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Abstract

The wide availability of mobile devices, such as smartphones, enabled mobility in our lifestyles. How-

ever, traditional voting systems require physical presence of the voter at a specific place and time, which

is incompatible with the concept of mobility. The goal of this dissertation is to propose an Internet voting

system, called TrustedVote, that allows voters to cast their vote anywhere with high level of security. Not

only Internet voting solves the mobility issue, but it also significantly raises the turnout rate, reduces ad-

ministrative costs and tallying time. In order to tackle malware and other insecurities in the client mobile

platform, the solution is based on smartphones with a Trusted Execution Environment (TEE). Trusted-

Vote leverages the isolation properties of TEEs available in Android and iOS smartphones to perform

the cryptographic steps of an Internet voting system, such as vote encryption and voter authentication.
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Resumo

A presença de dispositivos móveis, como os smartphones, introduziu o conceito de mobilidade no nosso

quotidiano. No entanto, os sistemas de voto tradicionais obrigam a que o eleitor esteja presente numa

data especı́fica para poder votar, o que é incompatı́vel com o conceito de mobilidade. O objectivo

desta dissertação é propor um sistema de votação pela Internet, chamado TrustedVote que permita

aos eleitores votar em qualquer lugar com elevadas garantias de segurança. Os sistemas de voto pela

Internet não só resolvem o problema da mobilidade, como também reduzem os custos administrativos,

a abstenção e tempo de contagem de votos. Para combater malware e outras inseguranças nos dis-

positivos utilizados pelos eleitores, a solução é baseada em smartphones com acesso a um TEE. O

sistema TrustedVote tira partido da propriedade de isolamento oferecida pelos TEE disponı́veis nos

smartphones Android e iOS para executar os passos criptográficos do protocolo de voto pela Internet.
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1.1 Motivation

Traditional, paper-based, voting systems require the voter to cast his vote during a certain period (the

election period) and at a specific place, which is inconsistent with the concept of mobility widely seen

today (e.g., with smartphones, tablets, smartwatches, etc.). This lack of mobility compromises the goal

of democracy, as citizens may not be available to vote (on the designated places) during the election

period.

The most recent example of this problem is related to the portuguese local elections that use the tra-

ditional voting system. The Portuguese League of Professional Football scheduled four football matches

to the election day, October 1, 2017. One of the matches was between two rival teams, which, accord-

ing to the portuguese government, introduces significant traffic on the streets and reduces the citizens’

availability to move to a voting place (as the traditional voting system requires). The government went

further and there are plans to change the law in order to forbid certain sport events at election days. In

the case of portuguese local elections, the lack of mobility created an unnecessary tension between the

citizens, the government and sports organizations.

Another possible scenario is the scenario where a voter is registered to vote in Lisbon. A business

meeting, which the voter must attend, is scheduled at the last minute, to be held in Paris during the

election period. With the traditional voting method, the voter would not be able to cast his vote.

With the global presence of the Internet nowadays, there is a tendency to replace traditional paper-

based elections with Internet voting systems. The main reasons for the development and use of Internet

voting systems are that they significantly raise the turnout rate (because mobility is improved), reduce

administrative costs and tallying time. However, in Internet voting systems there is the issue of security

on the devices that the voters use to cast the votes. This issue also compromises the goal of democracy.

Consider the scenario where voters use smartphones to cast their votes through the Internet. Suppose

that a third party exploits a vulnerability on Android and is able to install malware on the smartphones of

thousands of voters. In this scenario, the third party that controls the smartphones and can change the

vote of thousands of citizens, potentially changing the outcome of the election and affecting the future of

an entire nation.

1.2 Goal and Requirements

Thus, the goal of this dissertation is to design, implement, and evaluate an Internet voting system

called TrustedVote that allows voters to vote anywhere with high level of security. Special focus is given

to the need for a trusted software base in the client used by the voter. From this goal, the following

requirements are considered:

2



1. Accuracy - it is not possible for an invalid vote to be counted in the final tally.

2. Integrity - a malicious attacker cannot, arbitrarily or in a deterministic way, modify a vote without

detection at the client, communication channels or server.

3. Democracy - only authorized voters may cast a vote and an eligible voter may only cast one vote.

4. Privacy - no entity besides the voter learns how he cast his vote. He is not able to prove to a third

party how he voted.

5. Verifiability - any independent entity is able to verify that all votes were counted correctly. Addi-

tionally, a voter can verify if his vote was recorded correctly.

6. Robustness - the protocol should consider the following robustness requirements:

(a) Availability - the system should be available during the election period. Furthermore, the

client platform that the voter uses should execute the code that creates the vote and intro-

duces privacy, integrity and verifiability without any noticeable overhead to the voter.

(b) Collusion Resistance - the protocol should be resistant to collusion of corrupt voting author-

ities.

(c) Malware Resistance - the insecure platform problem is defined as the insecurity that is found

at the vote casting platforms because they are uncontrolled environments vulnerable to at-

tacks. This problem should also be mitigated by tolerating malware in the client voting ma-

chine. Moreover, it is fundamental that the code that is security critical is minimal, i.e. the size

of the Trusted Computing Base (TCB) is minimal.

7. Mobility - TrustedVote should not impose mobility restrictions to the voter. The voter has the

freedom to vote anywhere.

8. Usability - we define Usability as follows: to successfully cast a vote, it is not required for the

user to acquire special or dedicated devices that are not widely available. Moreover, from the

point of view of the voter, the voting process imposed by the protocol should be intuitive and easily

recognizable.

Thus, we consider the requirements that a non-electronic voting scheme should have, such as accu-

racy, integrity, democracy, privacy, verifiability, collusion resistance, availability and usability. In addition

to non-electronic voting requirements, we consider: 1) mobility, that non-electronic voting cannot achieve

because a voter must move to a voting booth to cast his vote and, 2) malware resistance.

3



1.3 Research History

The design and implementation of an 100% secure Internet voting system is obviously difficult. Pro-

tocols that achieve the core security properties (accuracy, integrity, democracy, privacy and verifiability)

and robustness [4,5,7,8], have serious usability problems. On the other side, usable e-voting schemes

that guarantee the core security properties protecting the vote at server-side [1,5,7–9,9,10], fail to pro-

vide malware resistance. They do not consider malware in the voting client machine. As a matter of

fact, malware in the operating system is able to perform arbitrary operations on the vote before being

encrypted, compromising the privacy and integrity of the vote without detection.

Thus, there is the need to tolerate malware in the voter’s computer while maintaining usability. For

that purpose, a Trusted Execution Environment (TEE), i.e., a special area of the main processor that

executes in isolation from the rest of the hardware, is a fundamental aspect to consider as part of the

solution. With a TEE, it is possible to leverage secure storage and the isolation feature to perform the

cryptographic steps of an e-voting algorithm, guaranteeing privacy of the vote even to the operating

system. For instance, ARM TrustZone is an example of a TEE available in ARM processors that allows

execution of code and services isolated from the operating system.

1.4 Solution and Contributions

In this dissertation we introduce TrustedVote, an Internet voting system that allows voters to vote any-

where with high level of security. In TrustedVote, we inherit the network protocol, cryptography scheme

and entities from the EVIV protocol [11]. The EVIV protocol provides malware resistance on the client,

but it is not usable according to our definition in Section 1.2. The architecture of the TrustedVote client

that runs in the voter’s devices does not require a dedicated device from the voter while guaranteeing

malware resistance.

The client is responsible for creating a vote, encrypting it and providing a user interface so that voters

can cast their vote, while keeping privacy and integrity of the vote even to the operating system running

in the mobile device. We split the client in two components: 1) a small trusted component that executes

sensitive code and, 2) an untrusted component that implements the steps of the voting protocol and

provides a user interface. In the context of an voting client (the mobile device), we consider that the

code that creates and manipulates the vote, i.e., has read and write access to the voter’s intention, is

considered sensitive code. The sensitive code must be trusted, and executed in isolation in order to

provide malware resistance. We use ARM TrustZone technology to enable the isolated execution of the

trusted component from the remaining of the software (operating system and other applications). By

executing the sensitive code on the secure environment provided by ARM TrustZone, we ensure that the

vote and the cryptography used to create it are not tampered, guaranteeing privacy and integrity.
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The contributions of this dissertation are summarized are follows:

• Architecture of the client system that is running in the mobile devices of the voters.

• Implementation of a prototype of the TrustedVote client on the i.MX53 Quick Start Board, which

is TrustZone-enabled. The prototype runs a command line tool over Linux on the normal world

of ARM TrustZone, while the sensitive code is executed in the secure world on top of Genode

base-hw microkernel.

• Experimental evaluation of the prototype running in the i.MX53 Quick Start Board, showing that

the TCB is small and the overheads introduced by the TEE are not noticeable by the voter.

1.5 Document Structure

The remaining of this dissertation organized as follows:

• Chapter 2 introduces the world of Internet voting. The first part of this Chapter explains the theo-

retical concepts behind Internet voting systems. The second part describes the state of the art of

Internet voting systems. In the last part, we present the main concepts of TEE technologies.

• Chapter 3 details the architecture of TrustedVote.

• Chapter 4 discusses the details of the prototype that was implemented.

• Chapter 5 evaluates the implemented prototype regarding the requirements devised before (Sec-

tion 1.2).

• Chapter 6 concludes this dissertation, summarizing what was developed and the results. Also,

we provide insights on what can be in the future with relation to the use of trusted computing in

e-voting.
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2.1 Introduction

This Chapter outlines the related work and is divided in four main parts. The first part describes

the theoretical concepts behind Internet voting systems. The second part contains an overview of the

state of the art regarding electronic voting systems. We also informally discuss why each system does

not meet all the requirements devised in Section 1.2. In the third part of this section, we discuss e-

voting mechanisms implemented by some countries and their respective experience, highlighting the

security problems and usability issues found at those implementations. In the final part, we overview

TEE technologies and how they can be used in the context of e-voting. Finally, we conclude with a

summary of all related solutions.

Electronic voting protocols use secure channels to perform network communications, such as Secure

Sockets Layer (SSL) and Transport Layer Security (TLS). They assume the existence of Certification

Authorities that certificate asymmetric public keys of the protocol entities.

2.2 Background

The Internet voting systems in the literature can be divided in three main categories: based in mix-

nets [9,12–14], based in homomorphic encryption [5,15], and based on blind signatures [2]. This Section

introduces the theoretical details of each technique, the ElGamal cryptosystem and its exponential vari-

ant that are widely used in the e-voting systems.

2.2.1 ElGamal cryptosystem

The ElGamal cryptosystem [16] is an asymmetric key encryption algorithm used in several voting

schemes. Its security depends on the difficulty of computing discrete logarithms.

The key generation process of entity A starts by choosing a cyclic group G of order q with generator

α. Then, A chooses a random x greater than 0 and smaller than q and computes y = αx mod q. The

entity A publishes his public key (G, q, α, y) and keeps x as his private key. The encryption (E) and

decryption (D) operations of a message m are defined in the following way:

E(m) = (u, v) = (αr,myr) mod q, and r is random (2.1)

D(u, v) = m = v × (ux)−1 mod q (2.2)
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Figure 2.1: A decryption mix-net in the context of e-voting with 3 trustees.

2.2.1.A Exponential ElGamal cryptosystem

The exponential ElGamal cryptosystem is a variant of the ElGamal cryptosystem where the value αm

is encrypted instead of the message m. For exponential ElGamal the encryption E operation is defined

in the following way:

E(m) = (u, v) = (αr, αm × yr) mod q, and r is random (2.3)

However, when decrypting a ciphertext (u, v) with the decryption function D of Equation 2.2, only

the value of αm can be obtained. Having αm and computing m requires solving the discrete logarithmic

problem, so, exponential ElGamal is used when the message m is small and can be brute forced in

useful time.

2.2.2 Mix-nets

A mix network (mix-net), proposed by Chaum [17], is a protocol with the goal of hiding communication

between a sender and a receiver. The main component of a mix network is the set of trustees. A trustee

is a server that act as an intermediary between a sender and a receiver. The trustees, forming a chain,

receive messages from multiple senders and shuffle them before sending to the next trustee, breaking

the link between the sender and receiver.

Mix-nets are used in the context of voting systems to enable anonymization of the votes by hiding

the links between voters and the election servers. The two most widely used mix-net protocols in voting

systems are the Decryption mix-net [17] and the Re-encryption mix-net [18,19].
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Figure 2.2: A reencryption mix-net in the context of e-voting with 3 trustees.

2.2.2.A Decryption Mix-net

In the first phase of a decryption mix-net the voter gathers the public key of each trustee PK1, PK2, ..., PKn

and encrypts its ballot B in a random layered encryption scheme such that:

C = E(PK1, ...E(PKn−1, E(PKn, B))) (2.4)

Then, each trustee in the chain is responsible for the decryption of a layer of encryption and shuffle

the ciphertexts before sending to the next trustee. The last trustee in the chain decrypts the final layer

and delivers B to the voting servers. Figure 2.1 shows an example of a decryption mix-net in the context

of e-voting. This decryption mix-net is composed by 3 distinct trustees. When the voter decided to

send his ballot, he chose a random order of trustees (T1, T3, T2) and sent the layered encryption

E(PK1, E(PK3, E(PK2, B))) to the first trustee. Each trustee then removes a layer of encryption using

the corresponding private key and the final trustee T2 sends the decrypted ballot to the election servers.

This scheme is similar to the onion routing of the Tor network [20], which is a network of servers that

route traffic in the Internet with the purpose of hiding Internet activity of users.

2.2.2.B Reencryption Mix-net

The reencryption is a property of some cryptographic systems that allows to produce two different

random ciphertexts of the same message m.

For example, the ElGamal cryptosystem (Section 2.2.1) allows reencryption. Let (G, q, α, y) be an

ElGamal public key and (u, v) be the ciphertext of a message m. Then, the re-encryption of (u, v) can

be represented as (uαs, vys) = (αr+s,myr+s), which results in a new random ciphertext that can be

decrypted to the message m at the final destination.

This property is used by the trustees to mix the votes in an unrecoverable way before sending to the
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next trustee in the chain. Figure 2.2 demonstrates an example of a reencryption mix-net in the context

of e-voting with 3 trustees. First, the voter encrypts his ballot B with the election public key (where its

private counterpart is only known by the election servers) and sends it to the first trustee. Each trustee

is responsible to receive a ciphertext (ui, vi) and reencrypt it resulting in (ui+1, vi+1). The reencrypted

ciphertext is send to the next trustee in the chain. The last trustee in the chain sends the final ciphertext

to the election servers, where the original ballot B can be decrypted.

2.2.3 Homomorphic encryption

The homomorphic encryption is a property of some cryptographic systems that allows operations to

be performed directly in the ciphertexts such that the decryption of the result matches the operations

made on the plaintext.

