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Declaro que o presente documento é um trabalho original da minha autoria e que cumpre todos os
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Resumo

As séries temporais multivariadas estão presentes em diferentes aplicações de Data Mining (mineração

de dados), onde uma ou diversas variáveis são analisadas ao longo do tempo. Early classification

(classificação antecipada) pode ser entendida como uma extensão do problema de classificação de

séries temporais, em cujo objetivo é obter uma previsão confiável o mais cedo possı́vel. Em dados tem-

porais, a ordem das observações é crucial, uma vez que uma determinada sequência de ocorrências

pode ser o fator distintivo e discriminante. O mesmo acontece com a classificação antecipada, onde o

objetivo é usar a menor quantidade possı́vel de informação, garantindo uma precisão satisfatória. As

correlações entre as variáveis das séries temporais multivariadas, associadas a diferentes instantes de

tempo, podem fornecer conhecimento acerca de dependências preditivas e relações que podem ser

exploradas. E é este o ponto de interseção entre correlações multivariadas e classificação antecipada.

Um método baseado em teoria da informação, que analisa a oportunidade de classificação an-

tecipada num conjunto de séries temporais com a informação relativa às suas respetivas classes, é

proposto, implementado e avaliado. O objetivo do algoritmo Multivariate Correlations for Early Classifi-

cation (MCEC - em português, correlações multivariadas para classificação antecipada) é identificar o

instante de tempo prematuro para o conjunto total de dados, a partir do qual a restante informação pode

ser ignorada, obtendo-se ainda assim uma previsão razoável. Foram realizados testes de validação ex-

perimentais em dados sintéticos, simulados e reais. A abordagem proposta obteve bons resultados, os

quais foram confirmados com recurso a significância estatı́stica, no que diz respeito ao balanço entre

precisão e precocidade, dois dos desafios fundamentais em classificação antecipada. Esta metodologia

pode ser considerada uma alternativa relevante, não apenas para o contexto de classificação anteci-

pada, mas também para procedimentos de seleção de atributos.

Palavras-chave: classificação antecipada, correlações multivariadas, informação mútua,

entropia condicional, redes Bayesianas, critério de informação de Akaike, descrição de comprimento

mı́nimo
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Abstract

Multivariate time series are found in several data mining applications, where one or multiple variables

are analysed over time. Early classification arises as an extension of the time series classification

problem, in view of obtaining a reliable prediction as soon as possible. In temporal data, the order of

the observations is critical, given that a particular sequence of occurrences can be the distinctive and

discriminative factor. The same is true for early classification, where the goal is to use as less information

as possible, ensuring a decent accuracy. The correlations between the variables of the multivariate time

series from different time points may provide insights into predictive dependencies and relationships to

be exploited. And here is where multivariate correlations and early classification come together.

An information-theoretic method for investigating the early classification opportunity from a collection

of time series together with their respective class labels is proposed, implemented and assessed. The

goal of the Multivariate Correlations for Early Classification (MCEC) algorithm is to identify the early

classification time point for the entire dataset, from which the remaining information can be neglected and

still obtain a satisfactory prediction. Experimental validation tests are performed on synthetic, simulated

and real data. The proposed approach achieved good results, which were confirmed with statistical

significance, concerning a tradeoff between accuracy and earliness, the two fundamental challenges in

early classification. This methodology can be considered a relevant alternative, not only for the early

classification context, but also for feature selection procedures.

Keywords: early classification, multivariate correlations, mutual information, conditional en-

tropy, Bayesian networks, Akaike information criterion, minimum description length
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Chapter 1

Introduction

1.1 Motivation

Temporal data, generally known as multivariate time series, consist of measurements or observations

acquired and organized sequentially. In this context, one or multiple variables are examined over time,

which means that the order of the information plays an important role. This sort of data is commonly

found in several data mining application areas such as medicine, economy, meteorology and marketing.

Standard sequence classification involves using temporal data for constructing a classifier, which is able

to predict the class label of a new given time series, with a satisfactory accuracy. The classification

of multivariate time series represents an important problem for time-sensitive applications. A temporal

sequence can have multiple components associated to different variables but concerning the same

period of time. For example, the medical data of a patient being monitored in an Intensive Care Unit

(ICU) may include the blood pressure, the body temperature, the electrocardiography (ECG), among

others. Each variable is described as a component (dimension) of a multivariate time series.

Early classification can be viewed as an extension of the time series classification problem and

it arises in scenarios where the anticipation of the prediction is beneficial. This matter has been a

relevant subject of study in recent past, due to its several time-sensitive applications. The ability to

obtain information in advance by having early knowledge about a specific event may be of great utility

in many areas. For instance, a medical study [33] described how clinical data revealed that infants who

were diagnosed with sepsis disease suffered from an unusual heartbeat twenty-four hours before the

diagnosis. In this case, supervising the time series data of the infant’s heartbeat and being able to

classify it in advance, may lead to an effective early diagnosis and treatment.

In information theory, the idea of correlations between variables is associated to the analysis of the

relationships and dependencies among them. In general, correlation can be viewed as a statistical tech-

nique for measuring how strong two random variables are related [44]. Moreover, a certain variable

described over time through a time series is considered to be serially correlated if there is a statistical

dependency between the values from different time periods [37]. Conversely, when two variables or two

observations are independent, that means no correlation is verified between them. Mutual information
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quantifies the dependency (or the correlation) between variables. It represents the amount of informa-

tion that one random variable provides about another, that is, how much the knowledge of one variable

reduces the uncertainty of another [19]. Therefore, this concept is closely related with entropy, a funda-

mental measure of information. In fact, the conditional entropy describes the impact that knowing one

random variable has on the uncertainty of another one.

Most real-world applications involve a degree of uncertainty, as a result of limitations in the informa-

tion available and the challenges in modelling complex systems. Bayesian networks consist of proba-

bilistic graphical models commonly used for representing the information contained in a given dataset

[44]. Their structures describe statistical dependencies and causal relationships between random vari-

ables. Data may contain unexpected correlations and their examination can be useful for providing

relevant knowledge to be explored, such as patterns and predictive associations. Considering the pre-

viously mentioned example of sepsis disease in infants, the investigation on the correlations among the

clinical measurements and the patient’s health condition was able to find a meaningful relationship. In

fact, there seems to be a correlation between the child’s heartbeat and the sepsis disease diagnosis.

However, one question arises: how can the correlations from a time series dataset contribute to obtain

important information in advance?

1.2 Aims

This thesis attempts to study this question by applying an information-theoretic approach to the early

classification context. For such purpose, a theoretical algorithm [47] was implemented and assessed

through an empirical investigation.

Consider a multivariate time series which represents the evolution of a collection of variables over

time. The objective of early classification is to assign a class label as early as possible, while ensuring

that this prediction matches the class that would be assigned for the complete time series. This means

that the problem consists of finding a certain early time point from which a classification with a satis-

factory accuracy can be performed. Now, the collection of variables described by the multivariate time

series can be viewed as discrete random variables, for which a joint probability distribution can be de-

fined. The correlations between the variables from any two time points represent the influence that the

information from one time point has on another. Furthermore, the correlations between the time points

and the class label indicate the existing relationships and dependencies among them. In fact, given the

chronological organization of the multivariate time series, it is relevant to analyse the dependency of the

class label on the early states. And here is where multivariate correlations and early classification come

together.

Consider a group of multivariate time series and their respective class labels, forming a given dataset.

Assume the time series length and the number of variables per time point are fixed and uniform for

every instance. Visually, consider this dataset as a cube (Figure 1.1), where the height represents the

instances, the length describes the time points and the width denotes the variables under analysis.

Moreover, an additional column includes the class labels associated to each component of the height

2



(instance). The goal of the proposed method is to identify the early classification time point for the entire

dataset, which corresponds to a specific instant of the time series (somewhere along the length of the

cube), from which the remaining time points are dispensable for a satisfactory classification. For such

purpose, the dataset is divided in three sections: the early states (red), portion of the cube from the

initial time point until the early time point; the later states (green), portion of the cube from the early time

point until the end of the time series; and the class information (blue), column with the class labels for

each instance.

time points

instances

variables

class labels

Figure 1.1: Visual representation of a given dataset, containing a collection of multivariate time series
and their respective class labels. The height of the cube represents the instances, its length the time
points and its width the variables. The blue prism depicts the class labels of each time series (class
information). The red section of the cube describes a potential early states portion and the green a
potential later states one.

The correlations between the early and the later states, as well as between the early states and the

class information are examined. This investigation is performed while varying the early classification

time point from the first instant until the end of the time series. The idea is to study the possibility of

predicting the class labels using only the information from the early states, that is, neglecting the later

time points. Based on a Bayesian network representation, three measures are used to determine the

early time point: the difference in entropy (which represents the lack of information for predicting the

class labels using only the early states) and two scoring functions, MDL and AIC (which describe the

tradeoff between the complexity of the model and its effectiveness in fitting the data). For verification

purposes, an investigation on the performance of a set of classifiers is done. Their accuracy, according

to the length of the time series, is used as a comparative measure for the experimental results of the

proposed algorithm.

This work aims to contextualize the early classification problem in the data mining context, to explain

its formulation and applications, and to review current algorithms on this matter. A method based on

an information theory approach is proposed, implemented and assessed through experimental tests in

synthetic, simulated and real data.

1.3 Claim of contributions

As further exploited in this thesis, several methods addressing the early classification problem have been

proposed in the last years. However, it is important to clarify that the algorithm examined in this work is

3



not intended to be a classifier. The majority of the state-of-the-art approaches present methods which

require a learning stage followed by a classification step. This means they are capable of assigning

a class label to a single incomplete time series. That is not the case of the methodology considered

in this thesis. Conversely, a dataset investigation is proposed, where the information from the entire

collection of multivariate time series, as well as their respective class labels, is the subject of study. The

early classification opportunity is explored through the analysis of the knowledge contained in the data.

Overall, the main contributions of this thesis are:

1. An overview on the data mining context, focusing on data preprocessing and classification. A

contextualization and explanation of the early classification problem, as well as a detailed state-of-

the-art review on some of the most acknowledged methods in the literature.

2. An information-theoretic algorithm for examining the early classification opportunity in a dataset

containing multivariate time series together with their respective class labels. An exposition of

the relevant information and probability theory concepts, required to understand the proposed

method. The implementation of the algorithm made freely available1, and an article submitted to

an international journal [47]. This is the result of a joint contribution of Mariano J. Lemus, João

Pedro Beirão, Prof. Alexandra M. Carvalho, Prof. Paulo Mateus and Prof. Nikola Paunković .

3. An evaluation of the developed method, through experimental tests on synthetic, simulated and

real data. That includes a data dimensionality impact analysis, a computation time assay, a com-

parison with one of the state-of-the-art algorithms, and a statistical significance confirmation con-

cerning a tradeoff between accuracy and earliness, the two fundamental challenges in the early

classification context.

1.4 Document Outline

Chapter 2 includes an overview on the data mining background, focusing on the data preprocessing

aspects as well as on classification. Concerning the latter, some existing types of classifiers are briefly

explained. Moreover, the early classification problem is contextualized and described, its applications

are presented and a thorough state-of-the-art review on this subject is expounded.

Chapter 3 introduces some relevant information and probability theory concepts, namely entropy,

joint entropy, conditional entropy, mutual information, Bayesian networks and model selection. Then, the

proposed method is explained and the specifications of the software implementation are reported.

Chapter 4 describes the experimental results obtained from the assessment of the developed al-

gorithm. A data dimensionality impact analysis as well as a computation time evaluation is included.

Furthermore, the experiments on benchmark data (univariate and multivariate time series) and on a real

clinical dataset are described. Based on the empirical outcomes, a statistical significance evaluation,

regarding the tradeoff between accuracy and earliness, is depicted.

Lastly, Chapter 5 encloses the final conclusions, the achievements and suggestions for future work.
1https://github.com/joaopbeirao/MCEC-algorithm
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Chapter 2

Background

As pointed out by Larose [45], tremendous amounts of data are collected daily for a variety of applica-

tions such as science, health, finances, marketing and security. However, as John Naisbitt mentioned

in his book [58], we are drowning in information but starved for knowledge. The easiness in storing

information led to the necessity of developing automatic tools for transforming the available data into

meaningful knowledge.

2.1 Data Mining

Data Mining can be viewed as the response to this problem, since it consists in the process of discov-

ering relevant patterns and relationships in large datasets. This search for valuable information usually

includes steps such as data preprocessing, patterns discovery, patterns evaluation and knowledge pre-

sentation. The information repositories may be of different forms such as databases, data warehouses,

transactional data, and advanced data types (e.g. time-related or sequence data, spatial data, data

streams and others).

In general, data mining functionalities comprise two categories of tasks: descriptive, where patterns,

trends and other properties of a target dataset are analysed in the interest of searching for interpretations

and explanations; and predictive, where from the analysis of the available data, inductions, estimations

and predictions are performed. Some examples of data mining functionalities include data characteri-

zation and discrimination; the mining of frequent patterns, associations, and correlations; classification

and regression; clustering; and outlier analysis. [38]

As an interdisciplinary field, data mining is closely related to a variety of domains, namely statistics,

machine learning, pattern recognition, database and data warehouse systems, information retrieval,

visualization, algorithms, high performance computing, amongst others.

2.1.1 Data Preprocessing

Real-world data typically demand a preprocessing phase as a way to improve its quality. Since the

information repositories tend to be noisy, incomplete and inconsistent, data preprocessing techniques
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are applied in the interest of improving the performance, accuracy and efficiency of the data mining

processes.

The inaccuracies in data may be due to faulty instruments for data collection, inconsistencies in data

formats or in naming conventions, incomplete information, and errors during data transmission, data

aggregation or the data entry process [45].

Data preprocessing is considered an important stage in the data mining process and it usually com-

prises four techniques: data cleaning, data integration, data reduction and data transformation [38].

These procedures are intended to improve the quality of the data, which depends on the designated

use, and they do not require a specific order since they complement each other.

Data Cleaning

Data cleaning operations attempt to deal with incomplete, noisy and inconsistent information in the data

repository. The existence of missing values is frequently adverse for data mining techniques. Even

though some methods are capable of dealing with incomplete data, their approach may be neither the

most appropriate nor robust for a concrete situation. These are the most common methods for handling

missing values [38, 45]:

• Omit the records or fields with missing values (risk of ignoring important information);

• Replace missing values manually (impracticable in the case of large datasets);

• Replace missing values with constant;

• Replace missing values with descriptive statistics of the field (e.g. mean, median or mode);

• Replace missing values with randomly generated values based on the analysis of the existing

distributions (e.g. regression, decision tree induction or Bayesian inference).

This step of data preprocessing is also responsible for smoothing out noise from data, by taking

into account the adjacent values. Noise consists of random errors or variances in a given variable;

and binning methods and regression are examples of data smoothing techniques commonly used to

correct discrepancies in the data [38]. Another procedure related to noise handling corresponds to the

identification of outliers. These are values abnormally distant from the remaining, which in some cases

may be out of the data ranges, or evidence an inconsistent deviation from the trends. Outliers do not

always represent errors in data entries, however, their detection can be crucial for the efficiency of the

data mining methods. Clustering, histograms of variables and scatter plots are strategies typically used

for identifying outliers [45].

Data Integration

When combining information from multiple data repositories, the resulting merged dataset may contain

redundancies and inconsistencies. A thorough data integration may be important for dealing with prob-

lems such as semantic heterogeneity and structure of the data. This phase may involve procedures such
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as entity identification, redundancy and correlation analysis, field duplication detection and data value

conflict detection and resolution [38]. In some cases, data integration may be followed by an additional

data cleaning in order to avoid inconsistencies caused by the combination of data from different sources.

Data Reduction

If on the one hand, data integration allows the combination of data from multiple repositories, on the

other, in some situations, a reduction on the amount of information is desired. The large dimensions

of the data repository may hamper its analysis, and the use of data mining methods may become im-

practical or infeasible. Data reduction techniques are helpful in these circumstances, since they aim

for acquiring a diminished dataset without losing relevant information. This means that the application

of the data mining functionalities on the compressed dataset is expected to achieve a more efficient

performance, yet accomplish similar results.

The methods for data reduction include dimensionality reduction, numerosity reduction and data

compression. In the process of dimensionality reduction, the number of random variables or features

is diminished according to certain specifications. Wavelet transforms, principal component analysis,

feature selection and feature construction are examples of dimensionality reduction methods. Numeros-

ity reduction techniques attempt a reduced representation of the data through parametric models (e.g.

regression or log-linear models) or nonparametric models (e.g. histograms, clustering, sampling, or

data cube aggregation). The data compression methodologies consist of transformations applied in the

interest of achieving a diminished dataset. [38]

Data Transformation

Some data mining functionalities require data in certain forms as a way to achieve a more efficient perfor-

mance. For instance, the measurement units of a specific variable may have an undesired impact on the

results, particularly in distance-based methods, by modifying the relevance of a given feature. For this

reason, data transformation is useful for converting the data into a more convenient form, according to

the designated data mining technique. Data transformation strategies include normalization, smoothing,

feature construction, aggregation, discretization and concept hierarchy generation for nominal data.

2.1.2 Classification

Data mining functionalities generally comprise two categories: supervised and unsupervised [45]. In

unsupervised methods, the algorithms search for relationships, patterns, trends and structure among

unlabelled data. This means that no external knowledge is provided concerning the target or output

variables. Clustering is an example of an unsupervised method, where the objects in data are organized

into groups (clusters) according to their similarities. On the other hand, the majority of data mining

techniques consist of supervised methods [45]. In this case, the goal is to develop a mapping model

from labelled data, that is able to predict the target or output variables of new given data.
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Classification corresponds to a supervised method, in which models are known as classifiers and the

target or output variable is called the class label attribute. This data mining method is usually separated

in two steps: the learning step (also referred to as training phase) and the classification step (or test

phase) [38]. In the first step, the algorithm is provided with a dataset (named training set) that includes,

amongst all data, the information regarding the predefined target or output variable (class labels). Based

on the analysis of the training set, the algorithm is expected to learn and build a mapping model (clas-

sifier) that describes and specifies the existing data classes. Classification rules, decision trees and

mathematical formulas, are examples of typical representations for classification models. These speci-

fications may provide a better understanding of the available data and they can be used to assign class

labels to new records. In the classification step, the performance of the developed model is examined

using a distinct dataset named test set. Similarly to the training set, apart from all the variables, the test

set includes the class label attribute. However, in this step, the class label assignment (classification) is

performed based on the model built on the learning step. Then, the effectiveness of the classification

is evaluated by comparing the class label predictions with the expected values. An acquainted issue in

classification is when the classifier is excessively conformed to the training set. This is called overfitting

and it occurs when there is an imbalance between the complexity of the mapping model and its ability to

generalize [45]. In these situations, the predictive performance of the classification is affected since the

classifier has incorporated certain irregularities from the training set.

Classification is a subject of study common to a variety of fields closely related to data mining, such

as machine learning, pattern recognition and statistics. Applications comprise banking, education, fraud

detection, target marketing, manufacturing, medical diagnosis, amongst others. [38]

Evaluation

In classification tasks, the evaluation of a classifier estimates its ability to effectively predict, by analysing

the classification results produced. In general, the evaluation of the model’s quality is accomplished

with the use of a test set consisting of data distinct from the training set. These two datasets may be

generated through several methods for splitting the labelled data into a training set and a testing set

[38]. Cross-validation is one of the existing strategies not only for dealing with the classification datasets

but also to provide more reliable evaluation results of the classifier. In k-fold cross validation, from the

initially available data, k complementary subsets are randomly generated, all with approximately the

same dimensions. Then, the learning step is performed with data from the k − 1 subsets (training set)

and the remaining subset is used for the classification step. The training and test phases are executed k

times, thus allowing for each subset to work as test set. The evaluation measures are calculated based

on the average of the overall k classification results. When the k subsets preserve approximately the

same class distribution of instances as in the original data, the method is referred to as stratified cross

validation.

A variation of the k-fold cross validation consists of the leave-one-out method (also known as jack-

knife) [53]. In this case, only one instance is used as the test set, for each iteration, while the others are

responsible for the training of the classifier. This method may not be suitable for large datasets due to
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its computational demand.

Four distinct types of classification results are typically used to compare the classifier’s prediction

with the expected outcome [53]:

• True Positive (TP) - when an instance that belongs to a certain class is classified as such;

• True Negative (TN) - when an instance that does not belong to a certain class is not classified as

such;

• False Positive (FP) - when an instance does not belong to a certain class but it is classified as

such;

• False Negative (FN) - when an instance belongs to a certain class but it is not classified as such.

Predicted Class

Positive Class Negative Class

Actual
Class

Positive Class True Positive (TP) False Positive (FP)
Negative Class False Negative (FN) True Negative (TN)

Table 2.1: Confusion Matrix for a binary classification problem.

These terms are usually organized in a table called confusion matrix (Table 2.1), whose dimensions

vary according to the number of existing classes. The confusion matrix gives information about the

ability of the classifier to analyse the instances of different classes [38]. For an effective classifier, the

diagonal of this matrix (TP and TN) includes the majority of the instances and the remaining entries (FN

and FP) are close to zero. The evaluation of a given classifier is usually based on several measures,

including:

Accuracy =
TP + TN

TP + TN + FP + FN
, (2.1)

Sensitivity =
TP

TP + FN
and (2.2)

Specificity =
TN

TN + FP
. (2.3)

The Accuracy in Equation (2.1) corresponds to the percentage of correctly classified instances and

it indicates how precisely the classifier is capable of predicting the various classes as a whole. This

measure is not so rigorous for class imbalanced data, where the existing classes are not proportionally

represented [38]. In this case, Sensitivity, in Equation (2.2), and Specificity, in Equation (2.3), are more

appropriate evaluation measures, since they reflect the proportion of positive or negative instances,

respectively, which are properly classified [53].

Class imbalanced data correspond to a non-similar distribution of instances from the existing classes,

and they can represent a problem in the learning performance of the algorithms. This is considerably

frequent in some real-world datasets, where the samples associated to a specific class are in insufficient

number. The solutions include, among others, under-sampling methods, where data is removed; and

over-sampling methods, where instances are added to the dataset [42]. The Synthetic Minority Over-

sampling Technique (SMOTE) [16] is an example of a procedure for dealing with imbalanced data. This
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approach combines the over-sampling of the minority class with the under-sampling of the majority one.

The use of methodologies for imbalanced learning can be significantly beneficial to the classification

performance [35].

Distance-based classifiers

The group of classification methods known as distance-based classifiers use a measure of proximity

(distance) to assign a class label to a new instance. Euclidean distance, absolute difference, maximum

distance metric and Dynamic Time Warping (DTW), are examples of proximity measures for analysing

the distance of the unknown instance to the existing classes [53].

In k-Nearest Neighbours (kNN) [21], all the instances of the training set are stored and used to

represent their respective class. For this method, the class labels of the k closest neighbours determine

the classification of the incoming instance. This means that, after computing the distance between the

unknown sample and each record of the training set, the class label is assigned according to the k

closest cases. [45]

Some considerations about this algorithm need to be taken into account, namely the choice of the

distance measure and the value of k. Both specifications affect the performance of kNN, since the size

of the data can influence some proximity metrics, small k’s may generate noisy results and large k’s can

create ambiguous decisions for classification [53].

Due to its computational expense, particularly for large datasets, alternatives to the kNN technique

include the Exemplar-based Nearest Neighbours [59], where each class is represented by one sample,

named the exemplar. The features of the representative instance are usually computed as the average

of the overall samples in the same class.

Bayes Classifiers

Bayes classifiers are considered statistical classifiers, seeing that they build a probabilistic model of

the features in the learning step, and based on that model they predict the classification of a new in-

stance, through probabilities’ computation [53]. Considering the general case, the a posteriori proba-

bility P (Ci|X) represents the probability of the instance X, of unknown class, belonging to class Ci. In

these classification methods, this probability is computed through the Bayes’ Theorem:

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)
, (2.4)

where P (X|Ci) is the probability of the class Ci containing the instance X, P (Ci) corresponds to the

probability of an instance belonging to class Ci, and P (X) consists of the prior probability of X.

