Planeamento da Implementação de um Laboratório de Ensino Superior

Operations and Logistics Lab

Mariana João Gomes Patrício Dias Valente

Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial

Orientadoras: Profª. Susana Isabel Carvalho Relvas
 Profª. Tânia Rodrigues Pereira Ramos

Júri

Presidente: Prof. Francisco Miguel Garcia Gonçalves de Lima
Orientadora: Profª. Susana Isabel Carvalho Relvas
Vogal: Prof. Carlos Manuel Pinho Lucas de Freitas

Outubro de 2017
Agradecimentos

Em primeiro lugar gostaria de agradecer à Professora Susana Relvas e à Professora Tânia Ramos por todo o apoio, constante disponibilidade e motivação que me deram ao longo desta dissertação. Agradeço a oportunidade que me concederam por ter desenvolvimento esta dissertação sob a sua orientação.

Um agradecimento também aos meus pais e ao meu irmão por todo o apoio e incentivo que me deram ao longo de todo este percurso, proporcionando-me sempre as melhores condições, contribuindo para o meu crescimento quer pessoal quer profissional. Foram sempre um exemplo para mim e, portanto, é graças a eles que consegui chegar até aqui.

Agradeço igualmente aos meus amigos toda a amizade, confiança depositada e apoio prestado. Não posso deixar de agradecer também, aos meus colegas com quem partilhei muitas horas, que com espírito de entreajuda, se tornaram também meus amigos ao longo deste percurso académico.

A todos, bem hajam.
Resumo

A educação de alunos do Ensino Superior na área da engenharia tem recebido uma atenção crescente nos últimos anos. As Escolas querem tornar-se numa referência em termos de métodos e ambientes de aprendizagem, com consequentes bons níveis de aproveitamento. Mas não é só a nível da educação que as Escolas querem ser reconhecidas. Existe igualmente a preocupação de as mesmas reforçarem o seu contributo na investigação e fortalecer a sua visibilidade, causando um maior impacto ao nível da sociedade.

É neste contexto que surge o projeto do Operations and Logistics Lab, um laboratório de Ensino Superior inserido nas áreas da Logística e Operações. O mesmo pretende enriquecer não só o grupo que o propõe e coordenará, como também o IST em geral, contribuindo assim para os seus três pilares fundamentais: Ensino, Investigação e Sociedade.

Esta dissertação propõe o planeamento do laboratório, até à sua fase de lançamento. Para isso, e através da pesquisa de laboratórios existentes, foi desenvolvido um benchmarking por forma a serem encontradas boas práticas aplicadas nos mesmos. Focando no pilar do ensino, foi desenvolvido um plano de atividades a ser implementado, que resultou na definição dessas atividades. Um layout para cada uma delas foi igualmente desenvolvido, de acordo com os requisitos necessários. Para finalizar o planeamento do laboratório foi ainda necessário desenvolver um cronograma que inclui o planeamento dos próximos passos a serem seguidos e que prevê que o laboratório seja implementado num período de 9 meses.

Palavras-Chave: Melhores Práticas Educacionais, Ensino da Engenharia, Aprendizagem Ativa, Laboratórios de Engenharia
Abstract

The students’ education in Higher Education, in the engineering area, has received a growing attention in the last years. Each school ambition is to be a reference in terms of learning methods and environment, resulting in good levels of exploitation. But the level of education is not the only one where schools want to be recognized. The concern of reinforcing their contribution in research and strengthen their visibility, causing a higher impact on the society level, is also existing.

Is in this context that the Operations and Logistics Lab project arises. A higher education laboratory, inserted in the areas of Logistics and Operations. This lab pretends to enrich not only the proposing group and future coordinators, as also the IST in general, contributing for their own fundamental pillars: Education, Research and Society.

This dissertation proposes the planning development of the laboratory, until their launch phase. For that, through research of already existing laboratories, was developed a benchmarking to be found applied good practices. Focusing in the education pillar, was developed an activity plan to be implemented, which has resulted in the definition of that activities. A layout for which one was also developed, according to the required needs. To finish the laboratory planning was also needed to develop a timeline, which includes the planning of the next steps to be followed and which forecast the laboratory implementation in a 9 months’ period.

Key-words: Best Educational Practices, Learning Engineering, Active Learning, Engineering Laboratories
Índice

1. Introdução .. 1
 1.1. Contextualização do Problema .. 1
 1.2. Objetivos da Dissertação ... 1
 1.3. Estrutura da Dissertação ... 2
2. Definição do Problema ... 3
 2.1. Descrição Geral IST ... 3
 2.1.1. Missão e Visão ... 4
 2.1.2. Plano Estratégico.. 4
 2.2. Estrutura Orgânica do IST .. 5
 2.3. Ensino: Oferta Formativa do IST .. 6
 2.3.1. Oferta Formativa do DEG de 1º ciclo ... 7
 2.3.2. Oferta Formativa do DEG de 2º ciclo ... 9
 2.4. Operations and Logistics Lab .. 10
 2.4.1. Ensino .. 11
 2.4.1.1. Gestão de Operações .. 11
 2.4.1.2. Gestão de Cadeias de Abastecimento .. 12
 2.4.1.3. Logística e Distribuição .. 13
 2.4.1.4. Gestão de Armazéns e Materiais ... 13
 2.4.1.5. Planeamento e Controlo de Operações ... 14
 2.4.1.6. Teses de Mestrado .. 15
 2.4.2. Investigação .. 16
 2.4.2.1. Teses de Doutoramento ... 16
 2.4.2.2. Pos-Docs ... 16
 2.4.2.3. Investigadores Visitantes .. 18
 2.4.2.4. Projetos de Investigação .. 18
 2.4.3. Sociedade ... 20
 2.5. Conclusão do Capítulo .. 22
3. Estado da Arte .. 23
 3.1. Práticas Pedagógicas ... 23
 3.1.1. Nível de Aprendizagem ... 24
 3.1.2. Aprendizagem Ativa ... 25
 3.2. Laboratórios .. 26
 3.2.1. Objetivos de um Laboratório ... 27
 3.2.2. Formatos de Laboratórios ... 28
 3.3. Conclusão do Capítulo .. 30
4. Metodologia .. 32
 4.1. Desenvolvimento de um Benchmark ... 32
 4.2. Desenvolvimento do Plano de Atividades ... 36
4.3. Definição de Atividades ... 38
4.4. Definição do Layout .. 43
4.5. Planeamento da Implementação ... 44
5. Benchmark ... 45
 5.1. Universidade de Dortmund ... 45
 5.1.1. Centro de Investigação do Innovationlab 46
 5.1.2. Centro de Aplicação do Innovationlab ... 46
 5.2. Georgia Tech .. 47
 5.2.1. Laboratório de Otimização e Aprendizagem Interativa 48
 5.2.2. Laboratório da Fábrica Virtual ... 49
 5.3. Instituto Politécnico de Setúbal ... 49
 5.4. Conclusões ... 51
6. Atividades .. 54
 6.1. Plano de Atividades ... 54
 6.2. Definição das Atividades ... 56
 6.2.1. Objetivos ... 56
 6.2.1.1. Beer Game .. 56
 6.2.1.2. Incoterms .. 57
 6.2.1.3. Estratégias Picking .. 58
 6.2.1.4. Picking ... 59
 6.2.1.5. Construção Paletes ... 60
 6.2.1.6. Produção de Kits .. 61
 6.2.1.7. Balanceamento Linha/ Layout ... 62
 6.2.1.8. Risk Pooling Game ... 63
 6.2.2. Estruturação dos guias .. 64
 6.2.2.1. Guia apoio aos docentes – Atividade de picking 64
 6.2.2.2. Guia apoio aos alunos – Atividade de picking 66
 6.2.2.3. Guia apoio aos docentes – Atividade de balanceamento de linha/ layout . . 68
 6.2.2.4. Guia apoio aos alunos – Atividade de balanceamento de linha/ layout 69
 6.3. Conclusões ... 70
7. Definição do Layout e Planeamento da Implementação 72
 7.1. Layouts ... 72
 7.1.1. Beer game, incoterms e risk pooling .. 72
 7.1.2. Estratégias de picking ... 73
 7.1.3. Picking ... 73
 7.1.4. Construção de paletes ... 74
 7.1.5. Produção de kits ... 75
 7.1.6. Balanceamento de linha/ layout ... 75
 7.2. Planeamento da Implementação ... 76
 7.3. Conclusões ... 78
8. Conclusões e Trabalhos Futuros .. 79
Referências .. 81
Anexos .. 85
Lista de Figuras