ElGamal (Section 2.2.1) is a partial homomorphic cryptosystem that supports homomorphic multipli-

cation. Let (G, q, α, y) be an ElGamal public key, and let E(m1) = (αr,m1y
r), E(m2) = (αs,m2y

s) be

the encryption of a message m1 and m2, respectively. Then

E(m1)× E(m2) = (αr × αs,m1y
r ×m2y

s) = (αr+s, (m1 ×m2)y
r+s) = E(m1 ×m2) (2.5)

Other example of a partial homomorphic cryptosystem is exponential ElGamal (Section 2.2.1.A) that

supports homomorphic addition. Using the same parameters as the example above, then

E(m1)× E(m2) = (αr × αs, αm1yr × αm2ys) = (αr+s, (αm1+m2)yr+s) = E(m1 +m2) (2.6)

Cryptosystems that support arbitrary homomorphic operations are called fully homomorphic cryp-

tosystems. These systems allow the construction of a program with any required functionality (e.g., a

voting system) that accepts encrypted inputs (e.g., the votes) and returns the encryption of the output

(e.g., the final tallying) without having knowledge of the raw inputs. The Gentry-Sahai-Waters cryptosys-

tem [21] is a fully homomorphic cryptosystem that supports homomorphic multiplications and additions.

2.2.4 Blind signatures

A blind signature, introduced by Chaum in [22], is a signature scheme that allows an authority to sign

a message m from a sender without knowing its raw contents.

Consider the RSA cryptosystem, a sender V and a signing authority A with RSA key (n, p, q, e, d)

where n = p× q is the modulus, e is the public exponent and d is the private exponent.

First, V computes the blinded message mr = mre mod n, where r is a random number (called
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the blinding factor) and sends it to the signing authority A. Now, A signs the blinded message mr by

computing s′ = (mr)
d mod n and sends it back to V . The sender V can now remove the blinding factor

r in s′ by computing

s = s′r−1 = (mre)dr−1 = mdredr−1 = md mod n (2.7)

which is the signature of the message m by A. Blind signature schemes can be used in Internet

voting systems to separate the authentication of a voter (in order to verify that he is eligible) to the

authentication of a ballot, providing privacy as it removes the link between the voter and its ballot.

2.3 Prêt À Voter

The original Prêt À Voter voting scheme [14] were first proposed in 2005 by Chaum et. al. Since

then, several developments and improvements of this voting scheme have been proposed by Ryan et.

al [1,9,10,23].

Prêt À Voter assumes the existence of:

• a Registration Authority that registers and authenticates the authorized voters,

• a reliable and tamper-proof public Bulletin Board,

• an Election Authority server that is responsible to collect the votes, update the public Bulletin Board

and perform the final tallying.

Donald
Barack
Alice

Crystal
Edward

a6Gq21p

Figure 2.3: The Prêt À Voter ballot (taken from Ryan et. al [1])

The key aspect of this voting scheme is the Prêt À Voter paper ballot (Figure 2.3). The ballot is split in

two halves that can be physically separated. The left half contains the candidate names in random order

and the right half contains the empty boxes where the voter should place his option. The second half

also contains encrypted information, called the onion, that allows the system to have knowledge of the

original candidate order. The ballot was originally implemented in paper, but there are flavors of Prêt À

Voter that implement it fully electronically [24]. When the voter casts his vote, he detaches and destroys
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the left side and places the right side in a scan reader to be sent to the election authorities. The random

order on the left side ensures privacy of the vote.

Several developments and versions of Prêt À Voter were proposed. Generally, they implement differ-

ent ways of mixing, decrypting and tallying.

The original Prêt À Voter instances [9, 14] use a decryption mix net of trustees to break the link be-

tween the voter and his ballot. In these instances, the election authorities prepare the ballots in advance

by randomizing the candidate order and computing the onion for each one. The election authorities

build the onion by encrypting the encoded candidate order with the public keys of all trustees in the

mix net. The auditors, that have the responsibility of auditing the election, use the Randomized Partial

Checking [25] method to verify the correct behavior of the mixnet. After the election period, the election

authorities tally the votes and announce the results.

Instead of mixnets, homomorphic encryption could also be used to perform the tallying of the votes.

In 2006, Adida and Rivest proposed the Scratch and Vote [15] protocol that relies on the simplicity of

the Prêt À Voter paper ballots and uses homomorphic encryption, provided by the Pallier cryptosystem,

to compute the final tallying of the votes. In Scratch and Vote, a set of trustees computes a shared

asymmetric key pair (Kpriv,Kpub) such that each trustee has a share of the private key Kpriv. Therefore,

the decryption of a ciphertext that was encrypted with the public key Kpub requires the cooperation of all

trustees. The votes are encrypted with Kpub and sent to the election authorities. After the election, the

vote tallying is performed by the election authorities and the trustees join to release the decrypted result

of the election.

The Prêt À Voter schemes preserve the accuracy, verifiability, privacy and integrity of the election,

but mobility is not achieved as the paper based ballots require that the voter moves to a voting booth.

Democracy is achieved as it is assumed that a Registration Authority registers and authenticates only the

authorized voters. Additionally, it is assumed that a single voter is not capable of voting multiple times.

The protocol is not robust to the collusion of election authorities as they have the ability to insert votes

of valid absentee voters in the bulletin board. Moreover, no explicit mechanisms are implemented to

ensure availability of the election authority servers. The scan reader (the client machine), even infected

with malware, has no ability to change or send valid votes to the Election Authorities without detection

(malware resistance). From the point of view of the voter, the paper based ballot introduces simplicity

into the voting process, achieving usability.

2.4 Helios

The first version of Helios [12] is a fully web voting system proposed by Adida in 2008. This protocol

only assumes the existence of one entity, the Helios server, which is responsible for all stages of the
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voting process. The Helios server has an ElGamal asymmetric key pair (Section 2.2.1) with public key

Kpub = (G, q, α, y) and private key Kpriv = x for each election it runs. This key pair is generated by the

Helios server when an user creates a new election.

In Helios, the voting process starts when the voter chooses the election to participate and casts a

ballot. After this step the system shows the ballot ciphertext and randomness r, allowing the voter to

confirm if the encryption was performed correctly. The authentication of the voter is only done after the

vote is cast, allowing anyone to test if the ballots are being encrypted correctly. The ballot ciphertext is

then posted in a public Bulletin Board if the voter is eligible to vote.

After the election is closed, the anonymization process is enabled by the election administrator. The

ElGamal re-encryption mixnet (Section 2.2.2.B) is used to perform the shuffling of all ballot ciphertexts

in the public Bulletin Board. Then, all votes are decrypted using Kpriv and the final tally is computed.

The shuffling process yields a proof of correction and the decryption process publishes in the Bulletin

Board a proof of correct decryption [26] for each ballot.

If the Helios server is corrupted, the privacy, integrity, democracy and accuracy of the election are

compromised as this entity has the ability to insert, decrypt and change votes. Also, the organization

with access to the election private key Kpriv can decrypt ballots and acknowledge how each voter voted,

compromising the privacy. The proof of correct shuffling and the decryption proof enable the public

auditing of an Helios election, achieving verifiability. The Helios server is also a single point of failure,

which is a threat to robustness in terms of availability. Estehghari and Desmedt [27] showed how a

malicious candidate can upload a malicious PDF file that installs malware in vulnerable client machines.

As a consequence, the malware is able to trick voters into accepting a malicious ballot, compromising

the entire election. Mobility is preserved because the vote can be cast using the browser of a mobile

phone. Usability is high since the voting process only requires a password authentication and a browser

from the voter to successfully cast a vote.

2.5 REVS

REVS [2] is an e-voting protocol proposed by Joaquim et. al in 2003. It assumes the existence of

the following entities:

• Commissioner - supervises the election. It prepares the election configurations and stores the

election asymmetric key pair (Kpub,Kpriv).

• Ballot Distributors - distribute empty ballots signed by the Commissioner to the voters.

• Administrators - decide if a ballot is accepted from a voter or not. Each administrator has an

asymmetric key pair that is used to sign a voter ballot if it is accepted.

13



Voter Ballot D. Admin i Anonymizer Counter

Election id

Election data
{BB′, Pi}
{signi(BB′)}

V = {[sign1(BB), ..., signt(BB)], BB}Kpub

V

Figure 2.4: REVS protocol overview (adapted from Joaquim et. al [2])

• Anonymizers - protect the voter from being associated with his ballot.

• Counters - verify the administrators’ signatures of each ballot and perform the final tally.

In first phase of the REVS protocol (Figure 2.4), the voters contact the Ballot Distributor server to

retrieve a blank ballot, the election public key Kpub and the configurations for a specific election.

In the second phase of the protocol the voter casts the ballot BB, computes a random blinding

factor r and applies it to the digest of the committed ballot. Let BB′ be the result of the previous

operation. The voter sends BB′ to t > n
2 administrators, where n is the number of administrators. Each

voter authenticates himself to each administrator using a different password. The password for a single

administrator is automatically generated using a strong secret provided by the voter. This mechanism

prevents the impersonation of a voter by an administrator, as it cannot compute the passwords for other

administrators. At each request to sign a ballot, the administrator checks if he has already signed for

the requesting voter. He returns the previously saved signature if he has already signed; if he has not

signed yet, he signs the ballot and saves the signature. The voter removes the blinding factor r for each

obtained signature.

In the last phase of the protocol the voter gathers his ballot and the t > n
2 signatures returned from

the administrators and builds the voter package V . He sends V encrypted with the election public key

(Kpub) to the Anonymizer server. The Anonymizer hides the voter’s IP address, shuffles the votes, and

introduces random delays in the delivery to the Counter server. The random delays and shuffling prevent

attacks where an third party is able to discover a voter’s encrypted ballot from the time of voting. When

the election period is over, the Commissioner releases the election private key (Kpriv) and the Counters

decrypt all the submitted ballots. The Counters perform the final tally, verifying if each ballot has t > n
2

signatures from the Administrators. Any vote that does not have the required number of signatures is
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discarded. Repeated votes are also discarded at this stage.

The REVS protocol is available as long as one Ballot Distributor, t > n
2 Administrators, one Anonymizer

and one Counter are available. The availability can be improved by replicating these servers. However,

Lebre et. al [28] noticed that a malicious voter may send the same package (or garbage) several times to

the Counter, because this entity cannot authenticate the voters. The Counters would be storing data that

could only be removed at the end of the election, compromising the availability of the system. Verifiability

is achieved because any independent entity is capable of auditing the administrators’ signatures of each

ballot and count all the votes. Democracy holds because a voter cannot obtain two valid votes as he

would need t > n
2 signatures from the administrators. The election is accurate because an invalid vote

cannot be part of the final tally, as anyone can verify the administrators’ signatures of every submitted

ballot.

However, it is assumed that the machine used by the voter must be trusted and follow the protocol.

If this assumption is not hold, then the integrity and privacy of the vote are compromised. This compro-

mises the robustness of the protocol. The system is usable because the voter only has to install a client

application that automatizes the protocol tasks and cast his vote. The voter has the freedom to vote

anywhere (mobility) as he can install the client application in a mobile phone for example.

2.6 Java Card E-voting

The Java Card technology facilitates the development of Java applications to smart cards. A smart

card is a device with very limited amount of memory and processing power. Only a small subset of the

Java language and features are available, but it is suitable and powerful enough for the development of

object oriented applications [29]. The smart card is tamper resistant. As a consequence, it provides an

environment where the processor instructions and contents of the memory cannot be eavesdropped or

tampered.

The online voting system proposed by Mohammadpourfard et. al [3] takes advantage of the Java

Card 3 technology to enhance its security.

The overview of the protocol is in Figure 2.5. The scheme assumes the existence of the following

entities:

• Registration Authority (RA) - accountable to register and authenticate the eligible voters.

• Administrator - responsible to distribute empty ballots.

• Validator - signs cast ballots.

• Tallier - updates the public Bulletin Board, collects and counts the votes.
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Voter RA Admin Validator Tallier

{aID′, id}
{sign(aID′)}

{sign(aID), aID}
{X = sign(sign(aID)), B}

{X,FB′, aID}
{sign(FB′)}
{X,FB, sign(FB)}Kpub

Figure 2.5: Java Card 3 protocol overview (adapted from Mohammadpourfard et. al [3])

It is assumed that each entity has an asymmetric key pair and the other entities (including voters) know

the corresponding public key of each of them. Moreover, it is assumed the existence of an asymmetric

key pair (Kpub,Kpriv) where Kpriv is split among all entities and candidates, and Kpub is known by all

entities. Every exchanged message in the network is encrypted with the public key of the recipient.

The voter smart card starts by generating a secret alias aID and blinding it (aID′) with a blinding

factor r. Along with the aID′, the smart card sends to the Registration Authority the voter identification

id. The Registration Authority checks if the voter is eligible to vote and signs aID′ with its private key.

The voter removes blinding factor r to retrieve the signature of aID and he may now use it as a token to

authenticate himself to other election authorities.

The voter contacts the administrator to retrieve an empty ballot B. The empty ballot B and the

signature of aID is signed by the administrator.

The voter fills the ballot B with his choice, producing the filled ballot FB. The smart card blinds

it (FB′) with blinding factor t and sends it to the Validator, annexing the double signature of aID. The

Validator returns the signature of FB′ and the voter removes the blinding factor t, obtaining the signature

of FB. Finally, the voter sends the filled ballot FB and all the gathered signatures encrypted with the

election public key Kpub to the Tallier server. After the election period, the tallier decrypts all the votes

with the cooperation of all entities and candidates, performs the tallying and posts the results and votes

in a public Bulletin Board.

Any filled ballot FB that is submitted with invalid signatures is discarded, providing accuracy. Democ-

racy holds if the Registration Authority only signs aliases to eligible voters. Privacy is preserved since:

1) the Registration Authority is not aware of which aID the voter has chosen, 2) the authentication of a

voter is performed based on aID and not on the real voter’s identity, and 3) the filled ballot is blinded

or encrypted with Kpub when sent via network. The usage of signatures in the empty ballot B and filled
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ballot FB also prevents that a malicious attacker modifies the vote, ensuring integrity. As the signatures

and filled ballot FB are published in a public Bulletin Board, any independent entity can verify the validity

of every vote and the election results, proving verifiability. As the election private key Kpriv is shared

among all candidates and entities, a single and corrupt entity cannot read votes before the end of the

election. This protocol requires that a large number of entities and candidates collude to compromise the

election, ensuring collusion resistance. The smart card performs the cryptographic steps of the protocol

and is tamper resistant, so robustness regarding malware resistance is achieved. The availability of the

protocol is ensured if one Registration Authority server, one Administrator, one Validator and one Tallier

are available. The availability of the protocol can be improved with replication of these servers. However,

replication mechanisms were not considered by the authors of this protocol. Furthermore, the system

assumes that all citizens have access to a Java smart card reader, which affects usability. However, the

Java smart card reader can be attached to a mobile phone, achieving mobility.

