02552g		Adhesin-like protein; predicted GPI anchor; belongs to adhesin cluster VI	2.00663324906419
CAGL0I11011g		Putative adhesin; belongs to adhesin cluster V	2.13026058049217
CAGL0G10175g		Adhesin-like protein; identified in cell wall extracts by mass spectrometry; belongs to adhesin cluster IV; predicted GPI anchor	2.32099571094345
CAGL0E00231g		Putative adhesin-like protein; contains tandem repeats and a predicted GPI-anchor; belongs to adhesin cluster III	2.38134788253228
CAGL0E06666g		Epithelial adhesion protein; predicted GPI-anchor; belongs to adhesin cluster I	2.42580194701581
CAGL0M07634g	SOK2	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	2.87792716233405
CAGL0J02508g		Adhesin-like protein; identified in cell wall extracts by mass spectrometry; belongs to adhesin cluster VI; predicted GPI anchor	2.91006446690673
CAGL0E06688g		Epithelial adhesion protein; belongs to adhesin cluster I; GPI-anchored	2.91498409653071
CAGL0I10200g		Protein with tandem repeats; putative adhesin-like protein; belongs to adhesin cluster II	2.94016612610038
CAGL0J02530g		Putative adhesion protein; predicted GPI-anchor; belongs to adhesin cluster VI	2.98507846684666
CAGL0E00275g		Putative adhesin; belongs to adhesin cluster I	3.17800492886771
CAGL0G04125g		Protein with similarity to S. cerevisiae Sag1 agglutinin, involved in cell adhesion; predicted GPI-anchor	3.42211001891302
CAGL0J05984g	AAH1	Ortholog(s) have adenine deaminase activity, role in adenine catabolic process, cell-abiotic substrate adhesion, hypoxanthine salvage and cytosol, nucleus localization	3.45083927383838
CAGL0107183g	SFL1	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, RNA polymerase II repressing transcription factor binding and RNA polymerase II transcription factor activity, more	3.52737426267657
CAGL0M04807g	SNF2	Component of the chromatin remodelling Swi/Snf complex; involved in regulation of biofilm formation	3.64839327675781
CAGL0I10147g		Protein with 32 tandem repeats; putative adhesin-like protein; belongs to adhesin cluster II	3.80147539904505
CAGL0H10626g		Predicted cell wall adhesin with a role in adhesion; belongs to adhesin cluster III; predicted GPI anchor; contains tandem repeats	4.41212008796675
CAGL0K13002g		Putative adhesin; predicted GPI-anchor; belongs to adhesin cluster III	4.65623346755426
CAGL0I10340g		Cell wall adhesin; predicted GPI anchor; contains tandem repeats; belongs to adhesin cluster II	5.91704936820502
CAGL0H07469g	ICS2	Putative adhesin-like protein	7.32947972155892

	CAGL0M01716g	TEC1	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcription factor activity and RNA polymerase II transcription factor recruiting, more	7.98294722373464
	CAGL0I01210g	CTM1	Ortholog(s) have [cytochrome c]-lysine N-methyltransferase activity, role in peptidyl-lysine methylation and cytosol localization	-5.33036610188914
	CAGL0F04719g	GSY2	Ortholog(s) have glycogen (starch) synthase activity, role in glycogen biosynthetic process and cytoplasm, nucleus localization	-4.93693981327728
	CAGL0K10626g	GSY1	Ortholog(s) have glycogen (starch) synthase activity, role in glycogen biosynthetic process and mitochondrion localization	-4.88775889749938
	CAGL0H09878g		Inorganic pyrophosphatase, cytoplasmic	-4.26986158100482
	CAGL0H02695g	GLG1	Ortholog(s) have glycogenin glucosyltransferase activity and role in glycogen biosynthetic process	-4.22130941846629
	CAGL0C02211g		Putative glycoside hydrolase of the Crh family; predicted GPI-anchor	-4.04383860784786
	CAGL0L01925g	UGP1	Putative UDP-glucose pyrophosphorylase; increased protein abundance in azole resistant strain	-3.92078078105673
	CAGL0J08272g	GOR1	Ortholog(s) have glyoxylate reductase activity, role in glyoxylate catabolic process and cytosol, extracellular region, mitochondrion, nucleus localization	-3.75925584417892
٤	CAGL0M07447g	YMR027W	Ortholog(s) have phosphatase activity and cytosol, nucleus localization	-3.6949958489745
bolisı	CAGL0J04400g	HAP3	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	-3.69403011197976
etak	CAGL0J01441g	ADH3	Ortholog(s) have alcohol dehydrogenase (NAD) activity	-3.54171998659186
gy m	CAGL0F04895g	GPH1	Ortholog(s) have glycogen phosphorylase activity, role in glycogen catabolic process, response to heat and cell surface, cytoplasm, hyphal cell wall localization	-3.30679805373706
ener	CAGL0B04367g	SCO1	Ortholog(s) have copper ion binding activity, role in copper ion transport, protein complex assembly and mitochondrial inner membrane, plasma membrane localization	-3.09505472981869
n and	CAGL0F06061g	ARA2	Ortholog(s) have D-arabinose 1-dehydrogenase [NAD(P)+] activity and role in dehydro-D-arabinono-1,4-lactone biosynthetic process	-3.03467213107474
ōđ	CAGL0J03212g	ALD5	Putative mitochondrial aldehyde dehydrogenase (NAD+); protein abundance increased in ace2 mutant cells	-2.96976381155909
Cal	CAGL0H02233g	PPA2	Ortholog(s) have inorganic diphosphatase activity, role in aerobic respiration and mitochondrion localization	-2.96778136453224
	CAGL0A02816g	YPR1	Putative 2-methylbutyraldehyde reductase; gene is upregulated in azole-resistant strain	-2.88662012622711
	CAGL0E02629g	ALG6	Ortholog(s) have dolichyl pyrophosphate Man9GlcNAc2 alpha-1,3-glucosyltransferase activity and role in aerobic respiration, oligosaccharide-lipid intermediate biosynthetic process, protein glycosylation	-2.7398480912941
	CAGL0G07315g	RCF1	Ortholog(s) have role in mitochondrial respiratory chain complex IV assembly, mitochondrial respiratory chain supercomplex assembly	-2.73413467642301
	CAGL0A03949g	COQ9	Ortholog(s) have role in ubiquinone-6 biosynthetic process and mitochondrial inner membrane localization	-2.71063649533844
	CAGL0K06831g	PDB1	Ortholog(s) have pyruvate dehydrogenase (acetyl-transferring) activity and role in acetyl-CoA biosynthetic process from pyruvate, arginine biosynthetic process, glutamine biosynthetic process	-2.57769380281448
	CAGL0M09647g	YMR155W	Ortholog(s) have fungal-type vacuole localization	-2.52497251830234
	CAGL0M12727g	MAM33	Ortholog(s) have translation activator activity, role in aerobic respiration, penicillin biosynthetic process, positive regulation of mitochondrial translation and mitochondrial matrix localization	-2.50386078342558
	CAGL0J09812g	TPS1	Ortholog(s) have alpha, alpha-trehalose-phosphate synthase (UDP-forming) activity	-2.48224959091417

CAGL0F06941g	PYC1	Putative pyruvate carboxylase isoform; gene is upregulated in azole-resistant strain	-2.47867638800571
CAGL0H07579g	HXK2	Putative hexokinase B	-2.45247066071812
CAGL0A01133g	MDL2	Ortholog(s) have role in cellular response to hydrogen peroxide and mitochondrial inner membrane, vacuolar membrane localization	-2.43777496738022
CAGL0F07469g	RMD9	Ortholog(s) have mRNA binding activity, role in aerobic respiration, regulation of mRNA stability, translational initiation and extrinsic component of mitochondrial inner membrane localization	-2.42811424850729
CAGL0H04983g		Putative mannose-1-phosphate guanyltransferase	-2.37234390620211
CAGL0J06710g	COQ5	Ortholog(s) have 2-hexaprenyl-6-methoxy-1,4-benzoquinone methyltransferase activity, role in aerobic respiration, cellular response to drug, ubiquinone biosynthetic process and mitochondrial matrix localization	-2.34080453906774
CAGL0L01485g	GSF2	Putative protein of the ER membrane involved in hexose transporter secretion; gene is upregulated in azole-resistant strain	-2.32892335624418
CAGL0K10296g	IAH1	Ortholog(s) have hydrolase activity, acting on ester bonds activity	-2.27118106028848
CAGL0K04411g	LST7	Ortholog(s) have GTPase activator activity, role in positive regulation of GTPase activity, positive regulation of TORC1 signaling and Lst4-Lst7 complex, cytosol, nucleus, vacuolar membrane localization	-2.18743019033715
CAGL0106831g	COX15	Ortholog(s) have 2 iron, 2 sulfur cluster binding, cytochrome-c oxidase activity, oxidoreductase activity, acting on NAD(P)H, heme protein as acceptor activity and role in heme a biosynthetic process, respiratory electron transport chain	-2.17841185000703
CAGL0M11242g	YMR226C	Ortholog(s) have carbonyl reductase (NADPH) activity, serine 3-dehydrogenase activity and cytosol, nucleus, ribosome localization	-2.14840798829088
CAGL0G05335g	TPS2	Ortholog(s) have trehalose-phosphatase activity	-2.12988250531165
CAGL0A04829g	HXK1	Putative hexokinase isoenzyme 2; protein differentially expressed in azole resistant strain	-2.07027841588739
CAGL0L00847g	CBR1	Ortholog(s) have cytochrome-b5 reductase activity, acting on NAD(P)H activity and endoplasmic reticulum, mitochondrial outer membrane, nucleus, plasma membrane localization	-2.05595339982095
CAGL0M03377g	GLC3	Ortholog(s) have 1,4-alpha-glucan branching enzyme activity, role in glycogen biosynthetic process and cytoplasm localization	-1.98899576068299
CAGL0L01177g	FRD1	Putative soluble fumarate reductase	-1.96329863399472
CAGL0107601g	COQ3	Ortholog(s) have 3-demethylubiquinone-6 3-O-methyltransferase activity, hexaprenyldihydroxybenzoate methyltransferase activity and role in ubiquinone biosynthetic process	-1.93635114469347
CAGL0H05445g		Glucose-6-phosphate isomerase	-1.92378081899339
CAGL0D00198g	BDH1	Ortholog(s) have (R,R)-butanediol dehydrogenase activity, role in butanediol biosynthetic process and cytoplasm localization	-1.91545009399715
CAGL0L09493g	YIR007W	Ortholog(s) have steryl-beta-glucosidase activity, role in ergosteryl 3-beta-D-glucoside catabolic process and cytosol, fungal- type vacuole membrane localization	-1.90360537484478
CAGL0A01089g	PBI1	Has domain(s) with predicted alcohol O-acetyltransferase activity and role in alcohol metabolic process	-1.88424983843073
CAGL0I02200g	SOL3	Putative 6-phosphogluconolactonase	-1.87195577233804
CAGL0C04257g	COQ1	Ortholog(s) have di-trans,poly-cis-decaprenylcistransferase activity, trans-hexaprenyltranstransferase activity, role in ubiquinone biosynthetic process and decaprenyl diphosphate synthase complex, mitochondrion localization	-1.81763834232928
CAGL0M00682g	YLR446W	Has domain(s) with predicted ATP binding, glucose binding, hexokinase activity, phosphotransferase activity, alcohol group as acceptor activity	-1.80693662973404
CAGL0D06138g	HEM2	Putative porphobilinogen synthase; involved in cadmium tolerance	-1.78559410194321

CAGL0H05137g	ALD6	Ortholog(s) have aldehyde dehydrogenase [NAD(P)+] activity, role in NADPH regeneration, acetate biosynthetic process, response to salt stress and cytosol, mitochondrion localization	-1.7648810138129
CAGL0K07480g	PGM1	Putative phosphoglucomutase	-1.73447804828335
CAGL0M13013g	OAR1	Ortholog(s) have 3-oxoacyl-[acyl-carrier-protein] reductase (NADPH) activity, role in aerobic respiration, fatty acid metabolic process and mitochondrion localization	-1.7234077622924
CAGL0K02409g	ATP20	Ortholog(s) have proton-transporting ATP synthase activity, rotational mechanism activity and role in ATP synthesis coupled proton transport, cristae formation, protein complex oligomerization	-1.71491946411647
CAGL0C03652g	COQ2	Ortholog(s) have 4-hydroxybenzoate octaprenyltransferase activity, role in ubiquinone biosynthetic process and integral component of mitochondrial membrane, mitochondrial inner membrane localization	-1.67789156191961
CAGL0J09394g	YDL124W	Ortholog(s) have alditol:NADP+ 1-oxidoreductase activity, alpha-keto amide reductase activity, alpha-keto ester reductase activity and indole-3-acetaldehyde reductase (NADH) activity, more	-1.66524408985387
CAGL0E05412g	KRE5	Ortholog(s) have UDP-glucose:glycoprotein glucosyltransferase activity	-1.66390677091198
CAGL0100924g	GLO4	Ortholog(s) have hydroxyacylglutathione hydrolase activity, role in methylglyoxal catabolic process to D-lactate via S-lactoyl- glutathione and cytosol, mitochondrial matrix, nucleus localization	-1.64385481849013
CAGL0L07480g	NRG2	Ortholog(s) have double-stranded DNA binding, sequence-specific DNA binding, transcription factor activity, sequence- specific DNA binding activity	-1.6372443569297
CAGL0M09581g	ATP1	F1F0-ATPase complex, F1 alpha subunit	-1.61236150873309
CAGL0K10274g	CAT5	Ortholog(s) have 2-octoprenyl-3-methyl-6-methoxy-1,4-benzoquinone hydroxylase activity, role in ubiquinone biosynthetic process and mitochondrial inner membrane localization	-1.60125927854705
CAGL0K11297g	YDR248C	Ortholog(s) have glucokinase activity, gluconokinase activity, role in D-gluconate catabolic process and cytosol, fungal-type vacuole, nucleus localization	-1.59024962379474
CAGL0F07315g	SNF4	Ortholog(s) have AMP binding, AMP-activated protein kinase activity, ATP binding, protein serine/threonine kinase activator activity	-1.57927278033622
CAGL0E02387g	COQ10	Ortholog(s) have ubiquinone binding activity, role in cellular respiration, ubiquinone biosynthetic process and mitochondrial inner membrane localization	-1.56852215119546
CAGL0H00506g	ATP2	F1F0-ATPase complex, F1 beta subunit; expression upregulated in biofilm vs planktonic cell culture; protein abundance decreased in ace2 mutant cells	-1.53172684097737
CAGL0E04796g	GTB1	Ortholog(s) have alpha-1,4-glucosidase activity, role in N-glycan processing, polysaccharide biosynthetic process and endoplasmic reticulum lumen, glucosidase II complex localization	-1.52273971729187
CAGL0L06974g	YDL086W	Ortholog(s) have mitochondrion localization	-1.5213834575408
CAGL0J06468g	TSL1	Ortholog(s) have alpha, alpha-trehalose-phosphate synthase (UDP-forming) activity, enzyme regulator activity, trehalose- phosphatase activity and role in trehalose biosynthetic process	-1.51271621824975
CAGL0H06853g		Putative NADP-dependent alcohol dehydrogenase VI; protein abundance increased in ace2 mutant cells	-1.50857576615564
CAGL0L07722g	PGK1	Putative 3-phosphoglycerate kinase; protein differentially expressed in azole resistant strain; protein abundance increased in ace2 mutant cells	-1.46096011860188
CAGL0L05478g	RPE1	Ortholog(s) have ribulose-phosphate 3-epimerase activity, role in pentose-phosphate shunt and cytosol, nucleus localization	-1.45161040827296
CAGL0L11374g	DAK1	Ortholog(s) have glycerone kinase activity, role in cellular response to toxic substance, glycerol catabolic process and cytosol localization	-1.44182364363789
CAGL0M14047g	ADH6	Putative NADPH-dependent cinnamyl alcohol dehydrogenase; gene is upregulated in azole-resistant strain	-1.4146929535809

IST | 122 Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1 |

CAGL0E05830g	CBP3	Ortholog(s) have ribosome binding activity and role in mitochondrial respiratory chain complex III assembly, positive regulation of mitochondrial translation	-1.41364747879341
CAGL0G09977g	GDB1	Ortholog(s) have 4-alpha-glucanotransferase activity, amylo-alpha-1,6-glucosidase activity, role in glycogen catabolic process and mitochondrion localization	-1.40361855076408
CAGL0K01705g	GPM2	Ortholog(s) have cytoplasm localization	-1.39854293405481
CAGL0L04202g	NRK1	Ortholog(s) have ribosylnicotinamide kinase activity, role in NAD biosynthesis via nicotinamide riboside salvage pathway, nicotinamide riboside metabolic process and cytosol, fungal-type vacuole, nucleus localization	-1.39735235276345
CAGL0J05126g	BNA3	Ortholog(s) have 2-aminoadipate transaminase activity, kynurenine-oxoglutarate transaminase activity, role in kynurenic acid biosynthetic process and cytosol, mitochondrion, nucleus localization	-1.38678777292993
CAGL0I05632g	PHO91	Ortholog(s) have glycerol-3-phosphate transmembrane transporter activity, inorganic phosphate transmembrane transporter activity	-1.36487803610109
CAGL0I01320g	OSM1	Ortholog(s) have fumarate reductase (NADH) activity, role in FAD metabolic process, protein folding in endoplasmic reticulum and endoplasmic reticulum, mitochondrion localization	-1.36278664656391
CAGL0107139g	LSC1	Ortholog(s) have succinate-CoA ligase (ADP-forming) activity, role in succinyl-CoA metabolic process and mitochondrial nucleoid localization	-1.33638521034808
CAGL0G09361g	PDX1	Ortholog(s) have structural molecule activity, role in acetyl-CoA biosynthetic process from pyruvate, filamentous growth, single-species biofilm formation on inanimate substrate and mitochondrial pyruvate dehydrogenase complex localization	-1.32613559779121
CAGL0J07084g	YPL113C	Ortholog(s) have oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor activity	-1.28659180004284
CAGL0J10186g	LAT1	Ortholog(s) have dihydrolipoyllysine-residue acetyltransferase activity, pyruvate dehydrogenase (acetyl-transferring) activity and role in acetyl-CoA biosynthetic process from pyruvate, pyruvate catabolic process	-1.27939253227141
CAGL0F08107g	LSC2	Succinate-CoA ligase beta subunit	-1.27030432705812
CAGL0M10593g	ATP23	Ortholog(s) have role in mitochondrial protein processing, mitochondrial proton-transporting ATP synthase complex assembly and extrinsic component of mitochondrial inner membrane, mitochondrial intermembrane space localization	-1.25474958473146
CAGL0H02387g	TPS3	Putative trehalose-6-phosphate synthase/phosphatase subunit; gene is upregulated in azole-resistant strain	-1.24967787526029
CAGL0G02651g	FYV10	Ortholog(s) have ubiquitin-protein transferase activity and role in negative regulation of apoptotic process, negative regulation of gluconeogenesis, proteasome-mediated ubiquitin-dependent protein catabolic process	-1.2484427189604
CAGL0L03674g	GSM1	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity and role in regulation of transcription from RNA polymerase II promoter	-1.232785403374
CAGL0K06787g	PYC2	Ortholog(s) have pyruvate carboxylase activity, role in carbon utilization, cellular response to glucose starvation, gluconeogenesis, response to heat and cytosol localization	-1.18488283755551
CAGL0L02079g	CTP1	Ortholog(s) have tricarboxylate secondary active transmembrane transporter activity, role in mitochondrial citrate transport, transmembrane transport and mitochondrion, plasma membrane localization	-1.18473238892316
CAGL0C05511g	PHO13	Ortholog(s) have alkaline phosphatase activity, magnesium ion binding, phosphoglycolate phosphatase activity, phosphoprotein phosphatase activity	-1.17893387580813
CAGL0L12078g	PDA1	Ortholog(s) have pyruvate dehydrogenase (acetyl-transferring) activity and role in acetyl-CoA biosynthetic process from pyruvate, carbon utilization, pseudohyphal growth, pyruvate catabolic process	-1.17892429066159
CAGL0F05423g	COQ4	Ortholog(s) have role in ubiquinone biosynthetic process and mitochondrial inner membrane localization	-1.16538713374206
CAGL0C04455g		F1F0-ATPase complex, F1 delta subunit; protein abundance decreased in ace2 mutant cells	-1.15904863760199
CAGL0H00847g	HUT1	Ortholog(s) have UDP-galactose transmembrane transporter activity, role in UDP-galactose transmembrane transport, UDP- glucose transport and endoplasmic reticulum localization	-1.15503697134818