Naı̈ve Bayes classifier [66] is one of the most appreciated probabilistic classifiers because of its

simplicity and effectiveness. This algorithm is known not only for building models easily but also for

making rapid predictions [53]. The connotation of ”naı̈ve” is related to the assumption that the features

are class conditionally independent [38]. This means that the influence a certain feature has on a given

class Ci is independent of all the other features’ values [57]. Even if some features are dependent or
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related to each other, they are considered as properties that individually contribute to the a posteriori

probability.

For a given training set of multiple instances, each one is represented by a feature vector X =

{x1, x2, ..., xN} and its respective class Ci. A new incoming instance X is classified according to the

class with the maximum a posteriori probability. In Equation (2.4), based on the assumption of class

conditional independence and since P (X) is equal for all classes, P (X|Ci) is calculated as:

P (X|Ci) ≈
N∏

k=1

P (xk|Ci), (2.5)

and P (Ci) may be computed from the training set as the quotient between the number of instances

that belong to class Ci and the total number of records. Since xk corresponds to the value of the

feature k of the instance X, the probabilities from Equation (2.5) can be estimated from the training set.

However, according to the type of feature, distinct procedures are used. While for categorical variables,

P (xk|Ci) can be computed through frequency calculation, for the continuous case, it is obtained from

the probability density function of the feature [57].

Decision Trees

Some classification methods comprise the construction of a decision tree. This consists of a diagram

of decision nodes, that represent evaluations on features, linked by branches, which denote the evalu-

ations’ results [68]. The origin or highest node is known as the root node and the terminal nodes, also

called leaf nodes, indicate the class labels. For an incoming instance of an unknown class, its features

are tested by the decision tree. Starting from the root node, the features are evaluated on the decision

nodes. According to the outcome, the respective branch is chosen, which leads to another decision

node or to a leaf node, allowing the classification [45].

In these type of classifiers, the decision tree is constructed from the training set and their respective

class labels. These methods are considered simple and fast, since they consist of an intuitive knowledge

representation, and they usually involve a top-down recursive divide-and-conquer approach [38]. This

means that the dataset is gradually sectioned into subsets, using feature selection techniques. These

correspond to heuristic procedures for identifying the features that most effectively divide the existing

instances into distinct classes. During the tree construction, feature selection measures are employed,

such as the information gain or the Gini index [45]. While some of them produce binary trees, where

each decision node generates only two branches, others enable non-binary decisions. Another issue

that arises with decision trees consists of handling noise and outliers in the training data. Tree pruning

is a response to this problem through the identification and removal of branches that are the result of

noisy data.

ID3 (Iterative Dichotomiser) [62], C4.5 [63], CART (Classification ad Regression Trees) [71] and

SPRINT (Scalable Parallelizable Indution of Decision Trees) [70] are examples of decision tree algo-

rithms. The differences between them are mainly related with the feature selection techniques and the

tree pruning mechanisms.
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Support Vector Machines

According to Mitsa [53], Support Vector Machines (SVMs) consist of one of the most accurate and robust

data mining methods, since they are not affected by the number of dimensions nor require the use of

the entire training set in the learning step. However, the computational complexity and, consequently,

the demanding training time are usually identified as disadvantages.

SVMs [72] assume that the data from the training set can be separated by class, even if that in-

volves a transformation into higher dimensions. The goal is to construct a decision boundary, known

as maximum marginal hyperplane, that separates the training set in two classes, while maximizes the

margin between both of them. Hence, this method is mainly designed for binary class conditions, where

the hyperplane corresponds, for instance, to a separating line or plane for the two or three dimensions

context, respectively.

The margin can be seen as the distance between the closest elements of the two classes, which

means that it represents the separation between classes. For this reason, the larger the margin, the

better the quality of the division and, consequently, the more effective the classifier at classifying new

incoming instances. The classification step is performed by testing the unknown instance in the mathe-

matical representation. According to the sign of the result, the class label is assigned.

The hyperplane is found through the support vectors, which consist of the elements closest to the

decision boundary. They are commonly referred to as the essential or critical training instances, seeing

that for a new case, where all the other records were removed, the constructed hyperplane would be the

same [38].

In terms of computation, the maximal margin hyperplane can be found through solving quadratic op-

timization problems, Lagrangian formulations or using Karush-Kuhn-Tucker (KKT) conditions. Through

the kernel trick [73], SVMs are able to perform non-linear classification by transforming the data from the

training set into an appropriate higher dimensional space, in the interest of having a linearly separable

situation. In this case, in order to decrease the complexity of the calculations, instead of computing

the inner products in the new space, a kernel function may be applied to the original space. Polyno-

mial kernel, Gaussian radial basis function kernel and Sigmoid kernel, are examples of existing kernel

functions.

For the multi-class context, SVM classifiers may be used through several strategies such as the one

proposed by Aiolli et al. [3], where a classifier is trained per class.

Neural Networks

Neural networks are computational models that resemble the human brain because of their structure

and operation [52]. They consist of a collection of nodes (comparable to neurons) connected through

weighted arcs. The multilayer feed-forward is a common form of neural networks that organizes the

nodes in a structure with an input layer, one or more hidden layers, and an output layer. While the input

layer corresponds to the features of each instance from the training set, the output layer consists of their

respective class labels. Although the nodes of each layer are not linked together, they are connected
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to all the nodes of the following layer. The term feed-forward means that the information progresses

between layers, from left-to-right, in only one direction (no cycles back to nodes from previous layers).

The output of each node is calculated by summing the weighted outputs from the previous nodes and

applying a non-linear activation function to this sum.

These models are known as adaptive systems since their structure is modified according to the avail-

able information. Before the training step, a decision has to be made regarding the network topology:

number of nodes in the input layer, number of hidden layers, number of nodes in each hidden layer, and

number of nodes in the output layer. Afterwards, each node has its weight adjusted in the interest of

minimizing the error of the class label prediction for the training set instances.

Backpropagation is a well-known neural network algorithm used to perform the training phase. It

consists of an iterative process where the training set is used to compare the predicted classifications

for each instance with their expected correct class labels. Since, initially, the weight assigned to each arc

is a random value, during this learning step, these weights are modified in order to reduce the difference

between the predicted and the expected classification results. These adjustments occur from the output

layer to the input layer (from right-to-left), through a sort of trial-and-error process.

For the classification step, a new incoming instance is input to the neural network, which means that

its features are used in the input layer, and the calculations output the predicted class label (in the output

layer). In spite of its robustness to noise and its ability to classify patterns, neural network classification is

usually criticized for its difficult interpretation and its time consuming training step [38]. Several different

neural network algorithms have been proposed with different structures, methodologies and activation

functions [53].

2.1.3 Sequence Classification

As previously mentioned in this chapter, the information repositories, in which data mining methods are

applied, may be of different forms. If on the one hand, data mining can be defined as the process of

automatically analysing data and extracting relevant information or knowledge from existing patterns,

trends or relationships; on the other hand, the field of temporal data mining is interested in applying

the same process to sequence data [46]. Taking into consideration that a sequence corresponds to an

ordered list of events, this type of data may be categorized into five groups [78]:

• simple symbolic sequence, where the events consist of alphabetic symbols (e.g. DNA sequence,

formed by the amino acids A, C, G, T);

• complex symbolic sequence, where each event is a vector of symbolic values (e.g. list of items

bought by a customer in a store, during one year);

• simple (or univariate) time series, which represents a sequence of numeric values organized in

regular time intervals (e.g. ECG measurements of a certain patient, measured each second,

during one hour);
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• multivariate time series, which represents a sequence of numerical vectors, that contain the infor-

mation of more than one variable, also organized in regular time intervals (e.g. measurements of

some gases concentrations in the air of a certain room, collected each hour, during one day);

• complex event sequence, where each event is a vector of multiple data types - numerical, categor-

ical and others (e.g. patient’s health record from monthly medical appointments, during one year).

In the scope of the thesis, this type of sequence data is considered an heterogeneous multivariate

time series.

In temporal data mining, the order of the events is informative and important for the description and

the modelling of the data [46]. This means that there are positional or temporal dependencies and the

data is organized with respect to a particular index. For instance, in gene sequences, the nucleotides

follow a specific order within a DNA molecule, while in time series, the events are explicitly indexed by

time as a collection of chronological observations [28].

The main tasks in temporal data mining are described by Laxman et al. [46] and correspond to:

prediction, clustering, search and retrieval, pattern discovery, and classification. In the first one, the

predictive model constructed for the data uses the information from previous records to forecast future

values of the sequence. In clustering, collections of sequences are organized in groups according to

their similarities. Sequence search and retrieval methods are useful in the case of large datasets, since

they are interested in identifying concrete subsequences among data. Pattern discovery techniques are

concerned with searching hidden local structures of interest (patterns), which may represent knowledge

within the context. Finally, the last task suggests that a sequence may have a class label assigned.

In sequence classification, the training set corresponds to a collection of sequences with the informa-

tion about their respective class labels. For example, a multivariate time series with the measurements

of some gases concentrations in the air of a certain room, collected every hour, during one day, may indi-

cate polluted or not polluted environment. Three categories organize the existing sequence classification

techniques, according to their specifications [38, 78]. In feature-based classification (e.g. decision trees

and neural networks), conventional classification methods are applied to the sequence data considered

as features. For numeric data, discretization is required, which may originate the loss of information. In

sequence distance-based classification (e.g. kNN and SVM), conventional classifications methods are

applied, yet the distance function measures the similarity between sequences and dictates the quality of

the classification. In model-based classification (e.g. Naı̈ve Bayes classifier and Hidden Markov Mod-

els), statistical models are used to accomplish the classification of sequences. These techniques are

based on generative models that describe the probability distribution of the sequences in each of the

existing classes.

As proven by the already mentioned examples, sequence classification has a wide range of real-

world applications. For instance, in speech recognition, gesture recognition, genomic analysis, infor-

mation retrieval, health informatics, stock market analysis, economic and sales forecasting, as well as

process and quality control [38, 78].
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2.2 Early Classification

Recent research has been focusing on an extension of the sequence classification problem, known as

early classification. Seeing that earliness is intuitively related with temporal data, this problem deals

with observations collected over time, generally referred to as time series. In this sort of data, the

information is acquired and organized sequentially, which means that the order of the measurements

has significance and their values are highly correlated. This is the case in electronic medical records,

when the patient’s health condition is monitored in each appointment and the information collected is

structured as chronological records.

Consider a dataset D composed of a collection of pairs:

(Ti, ci) : i ∈ {1, ..., w} , (2.6)

where Ti consists of a time series, ci corresponds to its respective class label and w represents the

number of instances in D.

In general, a time series can be defined as a vector of length L:

Ti =
(
x

(i)
1 ,x

(i)
2 , ...,x

(i)
L

)
, (2.7)

where each component:

x
(i)
k =

(
x

(i)
k1
, x

(i)
k2
, ..., x

(i)
kN

)
, (2.8)

consists of a set of N features measured at time point k.

In time series classification, a class label ci is associated to each Ti through the relation:

Class(Ti) = ci. (2.9)

The standard time series classification goal is to construct a classifier from a training set, capable of

assigning a class label to a new time series, with the maximum accuracy possible. Beyond optimizing

the accuracy of the classification, in some applications it is beneficial to classify data as early as possible

[79]. The amount of available time points is associated with more complete information about the time

series, which, in general, is expected to allow a more accurate class label prediction. In addition, the

anticipation of the classification implicates fewer time points and, consequently, less knowledge from

the time series, which may have an effect on the accuracy of the outcomes [55]. Therefore, one of

the fundamental challenges is the tradeoff between accuracy and earliness, since it is desirable to

obtain a class label prediction without waiting for the end of the sequence, while ensuring an acceptable

classification accuracy [79]. Early classification of time series aims for making predictions as soon as

enough data is available, and it is relevant in contexts where the collection of data has a cost associated

or the delay of the predictions is adverse [55].

The work from Xing et al. [79] was one of the first to formulate the problem of early classification. For
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a time series Ti, Equation (2.7), the subsequence:

ti =
(
x

(i)
1 ,x

(i)
2 , ...,x(i)

n

)
(2.10)

describes the section from the beginning until a time point n ∈ {1, ..., L}. This variable represents the

timestamp from which the information of the time series can be neglected. An early classifier is able to

find the time point n and perform an accurate classification based on ti, such that:

Class(Ti) = Class(ti) = ci. (2.11)

The possibility of acquiring reliable information in advance can be determinant in some situations.

For example, when deciding if a tumour is benign or cancerous, the diagnosis may take a certain amount

of time, since the evolution, the characteristics and the modifications over time dictate the final verdict.

The anticipation of this decision may not be urgent for the benign case, however, it can be crucial in the

event of being cancer [60]. The advantages of early classification in medical applications is summarized

by Ghalwash et al. [30] when they say that providing correct and timely diagnosis saves lives. The early

and accurate prediction of a patient’s health condition, based on the available information, enables the

beginning of the necessary treatment before the disease is completely active [30].

As stated by Xing et al. [80], it is important to distinguish early classification from classic time series

prediction, where the goal is to forecast values at some point in the future. Early classification of temporal

data consists of anticipating the classification by using only a portion of the available information, without

compromising the prediction quality. The goal is to predict the class label of a time series as early as

possible provided that the classification accuracy is close to the one using the complete data.

2.2.1 Applications

Early classification may have a variety of applications, such as disease diagnosis in health informatics,

anomaly detection, disaster prediction and process control. In many different applications for disease

diagnosis prediction, using clinical data, the amount of available information may improve the accuracy

of the classification results. However, using only part of the data for an early classification with an

acceptable accuracy may be of great interest. Being able to predict the evolution of a clinical case, in an

early stage, can be crucial for taking the right decisions.

An application for early classification addressed by Hatami et al. [39] consists of the detection and

recognition of odours in the environment. In places such as laboratories, warehouses and space sta-

tions, the monitoring of the air conditions inside is important to identify the presence of toxic or danger-

ous chemicals. These compounds can be prejudicial to human health and its early detection may be

determinant in minimizing the exposure damages.

In situations of natural catastrophes, early classification can also have a relevant impact. Earth-

quakes and tsunamis are known to be preceded by some indications related with seismic activity. Moni-

toring the convenient data and being able to anticipate the prediction of natural disasters, may be crucial
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in avoiding greater damage.

Network security and traffic engineering can also benefit with early classification. In order to protect

network resources and restrict illicit use, it is important to identify the application associated with the

traffic flow. A technique for accurate traffic classification is proposed by Bernaille et at. [9], using only

the information from the first five packets of a TCP (Transmission Control Protocol) connection. This

allows an early detection of the application associated, since their identification occurs before the end

of the TCP flow. Intrusions or malicious attacks to the network may be prevented, as well as anomalies

detected, with an accurate early traffic classification.

In general, the benefits of early classification are related with the possibility of saving time, due to

having the information beforehand and acting accordingly in advance.

2.2.2 Related Work

Literature complies with the fact that Rodriguez et al. [67] were the first to mention early classification.

They propose a time series classification method based on relative and region predicates that describe

temporal intervals. Classifiers are constructed using these predicates, through a boosting approach,

which consists of a method that generates ensembles of classifiers. Since the classification uses the

linear combination of the predicates, omitting the ones with an unknown result, this approach can be

used with variable length time series and can classify incomplete data. They point the advantage of

this partial time series classification in situations where information is needed as early as possible.

However, they also mention the necessity of verifying the evolution of the variables in order to confirm the

precision of the classification. Therefore, although they focus on early prediction based on incomplete

data, the unavailable information is ignored, which means that the reliability and the accuracy of the

early classification are not taken into consideration. Nevertheless, this initial approach suggested the

possibility of adapting boosting methods for addressing early classification [69].

The application of early classification in supervision and diagnosis of dynamic systems was intro-

duced by Bregón et al. [11]. They use a Case Based Reasoning (CBR) methodology to detect faults, as

early as possible, in a continuous process. Each time a fault is detected, the CBR system is expected

to identify the most likely cause, out of a certain group of alternatives. The k-nearest neighbour (kNN)

algorithm is used for the learning process, with three different similarity measures: the Euclidean dis-

tance, the Manhattan distance and the Dynamic Time Warping (DTW). Moreover, the kNN algorithm

consists of the classifier that allows the classification of time series with different lengths. Likewise in the

work from Rodriguez et al. [67], in spite of focusing on the classification of incomplete data as a way to

achieve early classification, the optimization of its accuracy and reliability is not a subject of study.

While referring to the existing standard sequence classification methods, Xing et al. [77] pointed

that the general approaches were only concerned with improving the accuracy of the classification. In

general, most methods consisted of extracting features from complete sequences and developing clas-

sification models based on a set of features. Hence, they studied the problem of early classification

on sequence data and proposed two methods: the Sequential Classification Rule (SCR) and the Gen-
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eralized Sequential Decision Tree (GSDT). The goal consisted of finding sequence classifiers able to

predict the class label of a new sequence, without using its entire length, while ensuring an expected

accuracy. At first, in the SCR method, a set of features with effective characteristics for early prediction is

extracted from the training data. These characteristics, such as frequency, distinctiveness and earliness,

are identified through the utility measure, which is based on the information gain and on the weighted

support of the feature. Then, from the extracted features and based on both the expected accuracy and

the prediction cost, a set of sequential classification rules is formed and used as the classifier.

In the GSDT method, instead of an association rule, a decision tree is built, using a set of features

as an attribute. Likewise in the SCR method, the features used are effective for early prediction and

the expected accuracy is taken into account. Unlike Rodriguez et al. [67] and Bregón et al. [11], while

attempting early classification, Xing et al. [77] also focused on the accuracy of the prediction. On the

other hand, the application of the proposed sequence classification methods on time series involves

discretization of the data. However, their results demonstrate that the SCR and the GSDT methods

do not achieve good performances in this type of data. That could be related with the potential loss

of information during discretization or with the fact that these approaches are designed specifically for

symbolic sequences.

Due to the wide time-sensitive applications for early classification, Xing et al. [79] analysed some of

the existing standard time series classification methods. They pointed that in feature-based methods,

time series need to be transformed into a set of features usually through discretization or symbolic

transformation. On the other hand, instance-based methods do not require these sort of modifications

to the data, since they use the information obtained from the time series of the training set to classify the

new data. Therefore, Xing et al. [79] propose an extension of an instance-based method based on the

1-nearest neighbour (1NN) classifier, with the Euclidean distance, for early classification on time series

data. Based on the idea of not using the entire time series, but instead, finding a previous location for

which the accuracy of the classification is maintained, the Early Classification on Time Series (ECTS)

method is proposed. They identified two important requirements for an early classifier: being able to

indicate the earliest time location of accurate classification; and ensuring an accuracy close to the case

of using the full length time series. Thus, their approach involves a training phase, where the Minimum

Prediction Length (MPL) is computed for each time series, yet based on a cluster of identical time series.

This variable represents the time location (timestamp) from which the information of a time series can be

discarded. Seeing that the classification is not considerably modified by using the data from a specific

point on, the amount of information can be compressed, allowing early classification. Then, in the

classification phase, for a new time series to be classified, if its 1-nearest neighbour from the training set

has a MPL at most equal to the current timestamp being analysed, then the same class label is assigned

to the new time series. In the work from Xing et at. [79], the decision upon the tradeoff between earliness

and accuracy is analysed, since the reliability of the 1NN is evaluated while anticipating the classification.

Considering some of the existing approaches for early classification on time series and, in particular,

the ECTS method, Xing et al. [80] identified one limitation: the interpretability. They point the importance

of not only providing classification results, but also extracting interpretable features from time series, for
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early classification purposes. These features allow the identification of relevant patterns, useful for

application domain experts to obtain additional and summarized information from data. Based on time

series shapelets, introduced by Ye et al. [82], the Early Distinctive Shapelet Classification (EDSC)

method is proposed. This feature-based approach consists of extracting subsequences of time series

(shapelets), which can distinctly point to the target class, and then selecting the ones more effective for

early classification. Alternatively to the information gain criteria suggested by Ye et al. [82], they indicate

a feature extraction method that uses density estimation or Chebyshev’s inequality for computing the

distance threshold. However, since the set of extracted shapelets may be extremely large or contain

redundant subsequences, a utility rank is assigned to each shapelet according to its earliness, frequency

and distinctiveness (extension of the F-measure method). Choosing a reduced subset of the extracted

shapelets, according to the above mentioned restrictions, avoids overfitting and ensures the use of the

most effective features for early classification. These shapelets’ subset is used as a classifier since

when a new time series is scanned, the earliest feature match is searched. In spite of its effective

performance, the proposed method is restricted to univariate time series [30].

As an extension of EDSC, Ghalwash et al. [29] propose the Multivariate Shapelets Detection (MSD)

method. The idea of early classification on time series is maintained, however, it is generalized into

a multivariate context. An N-dimensional shapelet is described as a set of multiple extracted subse-

quences, each of them associated to one specific dimension. Likewise EDSC, the goal is to allow the

classification of a time series using only a portion of it. Yet, Ghalwash et al. [29] use the information gain

not only for feature extraction but also for feature selection. They point some limitations to the Cheby-

shev’s inequality method and, instead, compute the distance threshold for a shapelet by choosing the

one that maximizes the information gain (as suggested initially by Ye et al. [82]). In addition, regarding

the shapelets’ utility rank, they introduce the use of weighted information gain in place of the extended

F-measure, proposed by Xing et al. [80]. A theorem is shown stating that between two shapelets, the

one with the highest weighted information gain is the one with better earliness, for the same accuracy

performance [29]. Based on this result, a utility rank is assigned to each shapelet, and that allows the

selection of a reduced subset with the most effective ones for classification. Likewise EDSC, a new time

series is classified by finding the earliest covering shapelet from the generated subset. One drawback

of shapelets pointed by Mueen et al. [56] is the significant computation time to extract them. This is a

relevant issue also related with the MSD method, since its computation time increases considerably with

the amount of data.

More specifically focused on biomedical applications, Ghalwash et al. [32] recognized the efficiency

of Hidden Markov Models (HMMs) in dealing with multivariate biomedical temporal data. Due to their

dynamic modelling capability as well as their flexibility in handling missing values, these models have

been used in speech recognition, language processing and gene expression analysis. In their work

[32], they propose the combination of an HMM with a Support Vector Machine (SVM) for the early

classification context. An hybrid model named Early Classification Model (ECM) is proposed, in which

the HMM is responsible for learning the distribution of the patterns in the training time series, that are

then used by the SVM as features for classification. Similarly to the MSD method [29], the ECM also
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deals with multivariate time series and the classification consists of gradually analysing a portion of

the new time series and checking the ability to predict its label. When comparing both approaches,

Ghalwash et al. [32] claim to have significantly surpass the method proposed by the other work [29], yet

the interpretability of the results is not provided. As mentioned by Xing et al. [80], particularly in medical

applications, the information of the factors that explain a specific prediction is considered useful for the

physicians.

Also aiming for medical applications, specifically early disease diagnosis, Ghalwash et al. [30] pro-

pose an optimization-based approach for constructing predictive models, through the extraction of mul-

tivariate Interpretable Patterns for Early Diagnostics (IPED) from multivariate time series data. This

method is organized in three steps: first, the time series data (training set) is transformed into a binary

matrix with all extracted subsequences (shapelets) of different lengths, from each dimension; second, a

multivariate shapelet is extracted from the binary matrix, for each class, through a convex-concave opti-

mization problem; and third, the dimensionality is reduced and interpretable key shapelets are extracted,

both accomplished through a mixed integer optimization formulation. These key shapelets represent

each class and, during the classification step, they are compared with the incoming time series. As the

time points are being analysed, in the occurrence of a match, the class label is assigned, performing

early classification. The main improvement of this method over the ECM approach [32] is that in IPED

[30], similarly to EDSC [80], they are concerned with providing interpretable results and consider that to

be of great relevance, particularly in medical applications.