2.7 Du-Vote

Du-Vote [4] is an internet voting protocol that makes use of a simple hardware device in order to

completely remove trust from the voting machine. The token is a simple hardware that should have a

keypad and screen to accept short decimal inputs and outputs, store a secret key and support module

arithmetic. As shown in Figure 2.6, the voter V needs access to a computer platform P and a token H

in order to cast his vote. The server S is managed by the election authorities and the protocol makes

use of a public Bulletin Board. An election nonce I computed by the election authorities is posted on the

public Bulletin Board. Du-Vote assumes the existence of a set of decryption tellers T that is responsible

for keeping an election private key secret until the end of the election.

Figure 2.6: Du-Vote architecture overview (taken from Grewal et. al [4])

Prior to the election, each voter registers himself to the election authorities and a password is chosen
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Candidate Column A Column B
a1 A∗1 B∗1
a2 A∗2 B∗2
... ... ...
a4 A∗4 B∗4

Enter your vote code here

Figure 2.7: Du-Vote voter’s code card (adapted from Grewal et. al [4])

by V to perform authentication . The election authorities issues a token H configured with a secret key

K to each voter V via postal mail or in person. Therefore, the election server S has an association

between the voter V and his respective secret key K. Also, the set of trusted decryption tellers T

computes a shared El-Gamal election key pair (Kpub = (G, q, α, y),Kpriv = x) such that the private key

is split among all decryption tellers [30]. Consider that each decryption teller t ∈ T has a private key

xt and the corresponding public key yt = αxt . The product of all public keys y =
∏
t yt is used as in

the public key Kpub. It is required the cooperation of all decryption tellers to perform a decryption of a

ciphertext encrypted with Kpub.

The voting phase starts when V uses P to authenticate himself to S, using the password provided

during the registration phase. Then P gathers the candidate list from the public Bulletin Board, computes

and displays to the voter the code card. The concept of code cards were first introduced by Chaum [31]

in the SureVote system. A code card is an association between a candidate name and a vote code, i.e.

a code that the voter uses to select a candidate.

In Du-Vote the vote codes are computed in the following way. Let n be the number of candidates

on the election and κ be a security parameter. The computer platform P starts by computing a set

of 2n decimal codes {c1, c2, ..., c2n} with length κ determined by the election nonce I and the voter

ID. This is implemented by seeding a pseudo-random number generator with hash(I, voterID). P

computes {A∗1, A∗2, ..., A∗n} as a random shift of {c1, c2, ..., cn} and {B∗1 , B∗2 , ..., B∗n} as a random shift

of {cn, cn+1, ..., c2n}. P now presents to the voter the ballot shown in Figure 2.7.

The voter V flips a coin an inserts into H the vote codes in column A or B depending if the result

is tails or heads, and enters the vote code of the chosen candidate that is in the opposite column. H

computes and displays C∗ = (Khd)∗ where d is the chosen vote code by the voter and the ∗ operation

returns the last κ digits of the result.

V inserts C∗ in P and P sends to the server S the vote codes and C∗. As the computation of the vote

codes is deterministic for anyone who knows I and the voterID, the server S is now able to confirm that

P computed correctly the vote codes and decrypts C∗ to determine the candidate that V chose. The

decryption of C∗ is made using a brute-force approach with input space size of 2n2 and is only possible

for the server S that knows K. The server S reencrypts the chosen candidate with the election public
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key Kpub, posts it on the public Bulletin Board, and produces a non-interactive zero knowledge proof to

show that it followed the protocol correctly.

After the election period, the set of decryption tellers T join, decrypt all the votes on the public Bulletin

Board using their own share of the private key Kpriv and tally the votes independently. Du-Vote does

not require a specific way to perform the vote tallying. As the votes are encrypted using exponential

El-Gamal encryption, homomorphic tallying could be used.

The proposed scheme in Du-Vote tolerates malware in the computer platform P (malware resistance)

because it is in the token H that the voter chooses the candidate and the encryption of the chosen can-

didate (C∗) is computed. The usability is low, specially if the number of candidates is high, as the user

must insert all the vote codes produced by P into the token H. The server S is a single point of failure

and no explicit mechanisms are considered to replicate it, compromising the availability of Du-Vote. The

mobility of Du-Vote is not compromised because the hardware token H can be portable and the client

platform P can be a mobile phone. Kremer and Rønne [32] showed that a phishing attack and if the

hardware token H is used twice for different elections, then the privacy of the election is compromised.

Moreover, they have shown how the server S and the computer P can collude to modify the choice of

a voter to another random candidate, compromising collusion resistance and integrity. Verifiability holds

as the non-interactive zero knowledge proof shows that the server S decrypted and published the vote

correctly on the public Bulletin Board, allowing any external entity to verify the correctness of computa-

tions performed by S. Only one hardware token H is given to each eligible voter, so he can only vote

once, ensuring democracy.

2.8 EVIV

EVIV [5] is an end-to-end verifiable Internet voting system that takes into consideration that the client

platform may be insecure and controlled by a malicious attacker. EVIV takes into consideration the

following entities and services:

• Enrollment Service - responsible for the enrollment of every voter.

• Election Registrar - service that voters register to vote on a specific election.

• Ballot Box - service that voters use to send their vote.

• Verification Service - each organization runs a verification service that verifies if the votes and

receipts are correct and valid.

• Trustees - set of organizations and parties that keep secret an ElGamal (Section 2.2.1) election

asymmetric key pair (Kpub,Kpriv). Each trustee has a share of Kpriv such that the decryption of a

message requires the collaboration of t < n trustees, where n is the total number of trustees [33].

19



• Voter Security Token (VST) - component that encrypts the ballot and authenticates the voter

using digital signatures. In EVIV, the VST is implemented using a tamper-proof Java smart card

containing the private key of the voter (KvPub,KvPriv).

Figure 2.8: Overview of the EVIV protocol (taken from Joaquim et. al [5]).

The first phase of the EVIV protocol (Figure 2.8) is the enrollment phase where the voter registers

himself to the Electoral Commission. This phase is off-line and is performed via the Enrollment Service.

He receives his VST with the voter’s key pair (KvPub,KvPriv).

In the second phase, the election setup phase, the Electoral Commission defines the candidate list

and the trustees compute the election key pair (Kpub,Kpriv).

In the next phase, the ballot registration phase, the voter connects his VST to a secure computer

and the VST pulls the candidate list and the election public key Kpub from the Election Registrar. The

VST generates a code card for the election and shows it to the voter. The EVIV code card contains a

random vote code for each candidate and one confirmation code used by the voter to check if the vote

was cast-as-intended. The goal of the voting codes is to provide a secure channel between the voter

and the VST, without relying on a centralized code distribution scheme or trusting the voter’s PC.

The voters may now use their PCs to insert the vote code of the desired candidate. The voter verifies

the vote receipt returned by the VST and checks if the confirmation on their vote card is the verification

code of the voted candidate. The client platform is responsible to send the vote and receipt encrypted

with Kpub to the Ballot Box, which signs the verified data and publishes it on the Bulletin Board.
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After the election period is over, the set of trustees gather all the encrypted votes and compute the

homomorphic votes aggregation, i.e. the number of votes for each candidate (encrypted with Kpub).

This is possible because the cryptographic scheme used by EVIV [5] is homomorphic in relation to the

addition. The subset of t trustees join, decrypt the votes aggregation, producing a decryption proof. The

tally results, the decryption proof and the homomorphic votes aggregation are published in the public

Bulletin Board.

Any manipulation of the vote destroys its digital signatures, ensuring integrity. Accuracy is achieved

because the VST is the only entity capable of producing a valid digital signature for a voter’s vote.

The vote is published in the Bulletin Board with the election public key Kpub, and the corresponding

private key Kpriv is split among several entities, requiring the collusion of trustees to violate privacy.

EVIV is verifiable because any external entity is able to compute the homomorphic votes aggregation

and validate its decryption proof that is published in the public Bulletin Board. Democracy is achieved

because each voter only has one VST. The protocol promotes mobility while casting the vote as the

client platform can be a mobile phone. The protocol is robust regarding malware resistance because

the client platform has no way of compromising the integrity and privacy of the voter, as the vote codes

create a secure channel between the voter and his VST. The system is available if the Election Registrar,

the Ballot Box and the Bulletin Board are available. The Election Registrar and Ballot Box are stateless

services that can be easily replicated to ensure availability. EVIV has low usability under the current

implementation of the VST, because it assumes that all eligible voters have access to a smartcard

reader.

2.9 Biometric-Based Voting Protocol

Alrodhan et. al [7] proposed a scheme that leverages biometrics as a trapdoor authentication mecha-

nism. In a trapdoor authentication mechanism two distinct credentials are given to the voter: the genuine

credential and the mock credential. If the voter authenticates uses the genuine credential then his vote

will be counted and recorded. If the voter authenticates himself using the mock credential, his vote will

not be counted in the final tally.

The system is composed of two election entities. The Authentication Center (AC) is responsible to

produce a list of eligible voters, gather their biometrics and authenticate them during the election period.

The Ballot Center (BC) is responsible to store the submitted votes by the eligible voters, and announce

the final election results. It is assumed that AC and BC share a symmetric key Ks and that all network

communications are performed via secure channels (e.g. SSL/TLS).

During the registration phase, the scheme proposed by Alrodhan et. al gathers from the eligible

voters two fingerprints: one is the genuine fingerprint and the other is the mock fingerprint. This phase
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requires voter physical presence at the AC.

During the election period, voters use a client application to gather a fingerprint F and choose a

candidate to vote. Let B be the filled ballot by the voter. Then, the voter blinds B with blinding factor r.

Let B′ be the result of the previous operation. The voter sends B′ and F to the AC. The AC returns the

signature of B′ and λ = {flag, nonce}Ks where flag indicates if the voter used the genuine credential

or the mock credential, nonce is a number only used once to prevent replay attacks. The voter removes

the blinding factor r from B′ and delivers λ, B and the signature of B to the BC. The BC is capable of

verifying if the signature of B is correct and if flag indicates that B is a mock vote or a genuine vote. If

the voter used the mock credential, then the vote is marked as fake in the database.

The final phase of the election is where the BC decrypts all valid ballots, counts the votes for each

candidate and announces the final election results. Votes that were cast using mock credentials are

discarded from the final tally.

Accuracy is preserved in this scheme because votes with invalid signatures or votes cast with the

mock fingerprint are discarded from the final tally. The protocol does not provide malware resistance

as a malware in the client platform can change and read the filled ballot B before sending it blinded to

AC, compromising the integrity and privacy of the protocol. Availability is ensured if the AC and BC are

available. The authors of the system did not considered explicit mechanisms to ensure the availability of

the system, namely replication. Collusion resistance is not achieved since a corrupt AC and BC can learn

associations between ballots and voters, compromising privacy. Democracy is achieved because the AC

only signs a filled ballot B once per fingerprint. Mobility is preserved because the client application can

be installed in a mobile phone with a fingerprint reader attached to it. Usability is low because it assumes

that every voter has access to a fingerprint reader. This voting protocol is not verifiable because an

external entity is not able to verify if all the recorded votes were counted correctly.

2.10 Country E-voting Implementations

This section describes the e-voting trials conducted by some countries, focusing on their experience

regarding security and usability issues that were found. Many governments do not disclose the full

details of their voting schemes, so this analysis is mostly performed based on reports by the election

officials or security studies performed by independent investigators.

2.10.1 Estonia

Estonia has been using an Internet voting system for their parliamentary, regional and local elections

since 2005. More than 30% of the votes were cast via Internet. In 2014, Springall et al. [34] performed

a security analysis on their voting system. The election officials publish the system source code on
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GitHub 2 or 3 weeks in advance. They replicated the voting system used by the government in a labo-

ratory environment and acted as attackers. As the system does not have guarantees against malware

resistance, Springall et al. developed client-side malware that is able to steal and change votes without

detection. Regarding the server code, the authors discovered a denial of service attack that would pre-

vent voters from sending ballots (compromising availability) and a shell injection vulnerability that would

allow execution of arbitrary root commands by a system operator (compromising integrity and privacy of

the votes). Additionally, the protocol is not end-to-end verifiable because the public is not able to verify

that the votes recorded were counted correctly. Although the majority of the server software is available

open source, the pieces of code that are critical for the security of the entire system (e.g. the entire client

application) are not available to the public.

2.10.2 Switzerland

Switzerland implemented an e-voting system in Geneva and Zurich cantons [35]. In September

2004, the Geneva canton deployed its e-voting system for the regional and canton elections. 21.8% of

the voters cast its ballot online. Zurich deployed in November 2005 an e-voting system for a referendum

at regional and cantonal level and 20% of the voters used the system. The official documentation

of the election is sent by mail with three weeks in advance. The documentation includes an unique

voting card and a PIN number that can only be used once. During the election period, the voter uses

his voting card, PIN number and date of birth to authenticate himself in the voting website. After the

ballot submission, the voter receives a confirmation that the vote was stored by the system. No more

details regarding the Swiss e-voting protocols were found. Despite the absence of reported security

failures and the implementation of several security measures by the Swiss government [36], the insecure

platform problem holds, as confidentiality of the vote could still be compromised by a malicious browser

or malware in the voter’s computer.

2.10.3 Washington, D.C

Washington, D.C Board of Elections and Ethics (BOEE) developed an open source Internet e-voting

system for the November 2010 general elections. The BOEE staged a mock election in a full production

environment and encouraged all citizens to test the security and functionality of the system. Wolchok

et. al [37] started to look for vulnerabilities by analyzing the server application source code. They found

a shell injection vulnerability in the code to encrypt a ballot submitted by the voter, allowing them to

execute arbitrary commands on the election server by submitting carefully crafted ballots. From this

point, the investigators were able to steal the election key pair, change the vote of every citizen, steal

the credentials of the voters and hide their attack by modifying the web application logs.
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Additionally, Wolchok et. al infiltrated the network infrastructure of the election servers and found a

pair of unprotected web cameras in the election server room. All the vulnerabilities would allow other

malicious intruders to acknowledge the movements and actions of security guards and system adminis-

trators in real time. They remained undetected until they left an explicit clue for the BOEE officials. The

project was discontinued.

2.10.4 Norway

Norway decided in 2009 to develop the E-valg 2011 e-voting system to be used in the 2011 municipal

and regional elections [13]. The protocol assumes the existence of Ballot Box, a Receipt Generator and

a Decryption Service deployed by the election authorities and an Auditor to verify the correctness of the

election. Each voter has an ElGamal asymmetric key pair (Section 2.2.1) that is known to the Ballot Box

and each entity has a known ElGamal public key. It is assumed that communications are secure (e.g.