(CAGL0H05489g	ATP4	Ortholog(s) have proton-transporting ATP synthase activity, rotational mechanism, proton-transporting ATPase activity, rotational mechanism activity and role in ATP synthesis coupled proton transport, protein complex oligomerization	-1.15155446488165
	CAGL0L00869g	PKP1	Ortholog(s) have pyruvate dehydrogenase (acetyl-transferring) kinase activity, role in carbon utilization, cellular response to drug, peptidyl-serine phosphorylation and mitochondrion localization	-1.14052024464065
(CAGL0H06699g	GUT2	Ortholog(s) have glycerol-3-phosphate dehydrogenase activity, role in NADH oxidation, glycerol metabolic process, replicative cell aging and integral component of mitochondrial outer membrane, plasma membrane localization	-1.12970859662113
(CAGL0G09339g	XKS1	Ortholog(s) have xylulokinase activity, role in xylulose catabolic process and cytosol, nucleus localization	-1.12704977835688
	CAGL0107447g	ITR2	Ortholog(s) have myo-inositol transmembrane transporter activity, role in carbohydrate import across plasma membrane, myo-inositol transport and Golgi apparatus, fungal-type vacuole membrane, plasma membrane localization	-1.11569059050838
(CAGL0A01804g	HXT1	Ortholog(s) have fructose transmembrane transporter activity, pentose transmembrane transporter activity, role in glucose transport, mannose transport and plasma membrane localization	-1.10068014885913
	CAGL0L12210g	CSF1	Ortholog(s) have role in fermentation, protein maturation and mitochondrion localization	-1.09054016088277
	CAGL0F03685g	COX10	Ortholog(s) have role in heme a biosynthetic process and mitochondrion localization	-1.0871551382694
	CAGL0I07645g	RFC4	Putative fructose 1,6-bisphosphate aldolase; protein differentially expressed in azole resistant strain	-1.08393218740443
	CAGL0102486g	ENO2	Putative enclase I; protein abundance increased in azole resistant strain and in ace2 mutant cells	-1.05713043693647
(CAGL0K05775g	SDH7	Ortholog(s) have role in carbon utilization, mitochondrial respiratory chain complex II assembly, regulation of gluconeogenesis and mitochondrial intermembrane space localization	-1.04401002497514
(CAGL0K09702g	YNL134C	Putative stress-induced alcohol dehydrogenase; gene is upregulated in azole-resistant strain; protein differentially expressed in azole resistant strain	-1.03550270721848
(CAGL0H08327g		Putative triose-phosphate isomerase; protein abundance decreased in ace2 mutant cells	-1.03506013061719
(CAGL0B01727g	YDR109C	Has domain(s) with predicted phosphotransferase activity, alcohol group as acceptor activity and role in carbohydrate metabolic process	-1.03061450853889
(CAGL0H05819g	INA17	Ortholog(s) have role in mitochondrial proton-transporting ATP synthase complex assembly and INA complex localization	-1.02449121870405
	CAGL0J03080g	RGI1	Ortholog(s) have role in energy reserve metabolic process and cell periphery, cytoplasm, nucleus localization	-1.02014236825239
(CAGL0H06259g	PSK1	Significant homology to PAS domain containing protein kinase	1.01100833127426
	CAGL0106094g	FBP26	Ortholog(s) have fructose-2,6-bisphosphate 2-phosphatase activity, role in glucose metabolic process and cytoplasm localization	1.08896920404514
	CAGL0I03190g	RIP1	Putative ubiquinol-Cytochrome c reductase iron-sulfur protein	1.094568729477
(CAGL0K01507g	GPR1	Ortholog(s) have G-protein coupled receptor activity, glucose binding activity	1.10302896046683
	CAGL0J02904g	GIP2	Ortholog(s) have protein phosphatase regulator activity, role in glycogen metabolic process, protein dephosphorylation and protein phosphatase type 1 complex localization	1.1061133769621
	CAGL0F04213g	PET9	Ortholog(s) have ATP:ADP antiporter activity and role in ADP transport, aerobic respiration, anaerobic respiration, apoptotic process, heme transport, mitochondrial ATP transmembrane transport, response to oxidative stress	1.1507643564195
(CAGL0B03421g	HAP1	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	1.15896112307864
	CAGL0J04268g		Ortholog(s) have acetate CoA-transferase activity, acetyl-CoA hydrolase activity, succinyl-CoA hydrolase activity, role in propionate metabolic process, methylcitrate cycle, response to acetate and glyoxysome, mitochondrion localization	1.21245770103251

CAGL0G01100g	YLR345W	Ortholog(s) have cytosol localization	1.21551518836857
CAGL0F05071g	ECI1	Ortholog(s) have dodecenoyl-CoA delta-isomerase activity, role in fatty acid beta-oxidation, filamentous growth and peroxisome localization	1.23365098213276
CAGL0K09900g	HAP5	Ortholog(s) have DNA binding, RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	1.23482672920464
CAGL0G05379g	GCR2	Ortholog(s) have RNA polymerase II activating transcription factor binding, transcription factor activity, RNA polymerase II transcription factor binding activity	1.23535270740674
CAGL0A02475g	ATP22	Ortholog(s) have translation regulator activity, role in positive regulation of mitochondrial translation, proton-transporting ATP synthase complex biogenesis and mitochondrial inner membrane localization	1.2418893348767
CAGL0C01397g	PFK26	Ortholog(s) have 6-phosphofructo-2-kinase activity and role in fructose 2,6-bisphosphate metabolic process	1.25567117732328
CAGL0C01771g	YBR241C	Ortholog(s) have fungal-type vacuole membrane localization	1.25952755678971
CAGL0L03740g	RKI1	Ortholog(s) have ribose-5-phosphate isomerase activity, role in pentose-phosphate shunt, pyridoxine biosynthetic process and cytoplasm, nucleus localization	1.29131888838633
CAGL0L10758g	PFK2	Putative 6-phosphofructokinase, beta subunit; protein abundance increased in ace2 mutant cells	1.29905303243074
CAGL0M10439g	NTH1	Ortholog(s) have alpha,alpha-trehalase activity, calcium ion binding activity, role in ascospore formation, cellular response to desiccation, trehalose catabolic process involved in cellular response to stress and cytosol localization	1.31187820569354
CAGL0M03025g	CAT8	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	1.31222433656185
CAGL0C01325g	COX5B	Ortholog(s) have cytochrome-c oxidase activity, nitrite reductase (NO-forming) activity, role in mitochondrial electron transport, cytochrome c to oxygen and mitochondrial respiratory chain complex IV localization	1.3426047030126
CAGL0D04774g	ANT1	Ortholog(s) have adenine nucleotide transmembrane transporter activity, role in ATP transport, fatty acid beta-oxidation, peroxisome organization and glyoxysome, integral component of peroxisomal membrane localization	1.3625574719621
CAGL0I02838g	AZF1	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	1.37615834233354
CAGL0L11088g	YOR283W	Ortholog(s) have phosphatase activity, role in dephosphorylation and cytosol, nucleus localization	1.37962741427276
CAGL0K01683g	GPD1	Putative cytoplasmic glycerol-3-phosphate dehydrogenase (NAD+); protein abundance increased in ace2 mutant cells	1.42085260142231
CAGL0F05863g	SDH4	Ortholog(s) have succinate dehydrogenase (ubiquinone) activity, role in cellular respiration and mitochondrion, plasma membrane localization	1.44076547662088
CAGL0J05522g	SAL1	Ortholog(s) have ATP:ADP antiporter activity, calcium ion binding activity, role in ADP transport, ATP transport, mitochondrial transport and mitochondrion localization	1.45863889081302
CAGL0B03663g	CIT2	Ortholog(s) have citrate (Si)-synthase activity and mitochondrion, peroxisome localization	1.49282439145504
CAGL0L06160g	COX4	Ortholog(s) have cytochrome-c oxidase activity, zinc ion binding activity and role in aerobic respiration, mitochondrial electron transport, cytochrome c to oxygen	1.55636636085759
CAGL0C03267g	FPS1	Glycerol transporter; involved in flucytosine resistance; double fps1/fps2 mutant accumulates glycerol, has constitutive cell wall stress, is hypersensitive to caspofungin in vitro and in vivo	1.56323599417653
CAGL0I00418g	OLE1	Ortholog(s) have electron carrier activity, stearoyl-CoA 9-desaturase activity	1.57300583247989
CAGL0C05027g	YAT1	Ortholog(s) have role in acetate catabolic process, alcohol metabolic process, carnitine metabolic process, cellular respiration and cytosol, mitochondrion localization	1.57918499796651

CAGL0K10736g	CYB2	Ortholog(s) have L-lactate dehydrogenase (cytochrome) activity and glyoxysome, mitochondrial intermembrane space, nucleus localization	1.62306010849198
CAGL0M01672g	YDR387C	Ortholog(s) have fungal-type vacuole membrane localization	1.62787998159312
CAGL0L11000g	HEM4	Ortholog(s) have uroporphyrinogen-III synthase activity, role in heme biosynthetic process and cytosol, nucleus localization	1.63199873900826
CAGL0J06380g	INH1	Ortholog(s) have ATPase inhibitor activity, role in negative regulation of ATPase activity and mitochondrion, nucleus localization	1.63991748004544
CAGL0E04884g	ADR1	Ortholog(s) have RNA polymerase II activating transcription factor binding, RNA polymerase II core promoter proximal region sequence-specific DNA binding and TFIIB-class transcription factor binding, more	1.65604004032286
CAGL0L06204g	COX13	Ortholog(s) have cytochrome-c oxidase activity, enzyme regulator activity, role in aerobic respiration, mitochondrial respiratory chain supercomplex assembly and mitochondrial respiratory chain complex IV, plasma membrane localization	1.65898264927418
CAGL0D00748g	COX9	Ortholog(s) have cytochrome-c oxidase activity, role in mitochondrial electron transport, cytochrome c to oxygen and mitochondrial respiratory chain complex IV, plasma membrane localization	1.72353091151863
CAGL0J09020g	SNF3	Putative plasma membrane high affinity glucose sensor, required for growth under glucose-limiting conditions	1.80409794932428
CAGL0M03399g	UBC8	Ortholog(s) have ubiquitin-protein transferase activity	1.80452832008205
CAGL0M12551g	RGI2	Ortholog(s) have role in energy reserve metabolic process and cytoplasm localization	1.80970797213519
CAGL0I05148g	DLD1	D-lactate ferricytochrome C oxidoreductase	1.82435176232555
CAGL0M05907g	OAF3	Ortholog(s) have role in cellular response to oleic acid, negative regulation of transcription from RNA polymerase II promoter and mitochondrion, nucleus localization	1.82681116779904
CAGL0J07150g	PIP2	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	1.88590857642869
CAGL0J00429g	COX6	Cytochrome c oxidase subunit VI	1.90808491247709
CAGL0H03663g	IDP3	Ortholog(s) have isocitrate dehydrogenase (NADP+) activity, role in fatty acid beta-oxidation and mitochondrion, peroxisomal importomer complex, peroxisome localization	1.92826897012088
CAGL0E01287g	KGD2	Ortholog(s) have role in 2-oxoglutarate metabolic process, mitochondrial genome maintenance and mitochondrial nucleoid, mitochondrial oxoglutarate dehydrogenase complex localization	1.96156603554924
CAGL0E01705g	MDH2	Ortholog(s) have L-malate dehydrogenase activity, role in gluconeogenesis, protein import into peroxisome matrix and cytosol, nuclear periphery localization	2.01144074257658
CAGL0K12210g	YMC2	Ortholog(s) have organic acid transmembrane transporter activity, role in mitochondrial transport, transmembrane transport and mitochondrion localization	2.0197038525926
CAGL0G01969g	SIS2	Ortholog(s) have phosphopantothenoylcysteine decarboxylase activity, protein phosphatase inhibitor activity and role in regulation of mitotic cell cycle, response to salt stress	2.05250069306249
CAGL0J09680g	HEM3	Ortholog(s) have hydroxymethylbilane synthase activity, role in heme biosynthetic process, pathogenesis and cytoplasm, nucleus localization	2.10232577407213
CAGL0B02607g	HEM1	5-aminolevulinate synthase	2.10433773893009
CAGL0I05390g	SKS1	Ortholog(s) have protein serine/threonine kinase activity	2.12701243999776
CAGL0G02717g	SGA1	Ortholog(s) have glucan 1,4-alpha-glucosidase activity, role in glycogen catabolic process and Golgi apparatus, endoplasmic reticulum, fungal-type vacuole, prospore membrane localization	2.14297574063744
CAGL0J08910g		Has domain(s) with predicted hydrolase activity, hydrolyzing O-glycosyl compounds activity and role in carbohydrate metabolic process	2.16556741314198

IST | 126 Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1 |

CAGL0H02491g	COX7	Ortholog(s) have cytochrome-c oxidase activity, role in mitochondrial electron transport, cytochrome c to oxygen and mitochondrial respiratory chain complex IV, plasma membrane localization	2.21684737936907
CAGL0E02035g	MCH4	Ortholog(s) have cell periphery, fungal-type vacuole membrane localization	2.23460340921839
CAGL0G09064g	YIG1	Ortholog(s) have role in glycerol biosynthetic process and cytosol, nucleus localization	2.24753334256839
CAGL0L09108g	PDH1	Ortholog(s) have role in propionate metabolic process and mitochondrial outer membrane localization	2.25098963048328
CAGL0G08712g	KGD1	Ortholog(s) have mitochondrial nucleoid, mitochondrial oxoglutarate dehydrogenase complex localization	2.29749884184322
CAGL0C05137g	GPD2	Putative glycerol 3-phosphate dehydrogenase; protein differentially expressed in azole resistant strain	2.36359561397995
CAGL0I07227g	IDH2	Putative isocitrate dehydrogenase	2.39380695444479
CAGL0A01045g	FUM1	Ortholog(s) have fumarate hydratase activity, role in fumarate metabolic process, tricarboxylic acid cycle and cytosol, mitochondrial matrix localization	2.40913530425009
CAGL0K12100g	HEM13	Putative coproporphyrinogen III oxidase; protein differentially expressed in azole resistant strain	2.44758806243918
CAGL0M12430g	GPP1	Putative DL-glycerol phosphatase	2.58844665107726
CAGL0L00649g	ACS1	Acetyl-coenzyme A synthetase	2.60395021965805
CAGL0G06380g	GDS1	Ortholog(s) have role in aerobic respiration and mitochondrion, nucleus localization	2.62448032044803
CAGL0G02673g		Ortholog(s) have isocitrate dehydrogenase (NAD+) activity, role in isocitrate metabolic process, tricarboxylic acid cycle and cytoplasm localization	2.62706839532198
CAGL0D06424g	ACO1	Putative aconitate hydratase	2.68111732329094
CAGL0E03916g	GUT1	Ortholog(s) have glycerol kinase activity and mitochondrion localization	2.77654593483029
CAGL0F08085g	MPC3	Ortholog(s) have pyruvate transmembrane transporter activity, role in mitochondrial pyruvate transmembrane transport and mitochondrial membrane, plasma membrane localization	2.82399793195561
CAGL0L10043g	STD1	Ortholog(s) have protein kinase activator activity	2.99617725597648
CAGL0L09273g	ICL2	Ortholog(s) have isocitrate lyase activity, methylisocitrate lyase activity, role in propionate catabolic process, 2-methylcitrate cycle and mitochondrial matrix localization	3.03972542851034
CAGL0A03740g		Ortholog(s) have role in fatty acid beta-oxidation, long-chain fatty acid catabolic process and peroxisome localization	3.07926357628974
CAGL0C04323g	NTH2	Ortholog(s) have alpha, alpha-trehalase activity, role in trehalose catabolic process and mitochondrion localization	3.09891554059377
CAGL0F00913g	PSK2	Ortholog(s) have protein serine/threonine kinase activity	3.14526303316394
CAGL0F08261g	ENO1	Ortholog(s) have high molecular weight kininogen binding, phosphopyruvate hydratase activity	3.22593243875289
CAGL0G01540g	NCE103	Beta carbonic anhydrase with a predicted role in non-classical protein export; upregulated in azole-resistant strain; enzyme activity increased by amines and amino acids; protein abundance decreased in ace2 cells	3.29908839848988
CAGL0E05566g	TYE7	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	3.33808094742989
CAGL0A01628g	MIG1	Transcriptional regulatory protein	3.36838011331985
CAGL0H03993g	CIT1	Ortholog(s) have citrate (Si)-synthase activity, role in acetyl-CoA catabolic process, tricarboxylic acid cycle and glyoxysome, mitochondrion localization	3.38012458051265
CAGL0L09086g	CIT3	Ortholog(s) have 2-methylcitrate synthase activity, citrate (Si)-synthase activity, role in propionate catabolic process, 2- methylcitrate cycle, tricarboxylic acid cycle and mitochondrion localization	3.63917078302804