Furthermore, He et al. [40] acknowledged the wide utility of early classification on multivariate time

series and analysed the existing classification methods for this type of data. They identified two lim-

itations of the MSD method [29]: the inability to extract time-independent subsequences from each

dimension for the same multivariate shapelet, and the impossibility of dealing with dimensions of differ-

ent length. In most applications, patterns of interest for early prediction may appear in different intervals

for distinct components of study. In addition, in some cases, these components do not necessarily cor-

respond to time series of uniform length, which results in dimensions with variable temporal sizes. As an

attempt to address these issues, a new shapelet’s quality evaluation approach is proposed by He et al.

[40], as well as the Mining Core Feature for Early Classification (MCFEC) method. They introduce con-

cepts related with the shapelets such as similarity degree, precision, recall and earliness; and they use

them in the two steps of the MCFEC method: feature extraction and feature selection. Initially, for each

dimension independently, potential shapelets, with minimal precision and recall values, are extracted

from the multivariate time series training data. Then, an algorithm selects, from the potential shapelets,

the most distinctive and stable ones that will be used in generating the classifier. Instead of using the

information gain as in the work of Ghalwash et al. [29], they organize the potential shapelets of each

dimension in clusters, according to the similarity degree, using the Silhouette Index (SI) method. Then, a

Generalized Extended F-measure (GEFM) is used as the shapelet’s quality evaluation for selecting core

features of each dimension. Regarding the classification of a new multivariate time series, He et al. [40]

propose two methods for generating the classifier for early prediction of its class. The MCFEC-rule clas-

sifier, similarly to the SCR method [77], creates an association rule based on the selected core features
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(shapelets) from different dimensions. Concerning the other classification method, named MCFEC-QBC

classifier, a Query By Committee (QBC) approach is used by matching the new multivariate time series

with the core features in order to find the predominant class. The methodology suggested by He et al.

[40] focus on early classification of multivariate time series and it is flexible in dealing with the relevant

information of distinct dimensions. In comparison with the MSD method [29], a significant progress is

achieved in terms of the computation time of the training phase.

As an attempt to focusing on the reliability of the classification decision, Parrish et al. [60] propose an

approach based on a decision rule that uses linear or quadratic classifiers. Since, in some applications,

there can be a cost associated with obtaining data, they suggest a method for classification of incom-

plete data. The reliability of the decision is analysed with the probability that the classification performed

with the incomplete data would be the same as the one performed with the complete data. This prob-

ability corresponds to the degree of confidence that defines the threshold from which the existing data

is sufficient for an admissible decision. Three set construction methods are used for computing the reli-

ability threshold: the Chebyshev set, the Gaussian Näive Bayes Quadratic set and the Gaussian Näive

Bayes box set. Regarding the estimation of means and covariances of the complete and incomplete

information, the joint Gaussian estimation and the Gaussian Mixture Model (GMM) estimation methods

are analysed. As classifiers, both the local Quadratic Discriminant Analysis (QDA) and the linear support

vector machine are used to perform the classification of incomplete data. The reliability threshold can

be compared with the MPL parameter from the ECTS method [79], which is used to control the earliness

of the classifier. The advantage of the parameter suggested by Parrish et al. [60] is the assurance on

the reliability of the obtained decision, since the classification is performed only when the criterion is

met. A similar measure is used in the model proposed by Ghalwash et al. [31], providing an uncertainty

estimation of the predictions. Moreover, they mention the importance for users to have an evaluation of

the quality of the classification for better interpretation of the outcomes.

Other solutions in the literature proposed multiple approaches for the early classification problem.

The work by Wang et al. [75] introduces a deep feature learning method integrated with a non-linear

classification model for the early time series classification context. It is named Earliness-Aware Deep

Convolutional Networks (EA-ConvNets) and uses a neural network architecture to learn highly discrim-

inative shapelets from time series data for making early class label predictions on incoming instances.

In the work from He et al. [41], the issue of early classification in imbalanced data is examined. In real-

world datasets used for classification, the number of instances per class may be considerably different.

This can affect the precision of the classifiers, since they learn from the available training set. The Early

Prediction on Imbalanced Multivariate Time Series (EPIMTS) method, that uses an under-sampling

technique, is presented by He et al. [41]. The work of Li et al. [48] proposes an approach for time-critical

early decision making, that focus on modelling two aspects of multivariate time series: temporal dynam-

ics and sequential cues. A statistical learning process is suggested, including a Multilevel-Discretized

Marked Point Process (MD-MPP) model for the representation of the time series, and probabilistic suffix

tree for the characterization of the existing sequential patterns [48]. In the work from Hatami et al. [39],

the proposed method is based on a set of classifiers used sequentially in an iterative manner. Each
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classifier makes predictions with the portion of the time series available, but it also has a reject option

in the case of an unsatisfactory classification. In this case, the decision upon the class label prediction

is passed to the next classifier, ensuring, at the end of the process, not only an early but also confident

classification. The methodology from Lin et al. [50] is called Reliable Early Classification (REACT) and

it generalizes the early classification study for multivariate time series with numerical and categorical

features.

One of the most recent approaches proposed for the early classification on time series problem is

presented by Mori et al. [55]. Similarly to the ECTS method [79], the accuracy and the earliness of

the predictions are identified as the main objectives of early classification on time series, and optimiz-

ing the tradeoff between both is perceived to be one of its fundamental challenges. The same goal is

identified: predict class labels as early as possible, provided that the level of accuracy is suitable. As an

attempt to tackle the problem of these two conflicting objectives, an early classification method based

on probabilistic classifiers is proposed and called ECDIRE [55]. They analysed some of the existing

methods in the literature and developed an approach capable of dealing with three aspects: avoid un-

necessary calculations (specifically, forecasting and checking at all time points), control the reliability of

the classifications (for instance, in the case of outliers), and measure the uncertainty of the predictions

(a quantitative and interpretable evaluation). The learning step is organized in three phases: first, a

procedure is designed for analysing the training set and identifying, for each class, the time points from

whence the predictions are suitable; second, a threshold is defined, for each class, to control the reli-

ability of the class label predictions and evaluate their quality; and third, the probabilistic classifiers are

trained for performing early classification. In the classification step, unknown time series are classified

having into account the information obtained from the learning process. Thus, excessive calculations

related with premature predictions are avoided, and the precision of the classification is controlled by

dealing with unreliable predictions and providing a quantitative and interpretable measure of the quality

of the outcomes. Although some of these issues focused by Mori et al. [55] have already been dealt

with in other approaches, they propose a method that aims to comprise all of them simultaneously.
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Chapter 3

Proposed Method

The proposed method for early classification is explained in this chapter. This approach for multivariate

correlations is the result of a joint contribution of Mariano J. Lemus, João Pedro Beirão, Prof. Alexandra

M. Carvalho, Prof. Paulo Mateus and Prof. Nikola Paunković [47]. An introduction to some information

and probability theory concepts is included, in the interest of contextualizing the multivariate correlations

methodology for the early classification problem. Then, the proposed method is expounded and the

aspects concerning the implementation are described.

3.1 Information Theory

Information theory is concerned with the study of information measures, their properties and their appli-

cations [25]. It studies the transmission, processing, extraction and usage of information. The concepts

from information theory have been used in many different fields of science and technology, such as

biology, neurobiology, chemistry, economy, computer science, bioinformatics, web search, cryptogra-

phy, pattern recognition, anomaly detection, wireless communication and video compression [25, 18].

Information theory is considered to be the intersection of mathematics, physics, statistics, probability

theory and engineering, with applications in problems that deal with manipulation, acquisition, storage

and transmission of information. Therefore, this subject of study is closely related with data mining

techniques and, in particular, it can be of great benefit for the early classification context.

Information theory deals with a variety of information or communication sources, including the Dis-

crete Memoryless Sources [20]. These consist of independent random variables from a finite range of

symbols (alphabet) and their respective probability distributions.

Entropy The concept of entropy corresponds to a fundamental measure in information theory, which

quantifies the average uncertainty of a random variable. Considering the discrete random variable X,

with a set of symbols (alphabet X ) and probability mass function p(x) = P (X = x), where x ∈ X , its

entropy is defined by:

H(X) = −
∑
x

p(x) log2 p(x). (3.1)
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It is important to note that this measure does not depend on the symbols from the alphabet X of the

random variable X, but it is a function of their probabilities. The base of the logarithm in Equation (3.1)

determines the unit in which entropy is expressed. The most common is the binary logarithm which

causes the entropy to be measured in bits. This unit can be used to define entropy as the average

number of bits needed to describe the outcome of a random variable [18]. Some of the properties of

H(X) include its non negativity (H(X) ≥ 0), its upper bound based on the number of symbols (N ) in

the alphabet (H(X) ≤ log2N), and the indetermination convention 0 log2 0 = 0 [25]. In general, the

entropy of a random variable is maximum when all symbols have the same probability, meaning that

the uncertainty of the outcome is high, since the events are equally likely. On the other hand, if one of

the symbols has probability equal to one, and all the others have zero probability to occur, there is no

uncertainty in the outcome of the random variable, which means that the entropy is zero.

Joint Entropy Considering two discrete random variables X and Y and their joint probability p(x, y) =

P (X = x, Y = y), where x ∈ X , y ∈ Y, their joint entropy is defined by:

H(X,Y ) = −
∑
x

∑
y

p(x, y) log2 p(x, y). (3.2)

Note that if X and Y are independent, their joint probability is p(x, y) = p(x)p(y) and, consequently, their

joint entropy is equal to the sum of the two individual entropies: H(X,Y ) = H(X) +H(Y ).

Conditional Entropy The conditional entropy, H(X|Y ), corresponds to the uncertainty of the random

variable X, knowing the outcome of the random variable Y . Its definition is:

H(X|Y ) = −
∑
x

∑
y

p(x, y) log2

p(x, y)

p(y)
, (3.3)

and it measures the amount of information required to describe the outcome of X, given that the value

of Y is known. Note that, according to the Bayes’ theorem, the conditional probability is defined by

p(x|y)p(y) = p(x, y) and the conditional entropy corresponds to H(X|Y ) = H(X,Y )−H(Y ). In addition,

if X and Y are independent, then H(X|Y ) = H(X), which means that the knowledge about Y has no

impact on the uncertainty of the random variable X.

Mutual Information The dependence between two random variables can be measured using the mu-

tual information. This concept quantifies the amount of information that one random variable gives about

another and it is defined by:

I(X;Y ) =
∑
x

∑
y

p(x, y) log2

p(x, y)

p(x)p(y)
. (3.4)

This quantity is non-negative (I(X;Y ) ≥ 0) and symmetric for X and Y : I(X;Y ) = I(Y ;X), seeing that

it represents the information shared by both variables. Based on the Bayes’ theorem for entropies, the

mutual information can be expressed as I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). Since I(X;Y )
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measures how much the knowledge about X reduces the uncertainty about Y (or the other way around),

if both random variables are independent, the mutual information is equal to zero, because they do not

give any information of each other. Thorough details and demonstrations about these concepts can be

found in information theory literature [18, 25].

3.2 Probabilistic Graphical Models

Uncertainty is an inevitable aspect of most real-world applications, as a consequence of the limitations

in the information available, in the ability to model the systems and, in their non-deterministic nature

[44]. Probabilistic graphical models attempt to describe the behaviour of complex systems using a

graph-based framework for representing the probability distributions. This type of representation pro-

vide a model framework which is transparent (easy to understand and explain), effective for inference

(knowledge obtained from the distribution), and data-driven (constructed by learning from data) [44].

Bayesian networks

Bayesian networks are probabilistic graphical models for describing complex domains, and they can be

used to represent the information about an uncertain system [44]. The Bayesian network representation

consists of a directed acyclic graph G, characterized by a set of nodes N = {X1, X2, ..., Xn} and a

set of directed edges E. Figure 3.1 includes an example of a G = (N , E), where each node (vertex)

corresponds to a random variable Xi, and the edges (arrows), that connect the nodes in a specific

direction, describe the probabilistic dependencies between the random variables. For example, if the

nodes X1 and X2 are connected through an edge from the first to the latter, this means that there is a

statistical dependence between those two random variables. In particular, the outcome of the random

variable X2 is dependent on the value of X1. In this case, X1 is considered a parent of X2, and X2 is

called a descendant of X1.

X1 X2

X3 X4 X5

Figure 3.1: Example of a Bayesian network.

For each node, two sets can be defined: the set of parents ΠXi
(nodes from which the current node

is connected to) and the set of non-descendants ΦXi (variables in the graph that are not connected from

the current node). The structure of a Bayesian network is based on the independence assumption that

each node Xi is conditionally independent of the set of non-descendants ΦXi
, provided that the set of

parents ΠXi
is known [15]. The group of local probability models, representing the dependence of each

variable Xi on ΠXi , specifies the parameters for quantifying the network structure [8]. These form the
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set of conditional probability distributions Θ =
{
θXi|ΠXi

}
i∈{1,...,n}

, where:

θXi|ΠXi
= P (Xi = xi|ΠXi

= ωi), (3.5)

associated to each node Xi and conditioned on its set of parents ΠXi
.

A Bayesian network B = (G,Θ) consists of the direct acyclic graph structure G together with the

set of parameters Θ. The unique joint probability distribution of a given collection of random variables,

defined by this representation, is calculated as [44]:

PB(X1, ..., Xn) =

n∏
i=1

PB(Xi|ΠXi) =

n∏
i=1

θXi|ΠXi
. (3.6)

For a given dataset D, the problem of learning a Bayesian network consists of designing the B =

(G,Θ) that best represents D, according to a scoring function. The scoring function corresponds to the

search guide parameter for evaluating the effectiveness of the network in representing the data. Some of

the scoring algorithms used for learning Bayesian networks are based on information theory concepts,

such as Log-Likelihood (LL), Normalized Maximum Likelihood (NML), Akaike Information Criterion (AIC),

Mutual Information Test (MIT), and Bayesian Information Criterion (BIC), the latter also referred to as

Minimum Description Length (MDL) [15].

When the structure of the network is fixed, the parameters Θ that maximize all the above scores for

a given dataset are those described by the observed frequency estimates.

Theorem 1 ([44]). Consider the direct acyclic graph structure G and the dataset D. The Bayesian

network B = (G,Θ), with a fixed structured G, that maximizes the likelihood of observing D is such that:

P̂B(Xi = xi|ΠXi
= ωi) =

|Dxi,ωi |
|Dωi
|
, (3.7)

for which |Dxi,ωi
| represents the number of instances in D, where Xi takes the value xi and its parents

(ΠXi ) take the value ωi. Similarly, |Dωi | denotes the number of instances in D, where the parents of Xi

take the value wi.

This probabilistic graphical model is useful for real-world applications that deal with a certain amount

of uncertainty. In most situations, the available observations are insufficient for an undeniable decision

about the real state of the system. Medical diagnosis is an example of this issue, since the same

symptoms may be related with multiple diseases, and the prognosis is never part of the observations

[44]. In the context of time series classification and particularly in early classification, the uncertainty is

not only associated with the prediction of the class labels, but also with the reliability of the anticipated

outcome.

Model Selection

The problem of model selection consists of using a given data for choosing the best model from a set

of alternatives [1]. In general, the true model (i.e. the process which generated the data) is unknown
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and the goal is to find the most suitable candidate (with estimated parameters) to the data from the list

of options (multi-model inference), using a model selection criterion [13]. This criterion measures the

quality of each model in fitting the data, while taking the complexity into account. Although the increase

of the complexity is expected to improve the model suitability to the data, its generalization is hampered

as well as its ability to deal with noise (overfitting). Overall, the ideal goal is not to model the data, but

instead, to model the information in the data [13]. Two model selection estimators are considered in the

scope of this thesis: Bayesian Information Criterion (BIC), also known as Minimum Description Length

(MDL), and Akaike Information Criterion (AIC).

Minimum Description Length (MDL) This is an important concept in information theory, with appli-

cations in probability theory, specifically in the context of model selection. The MDL principle is known

as an Occam’s razor approach to select, for a given dataset, the best fitting model and its parameters.

It states that, for a certain data and a number of alternative models, the best option corresponds to the

simplest model [18].

In the problem of learning a Bayesian network, the Bayesian Information Criterion (BIC) is also

known as the MDL scoring function because of their coincident results. It is concerned with analysing

the tradeoff between the log-likelihood of the dataset D (the effectiveness of the fit to the data) and the

complexity of the model B. Due to the similarity with the Minimum Description Length, from this point

on, the reference used is MDL score. This scoring function is defined as [44]:

MDL(D|B) = LL(D|B)− log2N

2
|B|, (3.8)

where N corresponds to the size of the data, and |B| represents the model dimension (number of

independent parameters in B). The log-likelihood term quantifies the amount of information required to

describe the dataset D, using the set of conditional probability distributions Θ. Conversely, the penalty

term measures the amount of information needed to encode the model B, which represents the size of

the representation B [15]. It is desired the most effective fit to the dataset, provided that the complexity of

the model is as low as possible. For that reason, the dependence of a variable on its parents increases

the MDL(D|B), and the complexity of the network decreases this score [44]. Thus, the optimal model

complexity is obtained with the maximization of Equation (3.8) over the list of candidate models.

Akaike Information Criterion (AIC) Similarly to the MDL scoring function, the Akaike Information

Criterion (AIC) [4] corresponds to a measure of the quality of statistical models for describing a given

dataset. Since it provides a model selection estimator, the AIC is a commonly used scoring algorithm

for analysing the tradeoff between the model quality of the fit to the data and the complexity of the model

[44]. In the problem of learning a Bayesian network, the difference between MDL and AIC is associated

to the penalty applied to the number of independent parameters |B|. The AIC scoring function can be

defined as [15]:

AIC(D|B) = LL(D|B)− |B|. (3.9)
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In Equation (3.8), the second term quantifies the amount of information required to encode the model

B, where each parameter in the set Θ is considered to use 1
2 log2N bits. Conversely, in Equation (3.9)

each parameter of Θ is considered to use 1 bit. This means that the penalization on the number of

independent parameters is stronger in the MDL scoring function than in the AIC score. Likewise, the

best model corresponds to the one that maximizes Equation (3.9).

Comparison between MDL and AIC Literature complies with the fact that these two criteria demon-

strate different properties for model selection and that they are appropriate according to specific condi-

tions [13, 81, 74].

According to Vrieze [74], MDL is considered to be consistent in selecting the true model, with proba-

bility close to one, given that the true model is in the set of candidate models. Consistency is a property

of model selection criteria that include a complexity penalty which varies with the dimensionality of the

data (number of instances). Since AIC has a constant penalty, a more general estimation of the true

model is selected, with probability different than zero. On the other hand, if the true model is not in the

set of alternatives, AIC is considered to be effective, since it selects the model that minimizes the mean

squared error of the estimation.

Regarding their derivation perspectives, Burnham et al. [13] pointed out that MDL is usually preferred

because of its Bayesian approach. Nevertheless, they state that both criteria can be justified and derived

within either a Bayesian or a non-Bayesian (frequentist) framework. From their point of view, what

distinguishes MDL from AIC is related with the objective true model. In general, MDL is effective for a

fixed and finite dimensional true model, while AIC is convenient for true models with complex parameters

[74]. However, both criteria are unsuitable for dealing with low dimensional datasets for which the number

of instances is close to the number of parameters to estimate [65].

Burnham et al. [13], conclude that the comparison between these two model selection criteria should

depend on the context (nature of the true model) and on the conditions (performance measures).

3.3 Multivariate Correlations

From a statistical point of view, the concept of correlation between variables attempts to measure the

relationships and dependencies among them. According to Koller and Friedman [44], the correlation

between two variables is associated with two situations: when one variable causes the other, or when

both variables result of the same origin. The knowledge of how the variables are related, as well as of

what inferences can be made about their causal relationships, is useful for drawing conclusions about

potential predictive relationships to be analysed and exploited. For example, the electrical energy con-

sumed by a given house may be influenced by the weather conditions outside. Extreme temperatures

may cause a more significant electricity demand for heating or cooling the house. This relation between

electrical energy consumption and weather conditions indicates a correlation between these two vari-

ables, meaning that a variation in one quantity has an impact on the other. In real-world applications,

the study and the awareness of these relationships can provide relevant information.
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For a finite set of discrete random variables S = {Xi}i=1,...,n, with joint probability distribution

PS(X1, ..., Xn), the total correlation between those variables can be defined as [18]:

I(X1, ..., Xn) =

n∑
i=1

H(Xi)−H(X1, ..., Xn). (3.10)

In this case, the mutual information measures the dependencies among the variables, i.e. the amount

of information that these quantities give about each other.

Let a structural relation R be a subset of the system S. Its joint probability distribution corresponds

to the marginal distribution from S:

PR(XR1
, ..., XRk

) =
∑
Xi /∈R

PS(X1, ..., Xn), (3.11)

where k is the number of elements in R.

Definition 1. A structure associated to the system S with underlying joint probability PS is a pair (S, PS)

where S = {Rj}j=1,...,k is a collection of structural relations and PS is (another) joint probability distri-

bution over S such that:

1. No structural relation Ri ∈ S is contained in another (∀i,j Ri * Rj);

2. Every Xi ∈ S is included in at least one Rj ∈ S;

3. PS consists of the solution to the optimization problem:

maximize
P∈P

H(P )

subject to
∑

Xi /∈Rj

PS(X1, ..., Xn) =
∑

Xi /∈Rj

PS(X1, ..., Xn) ∀Rj ∈ S,

where P is the set of probability distributions of the variables from S.

For example, from the set of discrete random variables S = {X1, X2, X3, X4}, some admissible struc-

tures S correspond to {{X1, X2, X3} , {X4}}, {{X1, X2} , {X3, X4}} or {{X1, X2} , {X1, X4} , {X2, X3, X4}}.

Conversely, S = {{X1, X2, X3} , {X1, X3} , {X4}} is not an acceptable structure since the relation be-

tween X1 and X3 is included in two structural relations, which represents a transgression of the first

property. Similarly, S = {{X1, X2} , {X2, X4}} does not consist of a proper structure because the vari-

able X3 ∈ S is not part of any structural relation from S, as required by the second statement.

The probability distributions from the set P, associated to the multiple structures of the system S,

take into consideration the existing correlations in all the relations Rj ∈ S. From Equation (3.10), for

a finite set of random variables, the total correlation is defined as a function of their joint distribution.

The constraint of the optimization problem (third property of a structure) guarantees that the probability

distributions of each Rj ∈ S corresponds to the respective marginal distribution from S.

For a given system S = {Xi}i=1,...,n and an associated set of structural relations S = {Rj}j=1,...,k,

the mutual information I(S) represents the maximum amount of information that the variables Xi from
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S provide about each other. On the other hand, I(S) quantifies the information described by the cor-

relations inside the structural relations Rj . The difference I(S) − I(S) measures the knowledge of the

dependencies and relationships between the variables of S that are not included in the relations that

compose S. Through Equation (3.10), this value can be described by the difference in entropy:

I(S)− I(S) =

(
n∑

i=1

H(Xi)−H(S)

)
−

(
n∑

i=1

H(Xi)−H(S)

)
= H(S)−H(S). (3.12)

Seeing that the entropy quantifies the average uncertainty of a random variable, H(S)−H(S) is always

non-negative, because H(S) consists of the lowest possible average number of bits required to describe

the random variables from S. Similarly, this difference represents the information given by the existing

correlations in S, that is not incorporated in the structural relations from S. In the last property of a

structure, the optimization problem consists of maximizing the entropy of the probability distribution, in

the interest of finding the PS that corresponds to the least correlated probability distribution that takes

into consideration the structural relations Rj ∈ S.

Multivariate Correlations for Early Classification

In the context of sequence classification, consider a time series T (Equation (2.7)), representing the

evolution of the variable X over time, and its respective class label C (Equation (2.9)), acting as another

variable correlated with T . The set of Xk can be viewed as a collection of time dependent discrete

random variables, for which a joint probability distribution can be defined. The correlation between any

two variables (e.g. X1 and X2) measures the influence that the value of X at one time point has on

the value of X at another instant (e.g. the dependence of X2 on X1). Note that, since a time series

is chronologically organized, it is relevant to analyse the dependency of variables on their early states,

i.e. the degree of dependence of X at a certain time point on the value observed at a previous instant.