Figura 1: Organograma IST (fonte: Área para a Qualidade e Auditoria Interna) ..5
Figura 2: Número de Ofertas Formativas do IST para cada ciclo ..7
Figura 3: Número de inscritos e percentagem de aprovação em Gestão de Operações12
Figura 4: Número de inscritos e percentagem de aprovação em Gestão de Cadeias de Abastecimento12
Figura 5: Número de inscritos e percentagem de aprovação em Logística e Distribuição13
Figura 6: Número de inscritos e percentagem de aprovação em Gestão de Armazéns e Materiais14
Figura 7: Número de inscritos e percentagem de aprovação em Planeamento e Controlo de Operações15
Figura 8: Teses Concluídas em MEGI ...16
Figura 9: Pirâmide da Aprendizagem (fonte: adaptado de Krivickas (2005)) ..25
Figura 10: Esquematização da Metodologia ...32
Figura 11: Etapas benchmarking (fonte: Adaptado de Partovi (1994)) ..35
Figura 12: Planificação da atividade de picking ..66
Figura 13: Guia de apoio aos alunos - atividade de picking ..67
Figura 14: Planificação da atividade de balanceamento de linha/layout ..69
Figura 15: Guia de apoio aos alunos - atividade de balanceamento de linha/layout70
Figura 16: Layout atividades beer game, risk pooling e incoterms ...72
Figura 17: Layout da atividade de estratégias de picking ..73
Figura 18: Layout da atividade de picking - fluxo por encomenda ..74
Figura 19: Layout da atividade de picking - fluxo por produto ...74
Figura 20: Layout da atividade de construção de paletes ..75
Figura 21: Layout atividade de produção de kits ...75
Figura 22: Layout inicial da atividade de balanceamento de linha/layout ...76
Figura 23: Layout final da atividade de balanceamento de linha/layout ..76
Figura 24: Cronograma do laboratório ...77
Lista de Tabelas

Tabela 1: Plano curricular do 1º ano da LEGI ... 8
Tabela 2: Plano curricular do 2º ano da LEGI ... 8
Tabela 3: Plano curricular do 3º ano da LEGI ... 8
Tabela 4: Plano curricular do 1º ano do MEGI ... 9
Tabela 5: Plano curricular do 2º ano do MEGI ... 10
Tabela 6: PhD Concluídos ... 17
Tabela 7: PhD em curso .. 18
Tabela 8: Projetos de investigação concluídos ... 19
Tabela 9: Projetos de investigação em curso ... 20
Tabela 10: Comparação entre os diferentes formatos de Laboratórios (fonte: adaptado de Balamuralithara e Woods (2007)) ... 30
Tabela 11: Benchmarking no Ensino Superior ... 34
Tabela 12: Estrutura da Taxonomia de Bloom (adaptado de Krathwohl (2002)) 40
Tabela 13: Categorias do processo cognitivo da taxonomia revista de Bloom (adaptado de Anderson (2006)) ... 41
Tabela 14: Dimensão do conhecimento da taxonomia revista de Bloom (adaptado de Anderson (2006)) ... 42
Tabela 15: Parceiras do laboratório de logística do Instituto Politécnico de Setúbal .. 50
Tabela 16: Aspetos considerados nos diferentes laboratórios 52
Tabela 17: Plano de Atividades proposto ... 54
Tabela 18: Plano de Atividades final ... 56
Tabela 19: Classificação dos objetivos do Beer Game segundo a Taxonomia Revista de Bloom ... 57
Tabela 20: Classificação dos objetivos da atividade de Incotermes segundo a Taxonomia Revista de Bloom .. 58
Tabela 21: Classificação dos objetivos da atividade Estratégias de Picking segundo a Taxonomia Revista de Bloom .. 59
Tabela 22: Classificação dos objetivos da atividade de Picking segundo a Taxonomia Revista de Bloom .. 60
Tabela 23: Classificação dos objetivos da atividade de Construção de Paletes segundo a Taxonomia Revista de Bloom .. 61
Tabela 24: Classificação dos objetivos da atividade de Produção de Kits segundo a Taxonomia Revista de Bloom .. 62
Tabela 25: Classificação dos objetivos da atividade de Balanceamento de Linha segundo a Taxonomia Revista de Bloom .. 63
Tabela 26: Classificação dos objetivos do Risk Pooling Game segundo a Taxonomia Revista de Bloom .. 64
Tabela 27: Legenda da simbologia dos layouts .. 72
Tabela 28: Equipamentos e materiais das atividades ... 78
Lista de Acrónimos

DEG – Departamento de Engenharia e Gestão

IST – Instituto Superior Técnico

LEGI – Licenciatura em Engenharia e Gestão Industrial

MEGI – Mestrado em Engenharia e Gestão Industrial

PhD – Philosophiae Doctor

Pos-Docs – Pós-doutoramentos

UC’s – Unidades Curriculares
1. Introdução

Neste primeiro capítulo será apresentada uma contextualização do problema, onde serão apresentados os motivos para a inclusão de um laboratório de logística e operações, orientado para o Ensino Superior, assim como o objetivo da presente dissertação e a estrutura do documento em que irá ser apresentado.

1.1. Contextualização do Problema

O Operations and Logistics Lab integra-se no grupo de disciplinas de Operações e Logística que, por sua vez, pertence à Área Disciplinar de Engenharia e Gestão de Sistemas, pertencente à Área Científica com a mesma designação do Departamento de Engenharia e Gestão (DEG). O grupo de disciplinas de Operações e Logística encontra-se presente em todos os ciclos de ensino que o Instituto Superior Técnico (IST) oferece através da sua oferta formativa. As Unidades Curriculares (UC’s) deste grupo englobam programas que abordam as temáticas que vão desde a Gestão de Cadeias de Abastecimento até à Logística e à Gestão de Operações. Assim, o Operations and Logistics Lab pretende ser um laboratório de Ensino Superior, dedicado ao ensino, investigação e ligação à sociedade, na área disciplinar de Operações e Logística. O Operations and Logistics Lab já foi aprovado em sede do Conselho de Gestão do IST, e foi atribuído um espaço físico situado no Campus do Taguspark, de modo a apoiar, em primeira instância, atividades de Unidades Curriculares da Licenciatura e Mestrado em Engenharia e Gestão Industrial.

Um engenheiro tem que ir além do conhecimento teórico, não requerendo apenas a compreensão de determinados conceitos específicos, mas conjugando-os com conhecimento prático. Posto isto, segundo os autores Balamuralithara e Woods (2009), existem dois ambientes distintos de aprendizagem no que diz respeito à educação numa escola de engenharia: a sala de aula e os laboratórios. De acordo com Zull (2004), é através da ligação do conhecimento à experiência que surge o conceito de aprendizagem ativa, sendo que a melhor forma de um aluno poder tirar proveito desse tipo de aprendizagem é num laboratório (Krivickas 2005). Segundo Ernst (1983), o laboratório é um local onde podem ser aprendidos e desenvolvidos novos conhecimentos, por forma a obter uma percepção do que acontece na realidade.

Como escola de engenharia, todos os conhecimentos teóricos lecionados nestas e outras temáticas devem ser reforçados através de uma componente experimental, onde técnicas possam ser testadas e onde possa ser construída uma plataforma de experiências. Assim, o fortalecimento do ensino passa por uma aprendizagem mais ativa por parte dos alunos. É com este propósito que surge o Operations and Logistics Lab, que para além do fortalecimento em termos de ensino, irá também potenciar a investigação associada ao grupo de disciplinas de Operações e Logística e a ligação com a sociedade.