IST | 127 Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1 |

CAGL0K08624g	HAP4	Ortholog(s) have RNA polymerase II activating transcription factor binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	3.76643365356462
CaglfMp09		Mitochondrially encoded subunit a of the F0 sector of mitochondrial F1F0 ATP synthase	3.77062548608441
CAGL0100748g	NDE1	Ortholog(s) have NADH dehydrogenase activity, role in NADH oxidation, chronological cell aging, glycolytic fermentation to ethanol and mitochondrion, plasma membrane localization	3.90883436114502
CaglfMp04		Subunit I of cytochrome c oxidase, which is the terminal member of the mitochondrial inner membrane electron transport chain; one of 3 mitochondrially-encoded subunits; gene contains three Group I introns encoding putative endonucleases	3.962282654772
CAGL0K12254g	VID24	Ortholog(s) have role in negative regulation of gluconeogenesis, proteasome-mediated ubiquitin-dependent protein catabolic process, protein catabolic process in the vacuole, protein targeting to vacuole	4.33731944409932
CaglfMp11		Subunit II of cytochrome c oxidase, which is the terminal member of the mitochondrial inner membrane electron transport chain; genomic sequence has a frameshift causing truncation of 25 codons relative to other yeast COX2 genes	4.3469484010141
CAGL0C03223g	SDH2	Putative iron-sulfur protein subunit of succinate dehydrogenase; gene is downregulated in azole-resistant strain	4.54672679284782
CAGL0J00451g		Putative glyceraldehyde-3-phosphate dehydrogenase; protein differentially expressed in azole resistant strain; expression downregulated in biofilm vs planktonic cell culture	4.57079071101978
CAGL0K07007g	YBR238C	Ortholog(s) have mRNA binding activity and role in aerobic respiration, filamentous growth of a population of unicellular organisms in response to neutral pH, single-species biofilm formation on inanimate substrate	4.66656647190834
CaglfMp10		Subunit c of the F0 sector of mitochondrial inner membrane F1-F0 ATP synthase, encoded on the mitochondrial genome	4.73977192459119
CAGL0J03058g	ICL1	Ortholog(s) have isocitrate lyase activity, role in acetate catabolic process, carbon utilization, fatty acid catabolic process, glyoxylate cycle, pathogenesis and cytosol, glyoxysome, peroxisomal matrix localization	5.01276937936376
CAGL0L03982g	MLS1	Ortholog(s) have malate synthase activity, role in acetate catabolic process, carbon utilization, fatty acid catabolic process, glyoxylate cycle and cytosol, glyoxysome, peroxisomal matrix localization	5.20694348338948
CAGL0A02321g	HXT5	Ortholog(s) have fructose transmembrane transporter activity, glucose transmembrane transporter activity, mannose transmembrane transporter activity and role in fructose import across plasma membrane, glucose import across plasma membrane membrane	5.25471347748214
CAGL0L07766g	ADY2	Ortholog(s) have acetate transmembrane transporter activity, ammonium transmembrane transporter activity and role in ammonium transport, nitrogen utilization, plasma membrane acetate transport	5.63086064682298
CAGL0B04917g	IDP2	S-adenosylmethionine synthetase	5.65510661756844
CAGL0M09020g	SFC1	Ortholog(s) have succinate:fumarate antiporter activity, role in acetate catabolic process, carbon utilization, fatty acid catabolic process, fumarate transport, succinate transport and mitochondrion, plasma membrane localization	5.66073115079483
CAGL0H04939g	FBP1	Ortholog(s) have fructose 1,6-bisphosphate 1-phosphatase activity, role in gluconeogenesis, reactive oxygen species metabolic process and cytosol, periplasmic space localization	5.89507575048193
CAGL0F06809g	YVH1	Ortholog(s) have protein tyrosine phosphatase activity	5.97051934791296
CAGL0B04213g	RGC1	Ortholog(s) have role in positive regulation of glycerol transport and cytoplasm localization	6.66405274070384
CAGL0K12078g	NRG1	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, RNA polymerase II repressing transcription factor binding and transcriptional repressor activity, more	8.11789418466999
CAGL0H06633g		Putative phosphoenolpyruvate carboxykinase; gene is downregulated in azole-resistant strain	8.62662179393254
CAGL0K10428g	IGD1	Ortholog(s) have enzyme inhibitor activity, role in negative regulation of glycogen catabolic process and cytoplasm localization	9.24575845348038
CAGL0A01826g	HXT3	Ortholog(s) have glucose transmembrane transporter activity and plasma membrane localization	10.0639954458794

CAGL0I04994g	MET6	5-methyltetrahydropteroyltriglutamate homocysteine methyltransferase; protein abundance increased in ace2 mutant cells	-4.0214546434684
CAGL0J08415g	SAM2	S-adenosylmethionine synthetase	-3.78486042329185
CAGL0H06369g	CYS3	Ortholog(s) have cystathionine gamma-lyase activity, role in cysteine biosynthetic process via cystathionine, methionine biosynthetic process, transsulfuration and cytoplasm, nucleus localization	-3.32033485451651
CAGL0D03036g	AVT1	Ortholog(s) have L-glutamine transmembrane transporter activity, L-isoleucine transmembrane transporter activity, L- tyrosine transmembrane transporter activity	-3.26377674026584
CAGL0B03839g	MET3	Ortholog(s) have sulfate adenylyltransferase (ATP) activity	-3.13614590451067
CAGL0H10538g	YDL119C	Ortholog(s) have glycine transmembrane transporter activity, role in glycine import and mitochondrion localization	-3.01891746990778
CAGL0J07062g	CAR1	Ortholog(s) have arginase activity, manganese ion binding, ornithine carbamoyltransferase inhibitor activity, zinc ion binding activity	-2.98492514064968
CAGL0M12386g	MMF1	Ortholog(s) have role in isoleucine biosynthetic process, mitochondrial genome maintenance, mitochondrial translation and mitochondrial matrix localization	-2.92755143071168
CAGL0F01749g	SHM2	Putative serine hydroxymethyltransferase; protein differentially expressed in azole resistant strain	-2.73790819203374
CAGL0K00825g		Has domain(s) with predicted phosphatase activity, phosphoserine phosphatase activity and role in L-serine biosynthetic process, metabolic process	-2.4840800776844
CAGL0C05247g	MET22	Protein serine/threonine phosphatase; protein abundance increased in ace2 mutant cells	-2.23856227908517
CAGL0M00176g	BAT2	Ortholog(s) have L-isoleucine transaminase activity, L-leucine transaminase activity, L-valine transaminase activity	-2.20134585708139
CAGL0E05104g	LYS5	Ortholog(s) have enzyme activator activity, holo-[acyl-carrier-protein] synthase activity and role in peptidyl-serine phosphopantetheinylation, protein-cofactor linkage	-2.1423333192964
CAGL0106578g	YER152C	Ortholog(s) have 2-aminoadipate transaminase activity and cytoplasm, nucleus localization	-2.07133544255096
CAGL0E06468g	AVT3	Ortholog(s) have L-arginine transmembrane transporter activity, L-glutamine transmembrane transporter activity and L- histidine transmembrane transporter activity, more	-2.05633506875369
CAGL0H06963g	YML096W	Ortholog(s) have cytosol, nucleus localization	-2.0548574214268
CAGL0K07788g	LYS2	Ortholog(s) have L-aminoadipate-semialdehyde dehydrogenase activity, role in lysine biosynthetic process via aminoadipic acid, negative regulation of lysine biosynthetic process via aminoadipic acid and cytosol localization	-1.70758708667761
CAGL0M00330g	HOM6	Ortholog(s) have homoserine dehydrogenase activity, role in homoserine biosynthetic process, methionine biosynthetic process and cytoplasm, nucleus localization	-1.70580323195828
CAGL0H04587g	AVT5	Ortholog of S. cerevisiae : AVT5 and Saccharomyces cerevisiae S288C : YBL089W	-1.60118682609174
CAGL0M12837g	SER33	Ortholog(s) have alpha-ketoglutarate reductase activity, phosphoglycerate dehydrogenase activity, role in serine family amino acid biosynthetic process and cytosol localization	-1.56514555025844
CAGL0H03795g		3-isopropylmalate dehydrogenase	-1.42678768524774
CAGL0M06897g	YNL024C	Ortholog(s) have cytoplasm localization	-1.42132368004034
CAGL0F00693g	PRO2	Putative gamma-glutamyl phosphate reductase; suppressor mutation (pro2-4) allows inviable gsh1 mutant to grow in the absence of glutathione	-1.41964862077859
CAGL0E02497g	PFA4	Ortholog(s) have palmitoyltransferase activity, role in protein palmitoylation and endoplasmic reticulum localization	-1.4183143032284
CAGL0E03157g	CYS4	Ortholog(s) have cystathionine beta-synthase activity, mRNA binding activity	-1.40820887106364

IST | 129 Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1 |

CAGL0J0455	54g	Has domain(s) with predicted catalytic activity, pyridoxal phosphate binding, transaminase activity and role in biosynthetic process, cellular amino acid metabolic process	-1.24395391481492
CAGL0M0088	B0g CAR2	Putative ornithine aminotransferase; protein abundance increased in ace2 mutant cells	-1.2424437350713
CAGL0M060 ²	17g TYR1	Ortholog(s) have prephenate dehydrogenase (NADP+) activity, role in tyrosine biosynthetic process and cytosol localization	-1.23078330244765
CAGL0M0037	74g MET5	Ortholog(s) have sulfite reductase (NADPH) activity and role in hydrogen sulfide biosynthetic process, sulfate assimilation, sulfur amino acid biosynthetic process	-1.22956696526985
CAGL0M1218	B8g GCV3	Ortholog(s) have glycine dehydrogenase (decarboxylating) activity, role in glycine catabolic process, one-carbon metabolic process, protein lipoylation and mitochondrion localization	-1.22839283859559
CAGL0D0640	D2g MET17	O-acetyl homoserine sulfhydrylase (OAHSH), ortholog of <i>S. cerevisiae</i> MET17; required for utilization of inorganic sulfate as sulfur source; able to utilize cystine as a sulfur source while <i>S. cerevisiae</i> met15 mutants are unable to do so	-1.2113972740513
CAGL0F0702	29g MET13	Ortholog(s) have methylenetetrahydrofolate reductase (NAD(P)H) activity, role in methionine biosynthetic process, one- carbon metabolic process and mitochondrion localization	-1.19349094006509
CAGL010913	Og PTR3	Ortholog(s) have role in response to amino acid and extrinsic component of plasma membrane localization	-1.08183763008772
CAGL0J0239	98g HIS6	Ortholog(s) have 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino]imidazole-4-carboxamide isomerase activity, role in histidine biosynthetic process and cytosol, nucleus localization	1.00410478175018
CAGL0H0724	49g	Putative deoxyhypusine synthase	1.02607279583854
CAGL0G0474	41g LEU4	Ortholog(s) have 2-isopropylmalate synthase activity, role in cellular response to drug, leucine biosynthetic process and mitochondrion localization	1.04463317351726
CAGL0C0491	17g CPA2	Ortholog(s) have carbamoyl-phosphate synthase (glutamine-hydrolyzing) activity, role in arginine biosynthetic process and carbamoyl-phosphate synthase complex, mitochondrion localization	1.0498389827676
CAGL0L1256	62g MET31	Ortholog(s) have RNA polymerase II transcription factor activity, sequence-specific transcription regulatory region DNA binding, core promoter proximal region sequence-specific DNA binding activity	1.05699236589768
CAGL0L1225	54g ALT1	Ortholog(s) have L-alanine:2-oxoglutarate aminotransferase activity, role in alanine biosynthetic process, alanine catabolic process, cellular response to drug, chronological cell aging and cytosol, mitochondrion, nucleus localization	1.07275671977553
CAGL0H0287	71g ARG2	Ortholog(s) have acetyl-CoA:L-glutamate N-acetyltransferase activity, role in ornithine biosynthetic process and mitochondrial matrix, mitochondrial membrane localization	1.08843395313659
CAGL0J0279	94g ISD11	Ortholog(s) have cysteine desulfurase activity, role in iron-sulfur cluster assembly and L-cysteine desulfurase complex, extrinsic component of mitochondrial inner membrane, mitochondrial matrix, nucleus localization	1.11962381152287
CAGL0K0932	28g THR4	Threonine synthase	1.15550100353212
CAGL0L1201	I2g TMT1	Ortholog(s) have trans-aconitate 3-methyltransferase activity and cytosol localization	1.20606486846359
CAGL0B0399	93g ILV3	Ortholog(s) have dihydroxy-acid dehydratase activity, role in branched-chain amino acid biosynthetic process and mitochondrion localization	1.22020876385941
CAGL0L0754	l6g BAP3	Ortholog(s) have amino acid transmembrane transporter activity, role in amino acid transport, transmembrane transport and endoplasmic reticulum, mitochondrion localization	1.22952694045111
CAGL0J0950	04g MET12	Ortholog(s) have methylenetetrahydrofolate reductase (NAD(P)H) activity and role in methionine biosynthetic process, one- carbon metabolic process	1.28960532293764
CAGL010512	6g ILV1	Ortholog(s) have L-threonine ammonia-lyase activity, role in isoleucine biosynthetic process, threonine catabolic process, valine biosynthetic process and mitochondrion localization	1.30720416782128
CAGL0D0319	90g MEU1	Ortholog(s) have S-methyl-5-thioadenosine phosphorylase activity, mRNA binding activity, role in L-methionine salvage from methylthioadenosine, glutamate biosynthetic process and cytosol, extracellular region, nucleus localization	1.32004230050483

CAGL0B04455g	AVT4	Ortholog(s) have L-glutamine transmembrane transporter activity, L-isoleucine transmembrane transporter activity, L- tyrosine transmembrane transporter activity and role in amino acid transmembrane export from vacuole	1.32414026941432
CAGL0J08162g	LYP1	Ortholog(s) have basic amino acid transmembrane transporter activity, role in basic amino acid transport and mitochondrion localization	1.34310476495657
CAGL0H07051g	ASP1	Ortholog(s) have asparaginase activity, role in asparagine catabolic process and Golgi apparatus localization	1.34949817107234
CAGL0B00286g	CHA1	Ortholog(s) have L-serine ammonia-lyase activity, L-threonine ammonia-lyase activity, role in L-serine catabolic process, threonine catabolic process and mitochondrial nucleoid localization	1.45285870793707
CAGL0I09009g	HIS2	Ortholog(s) have histidinol-phosphatase activity, role in histidine biosynthetic process and cytosol, nucleus localization	1.47286149853851
CAGL0F03025g	ARO80	Ortholog(s) have RNA polymerase II transcription factor activity, sequence-specific DNA binding, sequence-specific DNA binding activity	1.47861063255175
CAGL0L02035g	MAE1	Ortholog(s) have malate dehydrogenase (decarboxylating) (NAD+) activity, role in cellular amino acid metabolic process, malate metabolic process, pyruvate metabolic process and cytosol, mitochondrion localization	1.49398366984289
CAGL0D01892g	AAT2	Ortholog(s) have L-aspartate:2-oxoglutarate aminotransferase activity, role in aspartate biosynthetic process and cytosol, extracellular region, nucleus, peroxisome localization	1.51078603226565
CAGL0D02178g		Has domain(s) with predicted role in amino acid transport, transmembrane transport and integral component of membrane, membrane localization	1.52500659872788
CAGL0H06875g	ARG81	Ortholog(s) have transcription cofactor activity	1.57206887411114
CAGL0L02475g	GCN4	bZIP domain-containing protein	1.6026164656022
CAGL0A01199g	DIP5	Putative dicarboxylic amino acid permease	1.60270753461759
CAGL0A02508g	YPQ2	Ortholog(s) have basic amino acid transmembrane transporter activity, role in basic amino acid transmembrane export from vacuole and integral component of fungal-type vacuolar membrane localization	1.60361433488069
CAGL0I06116g	SSY5	Ortholog(s) have serine-type endopeptidase activity, role in protein processing, response to amino acid and extrinsic component of plasma membrane localization	1.61200071884697
CAGL0M04059g	PHA2	Ortholog(s) have prephenate dehydratase activity, role in L-phenylalanine biosynthetic process and cytosol, nucleus localization	1.63543789362685
CAGL0B04961g	DPH5	Ortholog(s) have diphthine synthase activity, role in peptidyl-diphthamide biosynthetic process from peptidyl-histidine and cytosol, nucleus localization	1.64754260118761
CAGL0J08184g	ALP1	Ortholog(s) have basic amino acid transmembrane transporter activity, role in basic amino acid transport and endoplasmic reticulum localization	1.64819152715892
CAGL0G06688g	MET4	bZIP domain-containing protein	1.75571277255088
CAGL0K08668g	MET28	bZIP domain-containing protein	1.782776383295
CAGL0F06501g	ARG7	Ortholog(s) have acetyl-CoA:L-glutamate N-acetyltransferase activity, glutamate N-acetyltransferase activity, role in ornithine biosynthetic process and mitochondrial matrix localization	1.81736619529013
CAGL0L01089g	GLT1	Ortholog(s) have glutamate synthase (NADH) activity, role in glutamate biosynthetic process and cytosol, mitochondrion localization	1.82772836595289
CAGL0L00781g	MET30	Ortholog(s) have protein binding, bridging, ubiquitin binding activity	1.84118979247331
CAGL0M04499g	PUT1	Ortholog(s) have proline dehydrogenase activity, role in proline catabolic process to glutamate and mitochondrion localization	1.96161271037474

CAGL0107689g	YPQ1	Ortholog(s) have basic amino acid transmembrane transporter activity, role in basic amino acid transmembrane export from vacuole and endoplasmic reticulum, integral component of fungal-type vacuolar membrane localization	1.96703225372005
CAGL0H00396g	LEU3	Ortholog(s) have sequence-specific DNA binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding and transcriptional repressor activity, more	2.02895594947929
CAGL0K05753g	GNP1	Ortholog(s) have L-proline transmembrane transporter activity, role in amino acid transport, transmembrane transport and cell periphery, cellular bud neck, endoplasmic reticulum, mitochondrion localization	2.11545117707654
CAGL0M00154g		Plasma membrane high affinity cystine specific transporter; present only in pathogenic yeasts; confers the ability to utilize cystine as a sulfur source	2.19469454877938
CAGL0J08316g	MET2	Ortholog(s) have homoserine O-acetyltransferase activity, role in homoserine metabolic process, methionine biosynthetic process, regulation of DNA methylation and cytosol localization	2.20509682539814
CAGL0H01441g	PRO1	Ortholog(s) have glutamate 5-kinase activity, role in proline biosynthetic process, ribophagy and cytoplasm localization	2.2348761804304
CAGL0L09691g	PUT3	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	2.28786446269165
CAGL0K05357g	GLN1	Ortholog(s) have glutamate-ammonia ligase activity, role in ammonia assimilation cycle, cellular response to nitrogen starvation, glutamine biosynthetic process and cytosol, nuclear periphery localization	2.35539997038103
CAGL0M11440g	CHA4	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity and role in cellular amino acid catabolic process, positive regulation of transcription, DNA-templated	2.40668906749162
CAGL0B01507g	ARG8	Ortholog(s) have N2-acetyl-L-ornithine:2-oxoglutarate 5-aminotransferase activity, role in arginine biosynthetic process and mitochondrial matrix, nucleus localization	2.43404901761206
CAGL0L06710g	RTC2	Ortholog(s) have basic amino acid transmembrane transporter activity	2.48270207181007
CAGL0L03267g	GAP1	Ortholog(s) have L-proline transmembrane transporter activity, polyamine transmembrane transporter activity and role in amino acid transmembrane transport, polyamine transport, regulation of nitrogen utilization	2.52202746507813
CAGL0E05632g	PUT4	Ortholog(s) have L-proline transmembrane transporter activity, role in gamma-aminobutyric acid transport, proline transport and Golgi apparatus, endoplasmic reticulum localization	2.56217403496147
CAGL0F07777g	ALD3	Putative aldehyde dehydrogenase; expression upregulated in biofilm vs planktonic cell culture	2.66287875757591
CAGL0I04730g	HMT1	Putative hnRNP arginine N-methyltransferase	2.82901469820248
CAGL0A03102g	ARO10	Ortholog(s) have phenylpyruvate decarboxylase activity	3.09821478846691
CAGL0I10791g		Ortholog(s) have ornithine carbamoyltransferase activity, role in arginine biosynthetic process via ornithine, asexual sporulation and mitochondrial matrix localization	3.16545271328103
CAGL0J11484g	DUG3	Component of the Dug1p-Dug2p-Dug3p complex involved in glutathione degradation; required for glutathione utilization in C. glabrata when glutathione import is enabled by expression of the S. cerevisiae Opt1p transporter	3.25372315162536
CAGL0L02937g	HIS3	Putative imidazoleglycerol-phosphate dehydratase	3.28943728706016
CAGL0E04312g	STP2	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	3.72053745735121
CAGL0105500g	PRS2	Ortholog(s) have ribose phosphate diphosphokinase activity, role in 5-phosphoribose 1-diphosphate biosynthetic process, cytokinesis, fungal-type cell wall organization and cytosol, ribose phosphate diphosphokinase complex localization	3.89628640486045
CAGL0C04565g	JJJ3	Ortholog(s) have ferrous iron binding activity, role in peptidyl-diphthamide biosynthetic process from peptidyl-histidine and cytosol, nucleus localization	3.90963175266395
CAGL0K10362g	ORT1	Ortholog(s) have L-ornithine transmembrane transporter activity, role in arginine biosynthetic process, mitochondrial	4.01214707843081

