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Abstract

Multivariate time series are found in several data mining applications, where one or multiple variables are
analysed over time. Early classification arises as an extension of the time series classification problem, in view of
obtaining a reliable prediction as soon as possible. In temporal data, the order of the observations is critical, given
that a particular sequence of occurrences can be the distinctive and discriminative factor. The same is true for early
classification, where the goal is to use as less information as possible, ensuring a decent accuracy. The correlations
between the variables of the multivariate time series from different time points may provide insights into predictive
dependencies and relationships to be exploited. An information-theoretic method, named Multivariate Correlations
for Early Classification (MCEC), for investigating the early classification opportunity from a collection of time
series is proposed, implemented and assessed. Experimental validation tests are performed on synthetic, simulated
and real data, confirming the ability of the MCEC algorithm to tradeoff between accuracy and earliness.
Keywords: early classification, multivariate correlations, Bayesian networks, model selection criteria

1. Introduction
Temporal data, generally known as Multivariate Time
Series (MTS), consist of measurements or observations
acquired and organized sequentially. In this context,
one or multiple variables are examined over time, which
means that the order of the information plays an im-
portant role. This sort of data is found in several data
mining application areas such as medicine, economy,
meteorology and marketing. Standard sequence clas-
sification involves using temporal data for constructing
a classifier, which is able to predict the class label of
a new given Time Series (TS), with a satisfactory ac-
curacy. Early Classification (EC) can be viewed as an
extension of the TS classification problem and it arises
in scenarios where the anticipation of the prediction is
beneficial. This matter has been a relevant subject of
study in recent past, due to its several time-sensitive ap-
plications. The ability to obtain information in advance
by having early knowledge about a specific event may
be of great utility in many areas. For instance, a medi-
cal study [12] described how clinical data revealed that
infants who were diagnosed with sepsis disease suffered
from an unusual heartbeat twenty-four hours before the
diagnosis. In this case, supervising the TS data of the in-
fant’s heartbeat and being able to classify it in advance,
may lead to an effective early diagnosis and treatment.

In information theory, the idea of correlations be-
tween variables is associated to the analysis of the re-
lationships and dependencies among them. In general,
correlation can be viewed as a statistical technique for
measuring how strong two random variables are related

[18]. Moreover, a certain variable described over time
through a TS is considered to be serially correlated if
there is a statistical dependency between the values from
different time periods [14]. Most real-world applica-
tions involve a degree of uncertainty, as a result of limi-
tations in the information available and the challenges in
modelling complex systems. Bayesian networks consist
of probabilistic graphical models used for representing
the information contained in a given dataset [18]. Their
structures describe statistical dependencies and causal
relationships between random variables. Data may con-
tain unexpected correlations and their examination is
useful for providing relevant knowledge to be explored,
such as patterns and predictive associations. Consider-
ing the previously mentioned example of sepsis disease
in infants, the investigation on the correlations among
the clinical measurements and the patient’s health con-
dition was able to find a meaningful relationship.

This work aims to contextualize the EC problem, to
explain its formulation and applications, and to review
current algorithms on this matter. A method based on
information theory is proposed, implemented1 and as-
sessed through experimental tests in synthetic, simu-
lated and real data. This extended abstract includes only
the experiments on the selected benchmark data.

2. Early Classification
Recent research has been focusing on EC. Seeing that
earliness is intuitively related with temporal data, this

1https://github.com/joaopbeirao/
MCEC-algorithm
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problem deals with observations collected over time,
generally referred to as TS. In this sort of data, the in-
formation is acquired and organized sequentially, which
means that the order of the measurements has signifi-
cance and their values are highly correlated. This is the
case in electronic medical records, when the patient’s
health condition is monitored in each appointment and
the information collected is structured chronologically.

Consider a dataset D as a collection of pairs:

(Ti, ci) : i ∈ {1, ..., w} , (1)

where Ti consists of a TS, ci corresponds to its respec-
tive class label and w is the number of instances in D.

In general, a TS is defined as a vector of length L:

Ti =
(
x

(i)
1 ,x

(i)
2 , ...,x

(i)
L

)
, (2)

where each component: x
(i)
k =

(
x

(i)
k1
, x

(i)
k2
, ..., x

(i)
kN

)
,

consists of N features measured at time point k.
In TS classification, a class label ci is associated to

each Ti through the relation: Class(Ti) = ci. The
standard TS classification goal is to construct a classifier
from a training set, capable of assigning a class label to a
new TS, with the maximum accuracy possible. Beyond
optimizing the accuracy of the classification, in some
applications it is beneficial to classify data as early as
possible [29]. One of the fundamental challenges is the
tradeoff between accuracy and earliness, since it is de-
sirable to obtain a class label prediction without waiting
for the end of the sequence, while ensuring an accept-
able classification accuracy. EC of TS aims for making
predictions as soon as enough data is available, and it
is relevant in contexts where the collection of data has a
cost associated or the delay of the predictions is adverse.

The work from Xing et al. [29] was one of the first to
formulate the problem of EC. For a Ti, the subsequence:

ti =
(
x

(i)
1 ,x

(i)
2 , ...,x

(i)
n

)
(3)

describes the section from the beginning until a time
point n ∈ {1, ..., L}. This variable represents the times-
tamp from which the information of the TS can be ne-
glected. An early classifier is able to find the time point
n and perform an accurate classification based on ti,
such that: Class(Ti) = Class(ti) = ci. As stated
by Xing et al. [30], it is important to distinguish EC
from classic TS prediction, where the goal is to forecast
values at some point in the future. EC of temporal data
consists of anticipating the classification by using only
a portion of the available information, without compro-
mising the prediction quality. The goal is to predict the
ci of a Ti as early as possible given that the classification
accuracy is close to the one using the complete data.