SSL/TLS). Furthermore, each voter has access to a vote card that associates each candidate with a

pre-computed receipt code. The voting process starts when the voter chooses the candidate, signs the

filled ballot and sends to the Ballot Box. The Ballot Box and Receipt Generator cooperate to compute

the voting receipt and send it to the voter using an out-of-band mechanism (e.g. SMS). Using his vote

card, the voter can verify if the returned receipt matches the chosen candidate. The voter now encrypts

the vote using the public key of the Decryption Service and sends it to the Ballot Box through a mix net

(Section 2.2.2) to provide privacy. After the election period, the Ballot Box sends the encrypted votes to

the Decryption Service, where the votes are decrypted and mixed before being published for tallying.

Cortier and Wiedling [38] provided a mathematical proof that the Norwegian protocol guarantees

vote privacy except when the Ballot box and Receipt Generator are corrupted. Also, it is assumed that

the SMS channel is secure to send the verification codes, which Koenig et. al [39] showed to be false.

This protocol does not provide malware resistance as there are no efforts to secure sensitive operations

in the client application.

2.10.5 Australia

Australia deployed iVote as one of the largest instances of Internet voting. It was used in March 2015

for the New South Wales state elections and over 280,000 voters cast their vote through iVote.

Halderman and Teague [40] conducted an independent security analysis on the iVote system during

the election period. When accessing the iVote website, they found that the browser loaded JavaScript

code from an external server with insecure TLS configuration. On these conditions, a man-in-the-middle

attack can inject arbitrary JavaScript code, compromising the privacy and integrity of the entire election.

The state of Victoria, Australia deployed the vVote [24,41] system for their November 2014 elections.
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The intent of the system was to allow blind and remote voters to cast their votes in a way that preserves

the verifiability and usability properties. The vVote protocol is a flavour of the Prêt À Voter scheme

(Section 2.3), where the ballots are implemented in an electronic way. In the two weeks of voting period,

1121 votes were cast in vVote. A survey made to the voters to assess the functionality and practicality

of the system concluded that voters were satisfied with the voting experience. However, few voters

understood the verifiability features stating that the vote receipt contained information on how they voted

(which is not true). Despite the security and usability features of vVote, mobility is not achieved as

citizens are required to move to a voting center to cast their vote.

2.11 Trusted Execution Environments

There is a clear trade off between malware resistance and usability in e-voting protocols. Protocols

that tolerate malware in the client platforms have low usability and protocols with high usability do not

tolerate malware. In the context of e-voting protocols, TEEs are able to provide malware resistance.

They can protect against privacy and integrity attacks executed by malicious software in the operating

system, without compromising usability.

A TEE is a dedicated area of the main processor that executes in isolation from the remaining of the

hardware. It offers a secure environment for applications to execute. This Section delineates the main

concepts of TEE technologies and their applications.

2.11.1 Intel SGX

Intel Security Guard Extensions (SGX) is a technology available in the Intel Skylake CPU micro-

architecture that allows applications to ensure confidentiality and integrity to their computations even

to a corrupted operating system and Basic Input/Output System (BIOS) [42, 43]. Intel SGX introduced

the concept of enclaves. An enclave is a protected area of an application’s virtual address space that

adds confidentiality and integrity to the code and data inside it, even to privileged malware. SGX also

implements enclave attestation, i.e., authentication to a remote party of the code running inside the

enclave.

Figure 2.9 demonstrates the memory layout of an enclave. The enclave memory is associated with

an application running in user mode, and, therefore, lives in its virtual memory space. The code, data

and management data structures of the enclave are then stored in Processor Reserved Memory (PRM).

PRM is a part of Dynamic Random Access Memory (DRAM) that cannot be accessed by software or

Direct Access Memory (DMA) as the Central Processing Unit (CPU) memory controllers reject DMA

operations on the region that is allocated for the PRM.
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Figure 2.9: The memory layout of an enclave in the context of the application’s virtual space.

Intel SGX-enabled processors add new specific instructions to their Instruction Set Architecture (ISA),

such that the management of enclaves’ life cycle and operations (such as creation, exit, memory alloca-

tion and permissions, creation of hardware cryptographic keys, etc.) is performed entirely in hardware.

The ISA provides instructions only available in privileged mode (ring 0) to the enclave (such as mem-

ory management and debugging) and user mode instructions in ring 3 (e.g., creation of an enclave).

Therefore, the ring protection enables that the enclave code runs in privileged mode and achieves high

performance as it runs at the native processor speed.

However, as of today, Intel Skylake processors are widely available in server and desktop environ-

ments but not in mobile phones, compromising the mobility of an e-voting application if implemented in

the Intel SGX technology.

2.11.2 ARM TrustZone

ARM TrustZone is a security extension architecture (Figure 2.10) available in ARM processors that

allows execution of code and services isolated from the operating system [6]. This architecture not

only gives confidentiality and integrity to any asset, but also reduces the development costs of security

solutions and the size of the final TCB. The security extensions partition the system resources so that

they are available only in one of two worlds: the secure world for the secure assets (code, data and

peripherals), and the normal world for the remaining assets. Therefore, ARM TrustZone provides a TEE

inside its secure world.
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Figure 2.10: TrustZone software architecture with a dedicated operating system [6].

2.11.2.A Software Architecture Overview

Figure 2.10 shows the software architecture of a TrustZone-enabled application. In this architecture,

the secure world is running a dedicated operating system. In this context, the software stack is split in two

worlds of execution: 1) the normal world where the untrusted code runs, and 2) the secure world where

the security sensitive subsystem is executed. At a given time, only one world of execution is running and

each world has its memory space and access permissions to peripherals. In the normal world is where

the rich operating system (such as Linux, Android, etc.) resides, providing multiple features to the user.

In the secure world is where the secure dedicated operating system lives, providing basic scheduling,

memory management and inter-world communication.

The application is divided (by the developer) in two components, an untrusted Security Client running

as a user application of the rich operating system and a trusted Security Server running as an application

of the secure operating system. Therefore, when a Security Client wants to delegate execution to a

Security Service, it issues a system call to the rich operating system, which in turn uses the TrustZone

driver to execute a Secure Monitor Call (SMC) instruction causing a software exception. The Secure

Monitor, running in secure world, handles the exception and switches worlds, and transfers the processor

control to the secure operating system, where the Security Service has the opportunity to execute.

In order to prevent an attacker from modifying the secure operating system image, and therefore

compromising the secure world, the authenticity and the integrity of the secure operating system is

ensured by a secure boot mechanism that a TrustZone-enabled processor also implements. This se-

cure boot mechanism is executed by the software located in ROM bootloader, where it uses public key

cryptography to verify whether the integrity and authenticity of the image has been compromised or not.
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Figure 2.11: Hardware bus architecture overview.

In the next Section we explain how the world isolation is implemented in the hardware layer.

2.11.2.B Hardware Architecture Overview

The TrustZone hardware guarantees a secure border between both normal world and secure world,

where resources allocated for the secure world cannot be accessed by the normal world. The hardware

ships with the AMBA3 AXI system bus and the AMBA3 APB peripheral bus, which are fundamental

components that isolate the hardware resources between worlds.

Figure 2.11 shows how these buses are used to achieve resource isolation. The main system bus

(AMBA3 AXI system bus) has an extra control bit (NS bit) for every read and write transaction performed.

When NS = 1, then the transaction is performed by the normal world, and in the secure world otherwise.

This allows that the bus slaves read the NS bit and ensure the required security separations. For

instance, the Dynamic Memory Controller (DMC) component does not support internally the creation of

secure world and normal world partitions, the TrustZone Address Space Controller (TZASC) is a AXI bus

slave that uses the NS bit available in the AXI bus to partition the DRAM into regions for Secure/normal

world. The AMBA3 APB peripheral bus does not include the NS bit, and it it the responsibility of the

AXI-to-APB interface to assign a NS bit in the AXI bus when a peripheral performs a transaction in the

APB bus, and also to block reads/writes from the AXI bus with NS = 1 to a peripheral configured as

secure.

The CPU also stores the NS bit in a special purpose register unavailable to the normal world, the

Secure Configuration Register (SCR). The processor inserts the current NS bit when performing trans-

actions on the main system bus.
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The world switch mechanism is very controlled and is managed by the Secure Monitor that executes

in the secure world. To switch worlds the ISA of the processor provides the SMC instruction that gen-

erates an exception, passing control to the Secure Monitor. The responsibility of the Secure Monitor is

to change the NS bit that is stored in the SCR, save the processor state (registers) restore the previous

world state and execute a return-from-exception instruction that restarts the execution in the restored

world.

There are other hardware mechanisms that trigger the execution of the Secure Monitor from normal

world. The interrupt controller of TrustZone-based processors allows that Interrupt Requests (IRQs),

Fast Interrupt Requests (FIQs), external Data Abort and external Prefetch Abort exceptions are config-

ured as secure or non-secure interrupts. Interrupts assigned as secure are, therefore, handled by the

Secure Monitor.

2.11.2.C Trusted Kernels and Services

As the ARM processors are widely available in Android and iOS phones today, the ARM TrustZone

design allows the development of secure applications for mobile environments, making it possible to

leverage it to develop secure components of a e-voting application. Malware resistance in a voting

application can be achieved if it delegates sensitive operations (such as cryptographic steps and the

casting of a ballot) to the secure world, as malware in the rich operating system cannot read or write in

secure world memory, nor intercept network communications issued by the secure world.

The remainder of this Section describes TrustZone-enabled systems that can be leverages for the

development of a voting application.

The Android Keystore [44] is a service available in the Android operating system that stores crypto-

graphic keys in a secure way. Once the keys are stored in the keystore, they can be used to perform

cryptographic operations without the need to export the key to the application. If a TEE is available on

the Android device, the key resides persistently in secure hardware, such as ARM TrustZone. Further-

more, the code that executes cryptographic operations (e.g., encrypt, decrypt, sign, etc.) is executed

inside the secure hardware (e.g. inside the secure world of ARM TrustZone). In the context of e-voting

applications, this service could prevent a malware-infected operating system from compromising voter’s

private keys and ensure the correctness of cryptographic operations.

TrustyTEE [45] is a set of software that supports TEEs on Android mobile devices . Trusty TEE

consists of: 1) a secure operating system (Trusty OS) that executes in isolation, 2) drivers for the Android

kernel (Linux) to facilitate the communication between trusted and untrusted components of applications,

allowing them to exchange arbitrary messages between them, and 3) high level libraries for Android to

facilitate access to the kernel drivers. The Trusty OS is already shipped with the Android operating

system, but the development of third party trusted applications is not supported.
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Requirement Prêt À
Voter

Helios REVS Java
Card

Du-Vote EVIV Biomet-
ric

Accuracy Yes No Yes Yes Yes Yes Yes
Integrity Yes No No Yes Yes Yes No

Democracy Yes No Yes Yes Yes Yes Yes
Privacy Yes No No Yes Yes Yes No

Verifiability Yes Yes Yes Yes Yes Yes No
Availability No No Yes Yes No Yes Yes

Collusion Resistance No No Yes Yes Yes Yes No
Malware Resistance Yes No No Yes Yes Yes No

Mobility No Yes Yes Yes Yes Yes Yes
Usability Yes Yes Yes No No No Yes

Table 2.1: Overview of e-voting protocols.

Trusted Language Runtime (TLR) was proposed by Santos et. al [46] and makes use of ARM

TrustZone to provide a runtime that protects the integrity and confidentiality of .NET mobile applications

from a malware-infected operating system. Within the TLR framework, the application must be split

in two parts: an untrusted component that implements most of the application functionality and a small

trusted component where sensitive data and computations are performed. The former runs in the normal

world of ARM TrustZone and the latter is executed in the secure world of ARM TrustZone. Moreover,

as device drivers have a large surface of attack and large code bases, the trusted component has no

access to peripheral devices. This way, the amount of trusted code that is executed in secure world

is significantly reduced. TLR uses ARM TrustZone to protect the sensitive parts of an application from

malicious software on the operating system. Moreover, TLR is capable of interpreting object oriented

code in the secure world, which simplifies the development and deployment processes of an e-voting

application.

The concept of trust lease was introduced by Santos et. al [47] and is a mode of execution where

constraints apply to the mobile device. This allows the temporary restriction of functionality of devices

when needed. It can be denied, for example, access to the network or storage, execution of certain

applications or changes to the device configuration. A trust lease must have a condition of expiration

such as a time out. Furthermore, there might be the need to demonstrate to a remote third-party that

the constraints are being applied correctly. The remote attestation capability can be implemented in the

ARM TrustZone hardware and is able to test the integrity of the operating system, verifying if there were

changes to the installed software.

2.12 Summary
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Table 2.1 compares each protocol described in the previous sections against the requirements de-

fined in Section 1.2. The trade off between malware resistance and usability is clear. Prêt À Voter

(Section 2.3) is the only considered protocol that tolerates malware and is usable, but, in Prêt À Voter,

the ballot is paper-based which compromises mobility.

The protocol that is closest to our requirements is EVIV (see Section 2.8). Therefore, we chose EVIV

for the base of TrustedVote. EVIV tolerates malware, but it is missing usability. This trade off can be

solved with TEEs. A TEE is a special area of the main processor that executes in isolation from the

remaining of the hardware. An application can order the execution of code inside the TEE, ensuring the

integrity and confidentiality of its computations while maintaining a high usability.
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3.1 Introduction

This Chapter describes the design of TrustedVote Internet voting system. TrustedVote is an end-to-

end verifiable Internet voting system that tolerates malware in the client computers, while keeping high

levels of usability, i.e., without the need to use a device that is not widely available to the public.

As mentioned in the previous Chapter, TrustedVote is based on the EVIV network and cryptography

protocol (see Section 2.8 and Appendix A). The EVIV system is missing usability as we defined it at

Section 1.2, because in its current implementation, it requires dedicated hardware (smart card reader)

to be used by the voter to successfully cast a vote. TrustedVote introduces an architecture of the client

that can be executed in any smartphone with ARM TrustZone (see Section 2.11.2). Therefore, it does

not require a separate tamper proof device to cast a vote with high level of security, as it leverages

the isolation features provided by ARM TrustZone. This Chapter is focused only on the architecture of

the client, because the remaining of the protocol remains unchanged. The details of the network and

cryptography protocols can be found in Appendix A.

The remainder of this Chapter is organized as follows. The overview of the voting process of Trust-

edVote is given in Section 3.2. Section 3.3 describes the threat model, i.e., the assets and the possible

attacks on TrustedVote. Section 3.4 describes the functionality of the voter’s client, the smartphone.

The details of the TrustedVote client are discussed in Section 3.5. Section 3.6 describes, in detail, the

components that are not secure, while Section 3.7 provides details on the components that must be ex-

ecuted securely. Section 3.8 explains how the system must be bootstrapped in order to give guarantees

to the voters that their devices are running TrustedVote in the secure world. Section 3.9 describes the

assumptions and threat analysis. Finally, Section 3.10 summarizes this Chapter.

3.2 Voting process overview

The global overview of the voting process of TrustedVote is illustrated in Figure 3.1. TrustedVote

replaces the voter’s PC and voter’s VST in the EVIV’s voting process with a smartphone, which adds

mobility to the voting system.