	CAGL0H08393g	BAP2	Ortholog(s) have amino acid transmembrane transporter activity, role in amino acid transport, transmembrane transport and endoplasmic reticulum localization	4.10604407467508
	CAGL0109592g	CPA1	Ortholog(s) have carbamoyl-phosphate synthase (glutamine-hydrolyzing) activity, role in arginine biosynthetic process and carbamoyl-phosphate synthase complex, cytoplasmic stress granule localization	4.57872709384522
	CAGL0G02761g	DPH1	Ortholog(s) have role in peptidyl-diphthamide biosynthetic process from peptidyl-histidine and cytosol, nucleus localization	4.77550276955705
	CAGL0F00407g	LIA1	Ortholog(s) have deoxyhypusine monooxygenase activity	5.26584724701059
	CAGL0K12518g	AGX1	Ortholog(s) have alanine-glyoxylate transaminase activity, role in glycine biosynthetic process, by transamination of glyoxylate and biofilm matrix, cytosol, mitochondrion localization	5.33656717848359
	CAGL0L12364g	ERG10	Ortholog(s) have acetyl-CoA C-acetyltransferase activity, role in ergosterol biosynthetic process and cytosol, nucleus localization	-3.5024462453419
	CAGL0L10714g	ERG2	C-8 sterol isomerase	-3.41466569849143
	CAGL0F03993g	ERG8	Ortholog(s) have phosphomevalonate kinase activity	-2.82697058325284
	CAGL0L13134g	YLR072W	Ortholog(s) have sterol transporter activity, role in intracellular sterol transport and ER-mitochondrion membrane contact site, mitochondrion, nucleus-vacuole junction, vacuole-mitochondrion membrane contact site localization	-2.80397605939125
	CAGL0M07095g	ERG9	Squalene synthase (farnesyl-diphosphate farnesyl transferase); catalyzes the first step in sterol biosynthesis	-2.73196787663871
	CAGL0I02970g	ERG24	Ortholog(s) have delta14-sterol reductase activity and role in cellular response to drug, ergosterol biosynthetic process, filamentous growth of a population of unicellular organisms in response to biotic stimulus, pathogenesis	-2.10444847628514
	CAGL0J10780g	OSH3	Ortholog(s) have lipid binding, sterol transporter activity	-1.99644111557889
20	CAGL0J05918g	NSG2	Ortholog(s) have unfolded protein binding activity, role in sterol biosynthetic process and endoplasmic reticulum localization	-1.69544884293426
	CAGL0A00429g	ERG4	Putative C24 sterol reductase	-1.5135169049815
ll ve	CAGL0F07865g	UPC2	Putative Zn(2)-Cys(6) binuclear cluster transcriptional regulator of ergosterol biosynthesis	-1.37460610107039
	CAGL0F08437g	SAY1	Ortholog(s) have steryl deacetylase activity, role in response to toxic substance, sterol deacetylation and cell periphery, endoplasmic reticulum lumen, integral component of membrane, lipid particle localization	-1.2791317310716
laic	CAGL0M11506g	ERG27	Ortholog(s) have 3-keto sterol reductase activity, role in cellular response to drug, ergosterol biosynthetic process and endoplasmic reticulum membrane, lipid particle, mitochondrial outer membrane localization	-1.11737700998649
בומכ	CAGL0E04158g	DET1	Ortholog(s) have acid phosphatase activity, role in dephosphorylation, intracellular sterol transport and cytoplasm, nucleus localization	1.20864980605541
	CAGL0F03861g	ERG12	Ortholog(s) have mevalonate kinase activity and role in ergosterol biosynthetic process, farnesyl diphosphate biosynthetic process, mevalonate pathway, isopentenyl diphosphate biosynthetic process, mevalonate pathway	1.36526684938095
	CAGL0K08030g	NVJ2	Ortholog(s) have lipid binding activity and endoplasmic reticulum, nucleus-vacuole junction, plasma membrane, ribosome localization	1.53670306351194
	CAGL0H03245g	SCY1	Ortholog(s) have role in negative regulation of TORC1 signaling and clathrin-coated vesicle, cytosol localization	1.54293130325004
	CAGL0C02981g	ARE1	Putative acyl-CoA:sterol acyltransferase involved in sterol esterification; gene is upregulated in azole-resistant strain	1.68822539298711
	CAGL0G07667g	PRY1	Ortholog(s) have cholesterol binding, magnesium ion binding activity, role in sterol transport and endoplasmic reticulum, extracellular region, fungal-type vacuole, nuclear envelope localization	1.95634431995384
	CAGL0K12716g	YFL040W	Ortholog(s) have fungal-type vacuole, prospore membrane localization	1.99372419149826

IST | 133 Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1 |

	CAGL0D05566g	YEH1	Ortholog(s) have sterol esterase activity, role in sterol metabolic process and integral component of membrane, lipid particle localization	2.31163207256448
	CAGL0F01419g	AUS1	ATP-binding cassette transporter involved in sterol uptake	2.76242433481335
	CAGL0M10571g	ARE2	Ortholog(s) have ergosterol O-acyltransferase activity, role in ergosterol metabolic process and endoplasmic reticulum localization	2.90024272069978
	CAGL0F03267g	YHR080C	Ortholog(s) have sterol binding activity and cortical endoplasmic reticulum, mitochondrion, ribosome localization	3.46964840259323
	CAGL0F01793g	ERG3	Delta 5,6 sterol desaturase; C-5 sterol desaturase; predicted transmembrane domain and endolasmic reticulum (ER) binding motif; gene used for molecular typing of C. glabrata strain isolates	3.47626736236227
	CAGL0K04477g	ERG25	Ortholog(s) have C-4 methylsterol oxidase activity, role in ergosterol biosynthetic process and endoplasmic reticulum membrane, plasma membrane localization	3.67303558615778
	CAGL0D05940g	ERG1	Squalene epoxidase with a role in ergosterol synthesis; involved in growth under conditions of low oxygen tension	3.79853432844869
	CAGL0E04334g	ERG11	Putative cytochrome P-450 lanosterol 14-alpha-demethylase; target enzyme of azole antifungal drugs; increased protein abundance in azole resistant strain	4.01040685430362
	CAGL0I04246g	SUT1	Putative transcription factor involved in sterol uptake; gene is upregulated in azole-resistant strain	4.12842345098001
	CAGL0L03828g	CYB5	Ortholog(s) have electron carrier activity, role in ergosterol biosynthetic process and endoplasmic reticulum membrane localization	4.59450135562817
	CAGL0F05137g	PRY2	Ortholog(s) have sterol binding activity, role in pathogenesis, sterol transport and cell surface, endoplasmic reticulum, extracellular region, fungal-type vacuole localization	8.18637995390137
	CAGL0I08283g	PRO3	Putative gamma-glutamyl phosphate reductase	-2.70573683827508
	CAGL0K06809g	YBR220C	Ortholog(s) have Golgi apparatus localization	-2.66057923292623
	CAGL0K08558g	GFA1	Ortholog(s) have glutamine-fructose-6-phosphate transaminase (isomerizing) activity	-2.35655047867919
	CAGL0H03399g	HNM1	Ortholog(s) have (R)-carnitine transmembrane transporter activity, choline transmembrane transporter activity, ethanolamine transmembrane transporter activity	-2.1033692435427
lism	CAGL0G05291g	PAA1	Ortholog(s) have aralkylamine N-acetyltransferase activity, diamine N-acetyltransferase activity, role in chromatin organization and cytoplasm localization	-1.85060893871946
etabo	CAGL0D03982g	PUT2	Ortholog(s) have 1-pyrroline-5-carboxylate dehydrogenase activity, role in glutamate biosynthetic process, hyphal growth, proline catabolic process to glutamate and cytosol, mitochondrial matrix localization	-1.74773418239312
me	CAGL0M05533g		Ortholog(s) have role in nitrogen compound metabolic process	-1.62591855573303
Nitrogen	CAGL0F06743g	DAL81	Ortholog(s) have RNA polymerase II transcription coactivator activity involved in preinitiation complex assembly, RNA polymerase II transcription factor activity and sequence-specific DNA binding, more	-1.31889806404833
	CAGL0H02607g		Ortholog(s) have adenosylmethionine decarboxylase activity, role in spermidine biosynthetic process, spermine biosynthetic process and cytosol, nucleus localization	1.03421798634557
	CAGL0D04928g	MEP3	Ortholog(s) have ammonium transmembrane transporter activity, role in ammonium transport, nitrogen utilization and endoplasmic reticulum, plasma membrane localization	1.03528774369177
	CAGL0D00484g	SPE1	Ortholog(s) have ornithine decarboxylase activity and role in DNA biosynthetic process, nuclear division, pantothenate biosynthetic process, putrescine biosynthetic process, spermidine biosynthetic process, spore germination	1.08577045378889
	CAGL0D04026g	UGA1	Ortholog(s) have 4-aminobutyrate transaminase activity, pyridoxal phosphate binding activity and role in cellular amide catabolic process, gamma-aminobutyric acid catabolic process, glutamate metabolic process	1.18265474232705

	CAGL0E00759g	ARG82	Ortholog(s) have inositol tetrakisphosphate 3-kinase activity, inositol tetrakisphosphate 6-kinase activity and inositol- 1,3,4,5,6-pentakisphosphate kinase activity, more	1.6769674885383
	CAGL0J06028g	MEP2	Ortholog(s) have high-affinity secondary active ammonium transmembrane transporter activity, methylammonium transmembrane transporter activity	1.72659995742323
	CAGL0J07392g	URE2	Protein with an N-terminal prion domain and a C-terminal domain that regulates nitrogen catabolism; complements S. cerevisiae ure2 mutant for nitrogen regulation but does not form [URE3] prion when expressed in S. cerevisiae	1.83358674019464
	CAGL0C02277g	GLN3	Putative zinc finger transcription factor with a predicted role in nitrogen catabolite repression	1.87106806474486
	CAGL0G01210g	NIT3	Putative nitrilase; protein abundance increased in ace2 mutant cells	1.9095717102486
	CAGL0J10274g	MKS1	Ortholog(s) have role in mitochondria-nucleus signaling pathway, negative regulation of transcription from RNA polymerase II promoter, regulation of nitrogen utilization, regulation of pseudohyphal growth and cytoplasm localization	1.93858350257218
	CAGL0K03157g	DUR3	Putative plasma membrane polyamine transporter	2.29936950917728
	CAGL0H02585g	GAD1	Ortholog(s) have glutamate decarboxylase activity, role in cellular response to oxidative stress, glutamate catabolic process and cytoplasm localization	2.42475233179812
	CAGL0I10747g	MEP1	Ortholog(s) have ammonium transmembrane transporter activity, role in ammonium transport, nitrogen utilization and endoplasmic reticulum localization	2.42906659512049
	CAGL0H09152g	PTK1	Ortholog(s) have role in polyamine transport	2.4549969080211
	CAGL0C04191g	UGA2	Ortholog(s) have succinate-semialdehyde dehydrogenase [NAD(P)+] activity and role in cellular response to oxidative stress, gamma-aminobutyric acid catabolic process, glutamate decarboxylation to succinate	2.71634066207462
	CAGL0A03212g	ATO3	Ortholog(s) have ammonium transmembrane transporter activity, role in ammonium transport, nitrogen utilization, transmembrane transport and mitochondrion, plasma membrane localization	3.27534661976074
	CAGL0K07634g	GAT1	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, RNA polymerase II transcription factor binding and transcriptional activator activity, more	3.7891813814905
	CAGL0100902g	GAT2	Has domain(s) with predicted sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding, zinc ion binding activity and role in regulation of transcription, DNA-templated	4.05001506475768
	CAGL0M03465g	ATO2	Ortholog(s) have acetate transmembrane transporter activity, ammonium transmembrane transporter activity and role in ammonium transport, nitrogen utilization, plasma membrane acetate transport	5.83367161094676
	CAGL0I08613g		Putative plasma membrane polyamine transporter	6.03995603496322
	CAGL0I05940g	SFH5	Ortholog(s) have phosphatidylinositol transporter activity	-4.69222589410956
	CAGL0H08712g		Has domain(s) with predicted phosphatidylinositol binding activity and role in cell communication	-4.55393839199683
oid metabolism	CAGL0F00363g	OPI3	Ortholog(s) have phosphatidyl-N-dimethylethanolamine N-methyltransferase activity, phosphatidyl-N-methylethanolamine N- methyltransferase activity and role in cleistothecium development, phosphatidylcholine biosynthetic process	-4.51373898029842
	CAGL0H07513g	IFA38	Predicted ketoreductase involved in production of very long chain fatty acid for sphingolipid biosynthesis; mutants show reduced sensitivity to caspofungin and increased sensitivity to micafungin	-4.09703523070487
	CAGL0D00528g	FAS1	Ortholog(s) have 3-hydroxyacyl-[acyl-carrier-protein] dehydratase activity, [acyl-carrier-protein] S-acetyltransferase activity and [acyl-carrier-protein] S-malonyltransferase activity, more	-3.83341976535918
Ē	CAGL0L08184g	ELO2	Predicted fatty acid elongase with role in sphingolipid biosynthetic process; mutants show reduced sensitivity to caspofungin and increased sensitivity to micafungin	-3.79385201965775
	CAGL0G08085g	DNF2	Ortholog(s) have phospholipid-translocating ATPase activity	-3.74513130615385

CAGL0I04070g	SLC1	Ortholog(s) have 1-acylglycerol-3-phosphate O-acyltransferase activity, role in glycerophospholipid biosynthetic process and endoplasmic reticulum, lipid particle, plasma membrane localization	-3.66591138657971
CAGL0E06138g		Ortholog(s) have fatty acid synthase activity, role in palmitic acid biosynthetic process, response to pH and fatty acid synthase complex, glyoxysome localization	-3.64691376621933
CAGL0L10780g	HFA1	Ortholog(s) have acetyl-CoA carboxylase activity, role in fatty acid biosynthetic process and cytosol, fungal-type vacuole membrane, mitochondrion localization	-3.64036404426526
CAGL0D06446g	STT4	Ortholog(s) have 1-phosphatidylinositol 4-kinase activity, role in invasive filamentous growth, macroautophagy, mitophagy, phosphatidylinositol phosphorylation and cytosol, mitochondrion, plasma membrane localization	-3.59978097420172
CAGL0M06237g	EHT1	Ortholog(s) have alcohol O-butanoyltransferase activity, serine hydrolase activity, short-chain carboxylesterase activity and role in medium-chain fatty acid biosynthetic process, medium-chain fatty acid catabolic process	-3.58904798721431
CAGL0F01111g	OPI10	Ortholog(s) have role in inositol metabolic process and cytosol, nuclear envelope localization	-3.57680320561404
CAGL0M04367g	CKI1	Ortholog(s) have choline kinase activity, ethanolamine kinase activity, role in phosphatidylcholine biosynthetic process, phosphatidylethanolamine biosynthetic process and cytosol, nucleus localization	-3.49251764025582
CAGL0D04950g	LOA1	Ortholog(s) have lysophosphatidic acid acyltransferase activity, role in cellular triglyceride homeostasis, lipid particle organization, protein targeting to vacuole and Golgi apparatus, endoplasmic reticulum, lipid particle localization	-3.46121874270333
CAGL0G09955g	DPM1	Ortholog(s) have dolichyl-phosphate beta-D-mannosyltransferase activity	-3.20652782137942
CAGL0I06050g	INO1	Putative inositol 1-phosphate synthase; regulated by the transcriptional activators Ino2p and Ino4p; protein differentially expressed in azole resistant strain	-3.02157259855269
CAGL0J02970g	CEM1	Ortholog(s) have mitochondrion localization	-2.94330290386579
CAGL0H01309g	DPL1	Ortholog(s) have sphinganine-1-phosphate aldolase activity and role in calcium-mediated signaling, cellular response to starvation, sphingolipid metabolic process	-2.87573528137651
CAGL0I09812g	DGK1	Ortholog(s) have diacylglycerol kinase activity, role in phosphatidic acid biosynthetic process and integral component of endoplasmic reticulum membrane localization	-2.85807071280038
CAGL0B03443g	MCP2	Ortholog(s) have role in lipid homeostasis, mitochondrion organization and integral component of mitochondrial membrane, mitochondrial inner membrane localization	-2.84288439633924
CAGL0G06270g	DRS2	Ortholog(s) have phospholipid-translocating ATPase activity	-2.82432991976222
CAGL0G04851g	ELO3	Predicted fatty acid elongase involved in production of very long chain fatty acids for sphingolipid biosynthesis; mutants show reduced sensitivity to caspofungin and increased sensitivity to micafungin	-2.49208104651747
CAGL0L03564g	PHS1	Ortholog(s) have 3-hydroxyacyl-CoA dehydratase activity, enoyl-CoA hydratase activity and role in fatty acid elongation, sphingolipid biosynthetic process, vacuolar transport	-2.47769474143168
CAGL0J06226g	PSD1	Ortholog(s) have phosphatidylserine decarboxylase activity	-2.43055423683523
CAGL0H06501g	VAC14	Ortholog(s) have protein binding, bridging activity	-2.41927297268398
CAGL0D04290g	YKL091C	Ortholog(s) have phosphatidylcholine binding, phosphatidylinositol binding activity and nucleus localization	-2.31442408651216
CAGL0F03817g	YMR210W	Ortholog(s) have acylglycerol lipase activity and role in medium-chain fatty acid biosynthetic process, triglyceride metabolic process	-2.29032696278064
CAGL0F07535g	YJU3	Ortholog(s) have acylglycerol lipase activity, serine hydrolase activity, role in triglyceride metabolic process and endoplasmic reticulum, lipid particle, mitochondrial outer membrane, plasma membrane localization	-2.23741376238888
CAGL0J04664g		Has domain(s) with predicted phosphopantetheine binding activity and role in fatty acid biosynthetic process	-2.2199643763732