Literature complies with the fact that Rodriguez et
al. [25] were the first to mention EC. They propose a
TS classification method based on relative and region
predicates that describe temporal intervals. Classifiers
are constructed using these predicates, through a boost-
ing approach, i.e. a method that generates ensembles

of classifiers. This initial approach suggested the possi-
bility of adapting boosting methods for addressing EC.
Xing et al. [28] pointed that the standard sequence clas-
sification methods were only concerned with improv-
ing the accuracy of the classification. Hence, they stud-
ied the problem of EC on sequence data and proposed
two methods: the Sequential Classification Rule (SCR)
and the Generalized Sequential Decision Tree (GSDT).
The goal consisted of finding sequence classifiers able
to predict the class label of a new sequence, without us-
ing its entire length, while ensuring an expected accu-
racy. At first, in the SCR method, a set of features with
effective characteristics for early prediction (frequency,
distinctiveness and earliness) is extracted from the train-
ing data. Then, from the extracted features and based on
both the expected accuracy and the prediction cost, a set
of sequential classification rules is formed and used as
the classifier. In the GSDT method, instead of an associ-
ation rule, a decision tree is built, using a set of features
as an attribute.

Moreover, Xing et al. [29] proposed an extension of
an instance-based method based on the 1-nearest neigh-
bour (1NN) classifier, with the Euclidean distance, for
EC on TS data: the Early Classification on Time Se-
ries (ECTS) method. They identified two important re-
quirements for an early classifier: being able to indi-
cate the earliest time location of accurate classification;
and ensuring an accuracy close to the case of using the
full length TS. Thus, their approach involves a training
phase, where the Minimum Prediction Length (MPL) is
computed for each TS, yet based on a cluster of identical
TS. This variable represents the time location (times-
tamp) from which the information of a TS can be dis-
carded. Then, in the classification phase, for a new TS
to be classified, if its 1-nearest neighbour from the train-
ing set has a MPL at most equal to the current timestamp
being analysed, then the same class label is assigned to
the new TS. In this work, the decision upon the tradeoff
between earliness and accuracy is analysed, since the re-
liability of the 1NN is evaluated while anticipating the
classification.

Considering some of the existing approaches for EC
on TS and, in particular, the ECTS method, Xing et al.
[30] identified one limitation: the interpretability. Based
on TS shapelets, introduced by Ye et al. [31], the Early
Distinctive Shapelet Classification (EDSC) method is
proposed. This feature-based approach consists of ex-
tracting subsequences of TS (shapelets), which can dis-
tinctly point to the target class, and then selecting the
ones more effective for EC. In spite of its effective per-
formance, the proposed method is restricted to univari-
ate time series (UTS) [10]. As an extension of EDSC,
Ghalwash et al. [9] propose the Multivariate Shapelets
Detection (MSD) method. The idea of EC on TS is
maintained, however, it is generalized into a multivariate
context. An N-dimensional shapelet is described as a set
of multiple extracted subsequences, each of them asso-
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ciated to one specific dimension. Likewise EDSC, a new
TS is classified by finding the earliest covering shapelet
from the generated subset. One drawback of shapelets
pointed by Mueen et al. [23] is the significant computa-
tion time to extract them. Furthermore, He et al. [16] ac-
knowledged the wide utility of EC on MTS and analysed
the existing classification methods for this type of data.
They identified two limitations of the MSD method [9]:
the inability to extract time-independent subsequences
from each dimension for the same multivariate shapelet,
and the impossibility of dealing with dimensions of dif-
ferent length. As an attempt to address these issues, a
new shapelet’s quality evaluation approach is proposed
by He et al. [16], as well as the Mining Core Feature
for Early Classification (MCFEC) method. They intro-
duce concepts related with the shapelets such as similar-
ity degree, precision, recall and earliness; and they use
them in the two steps of the MCFEC method: feature
extraction and feature selection. Regarding the classifi-
cation of a new MTS, He et al. [16] propose two meth-
ods for generating the classifier for early prediction of
its class. The MCFEC-rule classifier, similarly to the
SCR method [28], creates an association rule based on
the selected core features (shapelets) from different di-
mensions. Concerning the other classification method,
named MCFEC-QBC classifier, a Query By Committee
(QBC) approach is used by matching the new MTS with
the core features in order to find the predominant class.
The methodology suggested by He et al. [16] focus on
EC of MTS and it is flexible in dealing with the relevant
information of distinct dimensions. In comparison with
the MSD method [9], a significant progress is achieved
in terms of the computation time of the training phase.

Parrish et al. [24] propose an approach based on a de-
cision rule that uses linear or quadratic classifiers. The
reliability threshold can be compared with the MPL pa-
rameter from the ECTS method [29], which is used to
control the earliness of the classifier. The advantage of
the parameter suggested by Parrish et al. [24] is the as-
surance on the reliability of the obtained decision, since
the classification is performed only when the criterion is
met. A similar measure is used in the model proposed
by Ghalwash et al. [11], providing an uncertainty esti-
mation of the predictions. Other solutions in the litera-
ture proposed multiple approaches for the EC problem.
The work by Wang et al. [26] introduces the Earliness-
Aware Deep Convolutional Networks (EA-ConvNets)
method, which uses a neural network architecture to
learn highly discriminative shapelets from TS data for
making early class label predictions on incoming in-
stances. In the work from He et al. [17], the issue
of EC in imbalanced data is examined. Therein, the
Early Prediction on Imbalanced Multivariate Time Se-
ries (EPIMTS) method, that uses an under-sampling
technique, is presented. The work of Li et al. [19] pro-
poses an approach for time-critical early decision mak-
ing, that focus on modelling two aspects of MTS: tem-

poral dynamics and sequential cues. Moreover, Hatami
et al. [15] suggest a method based on a set of classifiers
used sequentially in an iterative manner. Each classifier
makes predictions with the portion of the TS available,
but it also has a reject option in the case of an unsat-
isfactory classification. The methodology from Lin et
al. [21] is called Reliable Early Classification (REACT)
and it generalizes the EC study for MTS with numerical
and categorical features.