Similarly, the correlation between C and Xk quantifies the influence that the variable X at time point k

has on the class label.

In sequence classification, the analysis of the relation between these variables is of great interest.

Particularly in the early classification context, the focus is to study systems where the class labels verify

a high dependence on a certain amount of early states of Xk, while the remaining time points are

dispensable for a satisfactory classification.

Consider the finite set of discrete random variables S to be composed of the time series T to-

gether with its respective class label C. The system, with an associated joint probability distribution

PS(X1, X2, ..., XL, C), where L represents the time series length, is defined as:

S = {X1, X2, ..., Xn, Xn+1, ...XL, C} , (3.13)

for which n corresponds to a specific instant in the time series, designated early time point. The goal is
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to find the value n that describes the distribution PS(X1, X2, ..., Xn, C) such that:

PS(C|X1, X2, ..., XL) ≈ Pn
S (C|X1, X2, ..., Xn). (3.14)

The conditional probability P (X|Y ) measures the likelihood of the event X, given that the event Y

is observed. Therefore, Pn
S (C|X1, X2, ..., Xn) and PS(C|X1, X2, ..., XL) describe the probability of the

class label C occurring, provided that some or all variables of T are known, respectively. Seeing that

n < L, Equation (3.14) denotes that the variables {X1, X2, ..., Xn} characterize the class label of the

time series almost as accurately as using the entire T . In addition, a criterion is required for identifying

the optimal n according to which the complexity of the model defined by Pn
S is low, provided that the

majority of correlations from PS are considered.

In general, sequence classification methods are performed in a collection of time series Ti with their

respective class labels Ci, organized in a dataset D (Equation (2.6)). In some cases, the joint probability

distribution PS is not known in advance, thus it has to be computed from the data, through maximum

likelihood estimation. In particular, given a dataset D, with size w, as the system S, the distribution PS

that maximizes the likelihood of D is such that:

P̂S(X1 = x1, . . . , XL = xL, C = c) =
|Dx1,...,xL,c|

w
(3.15)

for which |Dx1,...,xL,c| is the number of instances in D, where each Xi takes the value xi and C takes

the value c.

Given the system S, described in Equation (3.13), the set of structural relations, defined by:

Sn = {{X1, ..., Xn, Xn+1, ..., XL} , {X1, ..., Xn, C}} , (3.16)

depends on the value of n and it corresponds to a structure that respects the previously described

properties. Considering An = {X1, ..., Xn}, Bn = {Xn+1, ..., XL} and C = {C}1, the structure is

represented as:

Sn = {{An, Bn} , {An, C}} . (3.17)

The structural relation An contains the information about the evolution of the variable X until the time

point n, i.e. the early states of the collection of time series. On the other hand, Bn describes the

remaining instants of Ti which can be viewed as the knowledge about the later states of the variable X.

Finally, C represents the class label information from the collection of time series. The structure Sn can

be seen as a simplified model of the system S. It is expected to include the correlations between the

early and the later information about the time series (An and Bn), as well as between the early states

of Ti and the knowledge about their classes (An and C). Conversely, the correlations between Bn and

C are not preserved because the idea is to study the possibility of describing the class from the early

states An, while neglecting the information from Bn. The probability distribution of Sn is obtained based

1The notation is purposely overloaded, as it is common in probability theory to represent a singleton random vector with the
element of the singleton.
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on Theorem 2 and considering the Bayesian network represented in Figure 3.2.

Theorem 2 ([47]). Consider the Bayesian network Bn = (Gn,Θn) with Gn given by Figure 3.2 and

Θn calculated according to Theorem 1. Let Bn represent the dataset D as the system S, with under-

lying probability given by P̂S , as in Equation (3.15). The structure (Sn, PSn
) over S has a probability

distribution equal to the joint probability distribution of Bn, that is, PSn
= PBn

.

An

Bn

C

Figure 3.2: Bayesian network representation of the structure Sn from the system S.

Thus, from the set of parents ΠAn
= ∅, ΠBn

= {An} and ΠC = {An}, and through Equation (3.6),

the joint probability distribution is given by:

PSn
= P (An)P (Bn|An)P (C|An). (3.18)

From Equation (3.12) and for each value of n, the difference of entropy applied to these context can

be represented as:

I(S)− I(Sn) = H(Sn)−H(S) = H(C|An)−H(C|An ∪Bn). (3.19)

The conditional entropy is used to quantify the uncertainty about the classes of the collection of time

series, given that Ti is fully or partially known. On the one hand, H(C|An) consists of the amount of

information required to predict the class labels, provided that the time series are known until the time

point n. On the other hand, H(C|An∪Bn) corresponds to the amount of information needed to describe

Ci, based on the knowledge of the entire Ti. The difference between these two conditional entropies

measures the knowledge that the whole time series provides about the classes (i.e. the correlation

between C and An ∪ Bn) which is not represented by the incomplete data (i.e. the correlation between

C and An). Thus, Equation (3.19) can be viewed as the lack of information caused by describing the

structural relation C from An, i.e. the loss of knowledge for using the collection of time series only until

the early time point, in the classification process.

In addition to earliness in predicting the classes, the goal consists of finding the value n for which

Sn represents the system S with a reasonable complexity. Since this can be seen as a problem of

learning the Bayesian network from Figure 3.2, both the MDL and the AIC scoring functions are applied

to the multivariate correlations for early classification approach, in the interest of finding the best fitting

model. These scores are used as two criteria for choosing the early time point, such that the selection

of the model takes its simplicity into consideration. From Equation (3.8) and considering the probability
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distribution PSn
, described in Equation (3.18), the MDL scoring function is defined as:

MDL(D|Sn) =
log2 w

2
|Sn| −

w∑
i=1

log2 [p(C|An)p(Bn|An)p(An)], (3.20)

where w is the number of instances in the dataset D, |Sn| denotes the number of independent pa-

rameters in the model, and PSn
is associated to the model Sn, which describes the system S as a

representation of the given data. Similarly, the AIC score, applied to this context, is defined as:

AIC(D|Sn) = |Sn| −
w∑
i=1

log2 [p(C|An)p(Bn|An)p(An)]. (3.21)

As represented in the direct acyclic graph structure from Figure 3.2, the goal is to analyse how the

structural relation An is able to describe C, while the correlation between Bn and C is neglected. For

this reason, the computation of the network complexity only considers the relation between the early

states and the class labels:

|Sn| = | {An, C} | = ||An|| − 1 + (||C|| − 1) ||An|| = ||An|| × ||C|| − 1, (3.22)

where ||An|| and ||C|| denote the number of distinct observations in the structural relation An and C,

respectively. In Equations (3.20) and (3.21), the first term quantifies the complexity of the model, i.e.

the amount of information required to encode not only Sn, but also the data given Sn. The second

term measures the log-likelihood of the data based on the model, i.e. the amount of information needed

to represent the dataset D according to the probability distribution PSn
. While n increases, the size

of An becomes larger, the number of correlations is higher and, consequently, the complexity of the

model increases. In addition, the more information about the time series there is, the better the correla-

tions describe the data, which means a decrease in the number of bits needed to describe C from An.

The difference between these two terms describes the tradeoff between the model complexity and the

effectiveness of the fit to the data.

Note that Equations (3.20) and (3.21), correspond to the symmetric of the definitions described in

Equations (3.8) and (3.9), respectively. This means that, the best model is the one that minimizes the

scoring functions. The simplest model, that is able to use the least amount of correlations while it main-

tains a distribution as close to the original as possible, is found through minimizing both MDL(D|Sn)

and AIC(D|Sn).

Early classification analysis

In the interest of verifying the reliability of this early classification approach, an investigation on the

performance of multiple classifiers is done, while varying the length of the time series. Seven classifiers

are considered (Table 3.1), using the default parameters and stratified cross-validation with 10 folds.
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Classifier Method Description

NB Probabilistic Bayes classifier Naı̈ve Bayes
BN Probabilistic Bayes classifier Bayes Net
SMO Support vector machines Sequential Minimal Optimization
J48 Decision tree classifier C4.5 decision tree
REPTree Decision tree classifier Reduces Error Pruning Tree
RandFor Decision tree classifier Forest of multiple random trees
kNN Distance-based classifier k-Nearest-Neighbor

Table 3.1: Description of the classifiers used for comparing with the proposed method.

As explained in Section 2.1, Naı̈ve Bayes (NB1) and Bayes Net (BN2) are both statistical classifiers.

In the learning step, they build a probabilistic model with the data attributes. Then, based on that model,

they perform classification, through the computation of probabilities. The strategy used by the Support

Vector Machines (SVMs) is to construct a decision boundary (maximum marginal hyperplane) that sepa-

rates the training set in two classes, while maximizing the margin between both of them. A mathematical

representation is computed and used for testing the instances, in the classification step. SMO3 corre-

sponds to the implementation of a sequential minimal optimization algorithm [61] for training an SVM

classifier. Note that the default conditions include the kernel exponent set to one (linear), and pairwise

classification is used in the case of multi-class datasets. Other classifiers include the construction of a

decision tree, which is a diagram of feature evaluation nodes, linked by outcome branches. A new in-

stance has its attributes tested in the tree and, according to the branch results, a class label is assigned.

J484 generates a decision tree based on the C4.5 algorithm [64]. REPTree5 (Reduced Error Pruning

Tree) is considered a fast decision tree learner because it uses information gain as splitting criterion

[43]. RandForest6 constructs a collection of decision trees and the classification step is based on the

combination of all results [12]. Finally, distance-based classifiers use a measure of proximity, such as

Euclidean distance or Dynamic Time Warping (DTW), to assign class labels to new instances. kNN7

uses one nearest-neighbour (k = 1) for performing classification [2].

3.4 Implementation

The proposed algorithm is implemented in Java language, using some functionalities of Weka Data Min-

ing Software8 [36]. The Multivariate Correlations for Early Classification (MCEC) program9, summarized

in Algorithm 1, receives as input a comma-separated values (CSV) file, containing the time series and

the respective class labels. Each line is expected to correspond to one instance, for which the last col-

1http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayes.html
2http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/BayesNet.html
3http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SMO.html
4http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
5http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html
6http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
7http://weka.sourceforge.net/doc.dev/weka/classifiers/lazy/IBk.html
8https://www.cs.waikato.ac.nz/ml/weka/
9https://github.com/joaopbeirao/MCEC-algorithm
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umn corresponds to the class attribute. The columns must include the features grouped per time point,

chronologically organized. In addition, the number of attributes (dimensions) is also required as input.

The time series can be univariate or multivariate, however, they must be of fixed length. Features are

allowed to be categorical or numeric, but the dataset cannot contain missing values, since the algorithm

is not provided with any imputation procedure. Furthermore, the numeric attributes must be discretized.

The outcomes of the difference in entropy, log-likelihood, MDL score, AIC score and classification

accuracy, all for n ∈ {1, ..., L}, are outputted from the Java program in text files. An additional Matlab

script is provided for generating the five graphs for representing the results.

The Appendix A includes a detailed explanation of the proposed method applied to a synthetically

generated dataset. For clarification purposes, the functioning of the algorithm is expounded through

calculation descriptions and graph analysis.

Algorithm 1 Multivariate Correlations for Early Classification (MCEC).
Input:

D: dataset with time series and respective class labels;
N : number of dimensions (features).

Output:
Vector with the difference in entropy values;
Vector with the log-likelihood values;
Vector with the MDL score values;
Vector with the AIC score values;
Vector with the early classification accuracy analysis values.

1: for n ∈ {1, ..., L} do
2: Separation of data from D in five groups: {An}, {C}, {An, C}, {An, Bn} and {An, Bn, C}
3: Count number of occurrences of each case in each group
4: Calculate the probability values: P (An = a), P (An = a,Bn = b), P (An = a,C = c) and P (An =
a,Bn =b, C=c) according to Equation (A.5)

5: Compute H(C|An)−H(C|AnBn) according to Equation (A.4)
6: Count number of independent parameters: ||An|| and ||C||
7: Compute |Sn| and LL(D|Sn) according to Equation (3.22) and (A.15)
8: Compute MDL(D|Sn) and AIC(D|Sn) according to Equation (3.20) and (3.21)
9: Compute classification accuracy with the time series until n

10: Output the five vectors
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Chapter 4

Experimental Results

In the attempt to validate the proposed method, this chapter presents the experiments performed with

the MCEC algorithm. At first, synthetically generated datasets were used for examining the impact of

the data dimensionality variation on the behaviour of this method, as well as on its computation time.

Then, the performance results on datasets from online repositories were depicted and analysed. These

databases comprise univariate and multivariate time series. For the first type of data, a comparison

with a state-of-the-art approach from the early classification literature is enclosed. In addition, based

on all experiments, a statistical study on the tradeoff between the two fundamental challenges in early

classification is described. Finally, the MCEC method was applied to a real case scenario: a clinical

dataset with the information about patients suffering from Rheumatoid Arthritis. All the experiments

included in this chapter were conducted using a PC computer with an Intel Core i7-2677M @ 1.80GHz

CPU and with 4GB RAM memory.

4.1 Synthetic data

This section describes the empirical study of the proposed method on synthetically generated datasets.

In order to evaluate the ability of the MCEC algorithm, the methodology used in Appendix A, for produc-

ing synthetic data, is replicated. The procedure is based on the exclusive disjunction and it allows an

interpretation of the results in comparison with the expected outcomes. The parametrization of the data

generator enables the variation on common time series dataset aspects: number of features per time

point (N ), length of the time series (L) and number of instances (w). Moreover, two additional variables

are included: the number of randomly generated columns (x) and the percentage of noise in the dataset

(pNoise). Recall the data type is boolean for all features and all datasets contain 2 classes. According

to the specified parameters, a database is created, with w time series, each with N attributes per time

point and length equal to L. The value of x represents the number of initial instants that are randomly

generated. The following time points are computed as the XOR of the x previous ones. For the multi-

variate case, where each instant is composed of a set of features, the process is maintained for each

attribute independently. The class labels are computed with the same use of the exclusive disjunction,
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however, for N ≥ 2, another XOR is applied to the collection of features, in order to obtain only one value

for the class attribute. Aiming for providing more realistic data, the noise percentage causes a number

of arbitrary positions to be changed, i.e. 0 becomes 1 and vice versa.

An explanatory example of these randomly generated datasets is provided in Table A.1. The idea is

to produce a set of time series where the class labels are a function of the x initial time points, in the

interest of analysing if the proposed algorithm is able to recognize this correlation and consequently the

early classification opportunity.

Variation of data size

At a first stage, the impact of the dimensional parameters variation on the MCEC method behaviour is

analysed. Seeing that the two model selection criteria used in the proposed approach are sensitive to

the data size, the variation of w is studied, under different conditions. Therefore, the output graphs are

examined except for the classification accuracy, since the intention is to explore how the system is af-

fected by modifications in the dimensionality of the dataset. The absolute values of the log-likelihood and

of both scoring functions increase in proportion with w. Because of that, feature scaling normalization,

given by:

x′ =
x− xmin

xmax − xmin
, (4.1)

is applied to the results, for comparing the relative behaviour of the quantities. Only the entropy graph

includes the non-normalized values, on account of being a difference between two variables of the same

order of magnitude.

Figure 4.1 represents the behaviour of the four measures under investigation, for datasets with differ-

ent number of instances. Three columns are randomly generated (x = 3), which means that a feasible

prediction of the class labels is expected using only the first three time points. This figure describes the

univariate case (N = 1), for a fixed time series length (L = 10), with no addition of noise (pNoise = 0%).

In order to explore a dimensional range for the data size, the values for w comprise a set of powers of

two:
{

22, 23, ..., 214
}

.

As previously mentioned, H(C|An) − H(C|AnBn) quantifies the lack of knowledge caused by de-

scribing the classes using the time series in the dataset only until time point n. From Figure 4.1(a), the

variation of w does not extensively affect the difference in entropy. Since H(C|An)−H(C|AnBn) = 0 for

n ≥ 3, there seems to be enough information to predict the class labels, with the first three time points.

The variation of entropy from n = 1 to n = 2 is sharper for lower values of w, and it becomes null while

the number of instances increases.

Furthermore, −LL(D|Sn) describes the amount of information needed to represent the dataset D

using the model Sn. Figure 4.1(b) demonstrates that the data is completely depicted by the structure S3,

seeing that the log-likelihood is zero from n = 3 forward. The behaviour of this measure is very similar

to the difference in entropy, since they both quantify how good the model fits the data.

Considering the scoring functions, they both describe a tradeoff between the complexity of the model

and its suitability for representing the data. In the early classification context, the lowest value of both
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(d) AIC

Figure 4.1: Variation of w for synthetic datasets with N = 1, L = 10, x = 3, pNoise = 0%.

scores corresponds to the time point from which additional information can be disregarded. While the

graph from Figure 4.1(c) shows that MDL has a minimum at n ≥ 3 for w ≥ 32, the one from Figure 4.1(d)

displays AIC achieving it for w ≥ 16. In the two cases, the scores are constant from the point where

they attain the lowest value on. This is because each time point is a function of what is behind, since

it consists of the exclusive disjunction of the three previous instants. Consequently, the number of

independent parameters in group An (||An||) is constant for n ≥ 3, i.e. the number of distinct cases in

the list An stabilizes from that point on.

Figure 4.2 describes the experimental tests in datasets with the same parameters than the ones

used in Figure 4.1, except for the percentage of noise. With pNoise = 5%, a more realistic environment

is simulated. The difference in entropy (Figure 4.2(a)) and the log-likelihood (Figure 4.2(b)) have a

smoother decreasing behaviour and more difficulty in reaching zero, in particular for higher values of w.

However, in general, the most expressive reduction in both cases is verified from n = 2 to n = 3. This

indicates that, although the lack of information is minimized as more of the time series is observed, for a

certain threshold the graphs show an early classification opportunity. Similarly to the 0% noise case, the
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(d) AIC

Figure 4.2: Variation of w for synthetic datasets with N = 1, L = 10, x = 3, pNoise = 5%.

increase on the number of instances is followed by a stabilization from n = 1 to n = 2, which means that

few knowledge is gained with the use of only the first two time points. The behaviour of both measures

seems to be convergent for w →∞.

Regarding the scoring functions, Figure 4.2(c) and Figure 4.2(d) show a high variance of MDL and

AIC with the data size, respectively. For few instances, the lowest value is obtained at n = 1, which

means that the model, considered the best in terms of complexity and fitness to the data, is the one with

merely the first time point. In this case, a proper model selection is impracticable, since the samples

available are insufficient to conveniently represent the dataset, that is, the data does not contain enough

information. MDL displays a minimum at n ≥ 3 for w ≥ 128 (higher than for 0% noise) and AIC for w ≥ 16

(the same as for 0% noise). The lowest value of MDL(D|Sn) is attained at n = 3 for w ∈ {128, ..., 1024},

at n = 4 for w ∈ {2048, ..., 8192}, and at n = 7 for w = 16384. The minimum of AIC(D|Sn) is reached at

n = 3 for w ∈ {16, ..., 128}∪{512}, at n = 4 for w = 256, at n = 7 for w ∈ {1024, ..., 8192}, and at n = 8 for

w = 16384. For the experimental range of sample size, the results suggest that, although the AIC score

contains a minimum at n ≥ 3 for lower values of w, in general, it has a greater tendency to obtain values
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of n further from the expected outcome (n = 3). In both cases, the increase on the number of instances

causes the best model (early classification time point) to have a more significant deviation from the true

distribution.

In order to examine the impact of the noise in the inferences drawn about the model selection criteria,

similar experiments were performed on datasets with pNoise equal to 10% and 25%. Concerning the dif-

ference in entropy and the log-likelihood measures, the decreasing behaviour is preserved, although the

variation becomes less accentuated with noisier data. Moreover, since noise causes higher uncertainty,

the jump from n = 2 to n = 3 is not so expressive, and consequently, the early classification opportunity

at n = 3 is less obvious. For pNoise = 10%, while the lowest value of MDL (Figure 4.3(a)) at n ≥ 3

is attained for w ≥ 256 (higher than for 5% noise), in AIC (Figure 4.3(b)) this minimum is reached for

w ≥ 32 (higher than for 5% noise). Note that, in Figure 4.3, the curve w = 4 also displays a minimum for
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(b) AIC

Figure 4.3: Variation of w for synthetic datasets with N = 1, L = 10, x = 3, pNoise = 10%.

n ∈ {2, ..., 4}. This event should not be considered relevant, since the dataset is so reduced that noise

has an unbalanced influence in the results. Proof of that is, for example, the curve w = 8, which does

not have a minimum at n ≥ 3. For pNoise = 25%, the lowest value of MDL (Figure 4.4(a)) at n ≥ 3 is

attained for w ≥ 1024 (higher than for 10% noise), whereas in AIC (Figure 4.4(b)) it is reached for w ≥ 64

(higher than for 10% noise). While Figure 4.3(a) (pNoise = 10%) shows the MDL graph with some am-

biguity in selecting the true model for larger values of w, Figure 4.4(a) (pNoise = 25%) describes the

same score identifying n = 3 as the early time point with zero error. Furthermore, a lower deviation from

the true distribution is also observed in AIC, for pNoise = 25% (Figure 4.4(b)), in comparison with the

case with pNoise = 10% (Figure 4.3(b)).

A few considerations about the response of the MCEC method to variations on the dimensionality of

the dataset can be referred. Firstly, with regard to the univariate context and for given datasets with time

series of fixed length, the number of instances has a significant impact on both scoring functions and

a not so expressive influence in the difference in entropy and the log-likelihood measures. In addition,

the results suggest there is a value of w from which the minimization of the model selection criteria is
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Figure 4.4: Variation of w for synthetic datasets with N = 1, L = 10, x = 3, pNoise = 25%.

achieved at n = 3. This indicates that the number of instances in a dataset influences the effectiveness

of the scoring functions in selecting the true distribution. As mentioned in Section 3.2, both model

selection criteria are unsuitable for reduced datasets, where the number of instances is not considerably

higher than the number of estimated model parameters, leading to overfitting.

Concerning the comparison between both criteria, the experiments demonstrate that, in general,

AIC outperforms MDL, for more reduced datasets. However, for larger values of w, the AIC evidences

a greater deviation from the true distribution, having the tendency to choose more complex models than

MDL. This fact verifies the MDL reputation of being more consistent than AIC in selecting the underlying

model among the candidates, provided that the true model is in the set of alternatives.

In general, the sharp decreases in H(C|An)−H(C|AnBn) and in LL(D|Sn) for n = 3, together with

the minimum values depicted in both scores, give confidence in the early classification potential of the

proposed method. On the other hand, the experiments demonstrate that the decision upon the early

time point (n) is not always unanimous among the three measures that compose the MCEC algorithm.

This means that, in some cases, the instant from which the remaining of the time series in the dataset

can be neglected is not trivially identified.

Additional experiments were performed to the proposed method in order to analyse the impact of

the variation of two other parameters: the number of features (N ) and the time series length (L). The

objective consists of not only examine the early prediction opportunity, but also continue the investigation

on how the dimensionality of the dataset influences the minimization of the model selection criteria.

Seeing that the algorithm is capable of handling multivariate time series (N ≥ 2), the study involves

randomly generated datasets with N ∈ {1, 2, 3, 5}, while x = 3, L = 10 and pNoise ∈ {0%, 5%}. With

regard to the difference in entropy and the log-likelihood, the decreasing behaviour of these measures

is not substantially affected by the variation on the number of features per time point. In general, the

reduction within n ∈ {2, ..., 4} is expressive, which indicates that, in this time period, there occurs a

distinguishable decrease on the amount of information needed to predict the time series classes of the

dataset.
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Considering the scoring functions, the value of w from which both criteria display a minimum at

n ≥ 3 increases with N . Table 4.1 confirms this inference by describing the variation on the number

of instances for which the minimum of MDL and AIC is attained at n ≥ 3, according to the number of

features per time point. In fact, for all experiments, the minimums were reached for n = 3. Moreover, AIC

N pNoise
w

MDL AIC

1
0% 32 16

5% 128 16

2
0% 1024 128

5% 2048 256

3
0% 8192 1024

5% 32768 4096

5
0% > 131072 65536

5% > 131072 > 131072

Table 4.1: Values of w from which the scoring functions display a minimum at n ≥ 3. Parameters: x = 3,
L = 10, pNoise ∈ {0%, 5%} and N ∈ {1, 2, 3, 5}.

seems to be less conditioned by N than MDL, since its values of w are always lower. This suggests that,

though the dataset size impacts the effectiveness of the model selection criteria, the early classification

time point is identified with substantial consistency, under certain conditions.