1.2. Objetivos da Dissertação

Esta dissertação tem como principal objetivo o planeamento de um laboratório até à sua fase de lançamento. Através do desenvolvimento de um benchmark, serão procuradas práticas em laboratórios
jà existentes, que sirvam como orientação para a implementação do mesmo. Será estruturado um plano de atividades de ensino de apoio às Unidades Curriculares em Operações e Logística, onde serão igualmente definidas e preparadas algumas dessas atividades a serem implementadas no laboratório, em ambiente de aula laboratorial. Para além do plano e desenvolvimento dessas atividades, será criado também um layout para cada uma delas, conforme os requisitos e material necessário, para que uma vez complementados, façam parte do laboratório.

1.3. Estrutura da Dissertação

Esta dissertação encontra-se organizada da seguinte forma:

Capítulo 1) Introdução - Neste capítulo é apresentada uma contextualização do problema e os objetivos proposto para a dissertação;

Capítulo 2) Definição do Problema - No segundo capítulo será feita uma descrição geral do Instituto Superior Técnico, desde a sua estrutura orgânica à sua oferta formativa. No decorrer do presente capítulo o conteúdo irá convergir para o Departamento de Engenharia e Gestão, acabando por se focar no grupo de disciplinas de Operações e Logística. Aqui será também apresentada a motivação para a criação do Operations and Logistics Lab;

Capítulo 3) Estado da Arte - Neste capítulo será apresentada a revisão da literatura existente sobre boas práticas pedagógicas, que melhorem o ensino e a aprendizagem, aplicadas à área da engenharia, focando-se posteriormente no conceito de aprendizagem ativa. Será também feita uma pesquisa de literatura relacionada com o tipo de laboratórios existentes no âmbito de uma escola de Ensino Superior de Engenharia, bem como os seus objetivos;

Capítulo 4) Metodologia - Este capítulo engloba a metodologia proposta, que irá ser seguida nesta dissertação;

Capítulo 5) Benchmark - No quinto capítulo será feito um benchmarking a laboratórios relacionados com operações e logística, já existentes, em escolas de Ensino Superior;

Capítulo 6) Atividades - Neste capítulo será apresentado um plano de atividades de ensino que irá fazer parte do laboratório, bem como a definição das mesmas, incluindo os seus objetivos. Serão ainda desenvolvidas algumas das atividades, criando dois suportes de trabalho destinados aos docentes e aos alunos;

Capítulo 7) Definição Layout e Planeamento da Implementação - No sétimo capítulo será apresentado uma proposta de layout para cada uma das atividades pertencentes ao plano definido no capítulo anterior, de acordo com os requisitos necessários à execução das mesmas. Para além disso será desenvolvido um cronograma onde será incluído o planeamento dos restantes passos a serem realizados até finalmente o laboratório poder ser implementado;

Capítulo 8) Conclusões e Trabalhos Futuros – Por fim, o último capítulo apresenta as principais conclusões desta dissertação, bem como serão igualmente apresentados possíveis trabalhos a serem desenvolvidos no futuro, dentro do âmbito do laboratório.
2. Definição do Problema

Neste capítulo irá ser apresentada uma descrição do Instituto Superior Técnico, a sua estrutura orgânica e sua oferta formativa. Será dado maior destaque ao departamento de Engenharia e Gestão (DEG) e sua oferta formativa, uma vez que o Operations and Logistics Lab integrará este departamento e complementará as atividades desenvolvidas pelo mesmo. A descrição das atividades desenvolvidas pelo DEG com potencial para serem integradas no Operations and Logistic Lab será feita com base nos três pilares fundamentais em que o Instituto Superior Técnico assenta: o Ensino, a Investigação e a Sociedade.

2.1. Descrição Geral IST

O Instituto Superior Técnico foi fundado a 23 de maio de 1911 por Alfredo Bensaúde, a quem se deve também a reforma do ensino da Engenharia em Portugal. Até ao ano de 2012, o Técnico pertencia à Universidade Técnica de Lisboa sendo que, de acordo com o Decreto Lei nº 266-E/2012, a partir de 2013 passou a fazer parte da Universidade de Lisboa. Esta alteração deveu-se à fusão entre as duas instituições, que juntou as diversas áreas do conhecimento, com o objetivo de criar as melhores condições para acompanhar a evolução da ciência, tecnologia, artes e humanidades. Como uma universidade de renome e das mais solicitadas em Portugal nas áreas de Arquitetura, Engenharia, Ciência e Tecnologia, atualmente e, segundo o ranking de US News, ocupa o primeiro lugar do ranking em Portugal.

O Instituto Superior Técnico possui atualmente três campus. O campus da Alameda, do Taguspark e o campus Tecnológico e Nuclear.

O campus da Alameda, que é privilegiado pela sua localização no centro de Lisboa, foi construído sob a direção de Duarte Pacheco e concluído em 1937. Foi, então, o primeiro pólo do Técnico e continua a ser aquele onde estão instalados os principais órgãos e também aquele que mais alunos acolhe, uma vez que é onde se encontra a grande maioria dos cursos existentes. O conjunto de infraestruturas aqui presentes contribui para um dos pontos fulcrais que o Técnico mais preza que é a qualidade do ensino.

O campus do Taguspark é mais recente, tendo sido inaugurado em 2001. No entanto, apenas em 2009 foram concluídos todos os módulos que compõem o edifício. Situa-se em Porto Salvo, concelho de Oeiras, no parque da Ciência e Tecnologia. A opção de construção de um polo nesta zona com a atual envolvente tem uma explicação estratégica que advém da ligação mais próxima entre a universidade e as empresas.

Por último, o campus Tecnológico e Nuclear, que se situa no concelho de Loures, abriga o Reator Português de Investigação, bem como a Unidade de Proteção e Segurança Radiológica. Este pólo tem o importante papel de apoiar cientificamente e tecnicamente o Governo nas áreas das ciências e...

1 As informações apresentadas na secção 2.1 foram obtidas através do site institucional do IST.
técnicas nucleares. Atualmente, este campus está apenas direcionado para a investigação e formação avançada. No entanto, está prevista a abertura de um novo curso de 2° ciclo nestas instalações. Este campus pertence ao Instituto Tecnológico e Nuclear, I.P., tendo no ano de 2012, de acordo com o Decreto Lei n°29/2012, passado para o Instituto Superior Técnico.

2.1.1. Missão e Visão

A missão do IST consiste em, através da combinação de um ensino de excelência com atividades de Investigação, Desenvolvimento e Inovação (ID&I), dotar os seus alunos de conhecimento nas áreas de Arquitetura, Engenharia, Ciência e Tecnologia para que possam contribuir para o desenvolvimento e progresso da sociedade.

Como visão, o Técnico pretende ser uma das melhores universidades europeias de Engenharia, Ciência e Tecnologia. Assim, pretende-se que se atraia todo o tipo de pessoas, desde estudantes a investigadores, que criem valor para as áreas que o Técnico desenvolve, criando um ambiente internacional, de culturas variadas e que elevem assim o estatuto do Técnico pelo mundo fora.

2.1.2. Plano Estratégico

Para os próximos 5 anos, as direções estratégicas que o Técnico se propõe seguir assentam em três prioridades que estão relacionadas com: o ambiente de aprendizagem, a liderança na investigação e o impacto global na sociedade que se pretende alcançar.

Começando por abordar o primeiro ponto relativo ao ambiente de aprendizagem, o Técnico tem como objetivo tornar-se como uma referência em termos da sua cultura de aprendizagem, do seu ambiente, metodologia e resultados. Para isso, pretende criar ações específicas que contribuam diretamente para esta prioridade. Essas ações incluem tanto o desenvolvimento de novos espaços que estejam disponíveis para todos os estudantes, não só do Técnico, como também para estudantes de outras instituições, como a melhoria das instalações já existentes. O desenvolvimento de plataformas e-learning e também de outros mecanismos que possibilitem um melhor aproveitamento por parte dos estudantes, é uma outra ação que está em vista.

Relativamente à investigação, o Técnico pretende manter e reforçar o seu estatuto de líder. Uma das ações que permite reforçá-lo passa pelo desenvolvimento de suportes que possibilitem aumentar as participações do Técnico em projetos de larga escala e que os mesmos sejam financiados internacionalmente. Outra das ações passa por um investimento que permita a renovação de instalações que servem como base e suporte a determinadas áreas com uma grande componente experimental para que projetos nessa área possam vir a ser financiados por outras estruturas mais diversificadas de financiamento.