One of the most recent approaches proposed for the
EC on TS problem is presented by Mori et al. [22]. Sim-
ilarly to the ECTS method [29], the accuracy and the
earliness of the predictions are identified as the main
objectives of EC on TS, and optimizing the tradeoff
between both is perceived to be one of its fundamen-
tal challenges. As an attempt to tackle the problem of
these two conflicting objectives, an EC method based on
probabilistic classifiers is proposed: the ECDIRE [22].
They analysed some of the existing methods in the liter-
ature and developed an approach capable of dealing with
three aspects simultaneously: avoid unnecessary calcu-
lations (specifically, forecasting and checking at all time
points), control the reliability of the classifications (for
instance, in the case of outliers), and measure the uncer-
tainty of the predictions (a quantitative and interpretable
evaluation).

3. Proposed Method
An introduction to some information and probability
theory concepts is included in this section, in the interest
of contextualizing the multivariate correlations method-
ology for the EC problem. Then, the proposed method
is explained and the aspects concerning the implemen-
tation are described.

3.1. Information Theory
Information theory studies the transmission, processing,
extraction and usage of information and it deals with
a variety of information or communication sources, in-
cluding the Discrete Memoryless Sources. These con-
sist of independent random variables from a finite range
of symbols (alphabet) and their respective probability
distributions. Entropy quantifies the average uncertainty
of a random variable. Considering the discrete random
variable X , with a set of symbols (alphabet X ) and
probability mass function p(x) = P (X = x), where
x ∈ X :

H(X) = −
∑
x

p(x) log2 p(x). (4)

Considering two discrete random variablesX and Y and
their joint probability p(x, y) = P (X = x, Y = y),
where x ∈ X , y ∈ Y , their Joint Entropy is defined by:

H(X,Y ) = −
∑
x

∑
y

p(x, y) log2 p(x, y). (5)

Conditional Entropy measures the amount of informa-
tion required to describe the outcome of X , given that
the value of Y is known:

H(X|Y ) = −
∑
x

∑
y

p(x, y) log2

p(x, y)

p(y)
. (6)
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Mutual Information quantifies the amount of informa-
tion that one random variable gives about another:

I(X;Y ) =
∑
x

∑
y

p(x, y) log2

p(x, y)

p(x)p(y)
. (7)

3.2. Probabilistic Graphical Models
Probabilistic graphical models attempt to describe the
behaviour of complex systems using a graph-based
framework for representing the probability distributions.
Bayesian networks (BNs) are probabilistic graphical
models for describing complex domains, and they can
be used to represent the information about an uncertain
system [18]. The BN representation consists of a di-
rected acyclic graph G, characterized by a set of nodes
N = {X1, X2, ..., Xn} and a set of directed edges E.
Considering a G = (N , E), each node (vertex) cor-
responds to a random variable Xi, and the edges (ar-
rows), that connect the nodes in a specific direction, de-
scribe the probabilistic dependencies between the ran-
dom variables. For each node Xi, two sets can be
defined: the set of parents ΠXi and the set of non-
descendants ΦXi . The structure of a BN is based on
the assumption that each node Xi is conditionally in-
dependent of ΦXi

, provided that ΠXi
is known [5].

The group of local probability models, representing the
dependence of each variable Xi on ΠXi , specifies the
parameters for quantifying the network structure [4].
These form the set of conditional probability distribu-
tions Θ =

{
θXi|ΠXi

}
i∈{1,...,n}

, where:

θXi|ΠXi
= P (Xi = xi|ΠXi

= ωi), (8)

associated to each node Xi and conditioned on ΠXi .
A BN B = (G,Θ) is comprised of the direct acyclic

graph structure G together with the set of parameters Θ.
The joint probability distribution defined by this repre-
sentation is calculated as [18]:

PB(X1, ..., Xn)=
n∏

i=1

PB(Xi|ΠXi
)=

n∏
i=1

θXi|ΠXi
. (9)

For a given dataset D, the problem of learning a BN
consists of designing the B = (G,Θ) that best repre-
sents D, according to a scoring function. The scoring
function corresponds to the search guide for evaluating
the effectiveness of the network in representing the data,
and some of them are based on information theory con-
cepts [5]. Moreover, when the structure of the network
is fixed, the parameters Θ that maximize the scoring al-
gorithms, for a given dataset, are those described by the
observed frequency estimates [18]:

P̂B(Xi = xi|ΠXi
= ωi) =

|Dxi,ωi |
|Dωi |

, (10)

for which |Dxi,ωi | represents the number of instances in
D, where Xi takes the value xi, and its parents (ΠXi

)
take the value ωi. Similarly, |Dωi

| denotes the number
of instances in D, where ΠXi

takes the value wi.
The Minimum Description Length (MDL) principle is

known as an Occam’s razor approach to select, for a

given dataset, the best fitting model and its parameters.
It states that, for a certain data and a number of alter-
native models, the best option corresponds to the sim-
plest model [7]. In the problem of learning a BN, the
Bayesian Information Criterion (BIC) is known as the
MDL score. It is concerned with analysing the tradeoff
between the Log-Likelihood (LL) of the dataset D (the
effectiveness of the fit to the data) and the complexity of
the model. This scoring function is defined as [18]:

MDL(D|B) = LL(D|B)−
log2N

2
|B|, (11)

where N corresponds to the size of the data, and |B|
represents the model dimension (number of parameters
in B). The LL term quantifies the amount of information
required to describe the dataset D, using B. Conversely,
the penalty term measures the amount of information
needed to encode the model B [5]. It is desired the most
effective fit to the dataset, provided that the complexity
of the model is as low as possible.

Similarly to the MDL scoring function, the Akaike In-
formation Criterion (AIC) [1] corresponds to a measure
of the quality of statistical models for describing a given
dataset. In the problem of learning a BN, the difference
between MDL and AIC is associated to the penalty ap-
plied to the number of parameters |B|. The AIC scoring
function can be defined as [5]:

AIC(D|B) = LL(D|B)− |B|. (12)

In Equation (11), the second term quantifies the amount
of information required to encode the model B, where
each parameter in the set Θ is considered to use
1
2 log2N bits. Conversely, in Equation (12) each pa-
rameter of Θ is considered to use 1 bit. This means that
the penalization on the number of independent parame-
ters is stronger in the MDL scoring function than in the
AIC score. Likewise for the MDL score, the best model
corresponds to the one that maximizes Eq. (12).