Another parameter examined was the length of the time series in the dataset. Although the proposed

method requires the data to have a fixed L, this value can vary from database to database. In order to

evaluate how the variation of the time series length affects the MCEC algorithm, several experiments

were performed with L ∈ {6, 10, 18, 38, 78, 158}, for the following fixed parameters: x = 3, N = 1

and pNoise ∈ {0%, 5%}. Similarly to the study on multiple values of N , the analysis also focused

on investigating if the early prediction is practicable and if the dataset size conditions the minimization

of the two criteria.

Concerning the curves from H(C|An) − H(C|AnBn) and LL(D|Sn), the impact of the variation

of L is not significant. In most cases, an emphatic decrease is verified afresh around n ∈ {2, ..4},

which represents a reduction on the information needed for predicting the classes, over that time period.

Table 4.2 includes the values of w from which both scoring functions show a minimum at n ≥ 3. Unlike

the results from Table 4.1, the lowest values of MDL(D|Sn) and AIC(D|Sn) were not consistently

obtained for n = 3, but instead, they deviated from the true distribution (n ∈ {4, 6, 7, 8}) with the increase

of the number of instances. The results demonstrate that the time series length does not considerably

condition the ability of both criteria to select the best model, since the values of w in Table 4.2 do

not significantly change with the variation of L. Although not always according to the expected model

(n = 3), and occasionally in a non-unanimous decision situation, the early classification opportunity is

observable in the majority of the cases.

In sum, these are the conclusions that can be drawn from the performed experiments based on the

variation of the dataset dimensionality:
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L pNoise
w

MDL AIC

6
0% 32 16

5% 64 32

10
0% 32 16

5% 128 16

18
0% 32 16

5% 128 16

38
0% 32 16

5% 32 32

78
0% 32 16

5% 64 32

158
0% 32 16

5% 64 16

Table 4.2: Values of w from which the scoring functions display a minimum at n ≥ 3. Parameters: x = 3,
N = 1, pNoise ∈ {0%, 5%} and L ∈ {6, 10, 18, 38, 78, 158}.

1. The number of instances (w) and the number of features per time point (N ) have a significant

impact on both model selection criteria and a not so expressive influence in the difference in

entropy and log-likelihood measures.

2. The time series length (L) does not considerably affect none of the four measures.

3. The number of instances (w) in a dataset conditions the effectiveness of the scoring functions in

selecting the true model, meaning the early classification time point (n).

4. AIC is less conditioned by w than MDL, but the latter identifies the true model more consistently

than the first score.

5. The decision upon the early classification time point can be ambiguous, that is, the three main

measures that compose the MCEC algorithm can propose distinct values of n.

Computation time

Concerning the computation time analysis of the MCEC algorithm performance, Table 4.3 includes an

empirical study on the variation of three data size parameters: number of features (N ), time series

length (L) and number of instances (w). Each value is calculated as the average time duration of the

proposed method on ten synthetically produced datasets. In all experiments, the first three time points

are randomly generated (x = 3) and no noise is added (pNoise = 0%). The range of values for the three

dimensional parameters was intended to describe a comprehensive, representative and uniform set of

experiments, for comparing the impact of the data size on the MCEC computation time.

For the variation on the number of features, the constant parameters are set as L = 10 and w = 500.

The values ofN allow a comparison between the univariate context (N = 1) and higher dimensions (N ∈

{10, 100, 1000}). The cases N = 10000 and N = 100000 are not considered due to their computationally
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Parameters Values

1 10 100 1000 10000 100000

Number of features (N ) 0.576 s 0.868 s 4.071 s 58.840 s − −
Time series length (L) − 0.133 s 4.577 s 319.215 s − −

Number of instances (w) − 0.047 s 0.081 s 0.613 s 2.259 s 16.093 s

Table 4.3: Computation time of the MCEC algorithm performance on synthetically generated datasets.
Fixed parameters: x = 3 and pNoise = 0%. Constant parameters: L = 10 and w = 500, for the variation
of N ; N = 1 and w = 500, for the variation of L; and N = 1 and L = 10, for the variation of w.

demanding requirements. Table 4.3 shows an increase of the computation time with the number of

features. From N = 1 to N = 10, the difference is subtle, however, for N = 100 and N = 1000 a

significant growth is verified. In the MCEC algorithm each dimension is computed in block, i.e. each

time point is represented by all its attribute values. For this reason, the variation on the time results is

mainly related with the data file reading and with the formation of groups An, Bn and C.

With regard to the time series length analysis, the datasets hold N = 1 and w = 500. The range

of L provides insight on short (L = 10), medium (L = 100) and long (L = 1000) time series situations.

Both L = 10000 and L = 100000 events are not examined for the same reason as in the number of

features analysis. Moreover, a time series with only one time point is not applicable in this synthetically

generated dataset context, therefore, L = 1 is not verified. In Table 4.3, the results demonstrate that the

time series length extensively impacts the computation time of the proposed method. Seeing that the

early classification time point (n) is examined from 1 until L, the entire time series is analysed. Thus,

an increase on L represents an enlargement on the size of the observation window, where the early

classification opportunity is being investigated.

Regarding the experiments on datasets with different number of instances, the constant parameters

are defined as N = 1 and L = 10. Datasets with distinct amounts of available information are repre-

sented in the collection of values for w ∈ {10, ..., 100000}. The results from Table 4.3 suggest that the

algorithm is fairly robust with regard to the number of instances. All samples are analysed together,

since this method measures the amount of information contained in the entire database, and the groups

are constructed according to time points, not instances. Therefore, the computation time is mostly due

to the dataset scanning.

4.2 Benchmark data

This section includes the experiments of the MCEC algorithm on datasets from repositories available

online. Two types of time series were tested: univariate and multivariate. For the first, twenty datasets

were examined and the outcomes compared with a state-of-the-art method in the early classification

literature [79]. Regarding the multivariate case, six datasets were analysed. Lastly, the obtained results

were confirmed with statistical significance, concerning the tradeoff between earliness and accuracy.
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4.2.1 Univariate Time Series

The UEA & UCR Time Series Classification Repository1 [6] provides more than 90 time series datasets

for research into time series classification. For analysing the performance of the MCEC algorithm, Ta-

ble 4.4 lists the experimental results on 20 benchmark datasets from the referred repository. This subset

of examples is considered comprehensive and representative, since it comprises a diverse range of both

dimensional parameters and classification conditions. Each dataset is composed of numeric univariate

time series (N = 1) with a fixed length, and their respective class labels. For each example, a training

set and a test set are provided separately. The preprocessing of the data included the aggregation of

both subsets in one single dataset (data integration). In addition, a supervised discretization by Fayyad

& Irani’s MDL method [24] was performed to the numeric attributes (data transformation), using the filter

from the Weka Data Mining Software in Java. None of the datasets contained missing values, therefore

no imputation was required.

From the MCEC algorithm, for each dataset, three values for the early classification time point (n)

were extracted. As previously mentioned, n represents the time point from which the information con-

tained in the time series is considered expendable. The first value is obtained from the difference in

entropy measure: n such that H(C|An) −H(C|AnBn) = 0.3 × [H(C|A1)−H(C|A1B1)], which means

that n corresponds to the time point where a reduction of 70% from the initial value of entropy is verified,

henceforth called CH−70. The second and third values are a result of the minimization of MDL(D|Sn)

and AIC(D|Sn), respectively, i.e. n consists of the time point where the criteria is minimum. A percent-

age value is associated with the early classification time point:

Earliness[%] =
n

L
× 100. (4.2)

This measure quantifies the amount of the time series considered necessary for a satisfactory prediction,

with respect to its total length (L). The lower the value of Earliness, the less time points are considered

required, and the earlier the classification is expected to be performed.

The data classification was performed through stratified cross-validation with 10 folds, using seven

different classifiers (Table 3.1), set with default parameters, as explained in Section 3.3. The classifier

with the highest percentage of correctly classified instances (Equation (2.1) at page 9) was selected.

The three measures from the MCEC algorithm determine the instant from which the information in the

time series can be neglected. Based on the three values of n, the selected classifier was used for the

classification of the data. At most, three derivative subsets were considered, each with L defined as one

of the early classification time points computed by the proposed method. The accuracy results obtained

for the chosen classifiers, together with the earliness outcomes (Equation (4.2)) are included in Table 4.4.

The results from Table 4.4 describe the MCEC algorithm effort in attempting early classification, based

on the analysis of the information contained in the datasets. The column “Full” contains the outcomes

for the complete time series and it is used as a reference framework. Moreover, the “MCEC algorithm”

columns indicate the results for the incomplete time series, where L is defined according to the values

1www.timeseriesclassification.com
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of n. The symbol (*) means that more than one classifier achieved the best percentage of correctly

classified instances. In addition, the column “ECTS” includes the results from the state-of-the-art method

[79] used for performance comparison.

Concerning the “Full” column, the percentage of correctly classified instances is higher or equal than

90% in 14 of the 20 cases, reaching 100% in 2 datasets (“Coffee” and “Meat”). The worst examples

in terms of accuracy correspond to “Computers” and “FiftyWords”, with a percentage lower than 70%.

In the first situation, given the number of classes, the classifier is not capable of performing a decent

classification with the data available. However, in the latter, an accuracy of 67.62% is not completely

unsatisfactory, provided that there are 50 distinct class labels. Therefore, the results from the “Full”

column of Table 4.4 confirm not only the quality of most databases for classification purposes, but also

the ability of the selected classifiers in classifying the full-length time series data.

Dataset
MCEC algorithm

Full ECTS
CH − 70 MDL AIC

Adiac n 14 1 1 − −
37 classes Earliness 7.95% 0.57% 0.57% − 70.05%
L = 176 Accuracy 41.23% 17.54% 17.54% 77.47% 65.43%
w = 781 Classifier SMO SMO* SMO* SMO −

ArrowHead n 37 1 4 − −
3 classes Earliness 14.74% 0.40% 1.59% − 78.20%
L = 251 Accuracy 68.25% 53.56% 56.87% 93.37% 89.55%
w = 211 Classifier RandFor RandFor* kNN RandFor −

Beef n 118 1 5 − −
5 classes Earliness 25.11% 0.21% 1.06% − 60.18%
L = 470 Accuracy 60.00% 40.00% 48.33% 75.00% 55.00%
w = 60 Classifier kNN* kNN* kNN* kNN* −

BeetleFly n 431 107 333 − −
2 classes Earliness 84.18% 20.90% 65.04% − 78.68%
L = 512 Accuracy 85.00% 67.50% 87.50% 95.00% 60.00%
w = 40 Classifier RandFor* NB* RandFor* RandFor* −

BirdChicken n 267 201 202 − −
2 classes Earliness 52.15% 39.26% 39.45% − 56.41%
L = 512 Accuracy 77.50% 70.00% 75.00% 90.00% 82.50%
w = 40 Classifier RandFor NB* NB* NB* −

Car n 127 1 27 − −
4 classes Earliness 22.01% 0.17% 4.68% − 75.62%
L = 577 Accuracy 69.17% 34.17% 42.50% 83.33% 77.50%
w = 120 Classifier RandFor kNN* kNN* kNN −

CBF n 8 1 3 − −
3 classes Earliness 6.25% 0.78% 2.34% − 88.55%
L = 128 Accuracy 52.15% 44.84% 48.39% 99.68% 98.92%
w = 930 Classifier SMO NB* NB* SMO −

ChlorineConc n 48 1 38 − −
3 classes Earliness 28.92% 0.60% 22.89% − 23.88%
L = 166 Accuracy 82.05% 54.89% 74.86% 98.98% 93.10%
w = 4307 Classifier RandFor RandFor* RandFor RandFor −
Coffee n 43 23 26 − −

2 classes Earliness 15.04% 8.04% 9.09% − 72.50%
L = 286 Accuracy 89.29% 76.79% 80.36% 100.00% 92.67%
w = 56 Classifier RandFor RandFor* NB* RandFor* −

Continued on next page
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Dataset
MCEC algorithm

Full ECTS
CH − 70 MDL AIC

Computers n 303 1 2 − −
2 classes Earliness 42.08% 0.14% 0.28% − 92.27%
L = 720 Accuracy 67.60% 58.20% 65.80% 66.00% 59.40%
w = 500 Classifier RandFor RandFor* RandFor* RandFor −

Earthquakes n 18 2 4 − −
2 classes Earliness 3.52% 0.39% 0.78% − 99.13%
L = 512 Accuracy 89.93% 79.14% 79.86% 99.28% 70.74%
w = 278 Classifier RandFor RandFor* NB* RandFor −
ECG200 n 16 3 6 − −
2 classes Earliness 16.67% 3.13% 6.25% − 67.34%
L = 96 Accuracy 81.00% 66.50% 81.00% 90.50% 89.00%
w = 200 Classifier BN kNN* SMO kNN −

FiftyWords n 38 7 7 − −
50 classes Earliness 14.07% 2.59% 2.59% − 77.33%
L = 270 Accuracy 32.16% 15.69% 15.69% 67.62% 66.96%
w = 905 Classifier SMO SMO* SMO* SMO −

GunPoint n 36 1 23 − −
2 classes Earliness 24.00% 0.67% 15.33% − 57.39%
L = 150 Accuracy 92.00% 71.50% 83.00% 99.50% 92.00%
w = 200 Classifier SMO* SMO* RandFor SMO −

Meat n 72 1 11 − −
3 classes Earliness 16.07% 0.22% 2.46% − 54.65%
L = 448 Accuracy 90.00% 66.67% 75.00% 100.00% 97.50%
w = 120 Classifier REPTree RandFor SMO* SMO* −
OliveOil n 55 3 6 − −
4 classes Earliness 9.65% 0.53% 1.05% − 78.12%
L = 570 Accuracy 68.33% 55.00% 58.33% 96.67% 86.67%
w = 60 Classifier RandFor SMO* NB* SMO* −

SwedishLeaf n 7 1 2 − −
15 classes Earliness 5.47% 0.78% 1.56% − 79.62%
L = 128 Accuracy 56.53% 29.60% 37.78% 91.02% 80.09%
w = 1125 Classifier RandFor SMO* SMO* SMO −

SyntheticControl n 5 1 2 − −
6 classes Earliness 8.33% 1.67% 3.33% − 93.13%
L = 6 Accuracy 82.17% 49.67% 69.00% 98.83% 90.33%
w = 600 Classifier BN BN* BN BN −

TwoPatterns n 95 1 11 − −
4 classes Earliness 74.22% 0.78% 8.59% − 83.80%
L = 128 Accuracy 56.36% 26.28% 29.20% 75.18% 96.46%
w = 5000 Classifier RandFor RandFor* kNN RandFor −

Wafer n 11 2 3 − −
2 classes Earliness 7.24% 1.32% 1.97% − 65.78%
L = 152 Accuracy 97.91% 97.60% 97.66% 99.85% 99.68%
w = 7164 Classifier kNN RandFor* kNN RandFor −

Table 4.4: Experimental results of the MCEC algorithm in 20 benchmark archive datasets, containing
numeric univariate time series (N = 1). Three early classification time points (n) are identified. The first
corresponds to the time point where a reduction of 70% from the initial value of H(C|A) −H(C|AB) is
verified (CH − 70). The second and third consist of the time point associated with the minimum value of
MDL(D|Sn) and AIC(D|Sn), respectively. The classification of the data is performed through stratified
cross-validation with 10 folds, for a collection of classifiers, set with default parameters (Table 3.1). At
each experiment, the one with the best accuracy for the given data is selected. While column “Full”
contains the outcomes for the complete time series, the “MCEC algorithm” columns indicate the results
for the incomplete time series, where L is defined according to the values of n. The symbol (*) means
that more than one classifier achieved the best percentage of correctly classified instances. For spacing
reasons, “ChlorineConc” is short for “ChlorineConcentration”. “ECTS” [79] is a benchmark method in
the early classification literature, included for performance comparison.
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For all datasets, a reduction of 70% from the initial value of H(C|A) − H(C|AB) is verified, for a

value of n lower than L, that is, Earliness (Equation (4.2)) is always beneath 100%. In particular, this

percentage is lower than 30% in 16 of the 20 cases, and under 10% for 7 datasets. Among those 16

examples, in 8 occurrences (“ChlorineConcentration”, “Coffee”, “Earthquakes”, “ECG200”, “GunPoint”,

“Meat”, “SyntheticControl” and “Wafer”) the classifiers achieve an accuracy higher or equal than 80%,

even though always beneath the same percentage for the full-length data. In fact, concerning the differ-

ence in entropy results (first column of the “MCEC algorithm”), the classification accuracy with less time

points outperforms the reference value (“Full” column) only for the “Computers” dataset. This example

suggests that it is possible to obtain a better classification performance using only part of the time series

from the data.

Regarding the 8 cases with Earliness < 30% and Accuracy > 80%, when comparing the percentage

of correctly classified instances for the full-length and for CH − 70, the difference is beneath 20% in all

cases. This means that, in these experiments, with fewer time points analysed (earlier in time), the loss

in terms of classification accuracy can be diminished. For instance, in the “Wafer” outcomes, using only

7.24% of the time series, an accuracy of 97.91% is achieved, which consists of −1.94% in comparison

with the full-length result.

With regard to the results of the scoring functions, the balance between the complexity of the model

and its effectiveness in fitting the data is found for n < L in all experiments, i.e., the second and third

columns of “MCEC algorithm” denote Earliness < 100%. MDL and AIC indicated the same best model

(time point) among the candidates in 2 of the 20 cases: “Adiac” (n = 1) and “FiftyWords” (n = 7).

For all other cases, the amount of time series used for prediction proposed by AIC is larger than the

suggested by MDL, that is, nMDL < nAIC . The difference (in absolute value) between nMDL and

nAIC varies between 1 (“BirdChicken”, “Computers”, “SwedishLeaf”, “SyntheticControl”, “Wafer”) and

226 (“BeetleFly”), but it is lower or equal than 10 in 16 of the 20 cases.

Concerning the 18 datasets with nMDL 6= nAIC , the classification accuracy results of AIC outper-

form the ones for MDL in all cases. This suggests that, based on these experiments, AIC surpasses

MDL, with respect to accuracy. Excluding the cases where nMDL = nAIC , the difference in the percent-

age of correctly classified instances varies from 0.72% (“Earthquakes”) to 20% (“BeetleFly”). Note that

in the “Earthquakes” example, in spite of the different values of n, the accuracy is very close for both

model selection criteria. In this case, MDL presents a better suggestion than AIC in terms of earliness,

for similar classification outcomes. However, while the values from nMDL obtained an accuracy greater

or equal than 70% in 5 of the 20 cases, nAIC achieved it in 9 of the 20 experiments. In all situations, the

percentage of correctly classified instances for both criteria is lower than for the full-length data.

In addition, the results from Table 4.4 show that nMDL = 1 for 12 of the 20 cases, and nAIC = 1 for

only 1 dataset (“Adiac”). As mentioned in Section 4.1, whileAIC is known to select a model more readily,

MDL’s choice is considered more consistent. The large number of examples where MDL identifies the

first time point as the best alternative for earliness may indicate that, given the information available, in

all those 12 cases the criterion recognized that the increase in the knowledge obtained from the data

did not justify the growth in the model complexity required for describing it. Conversely, the AIC results
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demonstrate a more adventurous disposition in choosing the value for n, and, in these experiments, that

seems to have produced relative success.

From the comparison between the three measures, CH − 70 achieves higher classification accuracy

in 18 of the 20 cases, AIC in 1 dataset (“BeetleFly”), and in 1 example (“ECG200”) a draw is verified

between the difference in entropy and AIC. MDL has a percentage of correctly classified instances

always lower or equal than the other measures. Regarding the Earliness percentage, except for the

events where nMDL = nAIC , MDL proposes always the lowest values for the early classification time

point. Therefore, from the experimental tests described in Table 4.4, in general, CH−70 achieves better

results, in terms of classification accuracy, and MDL demonstrates a superior earliness ability. AIC ev-

idences the foremost competence in balancing these two targets. Nevertheless, the early classification

capabilities of the MCEC algorithm are acknowledged, seeing that this context is based on the tradeoff

between these two main objectives: accuracy and earliness.

The experimental results of the proposed method on the “Coffee” example are represented in Fig-

ure 4.5. For a more detailed analysis, one of the cases with maximum classification accuracy on the

“Full” column was chosen. This data is obtained from food spectrographs, which are commonly used

for classifying types of food, in safety and quality control applications. In this case, the classification

problem corresponds to identify two types of coffee beans: Robusta and Arabica (2 classes).

Figure 4.5(a) describes the behaviour ofH(C|An)−H(C|AnBn) while varying n from 1 to L = 286. As

previously stated, this measure quantifies the lack of information caused by describing the class attribute

in the data, using only the time series until time point n, instead of using all the information available in

the dataset. Three decreasing jumps, followed by temporary stabilizations, are depicted in the graph:

the first during n ∈ {22, ..., 26}, the second at n ∈ {42, 43} and the third between n ∈ {51, ..., 53}. For

n ≥ 53, H(C|An) − H(C|AnBn) = 0, which in theory means that, from that time point forward, the

information in the time series can be neglected, since it does not provide any more relevant knowledge

about the classes. A decrease of 70% from the initial entropy value is obtained at n = 43, where the

difference in entropy is lower than 0.3× 1 = 0.3 bits.

Figures 4.5(b) and 4.5(c) represent the variation of MDL(D|Sn) and AIC(D|Sn), respectively, for

n ∈ {1, ..., 286}. These measures take the complexity of the model into consideration when choosing the

time point until which the information is considered to be effectively described. The value of both criteria

is constant until n = 22. While for MDL, the minimum is reached at n = 23, for AIC, the lowest value is

attained at n = 26. In both cases, this extreme is followed by an irregular growth until n = 155, where it

stabilizes at a maximum value.

Figure 4.5(d) includes the classification accuracy of the “Coffee” dataset, considering the time series

to have length L equal to n ∈ {1, ..., 286}. The graph only describes the percentage of correctly clas-

sified instances for the Random Forest classifier, which was the one with the best performance on the

full-length data. Note that the accuracy is constant at 48.21% until n = 22, and it increases to 76.79% at

n = 23. That is not only in the interval where the difference in entropy describes the first accentuated

decrease, but also precisely the same instant where MDL reaches its minimum. The percentage de-

creases to 75% at n = 24, increases to 82.14% at n = 25, and decreases to 78.57% at n = 26. This last
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Figure 4.5: Experimental results of the MCEC algorithm on the “Coffee” dataset. Parameters: w = 56,
L = 286, 2 classes and numeric attributes.

time point corresponds to the instant where the minimum is attained by AIC. In fact, considering these

accuracy results as a reference, the early classification time point at n = 25 seems to be a better alter-

native. The graph continues with an irregular behaviour, but there occurs another significant increase

between n ∈ {42, 43}, from 76.79% to 89.29%. This period consists of the the exact interval where the

difference in entropy reaches a 70% decrease from its initial value.