IST | 136 Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1 |

CAGL0L10450g	ALG8	Ortholog(s) have dolichyl pyrophosphate Glc1Man9GlcNAc2 alpha-1,3-glucosyltransferase activity, role in oligosaccharide- lipid intermediate biosynthetic process, protein N-linked glycosylation and endoplasmic reticulum membrane localization	-2.21669200500419
CAGL0I04642g	FAT1	Ortholog(s) have long-chain fatty acid transporter activity, very long-chain fatty acid-CoA ligase activity and role in long-chain fatty acid import, very long-chain fatty acid metabolic process	-2.20461116645502
CAGL0K02959g	NEM1	Ortholog(s) have phosphoprotein phosphatase activity and role in negative regulation of phospholipid biosynthetic process, nuclear envelope organization, positive regulation of phosphatidate phosphatase activity, protein dephosphorylation	-2.19955644425495
CAGL0E01309g	EKI1	Ortholog(s) have choline kinase activity, ethanolamine kinase activity, role in phosphatidylcholine biosynthetic process, phosphatidylethanolamine biosynthetic process and cytoplasm localization	-2.07936110744195
CAGL0K00583g	ELO1	Ortholog(s) have fatty acid elongase activity, role in fatty acid elongation, unsaturated fatty acid and endoplasmic reticulum localization	-2.07331553157356
CAGL0J04378g	RFT1	Ortholog(s) have role in glycolipid translocation and endoplasmic reticulum membrane localization	-2.07050370461231
CAGL0K03509g	HFD1	Putative mitochondrial fatty aldehyde dehydrogenase; gene is upregulated in azole-resistant strain	-2.05617054420638
CAGL0K02739g	LAG1	Ortholog(s) have sphingosine N-acyltransferase activity and role in ceramide biosynthetic process, filamentous growth of a population of unicellular organisms, replicative cell aging, unidimensional cell growth	-2.04064976193598
CAGL0G05071g	LCB2	Ortholog(s) have serine C-palmitoyltransferase activity, role in cellular response to drug, sphingolipid biosynthetic process and SPOTS complex localization	-1.95698955456568
CAGL0L04642g	ALE1	Ortholog(s) have 1-acylglycerol-3-phosphate O-acyltransferase activity, 1-acylglycerophosphocholine O-acyltransferase activity, role in glycerophospholipid biosynthetic process and endoplasmic reticulum, ribosome localization	-1.9214573673819
CAGL0A02926g	VPS74	Ortholog(s) have enzyme binding, phosphatidylinositol-4-phosphate binding activity	-1.91306131362312
CAGL0H05599g	YDC1	Ortholog(s) have dihydroceramidase activity, role in ceramide biosynthetic process, ceramide catabolic process and endoplasmic reticulum, fungal-type vacuole membrane localization	-1.88396938134478
CAGL0M10769g	ALG12	Ortholog(s) have alpha-1,6-mannosyltransferase activity, role in dolichol-linked oligosaccharide biosynthetic process, protein glycosylation and endoplasmic reticulum localization	-1.85943476853283
CAGL0H05005g	CSR1	Ortholog(s) have phosphatidylinositol transporter activity	-1.84985939020359
CAGL0K04103g	CAX4	Ortholog(s) have dolichyldiphosphatase activity, role in lipid biosynthetic process, protein N-linked glycosylation and integral component of endoplasmic reticulum membrane localization	-1.81588254772196
CAGL0K05621g	TGL5	Ortholog(s) have lysophosphatidic acid acyltransferase activity, triglyceride lipase activity, role in triglyceride mobilization and lipid particle localization	-1.79540872617069
CAGL0I00330g	SCS3	Ortholog(s) have role in phospholipid biosynthetic process and endoplasmic reticulum localization	-1.77393135431386
CAGL0J02134g	INP51	Ortholog(s) have phosphatidylinositol-4,5-bisphosphate 5-phosphatase activity	-1.75456439943902
CAGL0M09933g	FLD1	Ortholog(s) have role in lipid particle organization and cortical endoplasmic reticulum, integral component of endoplasmic reticulum membrane localization	-1.75073182156186
CAGL0K05005g	ALG9	Ortholog(s) have glycolipid mannosyltransferase activity, role in dolichol-linked oligosaccharide biosynthetic process, protein glycosylation and endoplasmic reticulum localization	-1.73023550585352
CAGL0C04895g	YMR1	Ortholog(s) have mRNA binding, phosphatidylinositol-3-phosphatase activity, role in phosphatidylinositol dephosphorylation and cytosol localization	-1.61557516116061
CAGL0J08437g	LPP1	Ortholog(s) have phosphatidate phosphatase activity, role in phospholipid metabolic process and membrane localization	-1.59520606316524
CAGL0L03432g	GWT1	Ortholog(s) have glucosaminyl-phosphotidylinositol O-acyltransferase activity and role in GPI anchor biosynthetic process	-1.56258206256449

CAGL0M05621g	CSH1	Ortholog(s) have mannosyltransferase activity, role in mannosyl-inositol phosphorylceramide biosynthetic process and cis- Golgi network membrane, fungal-type vacuole, trans-Golgi network membrane localization	-1.55730914923831
CAGL0D04972g	TAZ1	Ortholog(s) have 1-acylglycerophosphocholine O-acyltransferase activity	-1.48086319906318
CAGL0M13673g	LIP1	Ortholog(s) have sphingosine N-acyltransferase activity, role in ceramide biosynthetic process and acyl-CoA ceramide synthase complex, endoplasmic reticulum membrane, nuclear envelope localization	-1.44956390722231
CAGL0M05731g	ALG2	Ortholog(s) have GDP-Man:Man1GlcNAc2-PP-Dol alpha-1,3-mannosyltransferase activity, glycolipid 6-alpha- mannosyltransferase activity, role in oligosaccharide-lipid intermediate biosynthetic process and endoplasmic reticulum localization	-1.44699730100933
CAGL0D06270g	ALG13	Ortholog(s) have N-acetylglucosaminyldiphosphodolichol N-acetylglucosaminyltransferase activity and role in dolichol-linked oligosaccharide biosynthetic process	-1.41459326371561
CAGL0H01089g	INM2	Ortholog(s) have inositol monophosphate 1-phosphatase activity and role in inositol phosphate dephosphorylation	-1.39403112534275
CAGL0G08690g	AYR1	Ortholog(s) have acylglycerone-phosphate reductase activity, triglyceride lipase activity and role in phosphatidic acid biosynthetic process, triglyceride catabolic process	-1.38453147453073
CAGL0K02805g		Predicted inositolphosphorylceramide (IPC) synthase, catalyzes the essential step in sphingolipid biosynthesis; potential antifungal drug target	-1.33908203874673
CAGL0H04477g	DNF3	Ortholog(s) have phospholipid-translocating ATPase activity and role in intracellular protein transport, phospholipid translocation, response to pheromone involved in conjugation with cellular fusion	-1.33842083226551
CAGL0K00297g	SAC1	Ortholog(s) have phosphatidylinositol-3,5-bisphosphate 5-phosphatase activity, phosphatidylinositol-3-phosphatase activity, phosphatidylinositol-4-phosphate phosphatase activity	-1.30193674259375
CAGL0I04334g	LCB3	Ortholog(s) have sphingosine-1-phosphate phosphatase activity, role in calcium-mediated signaling and endoplasmic reticulum localization	-1.27976664650108
CAGL0G02145g	YKR078W	Ortholog(s) have phosphatidylinositol-3-phosphate binding activity and cytoplasm localization	-1.26167054253282
CAGL0B04631g	INP53	Ortholog(s) have calcium ion binding, inositol-1,2,4,5,6-pentakisphosphate 5-phosphatase activity and inositol-1,2,4,5- tetrakisphosphate 5-phosphatase activity, more	-1.22485660034333
CAGL0E03201g	CHO2	Ortholog(s) have phosphatidylethanolamine N-methyltransferase activity, role in phosphatidylcholine biosynthetic process and cell periphery, endoplasmic reticulum membrane localization	-1.20053023834647
CAGL0L04554g	LCB4	Ortholog(s) have D-erythro-sphingosine kinase activity, role in calcium-mediated signaling, sphingolipid metabolic process and Golgi apparatus, cortical endoplasmic reticulum, plasma membrane localization	-1.19183332836704
CAGL0F03773g	EFR3	Ortholog(s) have role in establishment of protein localization to plasma membrane and mitochondrion, plasma membrane localization	-1.17746877270177
CAGL0K01837g	TSC13	Ortholog(s) have oxidoreductase activity, role in very long-chain fatty acid metabolic process and endoplasmic reticulum membrane, mitochondrion localization	-1.12746375385476
CAGL0L12892g	SFK1	Ortholog(s) have role in actin cytoskeleton organization, inositol lipid-mediated signaling, vacuole organization and plasma membrane localization	-1.10884571109239
CAGL0108745g	PSD2	Ortholog(s) have phosphatidylserine decarboxylase activity	-1.00412950732114
CAGL0M11462g	ICT1	Ortholog(s) have lysophosphatidic acid acyltransferase activity and role in phosphatidic acid biosynthetic process	-1.00320386542666
CAGL0C05269g	INP54	Ortholog(s) have phosphatidylinositol-4,5-bisphosphate 5-phosphatase activity, role in phosphatidylinositol dephosphorylation and endoplasmic reticulum, fungal-type vacuole membrane localization	1.12110493160737
CAGL0C03509g	FPK1	Ortholog(s) have protein serine/threonine kinase activity and role in positive regulation of phospholipid translocation, protein autophosphorylation, response to pheromone involved in conjugation with cellular fusion	1.21846667092965

CAGL0F06831g	MGA2	Ortholog(s) have role in cellular response to cold, chromatin silencing at silent mating-type cassette and mRNA stabilization, more	1.31582322124482
CAGL0M03157g	IRS4	Ortholog(s) have role in autophagy, cellular response to starvation, chromatin silencing at rDNA, fungal-type cell wall organization, inositol lipid-mediated signaling and mitochondrion, pre-autophagosomal structure localization	1.4376899807651
CAGL0K05995g	LCB5	Putative sphingoid long-chain base kinase; gene is upregulated in azole-resistant strain	1.47320492098283
CAGL0H06787g	POT1	Ortholog(s) have acetyl-CoA C-acyltransferase activity, mRNA binding activity, role in fatty acid beta-oxidation and glyoxysome, mitochondrial intermembrane space, peroxisomal matrix localization	1.49327035158848
CAGL0G02365g	TGL4	Ortholog(s) have calcium-independent phospholipase A2 activity, lysophosphatidic acid acyltransferase activity, sterol esterase activity, triglyceride lipase activity	1.60841436305704
CAGL0J09196g	SRF1	Ortholog(s) have role in positive regulation of catalytic activity and cell periphery, fungal-type vacuole localization	1.80065525183447
CAGL0D03960g	BRL1	Ortholog(s) have role in lipid homeostasis, mRNA export from nucleus, nuclear envelope organization and endoplasmic reticulum, integral component of membrane, nuclear envelope localization	1.87629163549534
CAGL0K07458g	YPK1	Ortholog(s) have protein serine/threonine kinase activity	1.98583017441957
CAGL0D00418g	FAT3	Ortholog(s) have role in long-chain fatty acid transport and cell periphery, mitochondrion localization	2.02115629992392
CAGL0J11770g	PLB1	Putative phospholipase B; predicted GPI-anchor	2.0675581416745
CAGL0L00561g	SSO1	Ortholog(s) have SNAP receptor activity, phosphatidic acid binding, phosphatidylinositol-3,4-bisphosphate binding, phosphatidylinositol-4,5-bisphosphate binding activity	2.14919819837545
CAGL0H01177g	DPP1	Ortholog(s) have diacylglycerol diphosphate phosphatase activity, phosphatidate phosphatase activity and role in farnesol biosynthetic process, phospholipid metabolic process	2.23221227178473
CAGL0C04279g	RER2	Ortholog(s) have dehydrodolichyl diphosphate synthase activity and role in ER to Golgi vesicle-mediated transport, dolichol biosynthetic process, protein glycosylation	2.2640250102595
CAGL0H01375g	SUR2	Predicted sphinganine hydroxylase with role in sphingolipid biosynthesis; mutants show reduced sensitivity to caspofungin and increased sensitivity to micafungin	2.30841411189982
CAGL0K07293g	FAA4	Ortholog(s) have long-chain fatty acid-CoA ligase activity and role in long-chain fatty acid import, long-chain fatty-acyl-CoA metabolic process, sphingoid long-chain base transport	2.32194183960331
CAGL0A00341g	MPO1	Ortholog(s) have role in sphingoid catabolic process and endoplasmic reticulum localization	2.42048034648307
CAGL0C03289g	YBT1	Putative ABC transporter involved in bile acid transport; gene is upregulated in azole-resistant strain	2.4839376620687
CAGL0G08316g	ARV1	Lipid transporter involved in sterol trafficking and transport of glycosylphosphatidylinositol and sphingolipid precursors	2.48873097235758
CAGL0M10307g	AUR1	Ortholog(s) have inositol phosphoceramide synthase activity and role in cellular response to drug, inositolphosphoceramide metabolic process, sphingolipid biosynthetic process	2.53415287897849
CAGL0E02321g	PLB3	Putative phospholipase B; predicted GPI-anchor	2.74593069629897
CAGL0M08552g	PMP3	Ortholog(s) have phosphatidic acid binding, phosphatidylinositol-3,5-bisphosphate binding, phosphatidylinositol-3-phosphate binding, sphingolipid binding activity	2.89209487015534
CAGL0M07700g	SEC59	Ortholog(s) have dolichol kinase activity, role in dolichyl monophosphate biosynthetic process and endoplasmic reticulum membrane localization	2.99113567794769
CAGL0A01243g	GIT1	Has domain(s) with predicted transmembrane transporter activity, role in transmembrane transport and integral component of membrane localization	3.07713324835091
CAGL0G05313g	IPT1	Ortholog(s) have transferase activity, transferring phosphorus-containing groups activity	3.13429457965559

CAGL0G08195g	UPS2	Ortholog(s) have role in cardiolipin metabolic process, cell-abiotic substrate adhesion, cristae formation, negative regulation of phosphatidylcholine biosynthetic process, phosphatidylethanolamine metabolic process, phospholipid transport	3.25334107754382
CAGL0H04543g	SCS22	Ortholog(s) have role in endoplasmic reticulum membrane organization, phospholipid biosynthetic process, regulation of phosphatidylinositol dephosphorylation and cytosol localization	3.27264711587291
CAGL0L09383g	SUT2	Ortholog(s) have sequence-specific DNA binding activity	3.31857738176565
CAGL0F03399g	SCS7	Ortholog(s) have fatty acid alpha-hydroxylase activity, role in mannosyl-inositol phosphorylceramide metabolic process and endoplasmic reticulum, membrane localization	3.35629749251716
CAGL0L02167g	FOX2	Ortholog(s) have 3-hydroxyacyl-CoA dehydrogenase activity, 3-hydroxybutyryl-CoA epimerase activity, enoyl-CoA hydratase activity	3.36281683748434
CAGL0M07315g	SUR1	Ortholog(s) have mannosyltransferase activity, role in glycosphingolipid biosynthetic process, mannosyl-inositol phosphorylceramide metabolic process, pathogenesis and fungal-type vacuole membrane localization	3.44798366938066
CAGL0M05995g	PET10	Ortholog(s) have lipid particle localization	3.49670606387067
CAGL0H09460g	FAA2	Ortholog(s) have long-chain fatty acid-CoA ligase activity, medium-chain fatty acid-CoA ligase activity, very long-chain fatty acid-CoA ligase activity and role in long-chain fatty acid metabolic process	3.55378406029287
CAGL0J04004g	MCP1	Ortholog(s) have role in lipid homeostasis, mitochondrion organization and integral component of mitochondrial membrane, mitochondrial outer membrane localization	3.59970873804449
CAGL0L04686g	CLD1	Ortholog(s) have phospholipase A2 activity, role in cardiolipin acyl-chain remodeling and Golgi apparatus, endoplasmic reticulum, mitochondrial inner membrane localization	3.6254364356395
CAGL0L10142g	RSB1	Putative sphingolipid flippase; gene is upregulated in azole-resistant strain	3.76825811940204
CAGL0C04939g	YJR107W	Has domain(s) with predicted triglyceride lipase activity and role in lipid metabolic process	3.84274562317944
CAGL0E05654g	PGC1	Ortholog(s) have phosphatidylglycerol phospholipase C activity, role in cell-abiotic substrate adhesion, phosphatidylglycerol catabolic process and lipid particle, mitochondrion localization	4.52965931280271
CAGL0H07271g	IPK1	Ortholog(s) have inositol pentakisphosphate 2-kinase activity, role in inositol phosphate biosynthetic process, nuclear- transcribed mRNA catabolic process, non-stop decay and nucleus localization	4.62627398792635

Table A2- Gene ID, S. cerevisiae orthologous, description and wild-type biofilm vs Δtec1 biofilm (log2FoldChange) for each differentially expressed gene in the most relevant functional groups. Full table is provided in supplementary material (CD).

	Gene ID	Sc orthologous	Description	log2FoldChange
	CAGL0A01870g		Has domain(s) with predicted integral component of membrane localization	-3.88091301462576
	CAGL0H08778g	PUF2	Ortholog(s) have mRNA binding activity, role in nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay and cytoplasm localization	-2.44615314403765
	CAGL0J04004g	MCP1	Ortholog(s) have role in lipid homeostasis, mitochondrion organization and integral component of mitochondrial membrane, mitochondrial outer membrane localization	-1.89986939579236
	CAGL0H01375g	SUR2	Predicted sphinganine hydroxylase with role in sphingolipid biosynthesis; mutants show reduced sensitivity to caspofungin and increased sensitivity to micafungin	-1.75308205145561
	CAGL0J11770g	PLB1	Putative phospholipase B; predicted GPI-anchor	-1.74036585587461
	CAGL0A00341g	MPO1	Ortholog(s) have role in sphingoid catabolic process and endoplasmic reticulum localization	-1.67386118804836
	CAGL0K08030g	NVJ2	Ortholog(s) have lipid binding activity and endoplasmic reticulum, nucleus-vacuole junction, plasma membrane, ribosome localization	-1.63823922558717
lism	CAGL0C05269g	INP54	Ortholog(s) have phosphatidylinositol-4,5-bisphosphate 5-phosphatase activity, role in phosphatidylinositol dephosphorylation and endoplasmic reticulum, fungal-type vacuole membrane localization	-1.52938178123045
abo	CAGL0M09713g	YIM1	Putative protein involved in DNA damage response; gene is upregulated in azole-resistant strain	-1.47774476394915
net	CAGL0K07458g	YPK1	Ortholog(s) have protein serine/threonine kinase activity	-1.36720022175466
i pid ı	CAGL0F03113g	SNX41	Ortholog(s) have phosphatidylinositol-3-phosphate binding activity, role in retrograde transport, endosome to Golgi and cytosol, endosome localization	-1.2163867012699
-	CAGL0G05313g	IPT1	Ortholog(s) have transferase activity, transferring phosphorus-containing groups activity	-1.20475968449519
	CAGL0109328g	TSC10	Ortholog(s) have 3-dehydrosphinganine reductase activity, role in 3-keto-sphinganine metabolic process, sphingolipid biosynthetic process and endoplasmic reticulum, lipid particle, mitochondrial outer membrane localization	-1.12636063070738
	CAGL0A04103g	UPS1	Ortholog(s) have phosphatidic acid transporter activity and role in cardiolipin metabolic process, phospholipid translocation, positive regulation of phosphatidylcholine biosynthetic process	-1.100231559034
	CAGL0K07293g	FAA4	Ortholog(s) have long-chain fatty acid-CoA ligase activity and role in long-chain fatty acid import, long-chain fatty-acyl-CoA metabolic process, sphingoid long-chain base transport	-1.04068854324073
	CAGL0J06952g	IDI1	Ortholog(s) have isopentenyl-diphosphate delta-isomerase activity, role in farnesyl diphosphate biosynthetic process and cytosol, nucleus localization	1.03903858140228
	CAGL0D04290g	YKL091C	Ortholog(s) have phosphatidylcholine binding, phosphatidylinositol binding activity and nucleus localization	1.04651137950607
	CAGL0I04334g	LCB3	Ortholog(s) have sphingosine-1-phosphate phosphatase activity, role in calcium-mediated signaling and endoplasmic reticulum localization	1.06990755158683

Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1

CAGL0M06237g	EHT1	Ortholog(s) have alcohol O-butanoyltransferase activity, serine hydrolase activity, short-chain carboxylesterase activity and role in medium-chain fatty acid biosynthetic process, medium-chain fatty acid catabolic process	1.0808538550145
CAGL0100330g	SCS3	Ortholog(s) have role in phospholipid biosynthetic process and endoplasmic reticulum localization	1.08556437888662
CAGL0109746g	SLY41	Ortholog(s) have phosphoenolpyruvate transmembrane transporter activity, role in ER to Golgi vesicle-mediated transport, phosphoenolpyruvate transmembrane import into Golgi lumen and Golgi apparatus, endoplasmic reticulum localization	1.09254809538777
CAGL0F07535g	YJU3	Ortholog(s) have acylglycerol lipase activity, serine hydrolase activity, role in triglyceride metabolic process and endoplasmic reticulum, lipid particle, mitochondrial outer membrane, plasma membrane localization	1.10480195143474
CAGL0I00462g	HRI1	Ortholog(s) have role in cotranslational protein targeting to membrane and cytosol, endoplasmic reticulum membrane localization	1.12026965245375
CAGL0B01947g	INO2	Transcriptional regulator involved in de novo inositol biosynthesis; activator of INO1 gene expression; mutants unable to grow in the absence of inositol	1.17626591465989
CAGL0G08085g	DNF2	Ortholog(s) have phospholipid-translocating ATPase activity	1.29334662458254
CAGL0C02717g	SPO7	Ortholog(s) have phosphoprotein phosphatase activity and role in negative regulation of phospholipid biosynthetic process, nuclear envelope organization, positive regulation of phosphatidate phosphatase activity, protein dephosphorylation	1.33164381511703
CAGL0M04367g	CKI1	Ortholog(s) have choline kinase activity, ethanolamine kinase activity, role in phosphatidylcholine biosynthetic process, phosphatidylethanolamine biosynthetic process and cytosol, nucleus localization	1.38034873985515
CAGL0K04103g	CAX4	Ortholog(s) have dolichyldiphosphatase activity, role in lipid biosynthetic process, protein N-linked glycosylation and integral component of endoplasmic reticulum membrane localization	1.39994600548092
CAGL0I00418g	OLE1	Ortholog(s) have electron carrier activity, stearoyl-CoA 9-desaturase activity	1.41239265640741
CAGL0106050g	INO1	Putative inositol 1-phosphate synthase; regulated by the transcriptional activators Ino2p and Ino4p; protein differentially expressed in azole resistant strain	1.49527197951874
CAGL0E01309g	EKI1	Ortholog(s) have choline kinase activity, ethanolamine kinase activity, role in phosphatidylcholine biosynthetic process, phosphatidylethanolamine biosynthetic process and cytoplasm localization	1.50037733456484
CAGL0L00847g	CBR1	Ortholog(s) have cytochrome-b5 reductase activity, acting on NAD(P)H activity and endoplasmic reticulum, mitochondrial outer membrane, nucleus, plasma membrane localization	1.53794065012536
CAGL0K02959g	NEM1	Ortholog(s) have phosphoprotein phosphatase activity and role in negative regulation of phospholipid biosynthetic process, nuclear envelope organization, positive regulation of phosphatidate phosphatase activity, protein dephosphorylation	1.62596274815806
CAGL0H07513g	IFA38	Predicted ketoreductase involved in production of very long chain fatty acid for sphingolipid biosynthesis; mutants show reduced sensitivity to caspofungin and increased sensitivity to micafungin	1.81485554834466
CAGL0L04642g	ALE1	Ortholog(s) have 1-acylglycerol-3-phosphate O-acyltransferase activity, 1-acylglycerophosphocholine O-acyltransferase activity, role in glycerophospholipid biosynthetic process and endoplasmic reticulum, ribosome localization	1.82752052652897
CAGL0J02970g	CEM1	Ortholog(s) have mitochondrion localization	1.85551622605975
CAGL0H09878g		Inorganic pyrophosphatase, cytoplasmic	1.92341385536309
CAGL0L08184g	ELO2	Predicted fatty acid elongase with role in sphingolipid biosynthetic process; mutants show reduced sensitivity to caspofungin and increased sensitivity to micafungin	1.98779625357107
CAGL0H03399g	HNM1	Ortholog(s) have (R)-carnitine transmembrane transporter activity, choline transmembrane transporter activity, ethanolamine transmembrane transporter activity	2.44970030301462
CAGL0D00528g	FAS1	Ortholog(s) have 3-hydroxyacyl-[acyl-carrier-protein] dehydratase activity, [acyl-carrier-protein] S-acetyltransferase activity and [acyl-carrier-protein] S-malonyltransferase activity, more	2.63652789314031

	CAGL0E06138g		Ortholog(s) have fatty acid synthase activity, role in palmitic acid biosynthetic process, response to pH and fatty acid synthase complex, glyoxysome localization	2.6868833625579
	CAGL0105940g	SFH5	Ortholog(s) have phosphatidylinositol transporter activity	2.94323266571164
	CAGL0I04070g	SLC1	Ortholog(s) have 1-acylglycerol-3-phosphate O-acyltransferase activity, role in glycerophospholipid biosynthetic process and endoplasmic reticulum, lipid particle, plasma membrane localization	3.00073831928014
	CAGL0H08712g		Has domain(s) with predicted phosphatidylinositol binding activity and role in cell communication	3.66985249965408
	CAGL0L10780g	HFA1	Ortholog(s) have acetyl-CoA carboxylase activity, role in fatty acid biosynthetic process and cytosol, fungal-type vacuole membrane, mitochondrion localization	3.76906082568599
.s	CAGL0M10571g	ARE2	Ortholog(s) have ergosterol O-acyltransferase activity, role in ergosterol metabolic process and endoplasmic reticulum localization	-2.60663182064951
hes	CAGL0F01419g	AUS1	ATP-binding cassette transporter involved in sterol uptake	-2.3393541054118
osynt	CAGL0J02684g	ERG28	Ortholog(s) have protein binding, bridging activity, role in ergosterol biosynthetic process and endoplasmic reticulum membrane localization	-1.31670788879883
ol bid	CAGL0L03828g	CYB5	Ortholog(s) have electron carrier activity, role in ergosterol biosynthetic process and endoplasmic reticulum membrane localization	-1.07531271060378
ster	CAGL0L10714g	ERG2	C-8 sterol isomerase	1.31011806705941
öß	CAGL0F03993g	ERG8	Ortholog(s) have phosphomevalonate kinase activity	1.33568136741782
ш	CAGL0L12364g	ERG10	Ortholog(s) have acetyl-CoA C-acetyltransferase activity, role in ergosterol biosynthetic process and cytosol, nucleus localization	1.97093105005441
	CAGL0M04763g	YOR289W	Ortholog(s) have role in cellular response to drug and cytosol, nucleus localization	-2.3565797510508
	CAGL0G05566g	FMP45	Ortholog(s) have role in ascospore formation, cellular response to drug, fungal-type cell wall organization	-2.13837310415967
	CAGL0F02717g	PDR15	Multidrug transporter, predicted plasma membrane ATP-binding cassette (ABC) transporter; regulated by Pdr1p; involved in fluconazole resistance	-2.07054320251719
s	CAGL0M08552g	PMP3	Ortholog(s) have phosphatidic acid binding, phosphatidylinositol-3,5-bisphosphate binding, phosphatidylinositol-3- phosphate binding, sphingolipid binding activity	-1.62202886134619
rug	CAGL0G01122g	YLR346C	Putative protein; gene is upregulated in azole-resistant strain	-1.43906480940674
рo	CAGL0E03674g		Putative drug:H+ antiporter, involved in efflux of clotrimazole; required for resistance to clotrimazole and other drugs	-1.29736540476397
set	CAGL0F03069g	CAD1	bZIP domain-containing protein	-1.24666448543314
spon	CAGL0M10307g	AUR1	Ortholog(s) have inositol phosphoceramide synthase activity and role in cellular response to drug, inositolphosphoceramide metabolic process, sphingolipid biosynthetic process	-1.20003281154036
Re	CAGL0I10384g	TPO2	Predicted polyamine transporter of the major facilitator superfamily; required for azole resistance	-1.17908308657211
	CAGL0G08624g	QDR1	Drug:H+ antiporter of the Major Facilitator Superfamily, confers imidazole drug resistance, involved in quinidine/multidrug efflux; gene is activated by Pdr1p; upregulated in azole-resistant strain	-1.15485871518729
	CAGL0108503g	MET16	Ortholog(s) have phosphoadenylyl-sulfate reductase (thioredoxin) activity and role in cellular response to drug, sulfate assimilation, phosphoadenylyl sulfate reduction by phosphoadenylyl-sulfate reductase (thioredoxin)	-1.09903950178777
	CAGL0B02079g	AZR1	Ortholog(s) have azole transporter activity, role in asperfuranone biosynthetic process, azole transport and plasma membrane localization	-1.05766730560832
	CAGL0L04466g	SEY1	Ortholog(s) have GTPase activity and role in cellular response to drug, endoplasmic reticulum inheritance, endoplasmic reticulum membrane fusion, hexose transport, pathogenesis	-1.04759909061909
-------	--------------	---------	--	-------------------
	CAGL0M01738g	SPT7	Ortholog(s) have structural molecule activity, role in cellular response to drug, conjugation with cellular fusion, histone acetylation, protein complex assembly and SAGA complex, SLIK (SAGA-like) complex, mitochondrion localization	1.07981805114753
	CAGL0B02343g	ATR1	Putative multidrug efflux pump of major facilitator superfamily; gene is downregulated in azole-resistant strain	1.16107209562374
	CAGL0J09944g	AQR1	Plasma membrane drug:H+ antiporter involved in resistance to drugs and acetic acid	1.35059902981903
	CAGL0L00869g	PKP1	Ortholog(s) have pyruvate dehydrogenase (acetyl-transferring) kinase activity, role in carbon utilization, cellular response to drug, peptidyl-serine phosphorylation and mitochondrion localization	1.71624380620693
	CAGL0C05555g	GUD1	Ortholog(s) have guanine deaminase activity, role in cellular response to drug and cytosol localization	1.78498661748683
	CAGL0G05269g	FMP16	Putative mitochondrial protein; gene is downregulated in azole-resistant strain	-2.86252551572596
	CAGL0G03289g	SSA4	Heat shock protein of the HSP70 family	-2.42527058598609
	CAGL0C04741g	SOD1	Cytosolic copper-zinc superoxide dismutase	-2.37027164196275
	CAGL0J08613g	YVC1	Ortholog(s) have calcium activated cation channel activity, calcium channel activity, potassium channel activity, sodium channel activity, voltage-gated ion channel activity	-2.26292293318458
	CAGL0K12958g		Putative stress-induced alcohol dehydrogenase; gene is upregulated in azole-resistant strain	-2.02495576305155
	CAGL0J06820g	RNY1	Ortholog(s) have endoribonuclease activity, role in RNA catabolic process, apoptotic process, cell morphogenesis and cytosol, extracellular region, fungal-type vacuole localization	-1.93947147757128
	CAGL0F07953g	SPG1	Ortholog(s) have endoplasmic reticulum, mitochondrion localization	-1.88589620810547
	CAGL0E05984g	GRE1	Ortholog of S. cerevisiae : GRE1 and Saccharomyces cerevisiae S288C : YPL223C	-1.88393227059029
res	CAGL0L02431g		Has domain(s) with predicted role in cell redox homeostasis	-1.87676632120402
to st	CAGL0K10868g		Putative catalase A; gene is downregulated in azole-resistant strain; regulated by oxidative stress and glucose starvation; protein abundance increased in ace2 mutant cells	-1.78141159201152
onse	CAGL0H06611g	ESL1	Ortholog of S. cerevisiae : ESL1, C. albicans SC5314 : C4_01020C_A, C. dubliniensis CD36 : Cd36_41030, C. parapsilosis CDC317 : CPAR2_401340 and Candida tenuis NRRL Y-1498 : CANTEDRAFT_104645	-1.71832180038471
esp	CAGL0G02101g	ECM4	Putative omega class glutathione transferase; gene is downregulated in azole-resistant strain	-1.62581374762683
R	CAGL0F05709g	ATC1	Ortholog(s) have role in bipolar cellular bud site selection, cellular cation homeostasis and cytoplasm, nucleus localization	-1.57029709466553
	CAGL0H03971g	YCP4	Ortholog(s) have role in cellular response to oxidative stress, pathogenesis and membrane raft, mitochondrion, plasma membrane localization	-1.54976963945856
	CAGL0D00660g	YDL073W	Ortholog(s) have MAP-kinase scaffold activity and role in negative regulation of MAP kinase activity, osmosensory signaling pathway via Sho1 osmosensor	-1.53745197353433
	CAGL0G08151g	GRX3	Ortholog(s) have 2 iron, 2 sulfur cluster binding, RNA polymerase II activating transcription factor binding, glutathione disulfide oxidoreductase activity	-1.5256951353135
	CAGL0J04202g	HSP12	Heat shock protein; gene is upregulated in azole-resistant strain; expression upregulated in biofilm vs planktonic cell culture	-1.49683229124089
	CAGL0H04037g	GAC1	Ortholog(s) have heat shock protein binding, protein phosphatase regulator activity and role in glycogen metabolic process, meiotic nuclear division, mitotic spindle assembly checkpoint, response to heat	-1.46441647552877
	CAGL0F03003g	HKR1	Ortholog(s) have osmosensor activity and role in (1->3)-beta-D-glucan biosynthetic process, cellular bud site selection, fungal-type cell wall organization, hyperosmotic response, osmosensory signaling pathway via Sho1 osmosensor	-1.45826808448714

	CAGL0D06600g	KNS1	Ortholog(s) have protein serine/threonine kinase activity, protein tyrosine kinase activity and role in negative regulation of transcription from RNA polymerase III promoter, peptidyl-serine phosphorylation, protein autophosphorylation	-1.3715423921649
	CAGL0107183g	SFL1	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, RNA polymerase II repressing transcription factor binding and RNA polymerase II transcription factor activity, more	-1.36675159534605
	CAGL0M10439g	NTH1	Ortholog(s) have alpha, alpha-trehalase activity, calcium ion binding activity, role in ascospore formation, cellular response to desiccation, trehalose catabolic process involved in cellular response to stress and cytosol localization	-1.35745282316783
	CAGL0F08217g	YGR250C	Ortholog(s) have mRNA binding activity and cytoplasmic stress granule localization	-1.3277130652816
CAGL0D06600gKNS1OrCAGL0I07183gSFL1CAGL0M10439gNTH1CAGL0F08217gYGR250CCAGL0M04675gRDL1CAGL0M13651aPBC4		RDL1	Ortholog(s) have thiosulfate sulfurtransferase activity and endoplasmic reticulum, mitochondrial outer membrane localization	-1.29254212990473
	CAGL0M13651g	PRC1	Ortholog(s) have serine-type carboxypeptidase activity, role in phytochelatin biosynthetic process and endoplasmic reticulum, extracellular region, fungal-type vacuole localization	-1.26785852242602
	CAGL0L09339g	HAA1	Putative transcription factor, involved in regulation of response to acetic acid stress	-1.26418948968026
	CAGL0F06545g	RIM9	Ortholog(s) have role in ascospore formation, cellular response to alkaline pH, cellular response to lithium ion, cellular response to neutral pH and cellular response to starvation, more	-1.26003255816952
	CAGL0E00803g	HSP42	Putative small cytosolic stress-induced chaperone; gene is upregulated in azole-resistant strain	-1.20999224353021
	CAGL0F07513g	MBR1	Ortholog(s) have role in aerobic respiration	-1.1906261449888
	CAGL0L05258gSRX1CCAGL0K06259gTSA2ThCAGL0L10890gYTM1O		Ortholog(s) have sulfiredoxin activity, role in cellular protein localization, cellular response to oxidative stress and cytosol, nucleus localization	
			Thiol-specific antioxidant protein; predicted thioredoxin peroxidase involved in oxidative stress response; protein abundance decreased in ace2 mutant cells	-1.11295228321097
			Ortholog(s) have role in cellular response to biotic stimulus, cellular response to starvation and chromosome organization, more	-1.11212606700758
CAGL0F09075g SCH9 Ortholog(s) have prote CAGL0K09900g HAP5 Ortholog(s) have DNA binding, RNA polymerase II transcription factor activity,		SCH9	Ortholog(s) have protein serine/threonine kinase activity	-1.05380615755593
		HAP5	Ortholog(s) have DNA binding, RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	-1.04030140369281
	CAGL0L11110g	CMP2	Catalytic subunit of calcineurin, calcium/calmodulin-dependent Ser/Thr-specific protein phosphatase; regulates stress- responding transcription factor Crz1p; involved in thermotolerance, response to ER stress, cell wall integrity, virulence	-1.00490746352909
	CAGL0I04048g		Ortholog(s) have fructose 1,6-bisphosphate 1-phosphatase activity, role in carbon utilization, cellular response to glucose starvation, glycerol catabolic process and cytosol, nucleus localization	-1.00273688734617
	CAGL0L06666g	YHB1	Putative flavohemoglobin, involved in nitric oxide detoxification	-1.00029493140007
	CAGL0G00946g		Has domain(s) with predicted thiol oxidase activity and role in oxidation-reduction process	1.08533681359678
	CAGL0F09097g	SKN7	Predicted transcription factor, involved in oxidative stress response; required for induction of TRX2, TRR1 and TSA1 transcription under oxidative stress	1.09453823780125
	CAGL0B03509g	RCK2	Ortholog(s) have protein serine/threonine kinase activity	1.10694212209907
	CAGL0L10538g	PAN5	Ortholog(s) have cytosol, nucleus localization	1.11148781501821
	CAGL0E04114g	AFG1	Ortholog(s) have role in cellular response to oxidative stress, misfolded or incompletely synthesized protein catabolic process, protein import into peroxisome matrix and mitochondrial inner membrane localization	1.11571238378917
	CAGL0K08492g	YPF1	Ortholog(s) have aspartic endopeptidase activity, intramembrane cleaving activity and role in cellular response to starvation, proteolysis involved in cellular protein catabolic process	1.14949847461296

	CAGL0C02321g	PHM8	Ortholog(s) have lysophosphatidic acid phosphatase activity, nucleotidase activity and role in cellular response to phosphate starvation, nucleotide catabolic process, response to carbon starvation, triglyceride homeostasis	1.18187737489927
	CAGL0M11704g	AHP1	Putative thiol-specific peroxiredoxin; alkyl hydroperoxide reductase; protein differentially expressed in azole resistant strain; expression upregulated in biofilm vs planktonic cell culture; protein abundance decreased in ace2 mutant cells	1.23931434133212
	CAGL0A03784g	TIM18	Ortholog(s) have protein channel activity and role in apoptotic process, cellular response to oxidative stress, protein import into mitochondrial inner membrane, response to arsenic-containing substance, response to osmotic stress	1.24891173105336
	CAGL0L11990g	GRX4	Ortholog(s) have RNA polymerase II activating transcription factor binding, disulfide oxidoreductase activity	1.25751405713217
	CAGL0L00495g	HSC82	Putative heat shock protein	1.26076762114484
	CAGL0108855g	TRS65	Ortholog(s) have Rab guanyl-nucleotide exchange factor activity, role in intra-Golgi vesicle-mediated transport, protein complex assembly and TRAPPII protein complex, trans-Golgi network localization	1.26896227056989
	CAGL0H01199g	GCN2	Ortholog(s) have eukaryotic translation initiation factor 2alpha kinase activity, tRNA binding activity	1.32880773328243
	CAGL0L07304g	GET3	Ortholog(s) have ATPase activity, guanyl-nucleotide exchange factor activity, unfolded protein binding activity	1.4911596213114
	CAGL0A02530g	TRR1	Thioredoxin reductase	1.53449280723124
-	CAGL0G01925g	YKR070W	Ortholog(s) have role in hyperosmotic response, response to antibiotic, response to salt stress and mitochondrion localization	1.56582880376081
	CAGL0L03157g	DAL80	Ortholog(s) have RNA polymerase II transcription factor activity, sequence-specific DNA binding, sequence-specific DNA binding activity	1.64546001845417
	CAGL0K01265g	PRP38	Ortholog(s) have role in cellular response to biotic stimulus, cellular response to starvation and filamentous growth of a population of unicellular organisms in response to biotic stimulus, more	1.71664880013701
	CAGL0H06523g	PAN6	Ortholog(s) have pantoate-beta-alanine ligase activity, role in pantothenate biosynthetic process and cytosol, nucleus localization	2.01284928501794
	CAGL0K05137g	ATH1	Ortholog(s) have alpha, alpha-trehalase activity and role in cellular response to desiccation, cellular response to ethanol, cellular response to freezing, pathogenesis, trehalose catabolic process	2.07316422295874
	CAGL0F03553g	DAP1	Putative heme-binding protein involved in regulation of cytochrome P450, Erg11p; required for growth under iron starvation	2.11811147019201
	CAGL0G03795g	SSA2	Heat shock protein of the HSP70 family	2.14502062700479
	CAGL0L01551g	SUR7	Ortholog(s) have role in ascospore formation, cellular response to biotic stimulus, cellular response to chemical stimulus, cellular response to glucose starvation and cellular response to neutral pH, more	2.19937081935591
	CAGL0M07293g	PDR12	Putative ABC transporter of weak organic acids; gene is downregulated in azole-resistant strain	2.87444296073841
	CAGL0G05984g	SPS100	Ortholog(s) have role in ascospore wall assembly	-2.4284908690557
all ition	CAGL0107249g	BAG7	Putative GTPase-activating protein involved in cell wall and cytoskeleton homeostasis; gene is upregulated in azole- resistant strain	-2.13772974350001
ell walan	CAGL0F00891g	LDS2	Ortholog(s) have role in ascospore wall assembly and ascospore wall, ascus lipid particle, cytoplasm, prospore membrane localization	-2.11910445373268
org	CAGL0C03872g	TIR3	Putative GPI-linked cell wall protein involved in sterol uptake	-2.10649440452375
	CAGL0F03883g	GAS3	Putative glycoside hydrolase of the Gas/Phr family; predicted GPI-anchor	-2.08118221694821