3.3. Multivariate Correlations
From a statistical point of view, the concept of correla-
tion between variables attempts to measure the relation-
ships and dependencies among them. The knowledge
of how the variables are related, as well as of what in-
ferences can be made about their causal relationships, is
useful for drawing conclusions about potential predic-
tive relationships to be analysed and exploited.

For a finite set of discrete random variables
S = {Xi}i=1,...,n, with joint probability distribu-
tion PS(X1, ..., Xn), the total correlation between those
variables can be defined as [7]:

I(X1, ..., Xn) =

n∑
i=1

H(Xi)−H(X1, ..., Xn). (13)

In this case, the mutual information measures the de-
pendencies among the variables, i.e. the amount of in-
formation that these quantities give about each other.

Let a structural relation R be a subset of the system
S. Its joint probability distribution corresponds to the
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marginal distribution from S:

PR(XR1 , ..., XRk
) =

∑
Xi /∈R

PS(X1, ..., Xn), (14)

where k is the number of elements in R.

Definition 1. A structure over the system S with un-
derlying joint probability PS is a pair (S, PS), where
S = {Rj}j=1,...,k is a collection of structural relations
and PS is a joint probability distribution over S s.t.:

1. No Ri ∈ S is contained in another (∀i,j Ri * Rj );

2. Every Xi ∈ S is included in at least one Rj ∈ S;

3. PS is the solution to the optimization problem:

max
P∈P

H(P )

s.t.
∑

Xi /∈Rj

PS(X1, ..., Xn)=
∑

Xi /∈Rj

PS(X1, ..., Xn),

∀Rj ∈ S, where P is the set of probability distributions of the
variables from S.

For example, from the set of discrete
random variables S = {X1, X2, X3, X4},
some admissible structures S correspond to
{{X1, X2, X3} , {X4}}, {{X1, X2} , {X3, X4}}
or {{X1, X2} , {X1, X4} , {X2, X3, X4}}. Conversely,
S = {{X1, X2, X3} , {X1, X3} , {X4}} is not an
acceptable structure since the relation between X1 and
X3 is included in two structural relations, which rep-
resents a transgression of the first property. Similarly,
S = {{X1, X2} , {X2, X4}} does not consist of a
proper structure because the variable X3 ∈ S is not part
of any structural relation from S, as required by the
second statement.

For a given system S = {Xi}i=1,...,n and an as-
sociated set of structural relations S = {Rj}j=1,...,k,
the mutual information I(S) represents the maximum
amount of information that the variablesXi from S pro-
vide about each other. On the other hand, I(S) quanti-
fies the information described by the correlations inside
the structural relations Rj . The difference I(S)− I(S)
measures the knowledge of the dependencies and re-
lationships between the variables of S that are not in-
cluded in the relations that compose S. From Eq. (13),
this value can be described a difference of entropies:

I(S)− I(S) =
n∑

i=1

H(Xi)−H(S)−
n∑

i=1

H(Xi)−H(S)

= H(S)−H(S).
(15)

Eq. (15) is always non-negative, because H(S) consists
of the lowest possible average number of bits required
to describe the random variables from S. Similarly, this
difference represents the information given by the exist-
ing correlations in S, that is not incorporated in S.

3.4. MCEC algorithm
Consider a TS T , as in Eq. (2), representing the evo-
lution of the variable X over time, and its respective
class label C, acting as another variable correlated with

T . The set of Xk can be viewed as a collection of time
dependent discrete random variables, for which a joint
probability distribution can be defined. The correlation
between any two variables measures the influence that
the value of X at one time point has on the value of X
at another instant. Note that, since a TS is chronologi-
cally organized, it is relevant to analyse the dependency
of variables on their early states, i.e. the degree of de-
pendence of X at a certain time point on the value ob-
served at a previous instant. Similarly, the correlation
between C andXk quantifies the influence that the vari-
able X at time point k has on the class label. In the EC
context, the focus is to study systems where the class
labels verify a high dependence on a certain amount of
early states of Xk, while the remaining time points are
dispensable for a satisfactory classification.

Consider the finite set of discrete random variables S
to be composed of the TS T together with its respec-
tive class label C. The system, with an associated joint
probability distribution PS(X1, X2, ..., XL, C), where
L represents the TS length, is defined as:

S = {X1, X2, ..., Xn, Xn+1, ...XL, C} , (16)

for which n corresponds to a specific instant in the TS,
designated early time point. The goal is to find the value
n that describes PS(X1, X2, ..., Xn, C) such that:

PS(C|X1, X2, ..., XL) ≈ Pn
S (C|X1, X2, ..., Xn). (17)

The conditional probability P (X|Y ) measures the
likelihood of the event X , given that the event Y
is observed. Therefore, Pn

S (C|X1, X2, ..., Xn) and
PS(C|X1, X2, ..., XL) describe the probability of the
class label C occurring, provided that some or all vari-
ables of T are known, respectively. Seeing that n < L,
Eq. (17) denotes that the variables {X1, X2, ..., Xn}
characterize the class label of the TS almost as accu-
rately as using the entire T . In addition, a criterion is re-
quired for identifying the optimal n for which the com-
plexity of the model defined by Pn

S is low, provided that
the majority of correlations from PS are considered.

In general, sequence classification methods are per-
formed in a collection of Ti with their respective Ci,
organized in a dataset D (Eq. (1)). In some cases, the
joint probability distribution PS is not known in ad-
vance, thus it has to be computed from the data, through
maximum likelihood estimation. In particular, given a
dataset D, with size w, as the system S, the distribution
PS that maximizes the likelihood of D is such that:

P̂S(X1 = x1, . . . XL = xL, C = c) =
|Dx1,...,xL,c|

w
(18)

for which |Dx1,...,xL,c| is the number of instances in D,
where each Xi takes the value xi and C the value c.