Figure 4.5(d) shows some time points for which Accuracy = 100%, such as n = 54, n = 69, n = 156,

among others. Although these correspond to instants with higher percentage of correctly classified

instances, a correlation between the three measures from MCEC algorithm and the classification results

is observable, given the relationship that the behaviour of these four graphs indicate. Therefore, the

inferences about the early classification time point, obtained from the proposed method, seem to find

meaning in the analysis of the information that a dataset of incomplete time series provide about the

class attribute.
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Comparison with related work

Table 4.4 includes the performance of the ECTS algorithm [79] on the selected datasets. As mentioned

in Section 2.2, this is one of the benchmark methods in early classification and one of the first to formally

define this data mining problem. The main difference between the MCEC algorithm in comparison with

the majority of the proposed methods in the early prediction context (in particular the ECTS) is related

with the classification approach. In the MCEC case, the goal consists of analysing an entire given

dataset for discovering the information that each time point provides about the classes. As explained

in Section 3.3, the ability to describe or predict the class attribute is examined as the instants used

chronologically increase. Therefore, the proposed method is not intended to be a classifier, seeing that

it does not include the training and test phases, and it does not assign a class label to a new given

instance. Conversely, ECTS corresponds to an extension of the 1-nearest-neighbour classifier for early

classification on univariate time series data. During the training phase, this method analyses the early

classification opportunity, through the calculation of the Minimum Prediction Length (MPL), and for each

new instance to be classified, the class label is assigned based on MPLs comparison.

The ECTS method was used through stratified cross-validation with 10 folds. Seeing that the early

time point computed is different for each instance, in each fold, the Earliness percentage is calculated

as:

Earliness[%] =
1

wtest

wtest∑
i=1

ni
L
× 100, (4.3)

where wtest consists of the number of instances in the test set and ni corresponds to the computed early

time point for instance i. The mean of the ten outcomes from Equation (4.3) gives the final value of Ear-

liness, included in Table 4.4. Likewise, the Accuracy value is obtained as the mean of the percentages

of correctly classified instances from all folds. Moreover, in this case, the preprocessing of the data did

not include any discretization since the ECTS algorithm only deals with numeric attributes.

In 18 of the 20 cases, the MCEC algorithm shows a lower value of Earliness than the ECTS method.

However, in 15 of the 20 datasets, the Accuracy percentage is higher for the ECTS approach, though

always beneath the “Full” outcome, except for the “TwoPatterns” case. As previously mentioned, in

general, the difference in entropy demonstrates greater results for the percentage of correctly classified

instances than the other measures from the proposed method. Concerning the CH − 70 and the ECTS

outcomes, in 14 of the 20 cases, the latter obtains a superior Accuracy but a worst (higher) Earliness.

The difference in the percentage of correctly classified instances between the two measures varies from

1.77% to 46.77%, and it is lower or equal than 20% in 8 of the 20 experiments. The difference in the

earliness percentage between both approaches varies from 4.26% to 84.80%, and it is above 50% in

11 of the 20 datasets. This suggests that although the ECTS algorithm accomplishes more precise

predictions, the difference in entropy measure demonstrates a greater anticipation ability. For instance,

in the “Wafer” case, with considerably less information (minus more than 50%), the difference in the

classification accuracy is beneath 5%. Moreover, for the “GunPoint” example, the same percentage of

correctly classified instances is obtained for ECTS and CH − 70 (92%), yet the latter uses less amount

of time series (24% versus 57.39%).
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“Earthquakes” is the only experiment where the three measures from the MCEC algorithm outper-

form (at the same time) the ECTS method, in terms of Earliness and Accuracy. In “Beef”, “BeetleFly”,

“ChlorineConcentration”, “Computers” and “GunPoint” some of the measures from the proposed ap-

proach obtain competitive results in comparison with the ECTS algorithm. Overall, the performance of

the ECTS method surpasses the one from the MCEC algorithm. Nevertheless, it is important to note

the distinction between them with regard to the classification approach. This means that, although the

comparison between these two methods is relevant and informative, it has some limitations due to the

dissemblances in the testing conditions. In addition, seeing that the ECTS algorithm only deals with

univariate time series, it will not be used for the experiments on multivariate datasets, presented in the

following section.

4.2.2 Multivariate Time Series

Seeing that the MCEC algorithm is applicable on time series with multiple features in each time point,

experimental tests were also performed on multivariate data. As a supplement to a study on Multivariate

Time Series Classification [7], a group of investigators gathered a collection of datasets,1 useful for

experiments on methods capable of dealing with this type of data. These examples were obtained

from a variety of sources, such as archive repositories [49, 17] and other websites.2 For analysing

the performance of the proposed algorithm, six benchmark datasets were selected from the available

resources, as an attempt to provide experimental results in an expansive set of conditions. Similarly to

the univariate case, some preprocessing tasks were executed to these numeric multivariate time series

datasets. The training and test sets were aggregated in one single database (data integration), and a

supervised discretization by Fayyad & Irani’s MDL method [24] was performed (data transformation). In

addition, the cases which contained time series with different lengths (within the same dataset) were

adjusted, that is, for each example, all instances were set to a value of L equal to the shortest sample

length. This means that part of the information available was disregarded, in the interest of obtaining

datasets with fixed L. In none of the cases was needed any imputation, since there were no missing

values in the data. Table 4.5 lists the results of the experiments performed. The process used for the

univariate tests was replicated in these six experiments. Note that “ECG” and “Wafer” in Table 4.5 have

the same name as two examples in Table 4.4, but they consist of distinct datasets.

The accuracy results from column “Full” demonstrate that the selected classifiers are able to perform

an acceptable classification, since in 4 of the 6 cases, the percentage of correctly classified instances

is higher than 90%. The lowest value corresponds to 79.17% (“Libras”) which is still quite satisfactory,

given that the dataset contains 15 classes. Once more, these outcomes serve as reference values and

they confirm both the competence of the data for classification purposes, and the classifiers capabilities

in reliably assigning class labels.

Concerning the difference in entropy measure (column CH − 70), a reduction of 70% from the ini-

tial value is verified before the end of the time series, for all datasets (Earliness < 100%). This per-

1http://www.mustafabaydogan.com/
2http://www.cs.cmu.edu/~bobski/
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Dataset MCEC algorithm Full
CH − 70 MDL AIC

ECG (N=2) n 13 1 3 −
2 classes Earliness 33.33% 2.56% 7.69% −
L = 39 Accuracy 87.00% 77.00 80.00% 86.00%
w = 200 Classifier RandFor SMO* J48 SMO

JapaneseVowels (N=12) n 2 1 1 −
9 classes Earliness 28.57% 14.29% 14.29% −
L = 7 Accuracy 88.13% 85.47% 85.47% 94.53%
w = 640 Classifier RandFor SMO SMO SMO

Libras (N=2) n 14 1 1 −
15 classes Earliness 31.11% 2.22% 2.22% −
L = 45 Accuracy 60.28% 30.28% 30.28% 79.17%
w = 360 Classifier kNN RandFor RandFor RandFor

PenDigits (N=2) n 3 1 1 −
10 classes Earliness 37.50% 12.50% 12.50% −
L = 8 Accuracy 78.26% 47.95% 47.46% 98.45%

w = 10992 Classifier RandFor RandFor RandFor SMO

RobotLP1 (N=6) n 2 1 1 −
4 classes Earliness 13.33% 6.67% 6.67% −
L = 15 Accuracy 89.77% 84.09% 82.96% 95.46%
w = 88 Classifier kNN NB* NB* SMO

Wafer (N=6) n 51 1 24 −
2 classes Earliness 49.04% 0.96% 23.08% −
L = 104 Accuracy 95.31% 90.29% 93.55% 98.49%
w = 1194 Classifier SMO* SMO* RandFor SMO

Table 4.5: Experimental results of the MCEC algorithm in 6 datasets containing numeric multivariate
time series (N ≥ 2). Three early classification time points (n) are identified. The first corresponds to the
time point where a reduction of 70% from the initial value of H(C|A) −H(C|AB) is verified (CH − 70).
The second and third consist of the time point associated with the minimum value of MDL(D|Sn) and
AIC(D|Sn), respectively. The classification of the data is performed through stratified cross-validation
with 10 folds, for a collection of classifiers, set with default parameters (Table 3.1). At each experiment,
the one with the best accuracy for the given data is selected. While column “Full” contains the outcomes
for the complete time series, the “MCEC algorithm” columns indicate the results for the incomplete time
series, where L is defined according to the values of n. The symbol (*) means that more than one
classifier achieved the best percentage of correctly classified instances.

centage is lower than 40% in 5 of the 6 cases, and under 30% in 2 examples (“JapaneseVowels” and

“RobotLP1”). The classifiers achieve an accuracy higher than 80% in 4 experiments (“ECG”, “Japane-

seVowels”, “RobotLP1” and “Wafer”), nevertheless, the value for the full-length data is outperformed only

for the “ECG” example. When comparing the percentage of correctly classified instances for “Full” and

for CH−70, the difference (in absolute value) is beneath 20% in 5 of the 6 cases (all except “PenDigits”).

The lowest difference is found for “ECG”, where using the information until n = 13 (33.33% of the total

time series length), a classification can be performed with Accuracy = 87% (+1% in comparison with

the full-length result). In this case, a reduction on the amount of information used, or in other words, a

prediction earlier in time, is associated to a better classification performance (even though with a very

subtle difference).

Regarding both model selection criteria (columns MDL and AIC), the value of n is lower than L

for all datasets (Earliness < 100%). The proposed early classification time points from both scoring

functions are coincident in 4 of the 6 cases. In all these examples, where nMDL = nAIC , the criteria
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suggestion consists of using only the first instant of the time series for classifying the data. In 2 of those 4

cases, the classification accuracy is above 80% (“JapaneseVowels” and “RobotLP1”), which corresponds

to a considerably decent outcome. Table 4.5 shows nAIC = 1 in 4 of the 6 cases, and nMDL = 1 for all

experiments. As previously mentioned, the tendency of MDL and AIC to display a minimum at n = 1

may be explained with the growth in the model complexity being so expressive that does not legitimate

the increase on the amount of information used.

With regard to the examples where nMDL 6= nAIC (“ECG” and “Wafer”), the amount of time series

used for prediction, proposed by AIC, is always larger than the suggested by MDL (nMDL < nAIC).

While for “ECG”, the difference between the two early classification time points is 2, for “Wafer”, it is 23.

In both cases, nAIC surpasses nMDL in terms of classification accuracy results, yet with a value always

beneath the reference (“Full” column). Similarly to what was verified in the univariate experiments, the

daring disposition of AIC in choosing a value of n further in time proved successful with respect to the

classification outcomes. However, seeing that the largest accuracy difference between MDL and AIC

is 3.26% (“Wafer”), these results suggest that by giving priority to earliness, the percentage of correctly

classified instances is not extensively affected. In fact, for both model selection criteria, the values from

n obtained Accuracy ≥ 70% in 4 of the 6 cases, which assigns some confidence to the MCEC algorithm

in analysing the early classification opportunity.

When comparing the three measures, the difference in entropy achieves higher classification accu-

racy in all cases. Concerning the Earliness percentage, the model selection criteria obtain always the

lowest values, and, particularly, MDL achieves the best results. In general, based on the experimental

tests described in Table 4.5, the difference in entropy measure performs better with regard to classifica-

tion accuracy and MDL manifests a higher disposition to earliness. However, the most efficient tradeoff

between these two requirements seems to be found for AIC. These conclusions are in line with the

inferences drawn from the experiments with univariate time series.

The experimental results of the MCEC algorithm on the “Wafer” dataset are depicted in Figure 4.6.

With the aim of providing a more thorough analysis, the example with the greatest classification accuracy

on the full-length time series is examined. This data consists of sequence measurements, from six

sensors (N = 6), obtained during the manufacture of semiconductor microelectronics. The classification

problem corresponds to distinguish the normal from the abnormal wafers (2 classes), which are caused

by a number of complications in the process.

Figure 4.6(a) represents the variation of the difference in entropy for n from 1 to L = 104. Overall,

two intervals with a significant decrease are observed in the graph: the first during n ∈ {11, ..., 34}, and

the second between n ∈ {49, ..., 57}. For n ≥ 82, H(C|An) −H(C|AnBn) = 0, which suggests that the

last 22 time points do not contain any more useful information about the class labels. The decrease of

70% from the initial entropy value is reached at n = 51, where the lack of knowledge, caused by using

incomplete data to describe the classes, is beneath 0.3× 0.4534 = 0.136 bits.

Figures 4.6(b) and 4.6(c) describe the behaviour of MDL(D|Sn) and AIC(D|Sn), respectively, while

varying n from {1, ..., 104}. The first graph shows an irregular growth, with intervals where the slope is

steeper, and others with a lower variation. The minimum value is reached at n = 1, nonetheless, a small
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Figure 4.6: Experimental results of the MCEC algorithm on the “Wafer” dataset. Parameters: N = 6,
w = 1194, L = 104, 2 classes and numeric attributes.

variation in MDL is observed between n ∈ {1, ..., 17}, at n ∈ {34, ..., 44} and during n ∈ {83, ..., 95}.

With regard to the AIC case, its behaviour is similar to MDL from n = 34 forward. From the first until

that time point, the variation of the graph is small, but the minimum is obtained during that period, for

n = 24. Note that the temporary relative stabilization during n ∈ {34, ..., 44} is common in both scoring

functions, and in the entropy graph. In fact, one could say that a symmetric behaviour is verified between

the H(C|An)−H(C|AnBn) and the model selection criteria graphs. The increase on the amount of time

series used, not only decreases the lack of information about the class attribute (Figure 4.6(a)), but also

increases the complexity of the model that attempts to describe the data (Figures 4.6(b) and 4.6(c)).

Figure 4.6(d) includes the percentage of correctly classified instances by the SMO classifier, on the

“Wafer” dataset, according to the length L equivalent to n ∈ {1, ..., 104}. Note that the percentage values

are greater than 90% for the entire range of L, however, an irregular growth is observed, with two main

jumps and two more stable periods. During n ∈ {1, ..., 16}, the first relatively constant interval is verified,

which means that the classification accuracy at n = 1 is very close to the same measure at n = 16. This

indicates that, by selecting the early classification time point as n = 1 (Accuracy = 90.29%), MDL is
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disregarding information that does not have a great impact on the accuracy, seizing the opportunity of a

prediction in advance. The first increasing jump occurs between n ∈ {18, ..., 33}, the same interval where

the minimum is attained for the other model selection criteria. Considering these accuracy results as a

reference, n = 33 (Accuracy = 95.73%) seems to be a more convenient early classification time point

than the n = 24 (Accuracy = 93.47%), proposed by AIC. This period is followed by a less changeable

one at n ∈ {35, ..., 52}, and another accentuated growth during n ∈ {52, ..., 67}. The difference in entropy

reaches 70% decrease from its initial value at n = 51, which corresponds to an accuracy of 95.31%. This

early classification time point is inserted between the two main increasing jumps in the percentage value.

This is closely related with one of the fundamental challenges in early classification: how much are we

willing to neglect accuracy in exchange of earliness?

4.2.3 Wilcoxon signed-ranks sum test

In the attempt to answer this question, the univariate and multivariate experimental results were com-

pared with statistical significance tests in order to understand the benefit of the tradeoff between the two

main goals in early classification: accuracy and earliness. Among the tested datasets, the MCEC algo-

rithm provided a value of n, with an associated percentage (Earliness). For each situation, the group

of classifiers determined the percentage of correctly classified instances (Accuracy). In addition, the

classification of the full-data worked as a reference framework: no earliness and complete time series

accuracy. Aiming for a representation of the balance between these two requirements, a mathematical

expression can be defined as:

BEA(p) = p× (100− E) + (1− p)×A, (4.4)

where E and A correspond to the Earliness and Accuracy percentages, respectively; and p consists of

the weight that determines the relevance given to each variable. For instance, while p = 0.5 represents

an equal degree of importance for E and A, p > 0.5 gives preference to E to the detriment of A, and

p < 0.5 prioritizes A over E. As previously mentioned, a low value of Earliness corresponds to few time

points used (earlier classification). On the other hand, the higher the Accuracy, the better the classifier

is capable of making reliable predictions. Seeing that an accurate classification is desirable, as early

as possible, Equation (4.4) describes the management of the two fundamental challenges of the early

classification problem. Therefore, BEA(p) denotes the Balance between E and A, according to the

value of p.

Figure 4.7 includes the box plots of the experimental results, for the CH − 70, MDL, AIC and Full

measures, converted through Equation (4.4), according to the weight p ∈ {0, 0.25, 0.5, 0.75}. The 26

datasets from Tables 4.4 and 4.5 were considered, as well as their respective values of E = Earliness

and A = Accuracy, for each of the three measures that compose the MCEC algorithm, together with

the reference framework. Note that all Full outcomes verify E = 100%, since the entire time series are

considered for classification. These diagrams describe the variation of statistical populations, based on

their quartiles. The red line corresponds to the median value; the lower and upper limits of the blue
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box indicate the 25th and 75th percentiles, respectively; the black extending lines (whiskers) denote the

extreme values (maximum and minimum); and the red ’+’ symbols represent the data points that are

considered outliers. A given data point is treated as an outlier if it is higher than q3 + α · (q3–q1) or

lower than q1–α · (q3–q1), where α is the maximum whisker length, and q1 and q3 are the 25th and 75th

percentiles, respectively.1

(a) p = 0 (b) p = 0.25

(c) p = 0.5 (d) p = 0.75

Figure 4.7: Box plot of the experimental results, for the three measures that compose the MCEC al-
gorithm and the reference full-data results, according to the weight p ∈ {0, 0.25, 0.5, 0.75}. The red
line indicates the median; the lower and upper limits of the blue box correspond to the 25th and 75th
percentiles, respectively; the black extending lines (whiskers) represent the extreme values (maximum
and minimum); and the red ’+’ symbols denote the data points considered outliers. A given data point
is treated as an outlier if it is higher than q3 + α · (q3–q1) or lower than q1–α · (q3–q1), where α is the
maximum whisker length, and q1 and q3 are the 25th and 75th percentiles, respectively.

For p = 0 (Figure 4.7(a)), the Earliness portion is completely disregarded, and the data distribution

reflects the case where the Accuracy of the classification is entirely prioritized. The Full measure has

the greatest median (94.77%), followed by CH − 70 (79.63%), AIC (71.93%) and finally, MDL (56.6%).

Concerning the interquartile range (IQR), which corresponds to the difference between the upper and

lower quartiles, MDL has the widest spread (36.79%), followed by AIC (33.05%), CH−70 (28.98%) and

1https://www.mathworks.com/help/stats/boxplot.html

58

https://www.mathworks.com/help/stats/boxplot.html


lastly, Full (15.65%). With regard to the data points range (difference between maximum and minimum

values), AIC has the largest interval (81.97%), followed by MDL (81.91%), CH − 70 (65.75%) and Full

(34%). Based on these observations, one could say that Full demonstrates the best results over all

other measures. Seeing that, in general, the classification accuracy is higher for the full-length data, this

conclusion is in line with what would be expected. Although E = 100%, the Earliness side of BEA(0)

is cancelled by p = 0. Moreover, the difference in entropy shows a superior performance in comparison

with both model selection criteria, and the AIC box plot suggests that this scoring function obtains better

outcomes than MDL.

Figure 4.7(b) describes the distributions of the measures, considering p = 0.25. In this case, more

relevance is given to A, but E is not completely neglected. The AIC measure has the highest median

(74.32%), followed by CH−70 (74.08%), Full (71.07%) and finally, MDL (66.9%). With respect to the IQR,

Full has the narrowest spread (11.74%), followed by CH − 70 (19.37%), AIC (25.58%) and lastly, MDL

(25.63%). Regarding the data points range, Full has the lowest interval (25.5%), followed by CH − 70

(51.02%), AIC (61.63%) and MDL (61.75%). According to this analysis, the difference in entropy seems

to surpass all other measures. In spite of CH − 70 having a median lower than AIC, their difference is

lower than 1% and both the IQR and the data points range are larger for the model selection criterion.

Additionally, the direct count of the number of times CH − 70 has a higher BEA(0.25) score than AIC

corresponds to 18 in 26 cases, which corroborates the drawn conclusion. Furthermore, Figure 4.7(b)

indicates that AIC has better results than both MDL and Full, but between these last two, the full-length

data appears to outperform the scoring function.

For p = 0.5 (Figure 4.7(c)), both Earliness and Accuracy are considered equally important. The

AIC measure has the greatest median (78.14%), followed by MDL (76.86%), CH − 70 (76.05%) and

finally, Full (47.38%). Concerning the IQR, MDL has the widest spread (18.42%), followed by AIC

(17.86%), CH − 70 (17.36%) and lastly, Full (7.82%). With regard to the data points range, CH − 70

has the largest interval (54.27%), followed by MDL (41.59%), AIC (41.3%) and Full (17%). Based on

the observations from the box plot, the measure Full distinctly demonstrates the worst results over all

others. In this case, the E portion represents 50% of the BEA(0.5) score. Since, E = 100% for all

full-length data experiments, though the classification accuracy is higher, the contribution in terms of

Earliness is always null. Regarding the other three measures, the comparison is considerably dubious,

since the medians and the IQR values between CH − 70, MDL and AIC are fairly close. Seeing that

the data points range is wider for the difference in entropy than for the scoring functions, one could

say that CH − 70 is outperformed by both model selection criteria. Furthermore, AIC seems to obtain

a superior performance in comparison with MDL because the latter has a lower median and greater

values of both IQR and data points range. In addition, the direct count of the number of times AIC has

a higher BEA(0.5) score than MDL is 13 among the 20 cases where they have distinct outcomes.

Figure 4.7(d) depicts the experimental data distribution box plot, under the tradeoff with p = 0.75. In

this case, more relevance is given to E, however, A is not entirely disregarded. The MDL measure has

the highest median (87.13%), followed by AIC (85.5%), CH− 70 (77.57%) and finally, Full (23.69%). With

respect to the IQR, Full has the narrowest spread (3.92%), followed byMDL (10.03%), AIC (10.79%) and
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lastly, CH − 70 (18.29%). Regarding the data points range, Full has the lowest interval (8.5%), followed

by MDL (35.35%), AIC (49.84%) and CH − 70 (61.72%). Similarly than for p = 0.5, the box plot shows

that Full is surpassed by all measures. The greater the relevance given to the E portion (p → 1), the

lower the BEA(p) score for the full-length data. Concerning the other three measures, the difference

in entropy seems to perform worst than MDL and AIC, since its median is lower and the values of

both IQR and data points range are larger in comparison with both model selection criteria. Moreover,

Figure 4.7(d) suggests that MDL outperforms AIC. Additionally, the direct count of the number of times

MDL has a higher BEA(0.75) score than AIC corresponds to 11 among the 20 cases where they have

distinct outcomes.

Overall, the box plots from Figure 4.7 provide a general perspective on the comparison between the

measures in analysis, under four distinct scenarios of relevance. The decay of the Full measure with

the growing importance given to the E portion (p → 1) is visible, because of its inefficiency in terms of

Earliness. Conversely, the progressive prioritization of E is followed by a rise of the MDL performance,

due to having the earliest outcomes. In addition, CH − 70 is the most stable measure to the variation

of p, with a median always between 70% and 80%. The case p = 1 was not considered, on behalf of

the inconsistency in completely disregarding accuracy at a classification problem. Table 4.6 includes the

results of the Wilcoxon signed-rank sum test [76], for comparing the performance of the MCEC algo-

rithm measures. This statistical hypothesis test is known as a non-parametric alternative to the paired

t-test, since it deals with independent groups of data, but it does not assume normal distributions nor

homogeneity of variance. Demšar [23] recommends using Wilcoxon applied to classification evalua-

tion measures, model sizes and computation times. In particular, he considers this test convenient for

comparing machine learning algorithms across multiple datasets, as a result of its robustness.

On the one hand, the box plots from Figure 4.7 provide a graphical comparison between the perfor-

mance of CH − 70, MDL, AIC and Full. On the other hand, Wilcoxon signed-rank sum tests1 examine

the relation between these measures in pairs in order to verify if there is enough evidence to claim that

the differences are significant, for a significance level of α = 0.05. The Null Hypothesis (H0) can be

rejected when W -value ≤ Wc, p-value < 0.05 and z-value < −1.96 [23]. The critical value (Wc) is tabu-

lated and it depends on α and on the number of samples (datasets) considered. The arrow in Table 4.6

points towards the measure with better performance, according to the value of p ∈ {0, 0.25, 0.5, 0.75}.

Double arrow means there is enough evidence to claim that the difference is significant, at the α = 0.05

significance level. Rejecting H0 means the result is significant, that is, at the p-value < 0.05 level, the

difference between measures is statistically significant.