Before the election period (e.g., a few weeks), in the Voter Enrollment Phase, the voter identifies

himself (in person) to the Enrollment Service. He brings his smartphone, that generates an asymmetric

key pair. The Enrollment Service is responsible for the registration of the voters for the elections. This

service extracts the public part of the generated key pair, associates it with the voter’s identity and he

can now use its smartphone to vote in the subsequent elections.

After the enrollment, the Election Registration Phase begins. The smartphone creates and shows

a code card to the voter. A code card is an association between candidates and small random strings

(vote codes) and a single confirmation code. The smartphone creates an empty ballot and sends it to
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Figure 3.1: Overview of the TrustedVote protocol phases. The first phase is at the left upper corner, proceeding
clockwise.

the Election Registrar. The ballot is signed with the voter’s private key for authentication purposes.

During the election period (Vote Casting Phase) the voter is able to use his smartphone to cast his

vote. To do so, he uses his code card and selects the vote code that corresponds to the candidate he

wants to vote. The smartphone generates the final vote and the final receipt. A receipt is an association

between candidates and confirmation codes. The voter confirms the receipt, verifying if the chosen

candidate has the code card’s confirmation code. The final vote is submitted to the Ballot Box and

posted at the public Bulletin Board. The vote is counted in the final tally during the Public verification

and vote counting phase.

3.3 Threat Model

This Section describes the threat model that we consider for TrustedVote, i.e., the assets and the

possible attacks that can be potentially executed against TrustedVote. Regarding the smartphone used

by the voter, an attacker is interested in the vote sent to the election servers, the code card used to

translate a vote code into a valid candidate, or the voter’s private key that uses to authenticate himself.

A possible attack, that compromises integrity of the election, is when the attacker uses malware to
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Figure 3.2: TrustedVote client components

steal the voter’s private key from the memory of the smartphone. He can compromise the integrity of the

election because he can modify the vote according to his intentions, and generate a valid signature that

will be accepted by the election servers.

If an attacker controls the smartphone and is capable of reading the code card from its memory,

then the privacy of the election is compromised. He is capable of: 1) intercepting the vote code used

by the voter and translating it to the chosen candidate (privacy), and 2) change the vote code issued by

the voter to a valid vote code of his choice (integrity). An attacker can try to modify the software that

executes in the client that encrypts the vote and authenticates the user, also compromising integrity and

privacy of the vote.

The attacker can also modify the contents of the vote before being encrypted, if he has full access to

the memory of the smartphone. This way, integrity is also compromised.

An attacker that controls the smartphone can also block the voter from voting (denial of service in the

client), which compromises the availability of the voting system to the voter.

An attacker (with control of the network) can also attempt to eavesdrop or modify the vote while it is

on the network. This attack can also compromise the privacy and the integrity of the election.

3.4 Smartphone components

This Section focuses and explains the functionality of the smartphone that is represented in Figure

3.1.

During the Election Registration phase, the smartphone must create and show the code card to

the voter, and create an empty ballot to send to the Election Registrar. Moreover, during the Vote
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Casting Phase, the smartphone is also responsible for capturing the intention of the voter, create the

corresponding digital vote and send it to the Ballot Box to be tallied. As a consequence, the device

must have a user interface so that the voter can choose the desired candidate, has a network interface

and has cryptographic capabilities to protect the vote from being leaked (privacy) or being modified

(integrity).

Figure 3.2 provides more detail on the components and functionality of the smartphone. The smart-

phone functionality is divided in four main components (represented in green in Figure 3.2): the Trusted-

Vote app, the Vote Encryption & Receipt, the Sign and the Code Card Translator. The TrustedVote app

provides the user interface and is responsible for communicating with the election servers (Election Reg-

istrar and Ballot Box) with the network protocol of EVIV. Vote Encryption & Receipt is a component that

encrypts the vote so that it can remain private, and computes receipts so that the voter has guarantees

that the vote expresses his intentions. This component depends on the Sign component, that manages

the key pair of the voter and generates digital signatures of votes. Finally, the Code Card Translator

component is responsible for creating a code card for each election and for translating the vote code

provided by the user into a candidate.

The Code Card Translator is an important component of the client. It contains the code card structure

that allows for the translation of a vote code to a candidate. We want to prevent attackers to have

knowledge of the code card or to modify it. If the attacker has read or write access to the region of

memory where code card is located, then he can control the final vote.

A similar line of thought is valid for the Vote Encryption & Receipt and Sign components. If the

attacker has read or write access to the region of memory where the plaintext vote is stored, then he

can control the final vote. Also, if the attacker has access to the region of memory where the private key

of the voter is stored, then he can impersonate him.

Thus, the components Code Card Translator, Vote Encryption & Receipt and Sign are critical for the

privacy and integrity of the vote, and, for that reason, we consider them sensitive components. The

next Section describes how the sensitive components are protected from the reach of the attacker in

TrustedVote.

3.5 TrustedVote client

In order to protect reads and writes on the vote from the attacker, the sensitive components of

TrustedVote (Code Card Translator, Vote Encryption & Receipt and Sign as discussed in the last Section)

must be executed outside of the attacker’s control.

The solution is to use a smartphone that has ARM TrustZone hardware. The architecture of the

TrustedVote client is illustrated in Figure 3.3. In this architecture, there are two distinct software stacks
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Figure 3.3: TrustedVote client application architecture.

running over the ARM processor: the software running in the normal world and the software running in

the secure world of ARM TrustZone. The component of the voting client that executes in the normal world

is the TrustedVote app, while the TrustedVote service executes in the secure world. The TrustedVote

service contains the sensitive components: Vote Encryption & Receipt, Code Card Translator and Sign

as they are sensitive components.

These components are supported by two distinct operating systems: a Rich Operating System run-

ning in normal world, and a Secure Operating System running in secure world. The Secure Operating

System is a microkernel that is significantly smaller than the Rich Operating System, as it only imple-

ments the required functionality to support the execution of TrustedVote service in the secure world, i.e.,

dynamic memory management, basic scheduling and abstractions to write on persistent memory.

Each world of execution has distinct RAM spaces. TrustedVote app only has access to normal world

RAM, while Vote Encryption & Receipt, Sign and Code Card Translator have access to secure world

RAM. During the process of voting, it is necessary that the vote created in the secure world by the Vote

Encryption & Receipt component reaches the normal world so that it can be sent to the election servers.

Therefore, in the architecture of TrustedVote there is a Shared Memory Buffer that is accessible by

37



both worlds of execution. The TrustedVote Secure Call Handler and the TrustedVote API (represented

in blue in Figure 3.3) are auxiliary components that manage the Shared Memory Buffer and perform

reads/writes on it. The TrustedVote API provides the interface that the TrustedVote app must invoke in

order to delegate execution to the sensitive components executing in the secure world.

3.6 Normal World Components

The rich operating system (e.g., Android) is executed in the normal world. The TrustedVote app is

an application running in user-mode on top of rich operating system. This normal world client leverages

the functionalities of the rich operating system, such as implementations of the network stack and user

interface, to: 1) mediate the communications between the TrustedVote service and the election servers,

2) provide a user interface to the user, and 3) accept the inputs (e.g., the vote code) from the voter.

TrustedVote app executes the following steps (in order) through out the election process:

1. During the Election Registration Phase:

(a) Retrieve the election candidates list CL and its signature from the election servers. Send CL

and its signature to the secure world using the TrustedVote API available in the rich operating

system.

(b) Retrieve the election key K and its signature from the Bulletin Board. Send K and its signa-

ture to the secure world using the TrustedVote API.

(c) When the voter requests, use the TrustedVote API to generate and show the code card to the

user in the secure world as defined in Appendix A.

(d) Use the TrustedVote API to request that the secure world computes and returns the empty

ballot (as described in Appendix A). TrustedVote app sends the empty ballot directly to the

election servers.

2. During the vote casting phase:

(a) Accept the vote code from the voter.

(b) Send the vote code to the secure world through the TrustedVote API. The secure world com-

putes the final vote and returns it.

(c) Receive the final vote from the secure world, and send it directly to the election servers.

The TrustedVote API is a component that provides an interface to the TrustedVote app to delegate

execution to the secure world. The responsibilities of this API are: 1) allocate the Shared Memory Buffer

(Figure 3.3) inside the normal world RAM region, 2) copy data from and to the Shared Memory Buffer,
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and 3) perform world switches, i.e. execute the SMC instruction. This component executes in kernel

mode. This is because, according to the ARM TrustZone specification [6], the SMC instruction used to

switch worlds can only be executed inside the kernel.

The Shared Memory Buffer is allocated in the normal world because the rich operating system is

responsible for the management of the normal world memory and knows which regions of Random

Access Memory (RAM) are free for allocation. There would be a risk of overwriting allocated memory

in the case where the secure world allocates the Shared Memory Buffer. As a consequence, after the

allocation of the Shared Memory Buffer, the TrustedVote API copies the physical location of the Shared

Memory Buffer to a location known by both worlds of execution.

The TrustedVote API is also responsible for: 1) copying user space data from the TrustedVote app

to the Shared Memory Buffer when there are inputs to the operations implemented in the secure world,

and 2) copying data returned by the TrustedVote service from the Shared Memory Buffer to the user

memory space of TrustedVote app.

3.7 Secure World Components

TrustedVote service is executed in the secure world and implements the functionality that manipu-

lates directly the code card during the Election Registration Phase (see Figure 3.1), the creation of the

empty ballot in the Election Registration Phase, the final vote during the Vote Casting Phase and the

voter’s private key to digitally sign the empty ballot and final vote. The components that execute in the

secure world are the Vote Encryption & Receipt, Sign, the Code Card Translator and the TrustedVote

Secure Call Handler. This Section describes the interactions between these components and the data

structures that each one requires.

The TrustedVote Secure Call Handler is the entry point of the TrustedVote service that implements a

set of secure calls, allowing TrustedVote app to request execution of the components Vote Encryption &

Receipt, Sign and Code Card Translator. Next, we describe the secure calls provided by the TrustedVote

Secure Call Handler and are exposed to the normal world:

1. During the Election Registration Phase:

(a) RECEIVE CANDIDATES CALL: (candidate list, (candidate list)KpEC
)→ ()

(b) RECEIVE ELECTION PARAMETERS CALL: (election key, (election key)KpEC
)→ ()

The purpose of the first two secure calls is only to transfer public election data to the secure

world memory. RECEIVE CANDIDATES CALL secure call takes the candidate list returned by the

Election Registrar as input and stores it on secure memory. RECEIVE ELECTION PARAMETERS CALL

receives the election public key K and its signature. The signature is verified before storing
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K. These two secure calls must be first ones to be executed, as the remaining calls depend

on the candidate list and the election public key K.

The signatures of all passed arguments are verified using the appropriate public key. If any

signature is not valid, the execution is aborted.

(c) PREPARE BALLOT CALL: ()→ (ballot, (ballot)KpV )

Secure call that creates an empty TrustedVote ballot during the election setup phase. The

ballot is encrypted by the Vote Encryption & Receipt component with the election public key

K, and signed with the voter’s private key by the Sign component. The secure call returns

the ballot and its signature.

(d) GENERATE CODE CARD CALL: ()→ (code card)

Secure call that generates a code card for the election. The code card is generated by the

Code Card Translator component. The code card is stored in secure memory address space

and shown to the voter prior to the election. This secure call can only be executed once per

election and during the election registration phase.

2. During the Vote Casting Phase:

(a) SELECT CANDIDATE CALL: (vote code)→ (receipt)

Secure call that only executes during the election period, and accepts as input the vote code of

the chosen candidate. Using the previously generated code card, the vote code is translated

into a candidate and the vote encryptions (in the ballot generated at PREPARE BALLOT CALL)

are rotated until the Y ESvote is aligned with the chosen candidate. For each candidate, a

receipt ϑ is computed and shown to the voter for confirmation.

At the end of this call, the final vote is computed and ready for submission.

(b) OK SUBMIT CALL: ()→ (vote)

After the voter has confirmed that the confirmation code on his code card is aligned with the

chosen candidate in the receipt, the final vote stored in secure memory must be sent to the

Ballot Box. Therefore, OK SUBMIT CALL returns the final vote produced by SELECT CANDIDATE CALL

to the normal world.

Vote Encryption & Receipt component defines how the vote is encrypted and validated such that the

voter can verify, with high probability, that its vote correspond to its choice. This component residing in

the secure world implements the following functions: Vote Encryption (VEh) encrypts the vote with the

election public key and Receipt Creation (RCh) that creates a receipt that allows the voter to confirm if

the vote matches his intentions. The ballot data structure is created and defined inside this component,
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using VEh andRCh functions. A ballot is a data structure that stores vote encryptions, the corresponding

vote validities and receipts for each candidate.

The Code Card Translator is a component that creates the code card structure. The code card

associates each candidate with a random string. The voter uses the random strings on his code card

to identify the candidate that he wishes to vote. So, the interface provided by this component is the

following:

• CREATE CODE CARD: (candidates list)→ ()

This function receives as input the candidates list and assigns a random string (vote code) for each

of them. This mapping is stored in secure memory.

• GET CANDIDATE FROM CODE: (vote code)→ (candidate)

This function translates a vote code into a candidate, returning the candidate. It returns an error if

the vote code does not correspond to a candidate.

The Sign component is responsible for signing ballots with the voter’s private key KpV . It creates the

voter’s key pair (KV ,KpV ) once, and stores it in secure persistent memory. The interface provided by

this component is the following:

• SIGN: (ballot)→ ((ballotKpV ))

This function receives a ballot as an parameter and returns its signature.

• GET PUBLIC KEY: ()→ (KV)

This function returns the public portion of the voter’s asymmetric key. It is called in the Voter

Enrollment Phase, when the voter registers himself (in person) to the Enrollment Service.

3.7.1 Secure Operating System

The architecture of the operating system that runs in the secure world is a design decision that has a

major impact on the size of the TCB and the overall security of the system. There are three alternatives

regarding secure world architectures that were proposed by the ARM TrustZone specification [6]: a

dedicated operating system, a synchronous library and a hybrid of the previous approaches. Each one

has their own set of advantages and drawbacks.

The first one is to have a dedicated operating system running in the secure world, allowing multiple

secure applications to run in parallel with independent memory spaces, and dynamic loading of down-

loaded secure applications. This is the most complex and powerful architecture, but it implements more

functionalities than needed, which results in TCB that is too large.
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Figure 3.4: Secure boot process

The second approach is to have a synchronous library running in the secure world. This approach

has the potential to reduce the TCB size, but also has the potential to require the reimplementation of

components that are already implemented in the operating systems, such as dynamic memory allocation

and timer services for random number generation.

The last approach proposed is an intermediate option between the dedicated operating system and

the synchronous library. We opted for the intermediate option, because it has the advantage of reducing

significantly the size of the TCB, while providing basic implementation of operating systems functions.