CAGL0K05247g	CSR2	Ortholog(s) have ubiquitin protein ligase binding activity, role in fungal-type cell wall organization, regulation of transcription from RNA polymerase II promoter and cytosol, nucleus localization	-2.04699414866645
CAGL0H10120g	YBR056W	Ortholog(s) have glucan endo-1,6-beta-glucosidase activity and role in fungal-type cell wall beta-glucan metabolic process, fungal-type cell wall disassembly involved in conjugation with cellular fusion	-1.80834653196511
CAGL0F00869g	0F00869g RRT8 Ortholog(s) have role in ascospore wall assembly and ascospore wall, lipid particle, prospore membrane lo		-1.72145130156897
CAGL0B02882g		Beta mannosyltransferase; transmembrane domain protein similar to C. albicans WRY family; gene is downregulated in azole-resistant strain	-1.66649015744415
CAGL0H09614g	TIR1	Putative GPI-linked cell wall protein	-1.6470678295455
CAGL0I10516g	YGR130C	Ortholog(s) have role in fungal-type cell wall organization, pathogenesis and cytoplasm, eisosome, integral component of plasma membrane, membrane raft localization	-1.56652690608562
CAGL0J06050g	YGP1	Ortholog(s) have role in cell wall assembly and extracellular region localization	-1.54393046391714
CAGL0H09592g		Putative GPI-linked cell wall protein	-1.51461410946931
CAGL0K12980g		Beta mannosyltransferase	-1.48360421690155
CAGL0F07579g	CWP1	Putative GPI-linked cell wall protein	-1.3701435791406
CAGL0B02948g		Beta mannosyltransferase	-1.34826061077687
CAGL0E02255g	ZEO1	Ortholog(s) have role in fungal-type cell wall organization and extrinsic component of plasma membrane, mitochondrial outer membrane localization	-1.33579451568817
CAGL0F01859g	OSW2	Ortholog(s) have role in ascospore wall assembly and cytoplasm, prospore membrane localization	-1.29664186486439
CAGL0D00286g		Beta mannosyltransferase	-1.27989693282127
CAGL0J11462g	YNL190W	Ortholog(s) have GTPase regulator activity, role in Ras protein signal transduction, fungal-type cell wall biogenesis, positive regulation of transcription from RNA polymerase II promoter and nucleus localization	-1.1755019753622
CAGL0G08602g	RPI1	Ortholog(s) have GTPase regulator activity, role in Ras protein signal transduction, fungal-type cell wall biogenesis, positive regulation of transcription from RNA polymerase II promoter and nucleus localization	-1.1304704139168
CAGL0G06072g	ECM14	Ortholog(s) have endoplasmic reticulum, fungal-type vacuole localization	-1.11591600988049
CAGL0D01276g	OPY2	Ortholog(s) have role in establishment of protein localization to plasma membrane, fungal-type cell wall biogenesis, mitotic cell cycle G1 arrest in response to pheromone and osmosensory signaling pathway, more	-1.07425259201139
CAGL0K12408g	BST1	Ortholog(s) have phosphatidylinositol deacylase activity	1.0039656579656
CAGL0G00220g	BGL2	Ortholog(s) have 1,3-beta-glucanosyltransferase activity, glucan endo-1,3-beta-D-glucosidase activity	1.09216049864001
CAGL0B03905g	GPI14	Ortholog(s) have mannosyltransferase activity, role in GPI anchor biosynthetic process, fungal-type cell wall organization, hyphal growth and glycosylphosphatidylinositol-mannosyltransferase I complex localization	1.0960042527466
CAGL0F01463g	TIR2	Putative GPI-linked cell wall mannoprotein of the Srp1p/Tip1p family	1.12221284302969
CAGL0F01287g	GAS5	Putative transglycosidase with a predicted role in the elongation of 1,3-beta-glucan	1.16050128625682
CAGL0E05412g	KRE5	Ortholog(s) have UDP-glucose:glycoprotein glucosyltransferase activity	1.18019570129626
CAGL0C05577g	ADY3	Ortholog(s) have role in ascospore wall assembly, ascospore-type prospore membrane assembly, mitochondrion inheritance and prospore membrane leading edge, spindle pole body localization	1.19392200334493
CAGL0L12232g	GAA1	Ortholog(s) have role in attachment of GPI anchor to protein and GPI-anchor transamidase complex localization	1.35448191452692

IST | 147 Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1 |

	CAGL0L07370g	QRI1	Ortholog(s) have UDP-N-acetylglucosamine diphosphorylase activity, role in UDP-N-acetylglucosamine biosynthetic process and cytosol, nucleus localization	1.36154860762885
	CAGL0C02101g	KEG1	Ortholog(s) have role in (1->6)-beta-D-glucan biosynthetic process, chromosome organization and integral component of endoplasmic reticulum membrane localization	1.41190160633075
	CAGL0A04411g	SKT5	Ortholog(s) have enzyme activator activity and role in barrier septum assembly, cellular protein localization, fungal-type cell wall chitin biosynthetic process, regulation of fungal-type cell wall beta-glucan biosynthetic process	1.41822665286383
	CAGL0I04818g	QRI1 Offmolog(s) have role in (16)-breace brighteetic dytos), note localization 1.361 KEG1 Ortholog(s) have role in (16)-breace brighteetic process, chromosome organization and integral component of endoplasmic reliculuum methane localization 1.411 SKT5 Ortholog(s) have enzyme activator activity and role in barrier septum assembly, cellular protein localization, fungal-type cell wall beta-gluccan biosynthetic process. 1.416 CKH2 Ortholog(s) have enzyme activator activity and role in barrier septum assembly, cellular protein localization, fungal-type cell 1.456 CKH2 Ortholog(s) have chin synthase activity 1.456 CWP2 GPI-linked cell wall protein 1.496 PUtative glycoside hydrolase of the Crh family; predicted GPI-anchor 1.646 PKSA1 GDP-mannose pyrophosphorylase involved in the synthesis of GDP-mannose for protein glycosylation 2.266 NCG3 Ortholog(s) have role in fungal-type cell wall organization or biogenesis, mitochondrion organization and fungal-type cell 2.866 SIM1 Ortholog(s) have role in fungal-type cell wall organization and endoplasmic reticulum, fungal-type cell wall localization 3.557 CIS3 Pir protein family member, putative cell wall component 2.441 VEV Cell wall adhesin; predicted GPI anchor; belongs to adhesin cluster I	1.4595598037469	
	CAGL0F07601g	CWP2	GPI-linked cell wall protein	1.49964111377883
	CAGL0C02211g		Putative glycoside hydrolase of the Crh family; predicted GPI-anchor	1.60637947827916
	CAGL0M08756g	EXG2	Putative exo-1,3-beta-glucanase; predicted GPI-anchor	1.64564157621726
	CAGL0D01034g	PSA1	GDP-mannose pyrophosphorylase involved in the synthesis of GDP-mannose for protein glycosylation	2.16918641553043
	CAGL0M08514g	SL0L07370g QRI1 Ortholog(s) have UDP-N-acetylglucosamine diphosphorylase activity, role in UDP-N-acetylglucosamine biosynthetic process and cytosol, nucleus localization SL0C02101g KEG1 Ortholog(s) have role in (1-s6)-beta-D-glucan biosynthetic process, chromosome organization and integral component of endpolarsmic reticulum membrane localization SKT5 Ortholog(s) have enzyme activator activity and role in barrier septum assembly, cellular protein localization, fungal-type cell wall chilin biosynthetic process, regulation of fungal-type cell wall beta-glucan biosynthetic process SL004818g CHS2 Ortholog(s) have enzyme activator activity and role in barrier septum assembly, cellular protein localization, fungal-type cell wall component SL0070501g CWP2 CP1-linked cell wall protein SL008756g EXG2 Putative glycoside hydrolase of the Crh family, predicted GP1-anchor SL008756g EXG2 Putative glycoside hydrolase of the Crh family, method cell wall component SL008514g PIR3 GDP-mannose pyrophosphorylase involved in the synthesis of GDP-mannose for protein glycosylation SL008668g SIM1 Ortholog(s) have role in fungal-type cell wall organization and endoplasmic reticulum, fungal-type cell wall localization SL0086660g CIS3 Pir protein family member, putative cell wall component SL01060460g CIS3 Pirtop	2.28044147585019	
	CAGL0L05434g	NCA3	Ortholog(s) have role in fungal-type cell wall organization or biogenesis, mitochondrion organization and fungal-type cell wall, fungal-type vacuole localization	2.56519947015104
	CAGL0G08668g	Olg OR11 Entroduction of the process and cytosi, nucleus localization 1.31543680/762885 Ortg KEG1 Ortholog(s) have role in (1s)-beta-his/methic process, chromosome organization and integral component of endoplasmic reticulum membrane localization 1.41190160633075 11g SKT5 Ortholog(s) have role in (1s)-beta-his/methic process, regulation of fungal-type cell wall beta-glucan biosynthetic process 1.41822665286383 11g CWP2 CPI-Intek cell wall protein 1.4395538037469 11g CWP2 CPI-Intek cell wall protein 1.49565111377883 11g CWP2 CPI-Intek cell wall protein 1.60637947827916 56g EXG2 Putative glycoside hydrolase of the Crh family; predicted GPI-anchor 1.60637947827916 34g PR4 GDP-mannose prophosphorylase involved in the synthesis of GDP-mannose for protein glycosylation 2.16918641553043 34g NCA3 Ortholog(s) have role in fungal-type cell wall organization or biogenesis, mitochondrion organization and fungal-type cell 2.56619947015104 68g SIM1 Ortholog(s) have role in fungal-type cell wall organization and endoplasmic reticulum, fungal-type cell wall localization 3.546236073946 70g CIS3 Pir protein family m		
	CAGL0I06160g	CIS3	Pir protein family member, putative cell wall component	3.46161409831653
	CAGL0K13002g		Putative adhesin; predicted GPI-anchor; belongs to adhesin cluster III	-2.57134078544503
	CAGL0I10340g		Cell wall adhesin; predicted GPI anchor; contains tandem repeats; belongs to adhesin cluster II	-2.4444537915958
	CAGL0H10626g		Predicted cell wall adhesin with a role in adhesion; belongs to adhesin cluster III; predicted GPI anchor; contains tandem repeats	-2.32995390294082
u	CAGL0L00583g	USV1	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	-2.29318880554299
nati	CAGL0L02453g	MIT1	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	-2.04678290411291
n forr	CAGL0K07007g	YBR238C	Ortholog(s) have mRNA binding activity and role in aerobic respiration, filamentous growth of a population of unicellular organisms in response to neutral pH, single-species biofilm formation on inanimate substrate	-1.80763597643238
ofiln	CAGL0M04807g	SNF2	Component of the chromatin remodelling Swi/Snf complex; involved in regulation of biofilm formation	-1.73848420535382
biq	CAGL0J09922g	SUN4	Ortholog(s) have glucan endo-1,3-beta-D-glucosidase activity	-1.65420943709638
n and	CAGL0K03003g	MOT3	Ortholog(s) have RNA polymerase II activating transcription factor binding and RNA polymerase II core promoter proximal region sequence-specific DNA binding, more	-1.6027834745932
sio	CAGL0J02530g		Putative adhesion protein; predicted GPI-anchor; belongs to adhesin cluster VI	-1.59168581282626
dhe	CAGL0L01771g	PHD1	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	-1.51763089124678
∢	CAGL0G04125g		Protein with similarity to S. cerevisiae Sag1 agglutinin, involved in cell adhesion; predicted GPI-anchor	-1.48221733406149
	CAGL0A01366g		Putative adhesin; belongs to adhesin cluster I	-1.44963273561852
	CAGL0M07634g	SOK2	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	-1.44233119307216
	CAGL0A01284g		Putative adhesin-like protein; belongs to adhesin cluster I	-1.41956628914455

	CAGL0K10164g	SED1	Predicted GPI-linked protein; putative adhesin-like protein	-1.40415612643359
	CAGL0K13024g		Adhesin-like protein required for adherence to endothelial cells; identified in cell wall extracts by mass spectrometry; belongs to adhesin cluster III; predicted GPI anchor; 6 tandem repeats; expressed more in stationary growth phase	-1.38137124457619
	CAGL0E05566g	TYE7	Ortholog(s) have sequence-specific DNA binding, transcription factor activity, sequence-specific DNA binding activity	-1.30159812112794
	CAGL0H08844g	DDR48	Putative adhesin-like protein	-1.10912618657301
	CAGL0K00110g		Putative adhesin; identified in cell wall extracts by mass spectrometry; belongs to adhesin cluster V; predicted GPI-anchor	1.20652472796853
	CAGL0E06666g		Epithelial adhesion protein; predicted GPI-anchor; belongs to adhesin cluster I	1.29023503519476
	CAGL0G09537g	IES4	Putative adhesin-like protein	1.51937315305889
	CAGL0M08448g	MCD4	Ortholog(s) have mannose-ethanolamine phosphotransferase activity and role in ATP transport, GPI anchor biosynthetic process, conidium formation, regulation of growth rate	1.58416869192494
	CAGL0M09086g	BUD4	Ortholog(s) have GTP binding, cell adhesion molecule binding activity	1.62491137006138
	CAGL0F08833g	MSB2	Putative adhesin-like protein	1.64420919976671
	CAGL0M05599g	TOS1	Ortholog(s) have cell surface, endoplasmic reticulum, extracellular region, fungal-type vacuole, hyphal cell wall localization	1.87514214795963
	CAGL0100484g	EXG1	Ortholog(s) have cell adhesion molecule binding, glucan endo-1,6-beta-glucosidase activity, glucan exo-1,3-beta- glucosidase activity	2.53390309171756
	CAGL0E06644g		Sub-telomerically encoded adhesin with a role in cell adhesion; GPI-anchored cell wall protein; N-terminal ligand binding domain binds to ligands containing a terminal galactose residue; belongs to adhesin cluster I	2.5784581997599
	CAGL0M03773g	TOS6	Predicted GPI-linked adhesin-like protein	2.9283532093881
	CAGL0K09130g	SRL1	Putative adhesin-like protein	3.05425320841327
	CAGL0A01826g	HXT3	Ortholog(s) have glucose transmembrane transporter activity and plasma membrane localization	-4.232052320438
E	CAGL0K10428g	IGD1	Ortholog(s) have enzyme inhibitor activity, role in negative regulation of glycogen catabolic process and cytoplasm localization	-3.71261565298922
bolisi	CAGL0K12078g	NRG1	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, RNA polymerase II repressing transcription factor binding and transcriptional repressor activity, more	-3.11039130707329
eta	CAGL0H06633g		Putative phosphoenolpyruvate carboxykinase; gene is downregulated in azole-resistant strain	-2.05778891511583
E Z	CAGL0M08800g	YAP6	bZIP domain-containing protein	-2.03062615849952
erg	CAGL0K03421g	PGM2	Ortholog(s) have phosphoglucomutase activity	-1.6794662408765
nd en	CAGL0L03377g	SIP4	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	-1.64120667493773
on al	CAGL0E05148g	AMS1	Ortholog(s) have alpha-mannosidase activity, role in oligosaccharide catabolic process and cytosol, fungal-type vacuole membrane localization	-1.61219043573685
arb	CAGL0F04851g	NCA2	Ortholog(s) have role in aerobic respiration, mRNA metabolic process and mitochondrial outer membrane localization	-1.57898277163458
0	CAGL0M13343g	GND1	6-phosphogluconate dehydrogenase	-1.57698015974231
	CAGL0M09020g	SFC1	Ortholog(s) have succinate:fumarate antiporter activity, role in acetate catabolic process, carbon utilization, fatty acid catabolic process, fumarate transport, succinate transport and mitochondrion, plasma membrane localization	-1.55254700114783

Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1

	CAGL0A02321g	HXT5	Ortholog(s) have fructose transmembrane transporter activity, glucose transmembrane transporter activity, mannose transmembrane transporter activity and role in fructose import across plasma membrane, glucose import across plasma membrane membrane	-1.5506559242774
	CAGL0M12551g	RGI2	Ortholog(s) have role in energy reserve metabolic process and cytoplasm localization	-1.49113781692603
	CAGL0E05610g	PYK2	Ortholog(s) have pyruvate kinase activity, role in canonical glycolysis, pyruvate biosynthetic process and cytosol, mitochondrion localization	-1.4449638204429
	CAGL0B04917g	IDP2	S-adenosylmethionine synthetase	-1.44242698613362
	CAGL0J02904g	GIP2	Ortholog(s) have protein phosphatase regulator activity, role in glycogen metabolic process, protein dephosphorylation and protein phosphatase type 1 complex localization	-1.44221003324356
	CAGL0M03025g	CAT8	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	-1.30241462277849
CAGL0D01100g Has domain(s) with predicted 6-phosphofructo-2-kinase activity, ATP binding, catalytic activit bisphosphate metabolic process, fructose metabolic process			Has domain(s) with predicted 6-phosphofructo-2-kinase activity, ATP binding, catalytic activity and role in fructose 2,6- bisphosphate metabolic process, fructose metabolic process	-1.29170991172458
	CAGL0E04884g	ADR1	ADR1 Ortholog(s) have RNA polymerase II activating transcription factor binding, RNA polymerase II core promoter proximal region sequence-specific DNA binding and TFIIB-class transcription factor binding, more	
	CAGL0H03993g	CIT1	Ortholog(s) have citrate (Si)-synthase activity, role in acetyl-CoA catabolic process, tricarboxylic acid cycle and glyoxysome, mitochondrion localization	-1.25106899775399
	CAGL0C05027g	YAT1	Ortholog(s) have role in acetate catabolic process, alcohol metabolic process, carnitine metabolic process, cellular respiration and cytosol, mitochondrion localization	-1.23963539248718
CAGL0A01628		MIG1	Transcriptional regulatory protein	-1.2004704562178
	CAGL0L09086g	CIT3	Ortholog(s) have 2-methylcitrate synthase activity, citrate (Si)-synthase activity, role in propionate catabolic process, 2- methylcitrate cycle, tricarboxylic acid cycle and mitochondrion localization	-1.19847900018678
	CAGL0C05137g	GPD2	Putative glycerol 3-phosphate dehydrogenase; protein differentially expressed in azole resistant strain	-1.19355840202909
	CAGL0L03982g	MLS1	Ortholog(s) have malate synthase activity, role in acetate catabolic process, carbon utilization, fatty acid catabolic process, glyoxylate cycle and cytosol, glyoxysome, peroxisomal matrix localization	-1.17025513337122
	CAGL0J07612g	ZWF1	Glucose-6-phosphate 1-dehydrogenase	-1.16464735429344
	CAGL0J09020g	SNF3	Putative plasma membrane high affinity glucose sensor, required for growth under glucose-limiting conditions	-1.14814751650483
	CAGL0D06424g	ACO1	Putative aconitate hydratase	-1.11318008616815
	CAGL0K03289g	YMR099C	Aldose 1-epimerase	-1.09548850322841
	CAGL0K12254g	VID24	Ortholog(s) have role in negative regulation of gluconeogenesis, proteasome-mediated ubiquitin-dependent protein catabolic process, protein catabolic process in the vacuole, protein targeting to vacuole	-1.0668888645204
	CAGL0K08624g	HAP4	Ortholog(s) have RNA polymerase II activating transcription factor binding, transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	-1.02648316387289
	CAGL0K10296g	IAH1	Ortholog(s) have hydrolase activity, acting on ester bonds activity	1.02466866814021
	CAGL0L09108g	PDH1	Ortholog(s) have role in propionate metabolic process and mitochondrial outer membrane localization	1.0255908833549
	CAGL0M13013g	OAR1	Ortholog(s) have 3-oxoacyl-[acyl-carrier-protein] reductase (NADPH) activity, role in aerobic respiration, fatty acid metabolic process and mitochondrion localization	1.06808652780803