Given the system S, described in Eq. (16), the set of
structural relations, defined by:

Sn={{X1, ..., Xn, Xn+1, ..., XL},{X1, ..., Xn, C}}, (19)
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depends on the value of n and it corresponds to a
structure that respects the previously described prop-
erties. Considering An = {X1, ..., Xn} and Bn =
{Xn+1, ..., XL}, the structure is represented as:

Sn = {{An, Bn} , {An, C}} . (20)

The structural relation An contains the information
about the evolution of the variableX until the time point
n, i.e. the early states of the collection of TS. On the
other hand, Bn describes the remaining instants of Ti
which can be viewed as the knowledge about the later
states of the variable X . Finally, C represents the class
label information from the collection of TS. The struc-
ture Sn can be seen as a simplified model of the system
S. It is expected to include the correlations between the
early and the later information about the TS (An and
Bn), as well as between the early states of Ti and the
knowledge about their classes (An and C). Conversely,
the correlations between Bn and C are not preserved
because the idea is to study the possibility of describ-
ing the class from the early states An, while neglecting
the information from Bn. The probability distribution
of Sn is obtained based on Theorem 1 and considering
the BN represented in Fig. 1.

Theorem 1. Consider the BN Bn = (Gn,Θn) with Gn

given by Fig. 1 and Θn calculated according to Eq. 10.
Let Bn represent D as the system S, with underlying
probability given by P̂S , as in Eq. (18). The structure
(Sn, PSn

) over S has a probability distribution equal to
the joint probability distribution of Bn, i.e., PSn

= PBn .

An

Bn

C

Figure 1: BN representation of Sn over the system S.

Thus, from ΠAn
= ∅, ΠBn

= {An} and ΠC =
{An}, and through Eq. (9):

PSn = P (An)P (Bn|An)P (C|A). (21)

From Eq. (15) and for each value of n, the difference
of entropy applied to these context is represented as:

I(S)− I(Sn) = H(Sn)−H(S)

= H(C|An)−H(C|An ∪Bn).
(22)

The conditional entropy is used to quantify the uncer-
tainty about the classes of the collection of TS, given
that Ti is fully or partially known. On the one hand,
H(C|An) consists of the amount of information re-
quired to predict the class labels, provided that the TS

are known until the time point n. On the other hand,
H(C|An ∪ Bn) corresponds to the amount of informa-
tion needed to describe Ci, based on the knowledge of
the entire Ti. The difference between these two condi-
tional entropies measures the knowledge that the whole
TS provides about the classes (correlation between C
andAn∪Bn) which is not represented by the incomplete
data (correlation betweenC andAn). Thus, Eq. (22) can
be viewed as the lack of information caused by describ-
ing the structural relation C from An, i.e. the loss of
knowledge for using the collection of TS only until the
early time point, in the classification process.

In addition to earliness in predicting the classes, the
goal consists of finding the value n for which Sn repre-
sents the system S with a reasonable complexity. Since
this can be seen as a problem of learning the BN from
Fig. 1, both MDL and AIC scores are applied to the mul-
tivariate correlations for EC approach, in the interest of
finding the best fitting model. These scores are used
as two criteria for choosing the early time point, such
that the selection of the model takes its simplicity into
consideration. From Eq. (11) and considering PSn

, de-
scribed in Eq. (21), the MDL score is defined as:

MDL(D|Sn)=
log2w

2
|Sn|−

w∑
i=1

log2[p(C|An)p(Bn|An)p(An)],

(23)
where w is the number of instances in the dataset D,
|Sn| denotes the number of independent parameters in
the model, and PSn

is associated to Sn, which describes
S as a representation of the given data. Similarly, the
AIC score, applied to this context, is defined as:

AIC(D|Sn)= |Sn|−
w∑

i=1

log2[p(C|An)p(Bn|A)p(An)]. (24)

As represented in the direct acyclic graph structure
from Fig. 1, the goal is to analyse how the structural
relation An is able to describe C, while the correlation
between Bn and C is neglected. For this reason, the
computation of the network complexity only considers
the relation between the early states and the class labels:

|Sn|= |{An, C}|= ||An||−1+(||C||−1) ||An||
= ||An||×||C||−1,

(25)

where ||An|| and ||C|| denote the number of distinct ob-
servations in the structural relation An and C, respec-
tively. In Eqs. (23) and (24), the first term quantifies the
complexity of the model, i.e. the amount of information
required to encode not only Sn, but also the data given
Sn. The second term measures the LL of the data based
on the model, i.e. the amount of information needed
to represent the dataset D according to the probability
distribution PSn

. While n increases, the size of An be-
comes larger, the number of correlations is higher and,
consequently, the complexity of the model increases. In
addition, the more information about the TS there is, the
better the correlations describe the data, which means
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a decrease in the number of bits needed to describe C
from An. The difference between these two terms de-
scribes the tradeoff between the model complexity and
the effectiveness of the fit to the data. Note that Eqs. (23)
and (24), are the symmetric of the definitions described
in Eqs. (11) and (12), respectively. This means that, the
best model is the one that minimizes the scoring func-
tions. The simplest model, that is able to use the least
amount of correlations while it maintains a distribution
as close to the original as possible, is found through
minimizing both MDL(D|Sn) and AIC(D|Sn).

3.5. Implementation
The proposed algorithm is implemented in Java lan-
guage, using some functionalities of Weka Data Min-
ing Software [13]. The Multivariate Correlations for
Early Classification (MCEC) program, summarized in
Algorithm 1, receives as input a comma-separated val-
ues (CSV) file, containing the TS and the respective
class labels. The number of attributes is also required

Algorithm 1 MCEC program.
1: for n ∈ {1, ..., L} do
2: Separation of data from D in five groups: {An}, {C},
{An, C}, {An, Bn} and {An, Bn, C}

3: Count number of occurrences of each case in each group
4: Calculate the probability values: P (An = a), P (An =
a,Bn =b), P (An =a,C=c) and P (An =a,Bn =b, C=c)

5: Compute H(C|An)−H(C|AnBn)
6: Count number of independent parameters: ||An|| and ||C||
7: Compute |Sn| and LL(D|Sn)
8: Compute MDL(D|Sn) and AIC(D|Sn)
9: Compute classification accuracy with the TS until n

10: Output the five vectors

as input. Both UTS and MTS are allowed, however,
the TS must be of fixed length. In the interest of ver-
ifying the reliability of this EC approach, an investiga-
tion on the performance of multiple classifiers is done,
while varying the length of the TS. Seven classifiers are
considered (Table 1), using the default parameters and
stratified cross-validation with 10 folds. The outcomes
of the difference in entropy, LL, MDL score, AIC score
and classification accuracy, all for n ∈ {1, ..., L}, are
outputted in text files. An additional Matlab script is
provided for generating the five graphs with the results.