Therefore, we designed the secure world where the operating system is a micro kernel that implements

basic memory management, such as dynamic memory, scheduling and abstractions to write on persis-

tent memory.
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3.8 Bootstrap of Secure World Components

In order to execute the security critical code on the mobile device, the trusted vendor of the device

writes the secure image that contains the secure operating system and the TrustedVote service code

into non volatile memory. To prevent an attacker from modifying the code that runs in the secure world,

we need a boot process that verifies its integrity.

To prevent that an attacker manipulates the code running in secure world, integrity checks must be

performed in the boot process. Through signatures, we can guarantee the integrity and authenticity of

the code. Therefore, we trust that the vendor of the devices generates a key pair Ki = (KiPub,KiPriv)

and inserts its public component KiPub in the hardware. The key is inserted in a way that the attacker

cannot modify it, e.g., inside a special cryptographic chip. Furthermore, the vendor signs the secure

image with KiPriv, copies the image and the computed signature to non volatile memory.

Figure 3.4 demonstrates an overview of the secure boot process. When the system boots, the pro-

cessor starts in secure world and the Read Only Memory (ROM) bootloader is executed. This compo-

nent starts by setting the initial state of the processor and initializing hardware components such as the

memory controller. Then, its responsibility is to access the non volatile memory and verify the signature

of the image. If the signature is not valid, then the execution is aborted. Otherwise, the ROM bootloader

loads the secure image into RAM and jumps to the secure operating system bootloader. The secure

operating system bootloader boots the secure operating system, and, finally, normal world is activated

where the rich operating system is booted.

This way, the system is initialized with the guarantee that the TrustedVote service is actually running

in the secure world and the vote is actually processed and created by TrustedVote service.

3.9 Threat Analysis

TrustedVote protects the vote from being revealed or changed by malicious third parties. Section 3.3

described possible attacks on TrustedVote voting system, and, in this Section we describe how those

attacks are mitigated in our solution.

In order to understand our threat analysis, it is important to consider our assumptions. On the

smartphone, we assume a powerful adversary that is able to control the entire software stack that is

running in the normal world of ARM TrustZone, i.e., the rich operating system and other applications.

The attacker can, consequently, manipulate the memory and peripherals assigned to the normal world

and intercept any computation performed while the processor is executing in normal world.

Regarding the hardware, we assume that it behaves correctly, i.e., the isolation provided by the

ARM TrustZone hardware is implemented correctly. Also, we assume that the ROM bootloader cannot

be tampered. Consequently, hardware attacks, side-channel attacks and other physical attacks are
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not taken into consideration on the threat model, e.g., hardware disassembly, power monitoring, bus

monitoring and timing attacks. Attacks to the secure operating system is also out of the scope of this

dissertation.

We also assume that the attacker has the ability to sniff network communications between clients

and servers, and execute arbitrary code on election servers except Trustee servers (see Section A.2).

In TrustedVote, the valueable assets to the attacker that reside on the smartphone memory (the vote,

the code card and the voter’s private key) are protected by the secure world of ARM TrustZone. These

assets are stored in a memory region allocated only for the secure world, outside of the attacker’s reach.

Therefore, even if the attacker has full control of the rich operating system (normal world), he cannot

read/write the vote, the code card or the voter’s private key.

The attacker can perform denial of service in the smartphone, as he can: 1) ignore the calls to the

TrustedVote API, and 2) prevent operations on the Shared Memory Buffer.

The attacker cannot modify the software running in the secure world. If an attacker modifies the

secure world image, the ROM bootloader detects this (at boot time) because the signature generated by

the trusted vendor would not be correct (see Section 3.8)

3.10 Summary

This Chapter presents the architecture of TrustedVote, an Internet voting system that allows voters to

vote anywhere with high level of security. We start by describing a global overview of the voting process

of TrustedVote. Then, we describe the assets and possible attacks on TrustedVote. We describe the

functionality of the voter’s client, the smartphone and the details of the TrustedVote client, that uses ARM

TrustZone. We describe the details of the secure world components and normal world components, and

describe how the hardware bootstraps the system to give guarantees to the voters that their devices are

running TrustedVote in the secure world. We conclude this Chapter by discussing which of the possible

attacks on the threat model are feasible.
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4.1 Introduction

This Chapter describes the implemented prototype of TrustedVote, an Internet voting system that

allows voters to vote anywhere with a high level of security. This description focuses primarily on the

implementation of the client of the voting system, i.e., the smartphone.

The prototype of the client is implemented in the i.MX53 Quick Start Board from Freescale, because

it is one of the few available devices with ARM TrustZone that has the technology unlocked. While

the ARM TrustZone-enabled processors, such as the Cortex A57 and Cortex A53, are predominant in

the mobile phone market, the vendors impose restrictions on the usage of TrustZone for development

purposes. In some boards (e.g. Samsung, TI, NVIDIA) the technology is not available because the ROM

bootloader switches to normal world. Moreover, there is no standard regarding the implementation of

TrustZone mechanisms, which results in some boards that have incomplete TrustZone implementations.

For instance, in the Raspberry Pi 3 [48] is not possible to assign protected memory regions to the secure

world, because it does not implement any kind of TZASC. This limitation results in an implementation

that is dependent on this particular board.

The Linux kernel runs as the operating system in the normal world, because it is the operating

system that Android is based on. We implemented a command line tool that contains the functionality

of the TrustedVote app. The TrustedVote API was implemented as system call for the Linux operating

system. In the secure world, we modified the Genode base-hw microkernel that ships with the Genode

framework to implement the TrustedVote service on top of it. In our prototype, we did not implement the

secure bootstrap mechanism as described in Section 3.8. For development, the disk image, containing

the secure code and the Linux kernel, is flashed in a SD Card. Then, the i.MX53 Quick Start Board

loads the u-boot bootloader, which in turn loads and boots the disk image.

This Chapter is organized as follows: Section 4.2 describes the overview of the implementation.

Section 4.3 describes the implementation of the components that execute in the normal world of ARM

TrustZone, while Section 4.4 describes the implementation details of the components that execute in the

secure world.

4.2 Overview

Figure 4.2 illustrates the implementation of the TrustedVote client prototype. This Figure maps di-

rectly to the Figure 3.3, that overviews the architecture of TrustedVote client.

In the normal world, the rich operating system is the Linux kernel, because: 1) it is the base of

Android mobile operating system that executes in the majority of the smartphones, and 2) its source is

public, and therefore, we can modify it to include the TrustedVote system call. The TrustedVote system

call is our implementation of the TrustedVote API. The TrustedVote command line tool is a user process
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Figure 4.1: Implementation overview of the TrustedVote client

of Linux that implements the functionality of TrustedVote app.

Developing a custom kernel to run in the secure world is a time consuming task and requires that

the developer has full knowledge of low-level details of the target platform. By adapting an existing

microkernel, we can focus on the development of the desired functionality of the TrustedVote service.

Our choice for the secure microkernel that executes in secure world is the Genode base-hw microkernel.

This is because Genode developers provide: 1) extensive documentation of the framework, 2) support

by an active community and 3) working demonstrations of ARM TrustZone in the i.MX53 Quick Start

Board.

The Genode base-hw microkernel implements the base functionalities of an operating system, such

as memory management and scheduling. This microkernel is designed to run on bare metal, i.e., without

the need of an underlying operating system, and, therefore, can be executed in the i.MX53 Quick Start

Board. The configuration of base-hw includes an application running on top of the microkernel that: 1)

is able to manage a rich operating system running in the normal world and 2) contains a Secure Monitor

implementation that handles world switches. This application is called TrustZone Virtual Machine Monitor

(TZ VMM), because it is able to manage a rich operating system as a Virtual Machine Monitor (VMM)
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Figure 4.2: Workflow of the TrustedVote app

also does. Therefore, Genode base-hw has a low TCB, high flexibility and support for the i.MX53 Quick

Start Board, which makes it attractive as a starting point for our prototype implementation. We modified

the TZ VMM application to perform the role of the TrustedVote Secure Call Handler component.

In our implementation, each secure call is uniquely identified by an integer (called operation identifier)

that is assigned in the source code of TrustedVote app and TZ VMM. Therefore, to invoke an operation

in TrustedVote service, the TrustedVote app must pass the operation identifier as an argument to the

TrustedVote system call.

In the prototype, the Vote Encryption & Receipt component is implemented using MarkPledge 3

technique (see Appendix A). As MarkPledge 3 depends on the exponential ElGamal cryptosystem, it

also contains a software implementation of ElGamal and exponential ElGamal (see Section 2.2.1). To

implement the Sign component we use the RSA cryptosystem. The Code Card Translator component is

implemented as a map between a candidate’s name and a random string.

Our implementation of the Shared Memory Buffer uses DMA buffers that are allocated by the Linux

kernel inside the TrustedVote system call. The buffer is uncached, which means that bytes are written

directly in the DMA shared buffer region (with the guarantee that they are flushed, i.e., does not stay in

caches).

The following Sections provide further details on the implementation of each described components.
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4.3 Normal World components implementation

4.3.1 TrustedVote app

The client application running in normal world is implemented in C++ and is a command line tool.

The purpose of this application is to simulate a mobile application that can leverage the TrustedVote

service that executes in the secure world to create, in a secure environment, a voter’s empty ballot and

final ballot as in MarkPledge 3 specification (see Appendix A). Figure 4.2 represents the execution flow

of the TrustedVote app that executes as a user process over the Linux kernel.

The first step of this application is to gather election data (public key, election challenge as required by

MarkPledge 3 and list of candidates) from the election servers. Then, in step 2, it invokes the TrustedVote

system call to send the retrieved data to the TrustedVote service running in the secure world.

Then, the application is now able to accept commands from the voter. Once it receives a command

from the voter, it verifies if it is a valid one. If the command is valid, the corresponding operation is

executed (step 5. yes). The TrustedVote system call is invoked whenever execution of the TrustedVote

service is required (step 6). The execution is restored when the latter returns (step 7) and the application

is ready (again) to read a command from the user (step 8).

The valid commands accepted by TrustedVote app are the prepare command, the codecard com-

mand and the vote command. The prepare registers the voter in the upcoming election and uses

TrustedVote service to create the empty ballot in the secure world. The codecard command invokes

TrustedVote service to compute and show the code card for the upcoming election (Election Registra-

tion Phase). The vote command receives a vote code as an argument, and sends it to the TrustedVote

service in order to compute and encrypt the final vote. The final vote is sent, via the Internet, to the

election servers.

4.3.2 TrustedVote system call

In order to implement the TrustedVote API, we need a way to request kernel services. System calls

are the most common way of requesting kernel services. Therefore, we added a new system call, called

smcall, to the Linux kernel, that implements the functionality of TrustedVote API.

The smcall system call takes four parameters: int op, unsigned int arg, int size and char*

return address. The first parameter, int op represents the unique operation identifier (as explained in

Section 4.2) that is used by the secure world to identify which secure call must be executed.

The following parameters are used to enable inter-world communication. The arg parameter points

to a memory location (in TrustedVote app address space) that must be copied to the Shared Memory

Buffer. The size parameter indicates the number of bytes to allocate in the Shared Memory Buffer. As

the Shared Memory Buffer is allocated in the kernel (see Section 3.6), the TrustedVote app does not
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Figure 4.3: Execution flow of TrustedVote smcall system call.

have a way to read the contents in the Shared Memory Buffer in its memory space. The return address

parameter is a user space memory location (of TrustedVote app), that the kernel copies the content of

the Shared Memory Buffer after the secure world returns.

Figure 4.3 illustrates the flow of execution of TrustedVote smcall system call. Step 1 is to allo-

cate an uncached DMA buffer, available to the kernel via the dma alloc coherent function. After the

dma alloc coherent function returns, the variable buf points to the virtual address of the DMA buffer,

while buffer physical points to the corresponding physical address.

The second step is to copy (via memcpy) the contents in the memory region defined by the parame-

ters arg and size to the allocated DMA buffer.

The system call proceeds, in step 3, to copy op parameter to the register r0, the variable buffer physical

to the register r1, and the variable size to the register r2. At this point, smcall executes the SMC instruc-

tion.

When the secure world returns, the contents of the DMA buffer are copied to the address space of

TrustedVote app (to the return address argument), via the copy to user function available to the Linux

kernel.
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4.4 Secure World components implementation

4.4.1 TZ VMM

The TZ VMM component (already implemented by Genode developers), was modified in order to

have the functionality provided by the TrustedVote Secure Call Handler (see Section 3.7).

TZ VMM is an application running on top of Genode base-hw kernel that 1) configures the regions

of memory and peripherals that belong to the secure and normal worlds, 2) loads the Linux kernel in

the normal world and 3) provides a world switch routine that is executes whenever a SMC instruction is

executed in the normal world.

The TZ VMM application is responsible to configure the TrustZone hardware to assign secure RAM

regions to the secure world. In the particular case of the i.MX53 Quick Start Board, the Multi Master

Multi-Memory Interface (M4IF) is the hardware component that controls memory accesses from the

CPU and other masters on the main AXI system bus (see Section 2.11.2). This hardware component

supports the creation of a protected memory region only accessible to the secure world. According to

the specification of the i.MX53 Quick Start Board, the protected memory region must be continuous, a

multiple of 4 KB and cannot be greater than 256 MB. The size of the secure memory region allocated

by the Genode developers is 256 MB, and this value remains unchanged for the implementation of our

prototype.

The TZ VMM application also configures the TrustZone hardware to assign peripherals to either se-

cure or normal world. The Central Security Unit (CSU) is the hardware component of i.MX53 Quick Start

Board that assigns devices groups for each world of execution. We assign the Universal Asynchronous

Receiver/Transmitter (UART) module (that is used for serial communication) to the normal world. This is

because, in our prototype we must be able to issue commands, through the UART, in the Linux kernel.

The TZ VMM application registers a world switch handling routine in the Genode base-hw kernel that

is executed whenever a SMC instruction is called from the normal world (e.g., in the TrustedVote system

call). The Genode base-hw microkernel catches the CPU exception generated by the SMC instruc-

tion, saves the CPU registers in secure memory, and jumps to the handling routine located inside the

TZ VMM. When the TZ VMM handling routine returns, the base-hw microkernel restores the previously

saved CPU registers and switches to normal world.

We modified the TZ VMM application to include the inter-world communication mechanism described

in Section 4.3.2. As we can read the saved CPU registers (before the SMC is executed) in secure world

memory, we read r0, r1 and r2 to retrieve op, the unique operation identifier, buffer physical, the physical

address of the DMA buffer, and size, the size of the DMA buffer (sent by TrustedVote system call as

described in Section 4.3.2).