Table 4.6 demonstrates that, for p = 0, there is enough evidence to claim that Full surpasses all other

measures. Furthermore, between CH − 70 and the model selection criteria, the difference in entropy

outperforms both scoring functions, and AIC shows better results than MDL. All these differences

are statistically significant at p-value < 0.05 level. With an increase on the relevance given to Earliness

(p = 0.25), CH − 70 has the best performance in comparison with all the remaining. The AIC measure

seems to achieve significantly superior results than MDL, however, there is not enough evidence to

1https://www.mathworks.com/help/stats/signrank.html

60

https://www.mathworks.com/help/stats/signrank.html


Comparison of measures p = 0 p = 0.25 p = 0.5 p = 0.75

CH − 70⇔MDL

size (Wc) 26 (98) 26 (98) 26 (98) 26 (98)
W -value 0 34 166 14
z-value −4.46 −3.59 −0.24 −4.10
p-value < 0.01 < 0.01 0.81 < 0.01
better ⇐ ⇐ → ⇒

CH − 70⇔ AIC

size (Wc) 25 (89) 26 (98) 26 (98) 26 (98)
W -value 4.5 65 138 8
z-value −4.25 −2.81 −0.95 −4.25
p-value < 0.01 0.01 0.34 < 0.01
better ⇐ ⇐ → ⇒

CH − 70⇔ Full

size (Wc) 26 (98) 26 (98) 26 (98) 26 (98)
W -value 3 56 0 0
z-value −4.38 −3.04 −4.46 −4.46
p-value < 0.01 < 0.01 < 0.01 < 0.01
better ⇒ ⇐ ⇐ ⇐

MDL⇔ AIC

size (Wc) 20 (52) 20 (52) 20 (52) 20 (52)
W -value 0 10 73 81
z-value −3.92 −3.55 −1.19 −0.90
p-value < 0.01 < 0.01 0.23 0.37
better ⇒ ⇒ → ←

MDL⇔ Full

size (Wc) 26 (98) 26 (98) 26 (98) 26 (98)
W -value 0 160 0 0
z-value −4.46 −0.39 −4.46 −4.46
p-value < 0.01 0.70 < 0.01 < 0.01
better ⇒ → ⇐ ⇐

AIC ⇔ Full

size (Wc) 26 (98) 26 (98) 26 (98) 26 (98)
W -value 0 140 0 0
z-value −4.46 −0.90 −4.46 −4.46
p-value < 0.01 0.37 < 0.01 < 0.01
better ⇒ ← ⇐ ⇐

Table 4.6: Comparison of the MCEC algorithm measures and Full against each other, using the Wilcoxon
signed-rank sum test applied to the tradeoff experimental data, scored according to BEA(p). Size repre-
sents the number of samples (datasets) considered; Wc corresponds to the critical value (tabulated); and
W -value consists of the test statistic (smaller of the sums). For a confidence level of α = 0.05, the differ-
ence between the measures is significant if W -value ≤ Wc, p-value < 0.05 or z-value < −1.96. The ar-
row points towards the measure with better performance, according to the value of p ∈ {0, 0.25, 0.5, 0.75}.
Double arrow means there is enough evidence to claim that the difference is significant, at the α = 0.05
significance level.

claim that AIC outperforms Full, nor that the latter surpasses MDL. For an equal balance between

E and A (p = 0.5), the only assurance consists of Full performing the worst. Among CH − 70, MDL

and AIC, the differences between them are not statistically significant at the α = 0.05 significance

level. Lastly, at p = 0.75, the Full measure continues to be surpassed by all the others, as well as the

difference in entropy in comparison with both model selection criteria. Nevertheless, between MDL and

AIC, there is not enough evidence to confirm which one performs the best.

4.3 Rheumatoid Arthritis data

In this section, the MCEC algorithm is applied to a clinical dataset with information about patients suf-

fering from Rheumatoid Arthritis (RA). This is a systemic inflammatory disease, which is primarily char-
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acterized by progressive symmetric joint destruction. RA is known as an autoimmune disorder since

it occurs when the immune system attacks the body tissues by mistake. Inflammation, pain and loss

of function are most common in the wrists and hands, however, RA can also affect other joints and

many other organs, such as skin, eyes, lungs, heart and blood vessels. Its cause remains under study,

nevertheless, treatments attempt to minimize symptoms (reduce pain, decrease inflammation and pre-

vent bone deformity), and to improve the patient’s body functioning. The diagnosis is mainly based

on the signs and symptoms manifested by the individuals. Given that there is no cure for RA, Disease-

Modifying Antirheumatic Drugs (DMARDs) and biologic agents are some of the primary treatments used

for slowing the disease progression. In RA patients, an early identification, together with an aggressive

intervention, is crucial for minimizing the irreversible physical disabilities caused by this disease. [22]

The goal of this experiment is to analyse the effectiveness of the proposed method for predicting

the treatment outcome of patients with RA. For this purpose, the MCEC algorithm was used to examine

the early classification opportunity in the response of individuals to certain treatments, based on their

chronological health condition observations.

Since June 2008, the Portuguese Society of Rheumatology (SPR) has been developing Reuma.pt,

the Rheumatic Diseases Portuguese Register [14]. This database contains information from RA pa-

tients, which are being treated with DMARDs and biological agents. The clinical data is useful for

monitoring the disease evolution, for evaluating treatments efficacy and also for scientific research. The

dataset used for this experiment was provided by Reuma.pt, and it includes observations from about

9305 medical appointments concerning 424 patients. Each register describes the individual (demo-

graphic and anthropometry data, life style habits, work status, and clinical history), the appointment

(time and location), the disease activity (laboratory measurements, medical evaluation and functional

assessment scores), and the treatment (previous and current therapies).

The leading preprocessing of the used dataset was performed in a recent thesis [10]. The raw data

was converted into a static and dynamic panel format, and the dynamic section was organized into time

series with multiple features at each time point. In the data cleaning phase, errors and incongruities

were corrected, redundant attributes removed and missing values replaced. A longitudinal imputation

of missing values was initially accomplished in the interest of taking the sequential character of the

data into consideration. Then, the remaining missing values were replaced with the mean (for numeric

attributes) or mode (for categorical attributes), representing a vertical imputation. The missing values in

the static data were also dealt through descriptive statistics of the field. At the end of the combination

between data cleaning, data transformation and data reduction, the dataset had no missing values and

it was composed of two sections: the static (time-invariant) and the dynamic (time-variant) attributes

[10]. The preprocessed data included a total of 253 instances (w = 253), each with 38 static features

and 290 dynamic attributes (N = 290). The dynamic section was organized in a time series format,

where each time point corresponds to the medical appointment date: month 0, month 3, month 6, month

12, month 18 and month 24 (L = 6). Each instance has a class label associated, which describes

the patient’s response to their treatment at month 24: No Response (C0), Moderate Response (C1)

and Good Response (C2). Regarding the numeric attributes, a supervised discretization by Fayyad
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& Irani’s MDL method [24] was performed (data transformation), using the filter from the Weka Data

Mining Software in Java. Note that, similarly to what was done for the datasets from repository, the

data classification was performed through stratified cross-validation with 10 folds, using seven distinct

classifiers, set with default parameters (Section 3.3).

Figure 4.8 depicts the experimental results of the MCEC algorithm on the RA dataset. Note that

the static attributes are not included in this test, given that only the dynamic observations for each ap-

pointment are examined. The difference in entropy graph, in Figure 4.8(a), demonstrates an expressive
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Figure 4.8: Experimental results of the MCEC algorithm on the Rheumatoid Arthritis dataset. Parame-
ters: w = 253, L = 6, N = 290, 3 classes. Includes both numeric and categorical dynamic attributes.

decrease in the amount of information required to describe the class attribute. This reduction occurs

from n = 0 to n = 3, and H(C|An) − H(C|AnBn) = 0 for n ≥ 3. This suggest that the data from

the appointments after month 3 do not provide relevant knowledge to predict the treatment outcome of

the patients at month 24. On the other hand, the model selection criteria results, represented in Fig-

ures 4.8(b) and 4.8(c), consider n = 1 to be the time point that best balances the complexity of the model

with its effectiveness in fitting the data. Both graphs display a growth from n = 0 to n = 3, followed by a
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stabilization from that point forward. Similarly to what was verified for the repository datasets, the scor-

ing functions behaviour suggests that the growth in the amount of information used from the data do not

compensate the increase on the complexity of the associated model. However, the absence of variation

on both graphs for n ≥ 3 may indicate a lack of available information for a proper selection of the best

distribution. As previously mentioned, the parameters w, L and N consist of dimensional limitations

on the convenient functioning of the MCEC algorithm, in particular, on MDL and AIC measures. The

behaviour depicted in Figures 4.8(b) and 4.8(c) may imply the occurrence of overfitting, as a result of

the large number of features per time point and the shortage of instances. As studied in Table 4.1, the

higher the N , the greater the w required for an appropriate minimization of the model selection criteria.

With such a wide number of dimensions, there must be a sufficient amount of samples in order to have

a comprehensive and representative set of observations.

The classifiers’ accuracy values, according to the time series length, are included in Figure 4.8(d).

Although REPTree was the classifier with higher percentage of correctly classified instances for the full-

length data, the performance of the seven classifiers is investigated, in the interest of a more thorough

analysis. For n = 0, the accuracy values range from 42.69% to 55.34%, and RandomForest is the

classifier with the highest result. An increase from n = 0 to n = 3 is verified in 5 of the 7 cases

(RandomForest, SMO, REPTree, J48 and BN). In particular, for these three last classifiers, this growth

is followed by a decrease from n = 3 to n = 6. This occurrence is in line with the difference in entropy

measure outcome, which suggests month 3 as the early classification time point. In fact, the accuracy

obtained at n = 3 is higher than the one attained both at n = 6 and n = 12 for REPTree, J48 and BN,

and even greater than the percentage reached at n = 18 for REPTree and J48. The classification results

indicate a relative stabilization between n = 6 and n = 18 for the majority of the tested classifiers. This

fact supports the idea that the knowledge obtained during that interval does not have a relevant impact on

the prediction of the classes. Furthermore, for n = 24, the accuracy values range from 59.29% to 79.45%.

A significant growth on the percentage of correctly classified instances is verified from n = 18 to n = 24,

which is expected since the treatment outcomes (class labels) concern the medical appointments at

month 24.

4.3.1 Feature Selection

Due to the high dimensionality of the Rheumatoid Arthritis dataset, a feature selection procedure was

considered useful. Feature selection is a data reduction method, where irrelevant or redundant attributes

are removed in the interest of obtaining an efficient and accurate data mining performance [51]. The goal

is to select a subset of features according to an optimality evaluation criterion. These processes are usu-

ally greedy, seeing that, while searching among the available attributes, the strategy is based on a locally

optimal choice [38]. Literature describes multiple feature selection approaches, which include wrappers,

filters and embedded methods [34]. At first, given that the MCEC algorithm examines the information

contained in the data (in particular, the existing correlations with the class labels), the capability of the

proposed method in selecting the attributes subset from the RA dataset was investigated. This approach
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was applied to both static and dynamic features. Then, an informed feature selection was performed,

based on the variables used for calculating an important Rheumatoid Arthritis disease activity measure.

Greedy Feature Selection

Considering the univariate time points X1, X2, ..., XL as being distinct features, associated to the class

attribute (instead of one feature described over time), the presented algorithm was used in a greedy

feature selection procedure. In this case, L represents the total number of attributes, whose correla-

tions with the class labels are being examined. From all the measures, only the difference in entropy

was considered for this purpose. The strategy consists of iteratively choosing the feature that most de-

creases H(C|An) − H(C|AnBn), where n represents the attribute under analysis. For each iteration,

the difference in entropy is computed considering n as each of the remaining features. Among all re-

sults, the attribute that obtains the lowest value of H(C|An) −H(C|AnBn) is chosen, meaning that the

combination of features that more information give about the class attribute is selected. At the end, the

output consists of the collection of features ordered by relevance in terms of correlation with the classes.

Thereupon, the subset of most relevant attributes can be found.

Static Features Seeing that, besides dynamic features, the RA dataset contains also static attributes,

the analysis of the latter was also included in this procedure. Thus, the greedy feature selection ap-

proach was initially used for identifying the static attributes that more information give about the therapy

response of the patients at month 24. Figure 4.9 describes the experimental results of the difference in

entropy before and after applying this procedure. The graph from Figure 4.9(a) describes the variation of
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Figure 4.9: Variation of the entropy difference for all static attributes before and after performing the
greedy feature selection.

H(C|An)−H(C|AnBn) for the initial given order of attributes. In spite of the irregular behaviour and the

accentuated decreasing jumps, all the 38 features are required in order to have no lack of information

for predicting the class attribute. Conversely, after performing the greedy feature selection based on the
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difference in entropy measure from the MCEC algorithm, the results are considerably distinct, as demon-

strated in the graph from Figure 4.9(b). The steep slope of the curve, caused by expressive decreases

as attributes are added, confirms that the variables which most reduce the uncertainty about the class

are selected. After organizing the features in relevance order, that is, in terms of amount of knowledge

about the class labels provided, the subset of static attributes is identified. According to the proposed

method, H(C|An) − H(C|AnBn) = 0 for n ≥ 11, which suggests that there is enough information to

predict the treatment outcome using only 11 static categorical features.

With regard to the classification results, using the 38 features for predicting the class labels obtains

the following outcomes: NB/SMO – 47.83%, BN – 47.04%, J48/REPTree – 51.38%, RandomForest –

43.87% and kNN – 37.95%. After the greedy feature selection, which means based on the 11 selected

features, the accuracy values are: NB – 44.66%, BN/RandomForest – 43.87%, SMO – 45.45%, J48 –

51.78%, REPTree – 51.38% and kNN – 41.11%. Overall, 3 cases have worse results (NB, BN and SMO),

2 cases maintain (REPTree and RandomForest) and 2 cases improve (J48 and kNN). Although data

contains three classes, the classification outcomes are not satisfactory, since the best percentage of

correctly classified instances, attained by the set of classifiers, is 51.78%. Moreover, these results do

not confirm the inferences drawn by the greedy feature selection method, since the subset of attributes,

in general, gets worse classification accuracies. This may be caused by the insufficient number of in-

stances, which does not allow a representative and comprehensive sample of the real data. In fact,

there are 79 distinct categories for the attribute cod profissao (occupation code), which is plainly ad-

verse among a dataset with only 253 instances. For that reason, the greedy feature selection procedure

was repeated, yet disregarding this over-categorized feature. In this case, according to the proposed

method, H(C|An) − H(C|AnBn) = 0 for n ≥ 15, suggesting that the following 15 static categorical

features provide the relevant knowledge about the treatment outcome at month 24:

1. cod naturalidade – nationality code. Categories: AGO, BRA, CHN, CPV, DEU, FRA, GIN, GNB, MOZ, PRT

or STP.

2. DESC BIO ACTIVO – name of the biologic agent therapy. Categories: Abatacept, Adalimumab,

Anacinra, Etanercept, Golimumab, Infliximab, Rituximab or Tocilizumab.

3. COD GRAU ACADEMICO – educational level code. Categories associated to no scholling, 1st Cycle,

2nd Cycle, 3rd Cycle, Secondary Education, Bachelors degree, among others.

4. COD SIT LABORAL ACT – current employment status code. Categories associated to unemployed,

full time, retired, among others.

5. COD TABAGISMO – smoking habits code. Categories associated to smoker, ex-smoker, non-smoker,

among others.

6. manif ea – indicator of patient with extra-articular manifestations. Categories: yes or no.

7. COD SIT LABORAL ANTES DOENCA – employment status before disease code. Categories associated

to unemployed, full time, retired, among others.

8. ANTI CCP – anti-cyclic citrullinated peptide indicator (categorical attribute). Categories: yes or no.
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9. I REFORMADO POR DOENCA – retirement due to disease indicator. Categories: yes or no.

10. COD ALCOOL – alcohol consumption habits code. Categories associated to never consumed, current

consumer, among others.

11. FACTOR REUMATOIDE – rheumatoid factor indicator. Categories: yes or no.

12. osteoporose – osteoporosis disease indicator. Categories: yes or no.

13. uveite – uveitis disease indicator. Categories: yes or no.

14. COD RACA – race code. Categories associated to asian, white, melanesian, black, among others.

15. linfadenopatia – lymphadenopathy disease indicator. Categories: yes or no.

Based on these 15 features, the accuracy outcomes obtained by the classifiers are: NB/REPTree –

51.78%, BN/J48 – 50.99%, SMO – 50.59%, RandomForest – 47.04% and kNN – 44.66%. In comparison

with the classification results for the complete set of attributes, except for J48, all the remaining classifiers

(6 in 7 cases) attain a better performance for this subset of features. Nevertheless, even though an

improvement in the classifiers accuracy is verified, the best percentage of correctly classified instances

obtained is still 51.78%. This may suggest that the predictive quality of these attributes is not significant

for identifying the treatment outcome of a certain individual at month 24. Seeing that the time series

(dynamic features) carry important information, this corresponds to an expected conclusion.

Dynamic Features After examining the static features, the data from each time point was analysed

progressively together, having the treatment response of the patients at the last month always as class

attribute. The greedy feature selection procedure was performed on the dynamic attributes from every

time point, taking the previous selected features into consideration. Gradually, the attributes that provide

more information about the classes, at each time point, were identified, without neglecting the prior

findings. Note that these variables are chosen based on the difference in entropy measure, examining

the correlations between the available features and the class attribute.

Table 4.7 includes the greedy feature selection results on the dynamic attributes from the RA dataset,

at each available month. The prefixes T0, T3, T6, T12, T18 and T24 in the name of the features identify

the time point to which they belong. A description of the variables can be found in Table 4.8. In addition,

Figure 4.10 depicts the comparison of the classification results before and after applying the greedy

feature selection method.

Among the 290 dynamic attributes available at month 0, 18 features were selected. Six questions

from the Health Assessment Questionnaire (HAQ) were considered relevant (numbers 4, 6, 7, 13, 14

and 16), as well as five joints (numbers 33, 44, 50 - hands; 40 - right knee; and 64 - right wrist). Further-

more, four biologic agent (therapy) indicators were chosen (Prednisona, Infliximab, Etanercept and

Deflazacorte). The Disease Activity Score (DAS) measure, based on 44 joints (DAS44 CALC), was iden-

tified as the variable that more information provides about the class attribute, from all the 290 features

at the first time point. Concerning the classification results (Figure 4.10), except for RandomForest, all

the other classifiers (6 in 7 cases) obtain a higher accuracy for the given subset of features. The best
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Time Point Nr. Features Features

Month 0 18 T0 DAS44 CALC, T0 haq04, T0 haq06, T0 haq14,

T0 haq07, T0 haq16, T0 haq13, T0 eva doente,

T0 tum44, T0 Prednisona i terap, T0 dol50, T0 dol64,

T0 Infliximab i terap, T0 dol40, T0 Etanercept i terap,

T0 Deflazacorte i terap, T0 dol33, T0 na44

Month 3 16 T3 DELTA DAS, T3 SDAI, T0 haq07, T3 haq03, T0 haq14,

T0 haq13, T0 haq06, T3 iidDAS, T0 eva doente,

T3 Prednisolona i terap, T0 Prednisona i terap, T3 dol46,

T0 Infliximab i terap, T0 Etanercept i terap, T0 tum44,

T0 dol64

Month 6 13 T3 DELTA DAS, T3 SDAI, T6 haq02, T0 haq13, T6 haq05,

T0 haq06, T6 iidDAS, T0 haq14, T0 eva doente,

T6 Etanercept i terap, T6 Prednisolona i terap, T0 tum44,

T3 dol46

Month 12 15 T3 DELTA DAS, T3 SDAI, T6 haq02, T0 haq13, T6 haq05,

T12 haq06, T6 iidDAS, T12 iitDAS, T0 tum44, T12 haq18,

T12 dol40, T12 Adalimumab i terap, T0 haq06, T12 eva doente,

T0 haq14

Month 18 13 T3 DELTA DAS, T18 SDAI, T18 haq03, T0 haq13, T6 haq05,

T18 PCR, T3 SDAI, T0 haq14, T12 haq18, T18 I ENV PUNHO,

T6 iidDAS, T0 haq06, T12 eva doente

Month 24 9 T24 DAS28 3V, T24 DELTA DAS, T0 haq14, T0 haq06, T24 haq13,

T24 tum45, T24 DAS44 CALC, T24 VS, T6 iidDAS

Table 4.7: Greedy feature selection results on the dynamic attributes from the RA dataset. The pro-
cedure is performed progressively for each time point, taking the previously selected features into con-
sideration, at each step. The features are ordered by relevance in terms of correlation with the class
attribute. The characterization of the features is described in Table 4.8. Note that the prefixes T0, T3, T6,
T12, T18 and T24 denote the time point to which the feature belongs.

percentage of correctly classified instances at month 0 is obtained by J48 (57.71%), after the greedy

feature selection procedure.

From the 290 dynamic features at month 3, together with the subset of previously selected ones from

month 0 (290 + 18 = 308 features), 16 attributes were considered necessary for providing information

about the classes, according to the proposed method. Among these variables, 10 attributes are main-

tained from the previously selected at month 0, and 6 are obtained from the collection of features at

month 3. Some of the HAQ questions from the first time point are repeatedly selected, and in particular

numbers 6 and 14 (T0 haq06 and T0 haq14) are preserved until the last month. The swollen indicator

of joint 44 (right hand) at month 0 (T0 tum44) is included in the chosen subsets of attributes until the

results from month 12. The variables T3 DELTA DAS and T3 SDAI belong to the selected features up to

time point 18. In fact, the first one is considered the most relevant attribute in four months in a row (from

months 3 to 18). This suggests that T3 DELTA DAS contains meaningful knowledge about the treatment

outcome at month 24. The same conclusion can be drawn to T0 haq06, T0 haq14 and T6 iidDAS, seeing

that once detected, these variables are always included in the subsets of features.

Except for month 12, the number of features selected by the proposed algorithm demonstrates a

decreasing tendency. Since the treatment outcomes are associated to the data from the last time point,
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Feature Name Description

DAS28 3V Disease Activity Score-28 based on 3 variables (numeric attribute): number
of swollen joints, number of painful joints (both from a collection of 28 alterna-
tives), and erythrocyte sedimentation rate (VS).

DAS44 CALC Disease Activity Score measuring 44 joints (numeric attribute).

DELTA DAS Variation of DAS28 4V between month 0 and the current month (numeric at-
tribute).

dolX Joint X painful indicator (categorical attribute). Categories: yes or no.

eva doente Visual Analogue Scale (VAS or EVA, in Portuguese) according to the patient’s
opinion (numeric attribute).

haqX Score of question X (categorical attribute) from Health Assessment Question-
naire (HAQ). Categories: 0, 1, 2 or 3.

I ENV PUNHO Disease involving the wrist indicator (categorical attribute). Categories: yes or
no.

iidDAS Non-existence of painful joints (DAS28) indicator.

iitDAS Non-existence of swollen joints (DAS28) indicator.

naX Joint X non-evaluable indicator (categorical attribute). Categories: yes or no.

PCR C-reactive protein (CRP or PCR, in Portuguese) test (numeric attribute).

SDAI Simple Disease Activity Index (SDAI) value (numeric attribute).

tumX Joint X swollen indicator (categorical attribute). Categories: yes or no.

VS Erythrocyte sedimentation rate (ESR or VS, in Portuguese) value (numeric
attribute).

X i terap Therapy X activity indicator (categorical attribute). Categories: yes or no.

Table 4.8: Description of the dynamic attributes from the RA dataset, selected from the greedy feature
selection procedure (Table 4.7).

this behaviour suggests that the closer we get to the end of the time series, the more relevant attributes

we found (i.e. more information the features provide about the class attribute). Overall, the attributes that

are chosen the most correspond to: DELTA DAS, eva doente, haq06, haq13, haq14, iidDAS, SDAI

and tum44.