Classifier Description

NB Naı̈ve Bayes
BN Bayes Net
SMO Sequential Minimal Optimization
J48 C4.5 decision tree
REPTree Reduces Error Pruning Tree
RandFor Forest of multiple random trees
kNN k-Nearest-Neighbor

Table 1: Classifiers used for comparing with the results.

4. Results on benchmark data
From the MCEC algorithm, for each dataset, three val-
ues for the EC time point (n) were extracted. The first

value is obtained from the difference in entropy mea-
sure: n such that H(C|An) − H(C|AnBn) = 0.3 ×
[H(C|A1)−H(C|A1B1)], which means that n corre-
sponds to the time point where a reduction of 70% from
the initial value of entropy is verified, henceforth called
CH − 70. The second and third values are a result
of the minimization of MDL(D|Sn) and AIC(D|Sn),
respectively, i.e. n consists of the time point where the
criteria is minimum. A percentage value is associated
with the EC time point:

Earliness[%] =
n

L
× 100. (26)

This measure quantifies the amount of the TS consid-
ered necessary for a satisfactory prediction, with respect
to its total length (L). The lower the value of Earliness,
the less time points are considered required, and the ear-
lier the classification is expected to be performed.

The data classification was performed with seven
classifiers (Table 1). The classifier with the highest
accuracy was selected. The three measures from the
MCEC algorithm determine the instant from which the
information in the TS can be neglected. Based on the
three values of n, the selected classifier was used for
the classification of the data. At most, three derivative
subsets were considered, each with L defined as one of
the EC time points computed by the proposed method.
The preprocessing of the data included the aggregation
of both training and test subsets in one single dataset
(data integration). In addition, a supervised discretiza-
tion by Fayyad & Irani’s MDL method [8] was per-
formed to the numeric attributes (data transformation).
Furthermore, the cases which contained TS with differ-
ent lengths (within the same dataset) were adjusted, that
is, for each example, all instances were set to a value of
L equal to the shortest sample length.

4.1. Univariate Time Series
The UEA & UCR Time Series Classification Repository
[2] provides more than 90 TS datasets for research into
TS classification. For analysing the performance of the
MCEC algorithm, 20 benchmark datasets from the re-
ferred repository were tested. This subset of examples
is considered comprehensive and representative, since it
comprises a diverse range of both dimensional parame-
ters and classification conditions. Each dataset is com-
posed of numeric UTS (N = 1) with a fixed length, and
their respective class labels.

The results from Table 2 describe the MCEC algo-
rithm effort in attempting EC, based on the analysis
of the information contained in the datasets. For each
dataset, the first row indicates the EC time point (n);
the second and third include the Earliness and Accuracy
percentages, respectively; and the last row denotes the
classifier with the best accuracy for the given data. The
column “Full” contains the outcomes for the complete
TS and it is used as a reference framework. Moreover,
the “MCEC algorithm” columns indicate the results for
the incomplete TS, where L is defined according to the
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Dataset MCEC algorithm Full
CH − 70 MDL AIC

Adiac 14 1 1 −
37 classes 7.95% 0.57% 0.57% −
L = 176 41.23% 17.54% 17.54% 77.47%
w = 781 SMO SMO* SMO* SMO

ArrowHead 37 1 4 −
3 classes 14.74% 0.40% 1.59% −
L = 251 68.25% 53.56% 56.87% 93.37%
w = 211 RandFor RandFor* kNN RandFor

Beef 118 1 5 −
5 classes 25.11% 0.21% 1.06% −
L = 470 60.00% 40.00% 48.33% 75.00%
w = 60 kNN* kNN* kNN* kNN*

BeetleFly 431 107 333 −
2 classes 84.18% 20.90% 65.04% −
L = 512 85.00% 67.50% 87.50% 95.00%
w = 40 RandFor* NB* RandFor* RandFor*

BirdChicken 267 201 202 −
2 classes 52.15% 39.26% 39.45% −
L = 512 77.50% 70.00% 75.00% 90.00%
w = 40 RandFor NB* NB* NB*

Car 127 1 27 −
4 classes 22.01% 0.17% 4.68% −
L = 577 69.17% 34.17% 42.50% 83.33%
w = 120 RandFor kNN* kNN* kNN

CBF 8 1 3 −
3 classes 6.25% 0.78% 2.34% −
L = 128 52.15% 44.84% 48.39% 99.68%
w = 930 SMO NB* NB* SMO

ChlorineConc 48 1 38 −
3 classes 28.92% 0.60% 22.89% −
L = 166 82.05% 54.89% 74.86% 98.98%
w = 4307 RandFor RandFor* RandFor RandFor

Coffee 43 23 26 −
2 classes 15.04% 8.04% 9.09% −
L = 286 89.29% 76.79% 80.36% 100.00%
w = 56 RandFor RandFor* NB* RandFor*

Computers 303 1 2 −
2 classes 42.08% 0.14% 0.28% −
L = 720 67.60% 58.20% 65.80% 66.00%
w = 500 RandFor RandFor* RandFor* RandFor

Earthquakes 18 2 4 −
2 classes 3.52% 0.39% 0.78% −
L = 512 89.93% 79.14% 79.86% 99.28%
w = 278 RandFor RandFor* NB* RandFor
ECG200 16 3 6 −
2 classes 16.67% 3.13% 6.25% −
L = 96 81.00% 66.50% 81.00% 90.50%
w = 200 BN kNN* SMO kNN

FiftyWords 38 7 7 −
50 classes 14.07% 2.59% 2.59% −
L = 270 32.16% 15.69% 15.69% 67.62%
w = 905 SMO SMO* SMO* SMO
GunPoint 36 1 23 −
2 classes 24.00% 0.67% 15.33% −
L = 150 92.00% 71.50% 83.00% 99.50%
w = 200 SMO* SMO* RandFor SMO