The DMA shared buffer is a continuous region of memory that the software running in both worlds
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of execution use to copy data. The data structures that need to be copied to this buffer (e.g., the ballot)

are complex. So, we use Javascript Object Notation (JSON) as a data-interchange format to represent

complex data structures in the DMA shared buffer. We use rapidjson library to convert C++ objects into

JSON strings, and the other way around. This consumes more memory space in the DMA shared buffer,

and more time to perform the convertions, but, this also has the advantage that the code running in the

secure world is less coupled to its normal world counterpart.

We also modified TZ VMM to include an implementation of the secure calls as defined in Section 3.7.

In addition to these secure calls, we implement a new secure call, called set election challenge, which is

required by the MarkPledge 3 technique. This secure call receives as input (in the DMA shared buffer)

the election challenge, verifies its signature and stores it in secure world RAM. When the TZ VMM

world-switch handling routine is executed (because an SMC instruction was executed), it executes a

switch/case over the operation identifier (that can be found in register r0) to execute the corresponding

secure call.

4.4.2 MarkPledge 3

In our prototype, MarkPledge 3 implements the functionality of the Vote Encryption & Receipt com-

ponent of TrustedVote architecture (see Section 3.7). MarkPledge 3 (see Appendix A) is a technique

that defines how a vote is encrypted such that the voter can verify with high probability that the vote

encryption corresponds to the voter’s choice.

MarkPledge 3 requires an implementation of exponential ElGamal cryptosystem (see Section 2.2.1.A).

Therefore, we need a way to represent integers with arbitrary precision. As the i.MX53 Quick Start Board

processor is 32 bits, a single memory address is not able to represent integers with 1024 bits, for in-

stance. Also, we need a way to perform arithmetic operations on these big numbers, such as modular

exponentiations. We include the OpenSSL implementation of big numbers in the secure world to repre-

sent integers with arbitrary precision. As a consequence, MarkPledge 3 component is implemented on

top of OpenSSL implementation of big numbers.

4.4.3 Sign

The Sign component creates the digital signatures of the ballot and the final vote with the voter’s pri-

vate key (see Section 3.7). In our prototype, we use the RSA cryptosystem for the signature generation.

To implement this functionality, we included the OpenSSL RSA library in the secure world. The

voter’s private key is generated with the RSA generate key available in the OpenSSL RSA library, and

stored in secure world RAM. In our implementation, we do not store the voter’s private key in persistent

memory.
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h = sha1(ballot)

s = hd mod n
(4.1)

The signature computation is described in Equation 4.1. To compute the signature of a ballot, our

prototype reads the bytes of the ballot, applies SHA-1 digest and computes the RSA signature of the

resulting digest, where d is the private exponent of the voter’s private key and n is the modulus.

4.4.4 Code Card Translator

As mentioned in Section 3.7, the Code Card Translator component generates random strings (vote

codes) for each candidate of the election. Our Code Card Translator implementation iterates over the

list of candidate names, and creates a libc++ map where the key is the candidate name and the value

is a random string. To show the code card to the voter, this component writes the name and the cor-

responding vote code for each candidate to the serial console. The serial console is communication is

performed through the UART.

4.5 Summary

In this Chapter, we described the details of the implementation of our prototype of TrustedVote In-

ternet voting system. We started with an overview of TrustedVote client implementation. Then, we

described the implementation of the normal world components: 1) the TrustedVote app, a command

line tool that simulates a mobile application that leverages the TrustedVote service to create the vote,

and 2) the TrustedVote system call, that performs the world-switch. Next, we described the implementa-

tion of secure world components, namely, the TZ VMM, MarkPledge 3, Sign and Code Card Translator

components.
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5.1 Introduction

The evaluation of TrustedVote is focused on the performance (availability requirement) and malware

resistance of the client architecture, as the EVIV network protocol and its cryptography protocol (Mark-

Pledge 3) satisfy accuracy, integrity, democracy, privacy, verifiability, availability and collusion resistance

(see proof in Joaquim et. al [5]).

To evaluate the prototype, we measure different aspects of this implementation. We start by dis-

cussing the methodology used to evaluate the prototype in Section 5.2. In Section 5.3, we discuss

the penalty of running the TrustedVote service in the secure world of ARM TrustZone and compare the

execution times of TrustedVote service and the EVIV smartcard implementation. The size of the TCB

is discussed in Section 5.4. We assess the attack surface in our prototype in Section 5.5. Finally, the

summary of the evaluation is given in Section 5.6.

5.2 Methodology

The evaluation of the prototype was performed on the same board that we implemented the proto-

type: the i.MX53 Quick Start Board. This board has 1 GB of DDR3 RAM, a 1 GHz ARM Cortex-A8

processor, and has ARM TrustZone hardware available for development purposes.

In order to run the prototype, the modified Genode and Linux kernels were flashed in a mini SD card

and inserted in corresponding slot of the board. The code from both normal and secure worlds was

compiled with the g++ compiler and with the O3 flag. The O3 flag enables code optimizations, resulting

in improved performance, at the cost of higher compilation time.

We measure execution times using the performance counters available in ARM processors. Perfor-

mance counters are special purpose registers used to store counters of hardware-related events. In

particular, we read the Cycle Count (CCNT) register that counts CPU cycles. Since the processor runs

at 1 GHz, it means that each CPU cycle corresponds to 1 nanosecond. To measure the execution time

of an operation in milliseconds, we measure the CCNT register before and after the operation code and

take the CPU cycle difference multiplied by 10−6. The execution time values presented in the evaluation

experiments’ are the result of the average of 20 runs.

For this evaluation, we set up an ElGamal election key with 1024 bits.

5.3 Performance of secure world Operations

The goal of this analysis is to compare execution times between normal world vs secure world ex-

ecution, to measure the secure world impact on the performance of the client. Using these measures,
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tvote-client tvote-client-emulated
TrustedVote app 1 ms 1 ms
TrustedVote service secure calls 3544 ms 3068 ms

Total 3545 ms 3069 ms

Table 5.1: TrustedVote client execution time required to cast a valid vote in an election with 10 candidates.

we can verify if the TrustedVote client introduces noticeable overheads to the voter during the voting

process.

To compare execution times of secure and normal worlds we set up two different binaries containing

the client functionality: the tvote-client binary and the tvote-client-emulated binary. The tvote-client

binary offers a console interface to the voter and each time a secure operation must be executed, the

TrustedVote system call is called, where the required DMA buffer is allocated and the SMC is issued

to trigger the switch to secure world. The execution is then delegated to the TrustedVote service that

implements the operation. At the end, the required data is copied to the DMA shared buffer, the normal

world is restored and the DMA shared buffer is copied to a buffer in normal world memory. In the tvote-

client-emulated binary, the TrustedVote service runs in the normal world, avoiding the allocation of DMA

buffers, the context switch triggered by the system call and the SMC instruction.

We start by measuring the total client execution time required to cast a vote in an election with

10 candidates, with tvote-client and tvote-client-emulated. We chose an election with 10 candidates

because it is close to the number of candidates on real elections (e.g., the last presidential elections in

Portugal had 10 candidates). Table 5.1 shows the results. The total client execution time can be divided

in two main parts: the execution time of TrustedVote app (running in normal world) and the execution

time of TrustedVote service operations. In the latter, we include the world-switch time in the case of the

tvote-client binary (secure world). We define the world-switch time as the sum of the time required to

perform the context-switch (from user mode to kernel mode in normal world), to execute the TrustedVote

system call and the SMC instruction. Furthermore, the execution times measure the total time to cast a

valid vote, but do not include network communications and time required for a voter to insert commands.

The binary tvote-client executes in 3545 ms, while tvote-client-emulated executes in 3069 ms. We

notice an overhead of 476 ms (which represents an overhead of 16 %) in the case where the TrustedVote

service executes in the secure world (tvote-client). However, the 476 ms of overhead when TrustedVote

service executes in the secure world (tvote-client binary) are not noticeable to the voter.

5.3.1 Secure calls performance

In Table 5.1, we can see a 476 ms overhead in the execution time of TrustedVote service secure

calls in the secure world. To understand the source of overhead, we measured the execution times of
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TrustedVote secure call tvote-client tvote-client-emulated
Receive Election Candidates 45 ms 1 ms
Set Election Challenge 44 ms 1 ms
Set Election Key 49 ms 1 ms
Prepare ballot 3099 ms 3023 ms
Generate codecard 106 ms 2 ms
Select Candidate 97 ms 2 ms
Ok submit 104 ms 38 ms

Total 3544 ms 3068 ms

Table 5.2: TrustedVote service secure calls execution times comparison between secure and normal worlds, in an
election with 10 candidates.

Figure 5.1: World-switch overhead in the Prepare ballot secure call.

each secure call individually, using the binaries tvote-client and tvote-client-emulated. The results are

presented in Table 5.2.

From these results, we notice that: 1) the overhead is not constant across all secure calls, and 2) the

largest overhead is in the prepare ballot secure call (which is also the most CPU intensive).

5.3.2 World-switch overhead

The overhead for each secure call that is present when the tvote-client binary executes is due to the

world-switch execution time. We chose the most CPU expensive operation (the Prepare ballot secure

call) to study the overhead introduced by the world-switch. This operation is also the one that allocates

more space on the DMA shared buffer during the world-switch.

In Figure 5.1, we show the execution times for the Prepare ballot secure call for an election with 5,

57



System/Library Code size
Linux 2.6.35 14000 KLOC
OpenSSL 1.0.1 460 KLOC
TrustedVote service 48.3 KLOC
Genode base-hw microker-
nel

20 KLOC

Table 5.3: Code size comparison of TrustedVote and other systems.

10, 15 and 20 candidates. These number of candidates are in the range of candidates for a national

election, and, at the same time, allow us to understand the impact of the size of the election (i.e., the

number of candidates) in the world-switch overhead. The number of candidates is presented on the

horizontal axis, while the execution time (in milliseconds) is shown in the vertical axis. We measured

the Prepare ballot secure call execution times in its individual parts: the Vote Validity time, the Vote

Encryption time, the Signature time and the World-Switch time.

The execution time is dominated by the Vote Validity and Vote Encryption components. The signature

execution time increases as the number of candidates increases, however it is negligible. We noticed that

the percentage of world-switch time over the total time of the secure call does not remain constant. For

example, for 5 candidates, 72
1594 = 4.5%, while for 20 candidates, this percentage is only 90

6092 = 1.5%. We

can conclude that the world-switch time, as expected, has a constant cost (evident with less candidates)

and a variable cost that depends on the number of candidates.

This happens because in the world-switch time we include: 1) the time of the context switch, which

does not depend on the number of candidates of an election, and 2) the time for the allocation of the DMA

shared buffer. The operations on the DMA shared buffer are dependent on the number of candidates.

The size of a ballot grows with the number of candidates, and, as a consequence, the time to copy it

to/from the DMA shared buffer increases.

5.4 Trusted Computing Base size

The code that runs in the secure world is critical for the security of the entire election. One possible

way to assess the probability of bugs in a system is to measure its code base size and compare to other

systems. A small code base allows meticulous code audits from third parties, and narrows the attack

surface for attackers. With a narrow attack surface, developers have the chance to sanitize all the inputs

from the normal world. Minimizing the TCB size is essential in any security-driven design. Therefore,

we assess the TCB size of TrustedVote prototype and compare it to other systems and libraries.

Table 5.3 compares the code base size of different libraries and kernels. The Linux kernel is one of

the most complex systems with around 14000 KLOC under the version we use on the prototype (2.6.35).
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Component Code size
Genode base-hw micro ker-
nel

21 KLOC

MarkPledge 3 1.1 KLOC
TZ VMM 0.7 KLOC
Sign 0.04 KLOC
Code Card Translator 0.02 KLOC
OpenSSL BN 2.5 KLOC
OpenSSL RSA 5 KLOC
libc++ vector 7.8 KLOC
rapidjson 10.2 KLOC

TrustedVote service total 48.3 KLOC

Table 5.4: Code size of the components that execute in the secure world in our prototype.

It is composed of multiple optimized subsystems that aim to support several functionalities and devices.

The next library is OpenSSL, which implements the TLS and SSL protocols. The library also implements

the most common cryptography algorithms. Finally, TrustedVote service and Genode base-hw have the

desired code base size to run in secure world. The TCB size of TrustedVote service is 2.4 times greater

than Genode base-hw microkernel. That is because the former implements the required functionality

(such as MarkPledge 3, secure calls, etc.) for a secure election client. However, it is 296 times smaller

than a full Linux kernel and 9.7 times smaller than OpenSSL library.

To comprehend better why the code size of TrustedVote service is 2.4 times greater than the code

size of Genode base-hw, Table 5.4 discriminates the number of lines of code for each component of the

former. As mentioned in Section 4.2, TrustedVote service is built on top of Genode base-hw microkernel,

that provides basic scheduling, memory management and basic SMC handling. In order to transfer

complex objects (such as a ballot) between worlds, we used rapidjson library to serialize those objects

to JSON format. This library sums 10.2 KLOC to the TCB size. The list of candidates is stored in a

vector object that is implemented in libc++, adding 7.8 KLOC to the TCB size. We used the RSA and

big number implementation of the OpenSSL library in order to implement ElGamal cryptosystem and

MarkPledge 3. The code that implements exponential MarkPledge 3 (and ElGamal), contributes with

1.1 KLOC to the final TCB size. The modified TZ VMM application represents 0.7 KLOC, while the Sign

component has 0.04 KLOC and the Code Card Translator 0.02 KLOC.

Further improvements could have been made to reduce even more the code size of the TCB of Trust-

edVote service. A custom serializer of ballots would have removed the need to use the general purpose

rapidjson library, removing 10.2 KLOC. Also, linked lists could have been implemented in the secure

world to store the list of candidates, removing the libc++ vector from the TCB. Finally, as OpenSSL is a

general purpose library, custom big number and RSA implementations with only the required operations

could also have been implemented. However, custom implementations are more error prone than a
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public library that has been tested extensively. Therefore, we decided to include them in the TCB.

5.5 Attack Surface assessment

In this Section we discuss possible attacks that could be performed on TrustedVote client imple-

mented in our prototype. The TrustedVote service implementation has a narrow set of attack vectors,

i.e. the secure calls defined in Section 4.4.1. This reduces the amount of vulnerabilities that can be

exploited in order to compromise the privacy and integrity of the vote, because third party auditors (such

as the political parties) can audit the code in useful time.

The first attack we consider is when malware residing in the Linux kernel prevents the access to

the secure world (denial of service on the client). Malware residing in the Linux kernel can ignore the

TrustedVote system call and the voter is not able to cast his vote. This attack is detectable by the voter,

because he is not able to cast his vote. In this case, he can: 1) perform another device registration in

the Election Registrar, or 2) perform a clean install of operating system on the same in order to remove

the malware. Nonetheless, the integrity and confidentiality of the vote are never compromised.

The DMA buffer is used as a shared memory mechanism to read and write data, never to execute

code from it. Any data modification performed by the attacker during the execution in the normal world

is detected by TrustedVote service, as all data is signed by the election servers and the vote codes are

random. The probability of malware guessing a valid vote code is number of candidates/15α where α

is the size of the vote code. For instance, in an election with 5 candidates and α = 5, the probability of

guessing one valid vote code is 0.000007.