Em relação ao impacto global na sociedade, o Técnico nos próximos cinco anos pretende fortalecer a sua visibilidade, em todas as áreas (económica, tecnológica, cultural e social), tanto a nível nacional como internacional. Para isso, pretende-se que, por um lado, seja fortalecido o espírito empreendedor

3 As informações contidas nas secções 2.1.1 e 2.1.2 foram obtidas através da consulta do documento referente ao Plano Estratégico do Técnico.
entre alunos e investigadores e também reforçar a ligação entre os alunos e as empresas, e por outro, melhorar a visibilidade através da realização de grandes eventos nas suas instalações ou da aplicação de técnicas de marketing, tais como a implementação do sistema CRM (*Customer Relationship Management*), que potenciem grande interesse por parte de universidades e alunos internacionais.

2.2. Estrutura Orgânica do IST

Fazem parte dos Órgãos do IST o Conselho de Escola, o Conselho de Gestão, o Presidente do IST, o Conselho Pedagógico e o Conselho Científico. O Técnico é também constituído por Órgãos Consultivos, de onde faz parte a Assembleia de Escola, o Conselho Consultivo, o Conselho de Departamentos, de Estruturas Transversais e o Conselho de Unidades de Investigação. E, por último, no Técnico ainda existem os Órgãos não estatuários, que são subdivididos em Conselhos para a Gestão da Qualidade, do Coordenador de Avaliação, do Coordenador da Avaliação dos Docentes, de Apreciação da Investigação e Ensino e ainda das Comissões de Acompanhamento do plano Estratégico e de Segurança do Reator Português de Investigação.

O Conselho de Escola é o órgão de decisão estratégica e de fiscalização do cumprimento da lei, dos Estatutos e da missão do IST. É composto por docentes, investigadores, estudantes e funcionários previamente eleitos. Este órgão é responsável por eleger o Presidente do IST, que constitui o Conselho de Gestão. O Conselho de Gestão, constituído também pelos Vice-Presidente e por um Administrador, tutela todos os serviços e todos os *campi* pertencentes ao Técnico. O Presidente do IST é responsável por nomear os respetivos Presidentes do Conselho Pedagógico, Conselho Científico, do Departamento, da Unidade de Investigação e ainda os respetivos Coordenadores de Curso e de Estruturas Transversais. Na Figura 1 está esquematizado resumidamente um organograma do IST⁴.

![Organograma IST](https://aqai.tecnico.ulisboa.pt/files/sites/27/estrutura-organizacional-das-unidades-de-missao-e-suporte.pdf)

De acordo com os Estatutos do Instituto Superior Técnico (2013), os departamentos “são unidades de ensino e investigação correspondentes a grandes áreas do conhecimento conjugando o ensino do 1.º, 2.º e 3.º ciclos, a especialização e a formação profissional com a investigação fundamental e aplicada, o desenvolvimento tecnológico, a prestação de serviços científicos e técnicos à comunidade e a cooperação internacional”. Cada departamento existente é responsável por definir os seus próprios fins e a constituição da sua estrutura interna. Cada departamento tem um regulamento elaborado por todos os seus docentes e investigadores, sendo depois aprovado pelo Conselho de Escola, sob proposta do Presidente do IST e ouvido o Conselho Científico.

Atualmente existem 10 departamentos: Departamento de Bioengenharia (DBE), Departamento de Engenharia Civil, Departamento de Arquitetura e Georecursos (DECivil), Departamento de Engenharia Eletrónica e de Computadores (DEEC), Departamento de Engenharia e Ciências Nucleares (DECN), Departamento de Engenharia e Gestão (DEG), Departamento de Engenharia Informática (DEI), Departamento de Engenharia Mecânica (DEM), Departamento de Engenharia Química (DEQ), Departamento de Física (DF) e, por último, o Departamento de Matemática (DM).

2.3. Ensino: Oferta Formativa do IST

Como ensino de excelência, o Técnico apresenta uma grande variedade de cursos. Para determinadas áreas, existe a possibilidade de se ingressar numa licenciatura (1ºciclo) de 3 anos apenas, que é composta por uma formação base em matemática, física e química, áreas comuns a todos os cursos, como também ciências de engenharias e outras áreas mais específicas que são diferentes de curso para curso. Atualmente, existem no Técnico 9 cursos de licenciatura. No entanto, um aluno com uma licenciatura em determinada área de engenharia pode sempre continuar a sua formação tornando-a mais específica e ingressar num programa de mestrados (2º ciclo), durante dois anos, existindo 29 opções de escolha diferentes. Desse leque de mestrados, existem programas que estão envolvidos em atividades de investigação e outros que possibilitam a sua realização parcial noutras universidades fora do Técnico.

Existem também ofertas de ensino onde o programa inclui mestrado integrado (1º e 2º ciclos) e tem a duração de cinco anos, sendo que a formação é idêntica a uma licenciatura e posterior mestrado. Para estes casos existem 10 opções distintas.

Depois de concluída uma formação de cinco anos, onde o aluno obtém o grau de Mestre, há a possibilidade de o mesmo expandir a sua formação e ingressar num programa de doutoramento (3º ciclo). Estes programas fazem com que os seus alunos participem em projetos de investigação, tanto a nível nacional como internacional e que através da sua investigação criem resultados inovadores que possibilitem a evolução da ciência. Para esta formação, o Técnico oferece 33 programas diferentes.

Existe ainda oferta de outros programas de 3º ciclo para quem já tem alguma experiência profissional e quer alargar e aprofundar os seus conhecimentos. Fazem parte deste programa 8 cursos diferentes que conduzem à obtenção de um Diploma de Formação Avançada (DFA). Um resumo da oferta formativa encontra-se apresentado na Figura 2.
A oferta formativa está associada a cada departamento, ou seja, cada departamento é responsável por definir os cursos de 1º, 2º e 3º ciclos que oferece. De seguida será descrita a oferta formativa do DEG, por ser o departamento que irá acolher o Operations and Logistics Lab como parte integrante da sua oferta formativa e atividades relacionadas. De realçar que, numa primeira instância, o Operations and Logistics Lab será focado na oferta formativa ao nível de 1º e 2º ciclo, pelo que serão estas as ofertas analisadas no âmbito do presente projeto e futura dissertação de mestrado.

Na sequência do processo de acreditação junto da A3Es (Agência de Avaliação e Acreditação do Ensino Superior), cuja avaliação teve lugar em dezembro de 2014, tanto a oferta formativa do 1º como do 2º ciclo foi acreditada e a sua reestruturação foi aprovada. As ofertas de 3º Ciclo foram acreditadas em 2013 (Programa Doutoral em Mudança Tecnológica e Empreendedorismo) e 2014 (Programas Doutorais em Engenharia e Gestão e Engenharia e Políticas Públicas, este último em cooperação com outros departamentos do IST).

2.3.1. Oferta Formativa do DEG de 1º ciclo

A Licenciatura em Engenharia e Gestão Industrial (LEGI) é a única oferta formativa do DEG de 1º ciclo e é um curso muito abrangente que consegue conciliar as áreas de engenharia com as áreas de gestão.

O curso está organizado por forma a que ao longo dos anos se tenha contacto com as duas áreas em simultâneo e que as primeiras unidades curriculares (UC) a serem lecionadas sirvam de base para as que lhes sucedem, tornando a aprendizagem mais eficaz e eficiente.