Meat 72 1 11 −
3 classes 16.07% 0.22% 2.46% −
L = 448 90.00% 66.67% 75.00% 100.00%
w = 120 REPTree RandFor SMO* SMO*
OliveOil 55 3 6 −
4 classes 9.65% 0.53% 1.05% −
L = 570 68.33% 55.00% 58.33% 96.67%
w = 60 RandFor SMO* NB* SMO*

SwedishLeaf 7 1 2 −
15 classes 5.47% 0.78% 1.56% −
L = 128 56.53% 29.60% 37.78% 91.02%
w = 1125 RandFor SMO* SMO* SMO

SynthControl 5 1 2 −
6 classes 8.33% 1.67% 3.33% −
L = 6 82.17% 49.67% 69.00% 98.83%
w = 600 BN BN* BN BN

TwoPatterns 95 1 11 −
4 classes 74.22% 0.78% 8.59% −
L = 128 56.36% 26.28% 29.20% 75.18%
w = 5000 RandFor RandFor* kNN RandFor

Wafer 11 2 3 −
2 classes 7.24% 1.32% 1.97% −
L = 152 97.91% 97.60% 97.66% 99.85%
w = 7164 kNN RandFor* kNN RandFor

Table 2: MCEC algorithm experimental results on UTS.

values of n. The symbol (*) means that more than one
classifier achieved the best accuracy.

The value of Earliness is always beneath 100% for
all the measures of the MCEC algorithm. Concerning
CH−70, the accuracy with less time points outperforms
the reference value (“Full” column) only for the “Com-
puters” dataset. This example suggests that it is possible
to obtain a better classification performance using only
part of the TS from the data. In the “Wafer” outcomes,
using only 7.24% of the TS, an accuracy of 97.91% is
achieved, which consists of−1.94% in comparison with
the full-length result. This means that, in these experi-
ments, with fewer time points (earlier in time), the loss
in terms of classification accuracy can be low. Concern-
ing the 18 datasets with nMDL 6= nAIC , the classifi-
cation accuracy results of AIC outperform the ones for
MDL in all cases. This suggests that, based on these
experiments, AIC surpasses MDL, with respect to accu-
racy. However, in all situations, the accuracy for both
criteria is lower than for the full-length data. In addi-
tion, the results show that nMDL = 1 for 12 of the 20
cases, and nAIC = 1 for only 1 dataset (“Adiac”).

From the comparison between the three measures,
CH − 70 achieves higher classification accuracy in 18
of the 20 cases,AIC in 1 dataset (“BeetleFly”), and in 1
example (“ECG200”) a draw is verified between the dif-
ference in entropy and AIC. MDL has a percentage of
correctly classified instances always lower or equal than
the other measures. Regarding the Earliness percentage,
except for the events where nMDL = nAIC ,MDL pro-
poses always the lowest values for the EC time point.
Therefore, in general, CH − 70 achieves better results,
in terms of accuracy, andMDL demonstrates a superior
earliness ability. AIC evidences the foremost compe-
tence in balancing these two targets. Nevertheless, the
EC capabilities of the MCEC algorithm are acknowl-
edged, seeing that this context is based on the tradeoff
between both objectives: accuracy and earliness.

4.2. Multivariate Time Series
As a supplement to a study on MTS Classification [3], a
group of investigators gathered a collection of datasets,
useful for experiments on methods that deal with this
type of data. These examples were obtained from a va-
riety of sources, such as repositories [20, 6] and other
websites. For analysing the performance of the pro-
posed algorithm, six benchmark datasets were selected
from the available resources, as an attempt to provide
experimental results in an expansive set of conditions.
Table 3 lists the results of the experiments performed.
The process used for the UTS was replicated in these
six experiments.

Regarding both model selection criteria (columns
MDL and AIC), Earliness < 100% for all datasets.
The proposed EC time points from both scoring func-
tions are coincident in 4 of the 6 cases. In all these
examples, where nMDL = nAIC , the criteria sugges-
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Dataset MCEC algorithm Full
CH − 70 MDL AIC

ECG (N=2) 13 1 3 −
2 classes 33.33% 2.56% 7.69% −
L = 39 87.00% 77.00 80.00% 86.00%
w = 200 RandFor SMO* J48 SMO

JapanVow (N=12) 2 1 1 −
9 classes 28.57% 14.29% 14.29% −
L = 7 88.13% 85.47% 85.47% 94.53%
w = 640 RandFor SMO SMO SMO

Libras (N=2) 14 1 1 −
15 classes 31.11% 2.22% 2.22% −
L = 45 60.28% 30.28% 30.28% 79.17%
w = 360 kNN RandFor RandFor RandFor

PenDigits (N=2) 3 1 1 −
10 classes 37.50% 12.50% 12.50% −
L = 8 78.26% 47.95% 47.46% 98.45%

w = 10992 RandFor RandFor RandFor SMO
RobotLP1 (N=6) 2 1 1 −

4 classes 13.33% 6.67% 6.67% −
L = 15 89.77% 84.09% 82.96% 95.46%
w = 88 kNN NB* NB* SMO

Wafer (N=6) 51 1 24 −
2 classes 49.04% 0.96% 23.08% −
L = 104 95.31% 90.29% 93.55% 98.49%
w = 1194 SMO* SMO* RandFor SMO

Table 3: MCEC algorithm experimental results on MTS.

tion consists of using only the first instant of the TS for
classifying the data. In 2 of those 4 cases, the classi-
fication accuracy is above 80% (“JapaneseVowels” and
“RobotLP1”), which corresponds to a considerably de-
cent outcome. Table 3 shows nAIC = 1 in 4 of the 6
cases, and nMDL = 1 for all experiments.