	CAGL0L07480g	NRG2	Ortholog(s) have double-stranded DNA binding, sequence-specific DNA binding, transcription factor activity, sequence- specific DNA binding activity	1.11806091394874
	CAGL0K08756g	YAP5	bZIP domain-containing protein	1.14776118921033
	CAGL0B04059g	TES1	Ortholog(s) have acyl-CoA hydrolase activity, role in fatty acid beta-oxidation and glyoxysome, mitochondrion localization	1.1651747128677
	CAGL0F06897g	YIR035C	Putative protein with alcohol dehydrogenase domain; gene is downregulated in azole-resistant strain	1.16540657076476
	CAGL0A01804g	HXT1	Ortholog(s) have fructose transmembrane transporter activity, pentose transmembrane transporter activity, role in glucose transport, mannose transport and plasma membrane localization	1.22052995938921
	CAGL0J01441g	ADH3	Ortholog(s) have alcohol dehydrogenase (NAD) activity	1.25564397456201
	CAGL0B02717g		Ortholog(s) have role in acetate catabolic process, carbon utilization and cytosol, extracellular region, nucleus localization	1.31382814719432
	CAGL0K06787g	PYC2	Ortholog(s) have pyruvate carboxylase activity, role in carbon utilization, cellular response to glucose starvation, gluconeogenesis, response to heat and cytosol localization	1.43183332104089
	CAGL0H06699g	GUT2	Ortholog(s) have glycerol-3-phosphate dehydrogenase activity, role in NADH oxidation, glycerol metabolic process, replicative cell aging and integral component of mitochondrial outer membrane, plasma membrane localization	1.49238955147697
	CAGL0K09372g	MIG2	Ortholog(s) have RNA polymerase II core promoter proximal region sequence-specific DNA binding, transcriptional repressor activity, RNA polymerase II core promoter proximal region sequence-specific binding activity	1.57939295228499
	CAGL0L02079g	CTP1	Ortholog(s) have tricarboxylate secondary active transmembrane transporter activity, role in mitochondrial citrate transport, transmembrane transport and mitochondrion, plasma membrane localization	1.60769661985165
	CAGL0J07084g	YPL113C	Ortholog(s) have oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor activity	1.80041022369914
	CAGL0E01529g	PFK27	Ortholog(s) have role in fructose 2,6-bisphosphate metabolic process, regulation of glycolytic process	1.96593226959918
	CAGL0M00682g	YLR446W	Has domain(s) with predicted ATP binding, glucose binding, hexokinase activity, phosphotransferase activity, alcohol group as acceptor activity	2.03265265239099
	CAGL0H06853g		Putative NADP-dependent alcohol dehydrogenase VI; protein abundance increased in ace2 mutant cells	2.04020308802061
	CAGL0J08272g	GOR1	Ortholog(s) have glyoxylate reductase activity, role in glyoxylate catabolic process and cytosol, extracellular region, mitochondrion, nucleus localization	2.05345742335879
	CAGL0E05280g		Putative methylglyoxal reductase (NADPH-dependent)	2.19519426325537
	CAGL0107117g	THI80	Ortholog(s) have thiamine diphosphokinase activity, role in thiamine diphosphate biosynthetic process and cytoplasm localization	2.61571962340388
	CAGL0A01782g	HXT4	Ortholog(s) have glucose transmembrane transporter activity, pentose transmembrane transporter activity and plasma membrane localization	2.96018916343664
	CAGL0M03465g	ATO2	Ortholog(s) have ammonium transmembrane transporter activity and role in ammonium transport, nitrogen utilization, plasma membrane acetate transport	-2.90347880573075
en lism	CAGL0C04191g	UGA2	Ortholog(s) have succinate-semialdehyde dehydrogenase [NAD(P)+] activity and role in cellular response to oxidative stress, gamma-aminobutyric acid catabolic process, glutamate decarboxylation to succinate	-2.02719534405534
litrog etabo	CAGL0H02585g	GAD1	Ortholog(s) have glutamate decarboxylase activity, role in cellular response to oxidative stress, glutamate catabolic process and cytoplasm localization	-1.50087322150751
∠ e	CAGL0I08613g		Putative plasma membrane polyamine transporter	-1.45150569006885
	CAGL0A03212g	ATO3	Ortholog(s) have ammonium transmembrane transporter activity, role in ammonium transport, nitrogen utilization, transmembrane transport and mitochondrion, plasma membrane localization	-1.17970132768684

	CAGL0G05698g	GDH2	Ortholog(s) have glutamate dehydrogenase (NAD+) activity, role in nitrogen compound metabolic process and cytosol, mitochondrion localization	-1.05051188026314		
	CAGL0G04389g	GZF3	Ortholog(s) have RNA polymerase II transcription factor activity, sequence-specific DNA binding, sequence-specific DNA binding activity	1.12334659327785		
	CAGL0J06028g	MEP2	Ortholog(s) have high-affinity secondary active ammonium transmembrane transporter activity, methylammonium transmembrane transporter activity	1.61956632733007		
	CAGL0K03157g	DUR3	Putative plasma membrane polyamine transporter	2.40446361386073		
	CAGL0M05533g		Ortholog(s) have role in nitrogen compound metabolic process	2.77171967699491		
etabolism	CAGL0M00154g	MET14	Plasma membrane high affinity cystine specific transporter; present only in pathogenic yeasts; confers the ability to utilize cystine as a sulfur source	-2.60447381729524		
	CAGL0L02321g	ALT1	Ortholog(s) have adenylylsulfate kinase activity, role in sulfate assimilation, phosphoadenylyl sulfate reduction by phosphoadenylyl-sulfate reductase (thioredoxin), sulfur amino acid metabolic process and cytosol, nucleus localization	-2.39611257730056		
	CAGL0L12254g	TMT1	Ortholog(s) have L-alanine:2-oxoglutarate aminotransferase activity, role in alanine biosynthetic process, alanine catabolic process, cellular response to drug, chronological cell aging and cytosol, mitochondrion, nucleus localization	-1.98742680219027		
	CAGL0L12012g	MET1	Ortholog(s) have trans-aconitate 3-methyltransferase activity and cytosol localization	-1.86445107901382		
	CAGL0G01903g	MET28	Ortholog(s) have uroporphyrin-III C-methyltransferase activity, role in cellular response to drug, methionine biosynthetic process, siroheme biosynthetic process and nucleus localization			
	CAGL0K08668g	MET32	bZIP domain-containing protein	-1.47156823413963		
	CAGL0B02651g	CIA2	Ortholog(s) have RNA polymerase II activating transcription factor binding, RNA polymerase II transcription factor activity and sequence-specific transcription regulatory region DNA binding, more	-1.40200691165499		
	CAGL0L13046g	MET17	Ortholog(s) have role in iron-sulfur cluster assembly and cytosol, nucleus localization	-1.33353770603314		
	CAGL0D06402g	PUT1	O-acetyl homoserine sulfhydrylase (OAHSH), ortholog of <i>S. cerevisiae</i> MET17; required for utilization of inorganic sulfate as sulfur source; able to utilize cystine as a sulfur source while <i>S. cerevisiae</i> met15 mutants are unable to do so	-1.28537357460474		
cid m	CAGL0M04499g	GLT1	Ortholog(s) have proline dehydrogenase activity, role in proline catabolic process to glutamate and mitochondrion localization	-1.27967447734024		
linoa	CAGL0L01089g	ARG82	Ortholog(s) have glutamate synthase (NADH) activity, role in glutamate biosynthetic process and cytosol, mitochondrion localization	-1.276247926315		
Am	CAGL0E00759g	ATG22	Ortholog(s) have inositol tetrakisphosphate 3-kinase activity, inositol tetrakisphosphate 6-kinase activity and inositol- 1,3,4,5,6-pentakisphosphate kinase activity, more	-1.18229254326338		
	CAGL0B00770g	MET10	Ortholog(s) have L-amino acid transmembrane transporter activity, role in L-alpha-amino acid transmembrane transport, amino acid transmembrane export from vacuole and integral component of fungal-type vacuolar membrane localization	-1.17442043547571		
	CAGL0D05280g	MET2	Ortholog(s) have sulfite reductase (NADPH) activity, role in sulfate assimilation and cytosol, sulfite reductase complex (NADPH) localization	-1.0994575163465		
	CAGL0J08316g	GCN4	Ortholog(s) have homoserine O-acetyltransferase activity, role in homoserine metabolic process, methionine biosynthetic process, regulation of DNA methylation and cytosol localization	-1.09047239594702		
	CAGL0L02475g	MUP1	bZIP domain-containing protein	-1.06750116669523		
	CAGL0K04367g	ERS1	Ortholog(s) have L-methionine secondary active transmembrane transporter activity, role in cysteine transport, methionine import and fungal-type vacuole, plasma membrane localization	-1.04951686320713		
	CAGL0M06985g	MMF1	Ortholog(s) have L-cystine transmembrane transporter activity, role in L-cystine transport and endosome, fungal-type vacuole, plasma membrane localization	-1.04646729071837		

IST | 152 Biofilm formation in Candida glabrata: the role of the Transcription Factor Tec1 |

CAGL0M12386g	MDE1	Ortholog(s) have role in isoleucine biosynthetic process, mitochondrial genome maintenance, mitochondrial translation and mitochondrial matrix localization	1.00471038848141
CAGL0M07876g	TRP2	Ortholog(s) have methylthioribulose 1-phosphate dehydratase activity, role in L-methionine salvage from methylthioadenosine and cytosol, nucleus localization	1.01277565069223
CAGL0I05016g	CHA1	Putative anthranilate synthase component I; protein abundance increased in ace2 mutant cells	1.01583246171347
CAGL0B00286g	AVT3	Ortholog(s) have L-serine ammonia-lyase activity, L-threonine ammonia-lyase activity, role in L-serine catabolic process, threonine catabolic process and mitochondrial nucleoid localization	1.02749317463127
CAGL0E06468g	LYS2	Ortholog(s) have L-arginine transmembrane transporter activity, L-glutamine transmembrane transporter activity and L- histidine transmembrane transporter activity, more	1.03208774387992
CAGL0K07788g	YNL010W	Ortholog(s) have L-aminoadipate-semialdehyde dehydrogenase activity, role in lysine biosynthetic process via aminoadipic acid, negative regulation of lysine biosynthetic process via aminoadipic acid and cytosol localization	1.04141125567219
CAGL0H03641g	LYS4	Ortholog(s) have cytosol, nucleus localization	1.04436251715346
CAGL0K10978g	LEU1	Ortholog(s) have homoaconitate hydratase activity, role in lysine biosynthetic process via aminoadipic acid and mitochondrion localization	1.05456856631133
CAGL0A00363g	THI3	Ortholog(s) have 3-isopropylmalate dehydratase activity, role in leucine biosynthetic process and cytoplasmic stress granule, cytosol localization	1.0630939115761
CAGL0L06842g		Ortholog(s) have RNA polymerase II activating transcription factor binding activity and role in positive regulation of thiamine biosynthetic process, positive regulation of transcription from RNA polymerase II promoter	1.09218352148726
CAGL0F00253g	LYS9	Ortholog(s) have anthranilate synthase activity, indole-3-glycerol-phosphate lyase activity, phosphoribosylanthranilate isomerase activity, role in tryptophan biosynthetic process and cytosol localization	1.09961004124095
CAGL0C03443g	YDR341C	Putative saccharopine dehydrogenase	1.13295817374004
CAGL0A01760g	LYS12	Ortholog(s) have arginine-tRNA ligase activity, role in arginyl-tRNA aminoacylation and mitochondrion localization	1.15807898840074
CAGL0G02585g	AVT1	Homo-isocitrate dehydrogenase	1.17395646318957
CAGL0D03036g		Ortholog(s) have L-glutamine transmembrane transporter activity, L-isoleucine transmembrane transporter activity, L- tyrosine transmembrane transporter activity	1.17498170520533
CAGL0L00759g	MET7	ATP phosphoribosyltransferase; protein abundance increased in ace2 mutant cells	1.21492418647115
CAGL0J03762g	SER33	Ortholog(s) have tetrahydrofolylpolyglutamate synthase activity, role in one-carbon metabolic process, regulation of DNA methylation and cytosol, endoplasmic reticulum, mitochondrion, nucleus localization	1.22194628367429
CAGL0M12837g	GCV3	Ortholog(s) have alpha-ketoglutarate reductase activity, phosphoglycerate dehydrogenase activity, role in serine family amino acid biosynthetic process and cytosol localization	1.23312336580641
CAGL0M12188g	YML096W	Ortholog(s) have glycine dehydrogenase (decarboxylating) activity, role in glycine catabolic process, one-carbon metabolic process, protein lipoylation and mitochondrion localization	1.27048715521375
CAGL0H06963g	HIS4	Ortholog(s) have cytosol, nucleus localization	1.28555339758936
CAGL0B00902g	BTN2	Phosphoribosyl-AMP cyclohydrolase; phosphoribosyl-ATP pyrophosphatase; histidinol dehydrogenase	1.30758651048495
CAGL0I10010g	TYR1	Ortholog(s) have SNARE binding, chaperone binding activity and role in amino acid transport, intracellular protein transport, protein folding, protein localization to nucleus, regulation of pH, retrograde transport, endosome to Golgi	1.35966735365373
CAGL0M06017g		Ortholog(s) have prephenate dehydrogenase (NADP+) activity, role in tyrosine biosynthetic process and cytosol localization	1.44393307615847
CAGL0K12232g	YER152C	Ortholog(s) have chorismate mutase activity, role in aromatic amino acid family biosynthetic process, sporocarp development involved in sexual reproduction and cytosol, nucleus localization	1.44433115598287

CAGL0106578g	YHR112C	Ortholog(s) have 2-aminoadipate transaminase activity and cytoplasm, nucleus localization	1.45876073146387
CAGL0I01276g		Ortholog(s) have cytoplasm, nucleus localization	1.47674234139642
CAGL0J04554g		Has domain(s) with predicted catalytic activity, pyridoxal phosphate binding, transaminase activity and role in biosynthetic process, cellular amino acid metabolic process	1.48185475498012
CAGL0K00825g	CPA2	Has domain(s) with predicted phosphatase activity, phosphoserine phosphatase activity and role in L-serine biosynthetic process, metabolic process	1.50827514503853
CAGL0C04917g	YHR033W	Ortholog(s) have carbamoyl-phosphate synthase (glutamine-hydrolyzing) activity, role in arginine biosynthetic process and carbamoyl-phosphate synthase complex, mitochondrion localization	1.55237598117665
CAGL0D03894g		Putative gamma-glutamyl phosphate reductase	1.59886618433546
CAGL0H03795g		3-isopropylmalate dehydrogenase	1.6290212027599
CAGL0G01254g	MET6	Putative aromatic aminotransferase I	1.69629476401586
CAGL0I04994g	YMR226C	5-methyltetrahydropteroyltriglutamate homocysteine methyltransferase; protein abundance increased in ace2 mutant cells	1.80207914112461
CAGL0M11242g	PDC6	Ortholog(s) have carbonyl reductase (NADPH) activity, serine 3-dehydrogenase activity and cytosol, nucleus, ribosome localization	1.80795537396487
CAGL0G02937g	LYS5	Ortholog(s) have pyruvate decarboxylase activity and role in L-phenylalanine catabolic process, aromatic amino acid family catabolic process to alcohol via Ehrlich pathway, ethanol metabolic process, tryptophan catabolic process	1.89366541168894
CAGL0E05104g	CAR1	Ortholog(s) have enzyme activator activity, holo-[acyl-carrier-protein] synthase activity and role in peptidyl-serine phosphopantetheinylation, protein-cofactor linkage	1.93104094436889
CAGL0J07062g	ARG1	Ortholog(s) have arginase activity, manganese ion binding, ornithine carbamoyltransferase inhibitor activity, zinc ion binding activity	2.00569785395304
CAGL0C05115g	BAT2	Argininosuccinate synthetase	2.07529356340749
CAGL0M00176g	HOM6	Ortholog(s) have L-isoleucine transaminase activity, L-leucine transaminase activity, L-valine transaminase activity	2.07756796676369
CAGL0M00330g	SHM2	Ortholog(s) have homoserine dehydrogenase activity, role in homoserine biosynthetic process, methionine biosynthetic process and cytoplasm, nucleus localization	2.09972245429369
CAGL0F01749g		Putative serine hydroxymethyltransferase; protein differentially expressed in azole resistant strain	2.20419047481663

Figure A3- Consensus sequences retrieved by DREME bioinformatic software, predicted do be recognized by Tec1 TF in the differentially expressed genes in *C. glabrata* planktonic cells. The up-regulated genes were chosen and the upstream sequences were obtained in FASTA format in PathoYeastract database.

Figure A4- Consensus sequences retrieved by DREME bioinformatic software, predicted do be recognized by Tec1 TF in the differentially expressed genes in C. glabrata biofilm cells. The up-regulated genes were chosen and the upstream sequences were obtained in FASTA format in PathoYeastract database.

 Table A3- IUPAC frequency table.
 Consensus sequences of ScTEC1 binding sites were obtained in SGD (https://www.yeastgenome.org/) and were represented according to the following IUPAC frequency table.

IUP	IUPAC frequency table			
\leq	Α	С	G	Т
Α	1	0	0	0
С	0	1	0	0
G	0	0	1	0
Т	0	0	0	1
W	1/2	0	0	1/2
S	0	1/2	1/2	0
R	1/2	0	1/2	0
Y	0	1/2	0	1/2
М	1/2	1/2	0	0
K	0	0	1/2	1/2
В	0	1/3	1/3	1/3
D	1/3	0	1/3	1/3
Η	1/3	1/3	0	1/3
V	1/3	1/3	1/3	0
Ν	1/4	1/4	1/4	1/4
X	1/4	1/4	1/4	1/4
a	1/2	1/6	1/6	1/6
С	1/6	1/2	1/6	1/6
g	1/6	1/6	1/2	1/6
t	1/6	1/6	1/6	1/2