O primeiro ano é em muito comum a outros cursos de engenharia onde são adquiridos conhecimentos de ciências básicas, havendo já contacto com outras unidades curriculares específicas da área de gestão que servem como base, como por exemplo, a UC de Introdução à Gestão no 1º semestre e Microeconomia no 2º semestre. Na Tabela 1 está apresentado o plano curricular da LEGI correspondente ao primeiro ano.
Tabela 1: Plano curricular do 1º ano da LEGI

<table>
<thead>
<tr>
<th>1º Semestre</th>
<th>2º Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidades Curriculares</td>
<td>Unidades Curriculares</td>
</tr>
<tr>
<td>ECTS</td>
<td>ECTS</td>
</tr>
<tr>
<td>Álgebra Linear</td>
<td>Cálculo Diferencial e Integral II</td>
</tr>
<tr>
<td>6</td>
<td>7.5</td>
</tr>
<tr>
<td>Cálculo Diferencial e Integral I</td>
<td>Ciência de Materiais</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Elementos de Programação</td>
<td>Desenho e Modelação Geométrica</td>
</tr>
<tr>
<td>6</td>
<td>4.5</td>
</tr>
<tr>
<td>Introdução à Gestão</td>
<td>Mecânica e Ondas</td>
</tr>
<tr>
<td>4.5</td>
<td>6</td>
</tr>
<tr>
<td>Química</td>
<td>Microeconomia</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Seminários em Engenharia e Gestão Industrial</td>
<td>Microeconomia</td>
</tr>
<tr>
<td>1.5</td>
<td>6</td>
</tr>
</tbody>
</table>

No segundo ano continua a consolidar-se e a aprofundar-se a área da gestão, sendo que a área que tem maior destaque neste ano é a de engenharia, principalmente no 2º semestre, sendo que ainda se continuam a lecionar disciplinas de ciências básicas, comuns a outros cursos. À semelhança da tabela 1, a Tabela 2 diz respeito ao plano curricular do segundo ano.

Tabela 2: Plano curricular do 2º ano da LEGI

<table>
<thead>
<tr>
<th>1º Semestre</th>
<th>2º Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidades Curriculares</td>
<td>Unidades Curriculares</td>
</tr>
<tr>
<td>ECTS</td>
<td>ECTS</td>
</tr>
<tr>
<td>Análise Complexa e Equações Diferenciais</td>
<td>Termodinâmica e Fenómenos de Transporte</td>
</tr>
<tr>
<td>7.5</td>
<td>6</td>
</tr>
<tr>
<td>Contabilidade</td>
<td>Elementos de Eletrotecnia</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Eletromagnetismo e Ótica</td>
<td>Elementos de Engenharia Civil</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Macroeconomia</td>
<td>Fundamentos de Investigação Operacional</td>
</tr>
<tr>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Probabilidades e Estatística</td>
<td>Matemática Computacional</td>
</tr>
<tr>
<td>6</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Direito Empresarial</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

Por fim, no terceiro e último ano da licenciatura, apenas se tem contacto com disciplinas nas áreas da engenharia e da especialidade, ficando um aluno não só com conhecimentos sólidos que tem vindo a aprofundar nas áreas de gestão, como fica a perceber o funcionamento de uma organização. Na Tabela 3 encontra-se o plano curricular correspondente ao 3º ano.

Tabela 3: Plano curricular do 3º ano da LEGI

<table>
<thead>
<tr>
<th>1º Semestre</th>
<th>2º Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidades Curriculares</td>
<td>Unidades Curriculares</td>
</tr>
<tr>
<td>ECTS</td>
<td>ECTS</td>
</tr>
<tr>
<td>Elementos de Engenharia Mecânica</td>
<td>Avaliação de Projetos</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Elementos de Engenharia Química</td>
<td>Gestão da Qualidade e Segurança</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Gestão Financeira</td>
<td>Gestão Operações</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Gestão Industrial e Ambiente</td>
<td>Gestão de Sistemas Energéticos</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Marketing</td>
<td>Sistemas de Informação e Base de Dados</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
2.3.2. Oferta Formativa do DEG de 2º ciclo

O Mestrado em Engenharia e Gestão Industrial (MEGI) é também a única oferta formativa do DEG de 2º ciclo e é uma continuação da licenciatura com a mesma denominação, mas que também é muito procurado por outros alunos com outras áreas de formação. No mestrado serão adquiridos e aprofundados conhecimentos mais direcionados à área da engenharia e gestão industrial, que sejam aplicados a essa realidade com o objetivo de melhorar e otimizar processos.

Na Tabela 4 é apresentado o plano curricular correspondente ao primeiro ano de mestrado. A maior parte das disciplinas fazem parte de um tronco comum, sendo que no 2º semestre existe um grupo opcional, onde pode ser escolhida uma cadeira num grupo de três opções distintas.

<table>
<thead>
<tr>
<th>1º Semestre</th>
<th>ECTS</th>
<th>2º Semestre</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementos de Investigação Operacional</td>
<td>6</td>
<td>Avaliação e Gestão do Risco em Projetos</td>
<td>6</td>
</tr>
<tr>
<td>Gestão de Cadeias de Abastecimento</td>
<td>6</td>
<td>Gestão Estratégica</td>
<td>6</td>
</tr>
<tr>
<td>Gestão de Projetos</td>
<td>6</td>
<td>Logística e Distribuição</td>
<td>6</td>
</tr>
<tr>
<td>Introdução ao Projeto Mecânico</td>
<td>6</td>
<td>Simulação de Processos e Operações</td>
<td>6</td>
</tr>
<tr>
<td>Modelos de Apoio à Decisão</td>
<td>6</td>
<td>Síntese de Processos Químicos</td>
<td>6</td>
</tr>
<tr>
<td>Modelos de Apoio à Decisão (1)</td>
<td></td>
<td>Tecnologia Mecânica</td>
<td>6</td>
</tr>
<tr>
<td>Modelos de Apoio à Decisão</td>
<td>6</td>
<td>Telecomunicações e Redes de Computadores</td>
<td>6</td>
</tr>
</tbody>
</table>

Quanto ao segundo e último ano de mestrado, todas as UC’s existentes, à exceção do Projeto no 1º semestre e à Dissertação no 2º semestre, são opcionais e são apenas lecionadas no 1º semestre. A escolha fica ao critério dos alunos que têm de optar por três unidades curriculares de onze opções disponíveis. No mesmo semestre é realizado também o projeto em Engenharia e Gestão Industrial, sendo que o semestre seguinte é apenas dedicado à dissertação, para que o aluno obtenha o grau de Mestre. Na Tabela 5 encontra-se o currículo que diz respeito ao último ano de mestrado.
2.4. Operations and Logistics Lab

O Operations and Logistics Lab é um projeto que se insere numa escola de Engenharia e que pretende promover não só a excelência do ensino e investigação, como também pretende ser extensível à sociedade, nas temáticas que o grupo de Operações e Logística engloba.

Como tal, a missão do mesmo consiste na promoção da área de Operações e Logística através da inclusão dos três pilares base (Ensino, Investigação e Sociedade), intervindo na comunidade do IST e entidades, empresas e pessoas que a si estejam associadas.

Como visão, o mesmo pretende ser o primeiro laboratório nacional a nível de uma instituição de ensino superior na área de Operações e Logística, que integre os três pilares: ensino, investigação e sociedade.

Sendo que, na sua vertente de ensino o Operations and Logistics Lab pertence ao departamento de Engenharia e Gestão e em específico ao grupo de disciplinas de Operações e Logística, este subcapítulo será mais direcionado para as áreas que o mesmo engloba, abordando cada um dos três pilares mais aprofundadamente, como forma de serem mostrados os propósitos da criação do laboratório.

Para a análise de cada um dos pilares, comuns ao Técnico e ao Operations and Logistics Lab, será tido em conta um período temporal de 5 anos, a começar no ano letivo de 2011/2012 e a terminar no ano letivo de 2015/2016.
2.4.1. Ensino

Cada departamento está organizado em áreas científicas. No caso do DEG existem duas áreas distintas, a área da Engenharia e Gestão das Organizações e a área da Engenharia e Gestão de Sistemas. Cada área científica ainda vem subdividida em áreas de disciplinas. Neste caso, a cada área científica corresponde uma área de disciplinas com o mesmo nome, respectivamente. A cada área de disciplinas, surgem ainda grupos de disciplinas. Para a área da Engenharia e Gestão das Organizações existem quatro grupos de disciplinas que são: Estratégia de Organizações, Economia e Finanças, Mudança Tecnológica e Empreendedorismo e Fundamentos de Gestão. Já para a área de Engenharia e Gestão de Sistemas existem apenas dois grupos: Decisão e Informação e Operações e Logística. É sobre este último grupo de disciplinas, Operações e Logística, que se vai incidir.