Regarding the classification results, 6 in 7 classifiers attain greater accuracies for the subset of fea-

tures described in Table 4.7, at every time series length (0, 3, 6, 12, 18, 24). In the case of RandomForest,

the percentage of correctly classified instances is higher using all available features until month 6. How-

ever, from month 12 forward, the subsets verify a better performance, also for this classifier. According

to these results, one could say that the greedy feature selection method is capable of identifying a subset

of dynamic features with predictive qualities. From the early classification perspective, the dimensional-

ity reduction has a positive impact on the treatment outcome prediction. In fact, at n = 6, an accuracy

greater than 63% is attained for 3 of the 7 classifiers (NB, BN and SMO). Conversely, based on the

complete set of available features, the highest percentage of correctly classified instances achieved at

month 6 is 60.87%, for RandomForest.
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Figure 4.10: Comparison of the classification accuracy results before and after the greedy feature se-
lection procedure applied to the dynamic attributes from the RA dataset. The outcomes from the seven
classifiers are included. The dashed lines represent the classification results using all available features
(N = 290, at each time point) and the solid ones denote the classifiers’ accuracy outcomes for the data
subsets obtained from the greedy feature selection procedure (Table 4.7).

Informed Feature Selection

The Disease Activity Score (DAS) measures the disease activity in Rheumatoid Arthritis patients [26]. It

is used in clinical trials and in daily clinical practice as a way to evaluate the treatment response of the

individuals. While DAS uses the information from 44 joints, DAS28 consists of a simplified measurement,

only based on 28 joints. These indicators quantify how active RA is at a certain moment, measuring

the improvement or the response of the patient to a specific therapy. In fact, DAS28 is associated to

the European League Against Rheumatism (EULAR) response criteria [27], which corresponds to the

calculation procedure of the class attribute from the dataset under analysis. Decisions regarding RA

treatments are commonly taken based on the comparison of DAS28 values and changes over time.

In general, five parameters are used to compute this measure: the number of swollen joints among

the 28 ones (ntDAS), the number of painful joints among the 28 ones (ndDAS), the Erythrocyte sedimen-

tation rate (VS), the C-reactive protein (PCR) and the Visual Analogue Scale according to the opinion of

the patient (eva doente). In the interest of studying the early classification opportunity based on the

knowledge contained in the DAS28 calculation process, an informed feature selection was performed,

before applying the MCEC algorithm. The goal was to examine the multivariate time series data, con-

taining merely the information about the five attributes associated with the Disease Activity Score-28

(ntDAS, ndDAS, VS, PCR and eva doente). The experimental results are represented in Figure 4.11. The

dataset maintains the number of instances (w = 253), the time series length (L = 6) and the number of

classes (3 class labels); only the number of features per time point is different (N = 5).

The difference in entropy curve, in Figure 4.11(a), shows a reduction from n = 0 to n = 3, followed

by a lower variation period during n ∈ {3, ..., 12}, and, finally, an expressive decrease until the last
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Figure 4.11: Experimental results of the MCEC algorithm on the Rheumatoid Arthritis dataset, using
an informed subset of dynamic features. The variables selected are used to calculate some important
measurements in RA treatment: Disease Activity Score (DAS and DAS28). Parameters: w = 253, L = 6,
N = 5, 3 classes. All attributes are numeric.

time point. A reduction of at least 70% from the initial value of entropy is verified only for n = 24,

which corresponds to 0% of earliness. In this case, not much knowledge can be obtained from the

H(C|An) − H(C|AnBn) measure, with regard to the early prediction of the treatment outcome, based

on the DAS28 calculation variables. Concerning the model selection criteria, they both demonstrate a

similar behaviour. However, while MDL has a minimum for n = 0, the lowest value of AIC is found

for n = 12. In the case of the latter, from n = 3 until n = 6, the variation is very subtle, appearing

to be constant during that period (Figure 4.11(c)). From both scoring functions, the early classification

time point may be located in the interval n ∈ {3, ..., 12}, since from month 12 forward the complexity of

the model displays a more expressive growth. The classification results from Figure 4.11(d) corroborate

these conclusions, seeing that 5 in 7 classifiers (NB, BN, SMO, RandomForest and kNN) increase in

accuracy from n = 0 to n = 3, and then demonstrate a relatively constant behaviour until n = 12. Note

that kNN has a higher percentage of correctly classified instances for n = 18, in comparison with the
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full-length time series. According to this classifier, a more reliable prediction of the treatment outcome is

achieved at month 18. Overall, based on the features used for computing the Disease Activity Score-28,

the proposed method suggests there is relevant information that allows an early prediction of the RA

patients’ therapy response, in the observations between months 3 and 12.

4.3.2 Discussion

Overall, the obtained experimental results suggest that the clinical data from months 3 to 18 do not pro-

vide that much crucial information about the treatment outcome. This means that a relatively satisfactory

prediction of the RA patients therapy response at month 24 is achievable from the third month. Moreover,

from the feature selection approach, a collection of attributes were identified for their predictive qualities:

DELTA DAS, eva doente, haq06, haq13, haq14, iidDAS, SDAI and tum44. Conversely, the dimen-

sionality of the dataset was considered a limitation to the performance of the proposed algorithm. The

large number of features per time point together with the insufficient number of instances hampered a

proper early classification opportunity analysis.

Previous researches have worked on the same (or at least on similar) data, in the interest of inves-

tigating the evolution of the RA disease and the effectiveness of the available treatments. In his thesis

[5], João Freitas identified RA as one of the leading causes of disability and of life expectancy decrease.

He measured the effects of different biologic therapies as well as other factors (such as weight and

age) on the disease activity. Based on the performed study, tocilizumab was identified as the most ef-

fective treatment, and both adalimumab and rituximab were considered ineffective in comparison with

etanercept. In addition, no remission was verified with anakinra, and factors such as disease duration,

age, weight and eva doente were associated to the disease progression. This last variable was also one

of the most chosen attributes in the greedy feature selection procedure based on the MCEC algorithm

(Table 4.7). Moreover, the DBN structure learning algorithm, proposed by José Monteiro in his thesis

[54], was also used for learning from medical data describing RA patients, in the interest of forecasting

the disease evolution. He attempted to predict the DAS class from one medical appointment to the next,

and obtained accuracies around 75%. Relations between the DAS and some attributes were consistently

identified, in particular, with VS, ndDAS and eva doente. Finally, in her thesis [10], Cátia Botas reached

fairly similar conclusions to those obtained by the MCEC algorithm. In fact, she identified the interval

between months 3 and 6 as the time period for which the treatment outcome at month 24 can be pre-

dicted with some modest confidence. She describes a thorough and intensive preprocessing required

for a convenient utilization and manipulation of the dataset, as a result of the noisy and incomplete data.

In addition, the tocilizumab indicator feature was identified as highly related with the response code,

which is in line with the conclusions from the work of João Freitas.
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Chapter 5

Conclusions

5.1 Achievements

An information-theoretic algorithm for examining the early classification opportunity in a dataset, con-

taining a collection of time series together with their respective class labels, has been proposed. The

MCEC algorithm is capable of dealing with univariate and multivariate data, as long as the time series

length and the number of variables per time point are fixed and uniform for all instances. In addition, the

experimental results on benchmark data were compared with statistical significance tests in the interest

of studying the benefit of the tradeoff between the two fundamental challenges in the early classification

context: accuracy and earliness. Furthermore, the software implementation of the algorithm was made

freely available, and an article is submitted to an international journal.

Concerning the performance of the MCEC algorithm, the data dimensionality impact analysis and the

computation time assay not only identified some limitations on the proper functioning of the proposed

method, but also provided insights regarding the effectiveness of the model selection criteria. The

results suggest that the number of instances and the number of attributes per time point significantly

influence the minimization of both scoring functions. Moreover, AIC was considered less conditioned

by the dimensionality than MDL, but the latter demonstrates more consistency in selecting the true

model, provided that the true model is in the set of candidate models. In terms of computation time, the

algorithm is fairly robust with regard to the number of instances, but not so much concerning the time

series length. While the dataset scanning considers the complete set of samples en bloc, an increase

on the number of time points denotes an enlargement on the observation window size.

The assessment of the proposed algorithm was accomplished through experimental tests in syn-

thetic, simulated and real-world data. The achieved outcomes confirm the ability of the MCEC method

to examine the early classification opportunity within a dataset. This means that, in general, the three

main measures (difference in entropy,MDL andAIC) are capable of choosing an early time point based

on which the time series classification is plausible. Overall, the first measure obtains better accuracy

results, MDL demonstrates a superior tendency for earliness, and AIC attains the most competent

balance between both aims. Regarding the study on the tradeoff between accuracy and earliness, al-
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though, for an equal balance, AIC seems to surpass MDL, and the latter appears to outperform the

difference in entropy, these inferences are not statistically significant at the α = 0.05 significance level.

On the other hand, the difference in entropy is surpassed by both model selection criteria, when priority

is given to earliness over accuracy. However, in this case, there is not enough statistical evidence to

claim that MDL outperforms AIC, in spite of the empirical outcomes. Conversely, when accuracy is the

main goal, the entropy measure surpasses both scoring functions, and AIC obtains better results than

MDL. Herein, these comparisons are statistically significant at p-value < 0.05 level.

5.2 Future Work

The MCEC algorithm can be extended to deal with datasets where the time series length and the num-

ber of attributes per time point vary among all instances. The requirement of fixed and uniform data

size may be an impediment in some real-world applications. For instance, within a collection of clinical

observations concerning a set of patients, two individuals may have gone to a distinct number of medical

appointments, or their health records may include a different number of parameters. Therefore, the flex-

ibility in handling dimensional variations can be of great benefit, in particular when the dataset contains

missing values.

In addition, a classification method can be developed based on the capabilities of this information-

theoretic approach. Seeing that the majority of the state-of-the-art methodologies in the early prediction

context suggest self-sufficient classifiers, a procedure with a learning stage followed by a classification

step could be proposed. In this case, instead of investigating the early classification opportunity within

the entire collection of samples, the algorithm would be able to assign a class label to a new single

incomplete time series.

Finally, the feature selection potentialities of the MCEC method can be exploited, as briefly intro-

duced in Section 4.3. Since the presented approach analyses the correlations between the information

contained in the data and the class labels, the procedure can be used for selecting a subset with the

most relevant attributes, among a group of alternatives. In particular, a greedy feature selection could

be performed based, not only on the difference in entropy measure, but also on the model selection

criteria.
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Appendix A

Synthetic example of the proposed

method

This appendix describes the implementation details of the proposed method through the example of

a synthetically generated dataset. As previously mentioned, for a given multivariate time series Ti =

(X1, X2, ..., XL), where L corresponds to its time length, each component Xk = (Xk1
, Xk2

, ..., XkN
)

consists of a set of N features measured at time point k. A class label ci is associated to each Ti

through the relation Class(Ti) = ci, and the dataset D to be analysed consists of a collection of pairs

(Ti, ci) : i ∈ {1, ..., w}, where w corresponds to the number of instances.

Consider the example represented in Table A.1. This dataset consists of ten instances (w = 10) of

univariate time series (N = 1) with seven time points each (L = 7). The feature described over time

is of type boolean (Xk ∈ {0, 1}), and the class label attribute includes two alternatives (ci ∈ {C0,C1}).

The first two time points (X1 and X2) are randomly generated and all the others correspond to the

Table A.1: Synthetic dataset example.
X1 X2 X3 X4 X5 X6 X7 ci
0 1 1 0 1 1 0 C1
1 1 0 1 1 0 1 C1
0 1 1 0 1 1 0 C1
1 1 0 1 1 0 1 C1
1 0 1 1 0 1 1 C0
1 0 1 1 0 1 1 C0
1 1 0 1 1 0 1 C1
0 1 1 0 1 1 0 C1
1 0 1 1 0 1 1 C0
0 1 1 0 1 1 0 C1

XOR (Table A.2) of the two previous time points. For example, in the first instance, X3 corresponds to

X1⊕X2 = 1, and X4 is equal to X2⊕X3 = 0. The class label ci is the result of the exclusive disjunction

between X6 and X7, concatenated with the letter “C”.
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Table A.2: Exclusive disjunction (XOR).
x y x⊕ y
0 0 0
0 1 1
1 0 1
1 1 0

According to the proposed approach, the multivariate time series are decomposed in

Ti = (X1, X2, ..., Xn, Xn+1, ..., XL−1, XL) , (A.1)

and the dataset is organized in three groups:

An = {X1, X2, ..., Xn} ,

Bn = {Xn+1, Xn+2, ..., XL} ,

C = {ci} .

(A.2)

A.1 Difference in entropy

Once aiming for early classification, we are interested in predicting the class label of a time series as

early as possible, provided that the classification accuracy is close to the one using the complete data.

For this purpose, in the first stage, the conditional entropy of the dataset is the subject of study. The goal

consists of analysing the difference in entropy:

H(C|An)−H(C|AnBn), (A.3)

while varying the early classification time point n from {1, ..., L}.

Considering the three groups described in Equation (A.2) as well as the definition from Equation (3.3),

the calculation of the conditional entropies is performed through:

H(C|An) =
∑
a,c

p(An = a,C = c) log2

[
p(An = a)

p(An = a,C = c)

]
,

H(C|AnBn) =
∑
a,b,c

p(An = a,Bn = b, C = c) log2

[
p(An = a,Bn = b)

p(An = a,Bn = b, C = c)

]
.

(A.4)

The conditional entropy H(C|AnBn) quantifies the amount of information needed to describe the

outcome of the class label ci, based on the knowledge of the entire time series. This value is constant

when varying n from {1, ..., L}, since it represents the lowest possible uncertainty in the outcome of C.

On the other hand, H(C|An) quantifies the amount of information needed to predict ci, provided that

there is only information until time point n. This value is expected to decrease with the increase of n,

since the growth on the amount of available information is expected to reduce the uncertainty of the

prediction.

The statistical parameters included in Equation (A.4) are estimated as the quotient between the
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number of occurrences of each specific case and the total number of instances in the dataset:

p(An = a) =
number of occurrences of {a}

w
,

p(An = a,Bn = b) =
number of occurrences of {a, b}

w
,

p(An = a,C = c) =
number of occurrences of {a, c}

w
,

p(An = a,Bn = b, C = c) =
number of occurrences of {a, b, c}

w
,

(A.5)

for which {a}, {a, b}, {a, c} and {a, b, c} represent the existing cases included in the respective group

described in Equation (A.2).

For n = 1, the organization of the time series in three groups corresponds to:

A1 = {X1} , B1 = {X2, X3, X4, X5, X6, X7} , C = {ci} , (A.6)

and the information from the dataset can be structured in lists such as:

A1 =

[
({0} , 4)
({1} , 6)

]
, AC1 =

[
({1 C0} , 3)
({1 C1} , 3)
({0 C1} , 4)

]
,

AB =

[
({1011011} , 3)
({1101101} , 3)
({0110110} , 4)

]
, ABC =

[
({1011011 C0} , 3)
({0110110 C1} , 4)
({1101101 C1} , 3)

]
.

(A.7)

where the format consists of G = [({g} ,number of occurrences)]. Considering the list A1, the observa-

tion {0} for X1 occurs 4 times, and X1 = 1 is verified in 6 of the 10 instances from the data. From these

lists, the parameters described in Equation (A.5) are calculated as:

p(A1 = {0}) =
4

10
= 0.4 bits, p(A1 = {1}) =

6

10
= 0.6 bits,

p(A1C = {1 C0}) = p(A1C = {1 C1}) = 0.3 bits, p(A1C = {0 C1}) = 0.4 bits,

p(A1B1 = {1011011}) = p(A1B1 = {1101101}) =
3

10
= 0.3 bits,

p(A1B1 = {0110110}) = 0.4 bits,

p(A1B1C = {1011011 C0}) = p(A1B1C = {1101101 C1}) = 0.3 bits,

p(A1B1C = {0110110 C1}) = 0.4 bits,

(A.8)

and the conditional entropies described in Equation (A.4) are computed through:

H(C|A1) =
∑
a,c

p(A1C = {a, c}) log2

[
p(A1 = {a})

p(A1C = {a, c})

]
=

= 0.3 log2

[
0.6

0.3

]
+ 0.3 log2

[
0.6

0.3

]
+ 0.4 log

[
0.4

0.4

]
= 0.6 bits;

(A.9)

A.3



H(C|A1B1) =
∑
a,b,c

p(A1B1C = {a, b, c}) log2

[
p(A1B1 = {a, b})

p(A1B1C = {a, b, c})

]
=

= 2

(
0.3 log2

[
0.3

0.3

])
+ 0.4 log2

[
0.4

0.4

]
= 0.

(A.10)

On the one hand, H(C|A1) = 0.6 bits represents the amount of information needed to predict the

classes of the time series, given that X1 is known. On the other hand, H(C|A1B1) = 0 indicates that the

complete time series provide enough information for describing the group C. The difference in entropy,

equal to H(C|A1) −H(C|A1B1) = 0.6 bits, denotes that with only the first time point of the time series

there is still a lack of information for predicting the class labels.

For n = 2, the organization of the time series in three groups becomes:

A2 = {X1, X2} , B2 = {X3, X4, X5, X6, X7} , C = {ci} , (A.11)

and the data structured in lists correspond to:

A2 =

[
({10} , 3)
({11} , 3)
({01} , 4)

]
, AC2 =

[
({11 C1} , 3)
({10 C0} , 3)
({01 C1} , 4)

]
. (A.12)

Note that the lists AB and ABC are the same as in Equation (A.7) since they do not change with the

variation of n. In this case, the computation of the difference in entropy is equal to:

H(C|A2)−H(C|A2B2) = 0− 0 = 0. (A.13)

This result denotes that with the first two time points of the time series (X1 and X2) there is enough

information for predicting the class labels.

Figure A.1 describes the evolution of the difference in entropy from Equation (A.3) for n ∈ {1, ..., 10}.

Since H(C|An) − H(C|AnBn) = 0 for n ≥ 2, the correlations between the early states of Ti and the

classes ci are completely represented using only the first two time points. It is possible to infer that the

information given by the time series after X2 does not provide any useful knowledge about the class

label attribute.

A.2 Complexity of the model

In the second stage, based on two Bayesian network scoring functions, the complexity of the model is

examined in the interest of choosing the early time point, which is able not only to achieve an early clas-

sification, but also to consider the simplicity of the choice. The goal consists of analysing the function:

φ(D|Sn) = α · |Sn| − LL(D|Sn), (A.14)

A.4



1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure A.1: Variation of the entropy difference while n ∈ {1, ..., L}, for the data represented in Table A.1.

while varying the early classification time point n from {1, ..., L}, where |Sn| is described in Equa-

tion (3.22) and LL(D|Sn) is defined as:

LL(D|Sn) =

w∑
i=1

log2 [p(C = c|An = a)p(Bn = b|An = a)p(An = a)] =

=

w∑
i=1

log2

[
p(An = a,Bn = b)p(An = a,C = c)

p(An = a)

]
,

(A.15)

according to the Bayes’ theorem. The value of α is independent from the early time point, and while

for the MDL score, α = 1
2 log2 w, for the AIC, α = 1. The statistical parameters for computing the

log-likelihood of the model given the data are estimated as described in Equation (A.5).

Regarding the number of independent parameters, ||C|| denotes the number of distinct cases in

group C, i.e. the number of classes in the dataset. This value is constant while varying n, seeing that

the variation of the early time point does not affect group C. Similarly, ||An|| corresponds to the number

of different existing cases in group An. This value is expected to increase with n, as a greater amount

of analysed instants from the time series leads to a higher number of possible cases. At some point,

||An|| is expected to stabilize, possibly when the information added is redundant, and consequently,

unnecessary for the prediction.

For n = 1, the groups are organized as represented in Equation (A.6) and the information contained

in the dataset can be structured in lists such as the ones denoted in Equation (A.7). From the statistical
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parameters calculated in Equation (A.8), the log-likelihood can be computed as:

−LL(S1|D) = −
10∑
i=1

log2

[
p(A1B1 = {a, b}) · p(A1C = {a, c})

p(A1 = {a})

]
=

= 3 log2

[
0.3 · 0.3

0.6

]
+ 4 log2

[
0.4 · 0.4

0.4

]
+ 3 log2

[
0.3 · 0.3

0.6

]
=

= 21.7095 bits.

(A.16)

Note that this value corresponds to the amount of information required to represent the dataset D using

the model S1, and the sum comprises all the instances included in D (in this case, w = 10). Since ||A1||

consists of the number of distinct cases in group A1, and ||C|| denotes the number of classes in the

dataset, from Equation (3.22), the number of independent parameters in the model is equal to:

|S1| = ||A1|| · ||C|| − 1 = 2 · 2− 1 = 3 bits. (A.17)

This value quantifies the amount of information needed to encode the model S1, as well as the data D

given the model. It can be viewed as a measure of the complexity associated to using the model S1 to

represent the dataset from Table A.1.

Concerning the AIC score, seeing that α = 1 and according to Equation (3.21), its computation

corresponds to:

AIC(S1|D) = |S1| − LL(S1|D) = 3 + 21.7095 = 24.7095 bits. (A.18)

With regard to the MDL scoring function, the penalization factor is α = 1
2 log2 10 = 1.661 bits, and

through Equation (3.20) this score is calculated as:

MDL(S1|D) = α · |S1| − LL(S1|D) = 1.661 · 3 + 21.7095 = 26.6925 bits. (A.19)

In these sort of model selection, the idea is to find the Sn that is good enough to capture the informa-

tion in the data D, but not so complex that it makes the choice infeasible. The multiple models represent

the variation of n from {1, ..., L}, which means that there are as many Sn as the number of time points

(L). By minimizing the general function φ(D|Sn) from Equation (A.14), we are trying to find a balance

between the complexity of the model and its ability to fit to the data. The goal is to find the early time

point for which both MDL(D|Sn) and AIC(D|Sn) are as low as possible, meaning that the information

contained in the time series until n is enough to represent the dataset in an effective but simple manner.

Aiming for a more detailed analysis of the terms that compose φ(D|Sn), Figure A.2(a) denotes the

variation of the number of independent parameters in Sn with n, and Figure A.2(b) represents the graph

of the log-likelihood term for all time points. As depicted in Figure A.2(a), the complexity of the model

increases from n ∈ {1, 2}, i.e. the more instants from the time series analysed, the higher the amount

of information needed to encode Sn. Notice that since |Sn| is constant for n ≥ 2, the information added

to the model in this interval does not affect its complexity. From Figure A.2(b), the significant decrease

of the log-likelihood at n = 2 followed by a stabilization from that time point on indicates that the dataset
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Figure A.2: Variation of the terms from φ(D|Sn) while n ∈ {1, ..., L}, for the dataset from Table A.1.

D is effectively described by S2, i.e. using only the observations from the two initial instants of the

time series. Figure A.3 represents the values for the AIC and the MDL scoring functions. Seeing that
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Figure A.3: Variation of the scoring functions while n ∈ {1, ..., L}, for the dataset from Table A.1.

the difference between the scores is mainly related with the penalization factor on the complexity term,

the variation is very similar in both cases, achieving a minimum value at n ≥ 2. This denotes that a

satisfactory tradeoff between the complexity of the model and its ability to represent the data is found at

n = 2.

The same conclusion is reached for the proposed approaches. Not only from the model complexity

analysis but also from the study of the difference in entropy, the results demonstrate that we are expected

to be able to accurately classify the time series from the synthetic dataset, based only on the first two time

points. A closer look to the two initial columns from Table A.1 (X1 and X2) corroborates this inference,

seeing that whenever A2 = {11} or A2 = {01}, the class label is C1; and whenever A2 = {10}, the class

label is C0; i.e. the knowledge of A2 is enough to describe C with no uncertainty.
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A.3 Early classification analysis

The analysis of the percentage of correctly classified instances (Equation 2.1) for the synthetic dataset

is represented in Figure A.4. Except for the REPTree classifier, all the others accomplish 100% accuracy

for n ≥ 2, which matches with the conclusions obtained from the proposed method. The utility of the

classification accuracy investigation is further developed in Chapter 4.
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Figure A.4: Multiple classifiers performance accuracy on the data represented in Table A.1, for every
time series lengths.
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