Although ARM TrustZone hardware protects the memory region assigned to the secure world from

being accessed by the normal world, it does not encrypt it. This way, an attacker that has access to the

client hardware, p.e. through a specific device that reads the memory bus, is able to learn the contents of

secure memory, such as the voter’s private key. Nevertheless, hardware attacks and other side channel

attacks (timing attacks, power monitoring attacks, etc.) are out of the scope of this dissertation, as

mentioned in Section 3.9.

Furthermore, vulnerabilities in Genode base-hw code can lead to malware injection by the attacker,

compromising the secure memory and, therefore, the integrity and confidentiality of the vote. Nonethe-

less, we do not consider attacks to Genode base-hw.

5.6 Summary

The EVIV network protocol and its cryptography scheme guarantee that accuracy, integrity, democ-

racy, privacy, verifiability, robustness, availability and collusion resistance are satisfied at server side. If
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malware resistance is not satisfied at client side, then the integrity and privacy of the vote cannot be

guaranteed. TrustedVote achieves malware resistance by implementing MarkPledge 3 on the secure

world of ARM TrustZone with unnoticeable performance penalties to the voter. The main performance

penalty is from the world-switch that is performed in order to delegate execution from the normal to the

secure world. There is a focus on having a small TCB size, which TrustedVote achieves, so that third

party companies or entities (e.g., security companies, political parties, etc.) can afford code audits in

useful time for deployment on a national election, for instance.
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6.1 Conclusions

The lack of mobility found on paper based voting systems (that require physical presence of voters

in a specific date and local) compromise the goal of democracy. It creates unnecessary problems, such

as the prohibition of sport events during election days (as debated in Portugal), and citizens may not be

available to vote.

The goal of this dissertation is to propose a fully mobile Internet voting system named TrustedVote.

With this system, the voters can vote anywhere with an Internet connection and be certain that neither

the vote nor the election is compromised. The design of TrustedVote is similar to the EVIV protocol.

However, we use ARM TrustZone to execute the sensitive operations on the voting system: the vote en-

cryption and voter authentication. This is possible because ARM TrustZone allows the isolated execution

of code in mobile devices where TrustZone is enabled. Therefore and unlike previous systems, Trusted-

Vote keeps a high level of usability as the voter does not have to acquire special hardware devices to

successfully cast his vote.

We implemented a prototype of TrustedVote client using real TrustZone hardware (on the i.MX53

Quick Start Board). We implemented MarkPledge 3 technique to encrypt the vote and RSA signatures

to authenticate the voter. The security critical code of TrustedVote is very small, with only 48.3 KLOC

under the prototype implementation, which reduces the number of vulnerabilities that can be exploited.

In an election with 10 candidates, we observed that the cost of running this security critical code on the

secure world to successfully cast a vote is 476 ms. This overhead is unnoticeable to the voter, when he

is casting a vote.

6.2 Future Work

In the future, TrustedVote can be improved in five ways. The first is to find a smartphone that allows

the development of applications with ARM TrustZone. The second is to implement a graphical user

interface to the prototype. The third is to add support for secure display of code cards in the secure

world when using a graphical user interface. The fourth is to further reduce the size of the TCB, by

implementing only the required functions of big numbers and linked lists. The last one is to add coercion

resistance to TrustedVote by, for instance, allowing voters to vote multiple times.
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A
MarkPledge 3 and Network Protocol

A.1 MarkPledge 3

MarkPledge 3 was proposed by Joaquim and Ribeiro [5] and defines how a vote is encrypted and

validated such that the voter can verify, with high probability, that the vote encryption corresponds to the

voter’s choice.

This technique assumes the existence of an ElGamal election public key with public parameters

p, q, g and h and requires that all encryptions are performed using the exponential ElGamal cryptosystem

(Section 2.2.1). Its interface is divided in the following set of functions:

1. Vote encryption VEh(b, θ, τ, δ) =< u = Eh(b, τ), v = Eh(θ, δ), voteV alidity >

The vote encryption function produces an encryption u of a NOvote (b = −1) or Y ESvote (b = 1)

that can be associated with a candidate. The encryption of a Y ESvote or NOvote is performed

using exponential ElGamal with a random number τ , i.e. a Y ESvote corresponds to the exponen-

tial ElGamal encryption of 1 and a NOvote corresponds to the exponential ElGamal encryption of

-1.
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The parameter θ corresponds to a random confirmation number assigned to the candidate, and

the vote encryption function also encrypts θ with random factor δ, resulting in the return value v.

Finally, this function also computes vote validity attributes. The vote validity attributes are used to

verify if the encryption u is in fact an encryption of a Y ESvote or NOvote. These attributes are

computed based on the ballot validity proof proposed by Cramer et. al [33].

2. Vote validity VVh(u, voteV alidity) = True or False

The vote validity function returns True if the vote encryption u corresponds to an encryption of a

NOvote (b = −1) or Y ESvote (b = 1), i.e. if it is a valid vote. Returns False otherwise.

3. Receipt creation RCh(b, θ, τ, δ, c) = (ϑ, ω)

ϑ =

{
θ if b = 1 (Y ESvote)

2c− θ mod q if b = −1 (NOvote)
ω = τ × (c− ϑ) + δ mod q (A.1)

The receipt creation function outputs a receipt ϑ, ω that allows the voter to verify if the voter’s

computer encrypted the vote according to his intentions. The RCh function starts by computing a

verification code ϑ that corresponds to the candidate’s confirmation code θ if the vote is a Y ESvote,

and the symmetric of θ where c is the symmetry axis. The function also computes ω which is a

combination of the random factors τ and δ previously used to compute u and v.

4. Receipt validity RVh(u, v, c, ϑ, ω) = result

result =

{
True if Eh(c, ω) = uc−ϑ × v
False otherwise

(A.2)

The receipt validity function returns True if a receipt is valid and False otherwise. The verification

code ϑ is validated by verifying if uc−ϑ × v is the encryption of c with random factor ω. This is a

zero knowledge verification that can be done with only the knowledge of the public values.

5. Tally T F(homomorphicV oteAggregation) = (voteCount1, ..., voteCountn)

The tally function takes as input the homomorphic aggregation of the votes, i.e. the multiplication

of every submitted vote encryption u for each candidate, and returns the final tally, i.e. the number

of Y ESvotes for each candidate.

A.2 Entities

TrustedVote takes into consideration the following entities and services:
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• Electoral Commission (EC) - responsible for the entire election process, and authentication of all

public data.

• Enrollment Service (ES) - responsible for the enrollment of every voter.

• Election Registrar (ER) - service that voters register to vote on a specific election.

• Ballot Box (BBox) - service that voters use to send their vote.

• Bulletin Board (BB) - public service that shows the current state of the election, i.e. submitted

ballots and election public key.

• Verification Service (VS) - each organization runs an instance of the verification service that

verifies if the votes and receipts are correct and valid.

• Trustees (T ) - set of organizations and parties that keep secret an ElGamal [16] election asym-

metric key pair (Kpub,Kpriv). Each trustee has a share of Kpriv such that the decryption of a

message requires the collaboration of t < n trustees, where n is the total number of trustees [33].

• Voter’s device (V) - an ARM TrustZone-enabled mobile device that the voter uses to cast a vote

in elections.

It is assumed that each entity has an asymmetric key pair publicly known by the other entities. For

instance, the key pair of the Election Registrar service is represented as (KER,KpER), where KER is

the public key, and KpER the private key.

The encryption of message with KER is denoted by (message)KER
. The message and concatenation

of its signature with KpER is denoted by (message)KpER

A.3 Protocol

TrustedVote is built on top of an ElGamal election key (K,Kp) [16]. However, it requires that the

election private key Kp is split between a set of n trustees, such that a decryption operation requires

the cooperation of t < n trustees [33]. The votes are encrypted using the MarkPledge 3 technique, that

ensures the voter (or any independent organization) can verify if the vote is counted and is encrypted

correctly.

The protocol is divided in three phases: 1) the election setup, 2) the voting phase, and 3) the tally

and verification phase.
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Candidate Encryption u Vote Validity Receipt ϑ
Alice NOvote1 vv1 -
Bruno Y ESvote vv2 -
Donald NOvote2 vv3 -
Garvin NOvote3 vv4 -

Table A.1: An example of an empty ballot. The position of the Y ESvote is randomly selected.

A.3.1 Election Setup

The Election Setup stage is performed before the election period and is where the election public

key K is computed by the Trustees and validated by the Electoral Commission. Also at this phase, the

voters who intend to vote on the upcoming election must register and commit an empty ballot. In this

Section, we describe the details of the Election Setup phase.

1. Tt → Bulletin Board | (pkt)KpTt

Each trustee t sends his share pkt of the election public key K to the Bulletin Board. The election

public key K is now available.

2. EC → Bulletin Board | (candidateList)KpEC
, (electionParameters)KpEC

It is the responsibility of the Electoral Commission to provide the candidate list and verify the

computation of the election public key K. Therefore, in this step the Electoral Commission sends

the signed candidate list, and validates the election public key K by sending a signature to the

Bulletin Board.

3. ER→ V | (candidateList)KpEC
, (electionParameters)KpEC

The voter client retrieves the candidate list, the election public key from the Election Registrar and

verifies the corresponding signatures.

4. V → ER | (ballot)KpV

A voter registers to vote by creating and committing an empty ballot to the Bulletin Board. A

TrustedVote ballot is a structure that contains the following information for each candidate:

• The canonical vote encryption, i.e. the u element returned by the vote encryption function

VEh of MarkPledge 3.

• The vote validity proof computed by the vote validity function VVh of MarkPledge 3.

• The vote receipt as returned by the RCh function of MarkPledge 3.

To create an empty ballot the voter creates a Y ESvote encryption (VEh with b = 1) and randomly

assigns it to a candidate. For the remaining candidates, it creates NOvote encryptions (VEh with
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Candidate Vote code
Alice A4CD
Bruno FF25
Donald BED1
Garvin 1AF5

Confirmation code: A32F

Table A.2: TrustedVote code card.

b = −1) for each one of the remaining candidates. The voter also includes in the empty ballot the

corresponding vote validities vv for each vote encryption. The vote receipt is not included in the

empty ballot.

The empty ballot is signed with the voter’s private keyKpV before sending to the Election Registrar.

Upon receiving the ballot, the Election Registrar validates the vote using VV from the MarkPledge

3 specification, respectively. Moreover, it also verifies if only one Y ESvote is present in the ballot,

by verifying the homomorphic sum of the vote encryptions. It signs the ballot and sends it to the

Bulletin Board.

5. V generates a random code card for the upcoming election.

Table A.2 shows an example of a code card. The code card is an association between a random

vote code (string) and a candidate. The code card also contains a confirmation code, that is the

confirmation code of the candidate that has the Y ESvote encryption in the empty ballot. This

confirmation code allows the voter to confirm in the receipt, by visually comparing strings, if the

vote matches his intentions.

The code card must be generated in a secure context and must be kept private from third parties

as the voter will use the vote codes (instead of the direct identification of the candidates) to vote.

A.3.2 Voting phase

The voting phase starts when the voting period starts and ends when the voting period ends. In this

phase, each voter that previously registered to vote in the Election Setup phase (Section A.3.1) creates

his final ballot and submits it to the Ballot Box.

1. Tt → Bulletin Board | (random number)KpTt

Each trustee t sends a random number to the public Bulletin Board in order to generate an election

challenge. The final election challenge c is computed by applying bitwise XOR to all random

numbers submitted by the trustees. This ensures that if at least one trustee is honest, then the
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Candidate Encryption u Vote Validity Receipt ϑ
Alice NOvote3 vv4 18DF
Bruno NOvote1 vv1 BA1D
Donald Y ESvote vv2 A32F
Garvin NOvote2 vv3 19EE

Table A.3: The final vote produced with the empty ballot of Table A.1 and where Donald is the selected candidate.

resulting election challenge is really random. The Electoral Commission validates the election

challenge c by posting its signature on the Bulletin Board.

2. Bulletin Board→ V | (c)KpEC

Then, the voter receives the election challenge computed in the previous step and validates its

signature. The election challenge is used, in the next step, by the voter, to create the vote receipt.

3. V oter → V | (voteCode)

The voter must now consult his code card and insert in the voter’s mobile device V the desired vote

code. The vote code is translated into the corresponding candidate and the final vote is computed.

The final vote is computed by rotating the vote encryptions (and the corresponding vote validities)

until the Y ESvote matches the desired candidate. Finally, the voter’s device V computes the

receipt ϑ for each candidate, using the receipt creation function RCh of MarkPledge 3, and prints it

to the voter. The voter confirms that the vote matches his intentions by checking if the confirmation

code on the code card is linked with the desired candidate.

Table A.3 demonstrates the final vote when Donald (from the empty ballot in Table A.1) is the

selected candidate. In the code card (see Table A.2) the confirmation code is A32F. When the

receipt is shown to the voter, he confirms that the final vote matches his intentions by checking

whether A32F is linked with the candidate Donald. Therefore, only a person with access to the

code card acknowledges how a voter cast his vote.

4. V → BBox | (final vote)KpV

After the voter confirms that the final vote matches his intentions, the final vote (the vote encryp-

tions, vote validity attributes and receipts) are sent to the Ballot Box. The Ballot Box service invokes

the vote validity VV〈 and the receipt validity RV〈 functions of MarkPledge 3 for each candidate in

order to verify the correctness of the final vote. After verifying its signature, the final vote is pub-

lished in the public Bulletin Board. The voter must confirm that his vote is published in the Bulletin

Board.
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A.3.3 Tally and verification

The tally and verification phase is the last phase and occurs after the voting period has ended. In

this phase, the homomorphic aggregation of the votes is computed by the Bulletin Board and signed by

the Electoral Commission, and later decrypted with the cooperation of t < n trustees. With the results

posted in the Bulletin Board, any independent third party organization can verify the correctness of the

entire election.

1. EC → Bulletin Board | (homomorphic vote aggregation)KpEC

After the election period is over, the Bulletin Board computes the homomorphic vote aggregation

and asks the Electoral Commission to validate the computation by signing it.

2. Ti → Bulletin Board | (partial decryption, decryption proof)KpTi

Each trustee i collects the homomorphic vote encryption (verifying its signature) from the Bulletin

Board and sends its partial decryption and decryption proof to the Bulletin Board. With t valid

partial plain texts, the Bulletin Board is able to decrypt the final tally. The Electoral Commission

signs the result and now the results are available.

3. Bulletin Board→ V S | (candidate list, ballot list, final votes)KpEC

Any independent organization can retrieve the election data from the public Bulletin Board and

verify every vote encryption validity for every vote, every receipt validity for every receipt and all

the signatures.
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