Ao longo da LEGI e do MEGI, existem cinco cadeiras que pertencem a este grupo. São elas Gestão de Operações, Gestão de Cadeia de Abastecimento, Logística e Distribuição, Gestão de Armazém e Materiais e Planeamento e controlo de Operações. De seguida serão abordadas em mais detalhe cada uma delas, referindo os respetivos objetivos e também algumas estatísticas a elas associadas.

2.4.1.1. Gestão de Operações

Nesta área, esta é a primeira e única cadeira ao longo da licenciatura que um aluno de Engenharia e Gestão Industrial tem contacto. O seu principal objetivo é possibilitar que os alunos adquiram conhecimentos sobre os fundamentos gerais da Gestão de Operações. Esses conhecimentos irão permitir que os alunos adquiram capacidades de análise, de espírito crítico e de resolução de problemas, através do estudo de diversos métodos e técnicas que são habitualmente usadas nas organizações. Na Figura 3 estão apresentados dados referentes ao número de inscritos à cadeira e percentagem de aprovação de alunos, para cada ano letivo respetivamente.

Antes da restruturação, a cadeira de Gestão de Operações tinha 4,5 ECTS, e por isso uma carga horária durante a semana inferior. Atualmente tem 6 ECTS, tendo passado de apenas uma aula teórica de 2 horas por semana para duas aulas teóricas de 1 hora e 30 minutos. Relativamente aos turnos práticos, houve a necessidade de acrescentar mais um turno devido ao elevado número de alunos, passando agora a existirem 3 turnos disponíveis (cada uma com 1 hora e 30 minutos de aula), e assim permitir que os alunos tirem um maior proveito dessas aulas.
2.4.1.2. **Gestão de Cadeias de Abastecimento**

A unidade curricular de Gestão de Cadeias de Abastecimento é lecionada no 1º ano do 2º ciclo e pretende que os alunos adquiram conhecimentos que possibilitem a compreensão do que é, como funciona e como gerir uma cadeia de abastecimento. Assim, os alunos serão capazes de analisar uma cadeia e propor soluções para a mesma, tanto a nível estratégico, como tático e ainda operacional. À semelhança da cadeira de Gestão de Operações, a Figura 4 apresenta os dados relativos ao número de inscritos e respetiva percentagem de aprovação ao longo dos últimos cinco anos letivos. Desde o ano letivo 2011/2012 que esta cadeira tem mantido a carga horária a nível de aulas teóricas correspondente a duas aulas teóricas com 1 hora e 30 minutos cada. De notar que antes da reestruturação, além das aulas teóricas, os alunos frequentavam ainda um turno de seminário com uma duração de 2 horas. No entanto, com o aumento do número de alunos inscritos no ano letivo 2013/2014 foi necessária a criação de mais um turno de seminários, passando a existir três. Este número de turnos manteve-se após a reestruturação com a criação de três turnos práticos.
2.4.1.3. Logística e Distribuição

Tanto neste caso, como nos que serão abordados de seguida, esta unidade curricular é uma extensão da UC referida anteriormente. Por essa razão, surge a importância de uma cadeira como Gestão de Cadeias de Abastecimento ser a primeira a ser lecionada no 2º ciclo de todo o leque restante de disciplinas da área de Operações e Logística. O objetivo desta disciplina é permitir que os alunos sejam capazes de perceber qual a função da Logística e também permitir que os mesmos sejam capazes de aplicar diferentes métodos para os diferentes casos com que se deparem numa cadeia de abastecimento. Na Figura 5 apresentam-se os dados relativos ao número de inscritos e a percentagem de aprovação. É importante notar que o aumento de alunos inscritos no ano letivo 2015/2016 se deveu à restruturação que foi feita, passando esta unidade curricular a fazer parte do tronco comum do 2º ciclo.

Relativamente à carga horária, o número de aulas teóricas nos últimos cinco anos não sofreu qualquer alteração. Existem também dois turnos práticos por semana com 1 hora e 30 minutos cada. Em relação aos turnos práticos houve uma pequena alteração, onde a partir do ano letivo 2013/2014 foram incluídas aulas de laboratório (que atualmente são dedicadas à resolução de problemas de otimização em computador). Com a restruturação foi necessária a inclusão de mais um turno prático/laboratório, passando a existir três turnos disponíveis.

![Figura 5: Número de inscritos e percentagem de aprovação em Logística e Distribuição](image)

2.4.1.4. Gestão de Armazéns e Materiais

De todas as unidades curriculares pertencentes à área de Operações e Logística esta é a mais recente. Foi lecionada pela primeira vez apenas no ano letivo de 2013/2014. Faz parte do leque de disciplinas opcionais no 2º ano do 2º ciclo, mas, no entanto, de todas as possibilidades existentes é das que mais alunos inscritos apresenta. O seu objetivo é permitir que os alunos compreendam os processos e as técnicas de funcionamento de um armazém, desde a sua primeira fase de conceção, com a criação de um layout e seleção de equipamentos, até a uma fase mais avançada que englobe políticas de...
armazenamento e gestão de produtos, analisando também o seu desempenho. Na Figura 6 encontram-se os dados referentes a esta disciplina à semelhança dos casos anteriores.

Em relação aos turnos, foi a única que ainda não sofreu nenhuma alteração. Existem duas aulas teóricas semanais com 1 hora e 30 minutos cada e apenas um turno prático, também com a mesma duração.

2.4.1.5. Planeamento e Controlo de Operações

Por último, esta disciplina que é uma extensão de Gestão de Operações, permite dar a conhecer os principais processos e técnicas que são utilizados no planeamento e controlo de operações numa organização, nomeadamente na resolução de problemas com que uma empresa diariamente se depara, através da sua otimização com recurso a determinados softwares. Na Figura 7 encontram-se os dados relativos ao número de inscritos e percentagem de aprovação referente à cadeira de Planeamento e Controlo de Operações. O número de inscritos nunca sofreu variações significativas nestes últimos 5 anos, à exceção do último ano letivo em análise em que esta disciplina não foi lecionada devido à restruturação do MEGI. No ano letivo de 2016/2017 esta disciplina conta com 54 alunos inscritos.

Neste caso e em relação aos turnos teóricos, também não foi sofrida nenhuma alteração, existindo duas aulas semanais com 1 hora e 30 minutos cada. Analogamente ao que aconteceu com a disciplina de Logística e Distribuição, foram também criados horários específicos para laboratórios, pelas mesmas razões, o que no ano letivo de 2011/2012 não se verificava. Devido ao número de alunos inscritos, houve necessidade de ser criado mais um turno prático/ laboratório passando a existirem dois turnos disponíveis.
2.4.1.6. Teses de Mestrado

Para a realização de Dissertações de Mestrado, a área do grupo de disciplinas de Operações e Logística é aquela que é mais solicitada em todas as áreas disponíveis para o curso de Engenharia e Gestão Industrial. De um total de 192 teses concluídas durante o período analisado, 82 são dissertações na área de Operações e Logística, o que representa cerca de 43%. Por outro lado, das 82 dissertações, 64 delas foram aplicadas a casos práticos em empresas.

É importante referir que, para estes dados, apenas foram consideradas dissertações que são orientadas por professores do grupo de Operações e Logística, porque existem outras relacionadas com temáticas da área de Operações e Logística, mas que são orientadas por professores de outros grupos ou até mesmo de outros departamentos.

Na Figura 8 apresenta-se o número de dissertações concluídas em Engenharia e Gestão Industrial, independentemente do grupo de disciplinas a que pertence. Na mesma figura, também se encontra o número de teses aplicadas a casos práticos, podendo-se observar que estas apresentam um peso significativo (cerca de 53%).

6 Os dados apresentados nesta figura foram recolhidos através do secretariado do DEG.
2.4.2. Investigação

O grupo de disciplinas de Operações e Logística tem um grande papel na Investigação, que vai desde teses de doutoramento, programas de pós-doutoramento (pos-docs), projetos de investigação e ainda inclui programas que incluem a visita de investigadores por um determinado período de tempo. A seguir será apresentado resumidamente o que tem sido feito em cada um dos programas.

2.4.2.1. Teses de Doutoramento

No DEG, existem 3 programas doutorais distintos: Engenharia e Gestão, Mudança Tecnológica e Empreendedorismo e Engenharia e Políticas Públicas. No entanto, qualquer docente pode orientar alunos que frequentam outros programas doutorais, situação que tem vindo a ser verificada no grupo de Operações e Logística.