With regard to the examples where nMDL 6= nAIC

(“ECG” and “Wafer”), nMDL < nAIC for all cases.
However, seeing that the largest accuracy difference be-
tween MDL and AIC is 3.26% (“Wafer”), these re-
sults suggest that by giving priority to earliness, the
percentage of correctly classified instances is not ex-
tensively affected. In fact, for both model selection
criteria, the values from n obtained Accuracy ≥ 70%
in 4 of the 6 cases, which assigns some confidence
to the MCEC algorithm in analysing the EC opportu-
nity. When comparing the three measures, the differ-
ence in entropy achieves higher classification accuracy
in all cases. Concerning Earliness, the model selection
criteria obtain always the lowest values, and, particu-
larly, MDL achieves the best results. In general, the
difference in entropy measure performs better with re-
gard to classification accuracy and MDL manifests a
higher disposition to earliness. However, the most effi-
cient tradeoff between these two requirements seems to
be found for AIC. These conclusions are in line with
the inferences drawn from the experiments with UTS.

4.3. Wilcoxon signed-ranks sum test
The univariate and multivariate experimental results
were compared with statistical significance tests in order
to understand the benefit of the tradeoff between the two
main goals in EC: accuracy and earliness. Among the
tested datasets, the MCEC algorithm provided a value of
n, with an associated percentage (Earliness). For each
situation, the group of classifiers determined the Accu-

racy value. In addition, the classification of the full-data
worked as a reference framework: no earliness and com-
plete TS accuracy. Aiming for a representation of the
balance between these two requirements, a mathemati-
cal expression can be defined as:

BEA(p) = p× (100− E) + (1− p)×A, (27)

where E and A correspond to the Earliness and Ac-
curacy percentages, respectively; and p consists of the
weight that determines the relevance given to each vari-
able. Seeing that an accurate classification is desirable,
as early as possible, Eq. (27) describes the management
of the two fundamental challenges of the EC problem.
The 26 datasets from Tables 2 and 3 were considered, as
well as their respective values of E and A, for each of
the three measures that compose the MCEC algorithm,
together with the reference framework. Note that all
Full outcomes verify E = 100%, since the entire TS
are considered for classification.

Table 4 includes the results of the Wilcoxon signed-
rank sum test [27], for comparing the performance of
the MCEC algorithm measures. These tests examine

p

Comparison 0 0.25 0.5 0.75

CH−70⇔MDL
size 26 26 26 26

p-value <0.01 <0.01 0.81 <0.01
better ⇐ ⇐ → ⇒

CH−70⇔ AIC
size 25 26 26 26

p-value <0.01 0.01 0.34 <0.01
better ⇐ ⇐ → ⇒

CH−70⇔ Full
size 26 26 26 26

p-value <0.01 <0.01 <0.01 <0.01
better ⇒ ⇐ ⇐ ⇐

MDL⇔ AIC
size 20 20 20 20

p-value <0.01 <0.01 0.23 0.37
better ⇒ ⇒ → ←

MDL⇔ Full
size 26 26 26 26

p-value <0.01 0.70 <0.01 <0.01
better ⇒ → ⇐ ⇐

AIC ⇔ Full
size 26 26 26 26

p-value <0.01 0.37 <0.01 <0.01
better ⇒ ← ⇐ ⇐

Table 4: Comparison of the MCEC algorithm measures
and Full against each other, using the Wilcoxon signed-
rank sum test applied to the tradeoff experimental data,
scored according to BEA(p).

the relation between the measures in pairs in order to
verify if there is enough evidence to claim that the
differences are significant, for a significance level of
α = 0.05. The arrow in Table 4 points towards the mea-
sure with better performance, according to the value of
p ∈ {0, 0.25, 0.5, 0.75}. Double arrow means there is
enough evidence to claim the difference is significant.

The results demonstrate that, for p = 0, there is
enough evidence to claim that Full surpasses all other
measures. Furthermore, between CH − 70 and the
model selection criteria, the difference in entropy out-
performs both scoring functions, and AIC shows better
results thanMDL. All these differences are statistically
significant. For p = 0.25, CH − 70 has the best perfor-
mance in comparison with all the remaining. The AIC
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measure seems to achieve significantly superior results
than MDL, however, there is not enough evidence to
claim that AIC outperforms Full, nor that the latter sur-
passes MDL. For p = 0.5, the only assurance consists
of Full performing the worst. Among CH − 70, MDL
and AIC, the differences between them are not statisti-
cally significant. Lastly, at p = 0.75, Full continues to
be surpassed by all the others, as well as the difference
in entropy in comparison with both model selection cri-
teria. However, between MDL and AIC, there is not
enough evidence to confirm which performs the best.

5. Conclusions
The achieved outcomes confirm the ability of the MCEC
method to examine the EC opportunity within a dataset.
In general, the three main measures are capable of
choosing an early time point based on which the TS
classification is plausible. Overall, the first measure ob-
tains better accuracy results, MDL demonstrates a su-
perior tendency for earliness, and AIC attains the most
competent balance between both aims. While AIC is
known to select a model more readily, MDL’s choice
is considered more consistent. The large number of ex-
amples where nMDL = 1 may indicate that, given the
information available, the criterion recognized that the
increase in the knowledge obtained from the data did not
justify the growth in the model complexity required for
describing it. Conversely, the AIC results demonstrate
a more adventurous disposition in choosing the value
for n, and, in these experiments, that seems to have pro-
duced relative success. Although AIC seems to surpass
MDL for p = 0.5, and the latter appears to outperform
the difference in entropy, these inferences are not statis-
tically significant at the α = 0.05 significance level. On
the other hand, the difference in entropy is surpassed by
both model selection criteria, for p = 0.75. However,
in this case, there is not enough statistical evidence to
claim that MDL outperforms AIC, in spite of the em-
pirical outcomes. Conversely, for p = 0.25, the entropy
measure surpasses both scoring functions, and AIC ob-
tains better results than MDL. Herein, these compar-
isons are statistically significant.

The MCEC algorithm can be extended to deal with
datasets where the TS length and the number of at-
tributes per time point vary among all instances. In addi-
tion, a classification method can be developed based on
the capabilities of this information-theoretic approach.
In this case, the algorithm would be able to assign a class
label to a new single incomplete TS. Finally, the feature
selection potentialities of the MCEC method can be ex-
ploited. In particular, a greedy feature selection could be
performed based, not only on the difference in entropy
measure, but also on the model selection criteria.
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