Num período temporal de cinco anos, foram concluídas 14 teses de doutoramento (Tabela 6) e neste momento estão em curso mais 12 candidatos (Tabela 7) para obter o presente grau. Todas as teses de doutoramento apresentadas nestas tabelas, foram e estão a ser orientadas por docentes do grupo de Operações e Logística.

2.4.2.2. Pos-Docs

Os pós-doutoramentos são programas em que a comunidade académica recebe recém doutorados de universidades nacionais ou internacionais para um determinado projeto de investigação e que tem a duração de três anos. Nos últimos cinco anos, o grupo de Operações e Logística teve um recém doutorado entre os anos de 2011 e 2013 e atualmente encontra-se outro programa em curso que teve início em 2016 e que terminará em 2018.
<table>
<thead>
<tr>
<th>Ano</th>
<th>Término</th>
<th>Título</th>
<th>Programa Doutoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>Downstream Petroleum Supply Chain Strategic and Tactical Planning under Uncertainty</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Optimal Distribution Supply Chain Inventory Planning</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>New Service Development through Lead-Users: An Empirical Investigation</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Towards Sustainable Supply Chains</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Supply Chain Management using Agents Theory</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Single line for assembly just-in-sequence multiple models</td>
<td>Líderes para as Indústrias Tecnológicas (IST, MIT Portugal)</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Scheduling of Multipurpose Batch Plants, Towards the Development of a Decision-Making Tool for the Chemical-Pharmaceutical Industry</td>
<td>Líderes para as Indústrias Tecnológicas (IST, MIT Portugal)</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Methods to Inform the Management and Planning of Long-Term Care Services</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Building Integrated Micro-generation Technologies for a sustainable built environment</td>
<td>Sistemas Sustentáveis de Energia (IST, MIT Portugal)</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Planeamento e Otimização de Redes de Cuidados de Saúde com Sistemas de Referenciação</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Tactical and Operational Planning in Reverse Logistics Systems with Multiple Depots</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Methodologies for the Selection of Tailored Practices for Supply Chain Management</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>Ano Inicio</td>
<td>Título</td>
<td>Programa Doutoral</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Integrated layout and operation planning in cross-docking based retail warehouses</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Sustainable Supply Chain Modelling under Uncertainty</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Cadeias de Abastecimento Florestais Sustentáveis</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Aerospace supply chain in the new and sustainable product development context</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Lean and Sustainable Supply Chains</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Optimal scheduling oil pipeline and inventory management of refined products distribution system</td>
<td>Applied Mathematics (Amirkabir University of Technology, Irão)</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Tactical Planning Techniques for the Downstream Oil Supply Chain</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Sustainable Supply Chains Design</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>An Integrated Approach for Aircraft Maintenance Production Planning and Scheduling Under Uncertainty</td>
<td>Líderes para as Indústrias Tecnológicas (IST, MIT Portugal)</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Planning and scheduling optimization in biopharmaceutical facilities - Exploring model development into decision support systems</td>
<td>Líderes para as Indústrias Tecnológicas (IST, MIT Portugal)</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Design and Planning of sustainable supply chains</td>
<td>Líderes para as Indústrias Tecnológicas (IST, MIT Portugal)</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Design and Planning of energy supply chains</td>
<td>Engenharia e Gestão</td>
<td></td>
</tr>
</tbody>
</table>

2.4.2.3. Investigaadores Visitantes

Relativamente aos programas que incluem a visita de investigadores, estes tanto podem ser professores, como alunos de doutoramento, como investigadores, sendo provenientes de outras instituições, nacionais ou internacionais. Para o período em análise apenas se verificou a presença de investigadores de origem internacional. A duração nestes programas nunca é a mesma, tanto pode variar de um a dois meses, para o caso de professores visitantes, como até doze meses para alunos de doutoramento. Nos anos de 2011, 2012, 2015 e 2016, o grupo de Operações e Logística recebeu professores visitantes provenientes do Brasil e Espanha, com durações de dois a três meses. Em 2014, 2015 e 2016 o grupo de disciplinas em causa recebeu alunos brasileiros e franceses de licenciatura e doutoramento, com a duração de três a doze meses.

2.4.2.4. Projetos de Investigação

Os Projetos de Investigação são caracterizados pelo seu título, duração, fonte de financiamento, montante, entidade envolvidas e objetivos. Desde o ano letivo de 2011/2012 que foram concluídos três projetos de investigação no grupo de Operações e Logística. Na Tabela 8 estão apresentados resumidamente esses projetos, caracterizados apenas pela sua duração, fonte de financiamento,
montante e entidades envolvidas. Na tabela 9, estão representados os projetos de investigação que se encontram em curso.

Tabela 8: Projetos de investigação concluídos

<table>
<thead>
<tr>
<th>Duração</th>
<th>Título</th>
<th>Fonte Financiamento</th>
<th>Montante</th>
<th>Entidades Envolvidas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2015</td>
<td>WholeChain: Quantitative Framework for Perishable Food Supply Chain Management</td>
<td>Fundação para a Ciência e Tecnologia (FCT)</td>
<td>40k€</td>
<td>IST
Faculdade de Engenharia Universidade Porto
Universidade Técnica de Munique (Alemanha)
Universidade de Carnegie Mellon (EUA)</td>
</tr>
<tr>
<td>2012-2014</td>
<td>Odss.4SC - Optimization and Decision Support Systems for Supply Chains</td>
<td>Comissão Europeia</td>
<td>75 k€</td>
<td>Universidade da Extremadura (Espanha)
Universidade de Nápoles (Itália)
Universidade Politécnica da Catalunha (Espanha)
Universidade de Gotemburgo (Suécia)
Universidade de Sheffield (Inglaterra)</td>
</tr>
<tr>
<td>2011-2012</td>
<td>CapesOil - Soluções para o Escalonamento na Cadeia de Abastecimento (Suprimentos) do Petróleo, Gás e Biocombustíveis</td>
<td>Fundação para a Ciência e Tecnologia (FCT)
Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)</td>
<td>10 k€</td>
<td>IST
Universidade Federal Tecnológica do Paraná (Brasil)</td>
</tr>
<tr>
<td>2010-2012</td>
<td>PEERChain – Design and Planning of Energy Efficient and Resilient Supply Chains</td>
<td>Fundação para a Ciência e Tecnologia (FCT)</td>
<td>200 k€</td>
<td>IST
Laboratório Nacional de Energia e Geologia (LNEG)
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (FCT/UNL)
Consultor da Universidade de Carnegie Mellon (CMU, EUA)
Consultor do MIT (Massachusetts Institute of Technology, EUA)
Pareceiros Industriais: Jerónimo Martins, Zon Tv Cabo (atual NOS), Amb3e, Autosil e Portucel (atual Navigator Company)</td>
</tr>
<tr>
<td>Tabela 9: Projetos de investigação em curso</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duração</td>
<td>Título</td>
<td>Fonte Financiamento</td>
<td>Montante</td>
<td>Entidades Envolvidas</td>
</tr>
<tr>
<td>2016-2018</td>
<td>IAMAT - Introduction of advanced materials technologies into new product development for the mobility industries</td>
<td>Fundação para a Ciência e Tecnologia (FCT)</td>
<td>980 k€</td>
<td>IST, Faculdade de Engenharia da Universidade do Porto, Universidade do Minho, MIT (Massachusetts Institute of Technology), Parceiros Industriais: Embraer Portugal Compósitos, Embraer Portugal Metálicas e Optimal Structural Solutions.</td>
</tr>
<tr>
<td>2016-2018</td>
<td>A Collaborative Platform for coordinating the logistics in the forest-based supply chain towards Sustainability</td>
<td>Fundação para a Ciência e Tecnologia (FCT)</td>
<td>200 k€</td>
<td>IST, Faculdade de Engenharia da Universidade do Porto (FEUP)</td>
</tr>
<tr>
<td>2016-2019</td>
<td>DM4Manufacturing - Aligning Manufacturing Decision Making with Advanced manufacturing technologies</td>
<td>Portugal 2020</td>
<td>1.7 M€</td>
<td>IST, Faculdade de Engenharia da Universidade do Porto (FEUP), Universidade de Coimbra (UC)</td>
</tr>
</tbody>
</table>

2.4.3. Sociedade

Nas unidades curriculares do grupo de Operações e Logística têm ocorrido também atividades com ligação à sociedade, como por exemplo visitas de estudo a empresas. Na unidade curricular de Gestão de Armazéns e Materiais, foi feita uma visita à Sonae MC em 2014 e à Luís Simões em 2016. Em Gestão de Operações foram visitadas as instalações da Coca-Cola no ano de 2015. Para além dessas visitas, têm ocorrido também diversos seminários em sala de aula, com oradores convidados representantes de várias empresas. Por norma, cada UC obrigatória do grupo de disciplinas de Operações e Logística (Gestão de Operações, Gestão de Cadeias de Abastecimento e agora Logística e Distribuição) dispõe de dois seminários por ano. Já nas UC’s opcionais, Gestão de Armazém e Materiais e Planeamento e Controlo de Operações, o número de seminários é mais reduzido, tendo ocorrido no espaço temporal considerado um seminário em cada UC. Nestes seminários já estiveram presentes representantes de empresas como a Renova, Lean Academy Portugal, José Maria da Fonseca, Autoeuropa, Kaizen Institute, FNAC, Amorim, Luís Simões, DHL, Schaeffler, Sonae, Wide Scope, IKEA e Primor.
O grupo de Operações e Logística encontra-se ainda indiretamente incorporado em alguns eventos, já que estes englobam as temáticas lecionadas pelo grupo. Destes eventos fazem parte o TIMES\(^7\) (Tournament In Management and Engineering) que é considerada, a nível europeu, a maior competição de realização de casos de estudos entre alunos de Engenharia e Gestão Industrial. Esta competição está dividida em qualificações locais, semifinais e por último a grande final. As qualificações locais em Lisboa são realizadas no Taguspark e são patrocinadas pela consultora BCG (The Boston Consulting Group). Todos os anos vários alunos se candidatam, sendo que é feita uma primeira triagem antes da realização dos casos de estudo. Em 2013 fizeram parte da discussão 6 equipas, no ano seguinte 5 equipas, em 2015 voltaram às 6 equipas e por fim em 2016 a competição contou com a participação de 8 equipas. Uma outra atividade que faz a ligação do curso de Engenharia e Gestão Industrial à sociedade são as jornadas de EGI\(^8\), organizadas pelo NEEGI (Núcleo de Estudantes de Engenharia e Gestão Industrial). Foram realizadas pela primeira vez em 2016 (Abril), mas vão ter continuidade. Estas jornadas englobam tanto workshops como palestras de empresas e oradores convidados, sendo abordados temas técnicos e relevantes para a formação de um aluno de EGI. À semelhança das jornadas, existe também a Semana Empresarial e Tecnológica (SET)\(^8\) que no presente ano letivo já vai na 14ª edição. Este evento é mais direcionado à tecnologia e à gestão em geral, no entanto é também uma oportunidade onde os alunos têm contacto com várias empresas.

Existem ainda outros eventos organizados no IST-Taguspark que também trazem alunos de todas as idades. O First Lego League recebe desde 2014 entre 140 a 200 alunos; já as Olimpiadas de Física é aquele evento que mais alunos acolhe pois recebe todos os anos cerca de 230 alunos. Um outro evento chamado ROB9-16, que apenas foi realizado a partir de 2015, recebeu nesse ano 146 alunos, sendo que esse número cresceu este ano ao serem recebidos 196 alunos. A Ciência Viva, é outro evento que recebe um número mais reduzido de alunos, entre 20 a 45 alunos. Por último, existe ainda o Verão na UL (Universidade de Lisboa) que todos os anos permite que 160 alunos tenham contacto com as Universidades, nomeadamente com o IST no Taguspark, realizando diversas atividades de diferentes

\(^7\) A informação relativa ao TIMES e às Jornadas de EGI foram consultadas no seguinte site http://neegi.tecnico.ulisboa.pt/

\(^8\) Toda a informação foi consultada no seguinte site http://set.ist.utl.pt/

\(^9\) Todos os dados referentes a este tipo de eventos foram obtidos através de uma Entrevista realizada ao secretariado do Taguspark.
Este ano, pela primeira vez, foram incluídas atividades relacionadas com cadeias de abastecimento e logística. No entanto, essas atividades tiveram de ser realizadas em salas de aula normais, ao contrário de outras atividades que foram realizadas nos laboratórios específicos de cada uma. Esta situação pode ser alterada nas próximas edições com a inclusão do laboratório nas instalações do Taguspark.

2.5. Conclusão do Capítulo

Ao longo desse capítulo foi efetuada uma caracterização do Técnico, com especial enfoque no grupo de Operações e Logística do Departamento de Engenharia e Gestão. Através desta caracterização concluiu-se que o grupo em questão, tendo em conta as temáticas que aborda, tem uma componente experimental muito limitada. A única parte experimental está relacionada com os laboratórios das disciplinas, mas estes são realizados apenas em computadores. Com o aparecimento do Operations and Logistics Lab os alunos poderiam ter um maior contacto com a realidade, através de atividades e equipamentos inseridos no mesmo, tornando a sua aprendizagem mais dinâmica e eficaz.

O aparecimento do Operations and Logistics Lab também influenciaria a nível da Investigação, com a possibilidade de realização de mais estudos, que fossem benéficos tanto para os investigadores como para o próprio laboratório.

Relativamente à sociedade, também seria uma mais valia tendo em conta todas as atividades que são realizadas anualmente nas instalações do Taguspark, que permitiriam dar mais enfase não só ao próprio grupo de Operações e Logística como ao Técnico em geral.

Posto isto, estes são considerados os motivos pelo qual se justifica a inclusão de um laboratório a nível de uma Instituição do Ensino Superior, na área de Operações e Logística.

Apesar de o laboratório ter uma grande influência nos três pilares base, aquele que pertence ao âmbito desta dissertação é o Ensino, e por isso o mesmo tem de ser direcionado para essa vertente. Sendo assim, no próximo capítulo será realizada uma revisão da literatura, onde serão abordadas as diferentes práticas pedagógicas que melhor se adequam ao ensino, finalizando com o papel dos laboratórios aplicados a uma escola de engenharia.
3. Estado da Arte

No presente capítulo será feito um levantamento a nível da literatura científica existente acerca das melhores práticas pedagógicas aplicadas ao Ensino Superior no âmbito da engenharia. Essas práticas irão focar-se em práticas de aprendizagem ativas que serão desenvolvidas em subcapítulos mais à frente. Como uma das formas de tornar a aprendizagem ativa é através de um laboratório, posteriormente, este capítulo irá focar-se nos laboratórios existentes a nível de um curso de engenharia, caracterizando-os e referindo os seus objetivos.

Para a recolha de toda a base teórica serão analisados vários artigos científicos, que serão consultados em várias bases de dados, como o Google Scholar, o ScienceDirect e o B-on. As palavras chave que servirão como orientação para a pesquisa são: Best Educational Practices, Teaching Engineering, Active Learning e Engineering Laboratory.

3.1. Práticas Pedagógicas

De acordo com Kapranos e Omar (2013), desde os anos 70, os países mais desenvolvidos mediam o sucesso das universidades através da sua capacidade em formar pessoas qualificadas, profissionais e especialistas. No entanto, os autores acreditam que a educação para além de impulsionar o desenvolvimento da capacidade intelectual, também proporciona benefícios económicos para aqueles que a recebem, bem como para a sociedade em geral. Portanto, os propósitos de uma universidade devem ser a de facultar educação e também formação para a cidadania global.

Os sistemas de educação devem ser flexíveis, tendo a capacidade de poderem ser alterados com o passar do tempo, devendo também ser vistos como a principal chave para a resolução dos grandes desafios globais da atualidade.

Segundo Chickering e Gamson (1987), para se melhorar o sistema de ensino a nível universitário existem 7 princípios fundamentais baseados em boas práticas de ensino e aprendizagem:

Incentivar o contacto entre os alunos e a universidade. Segundo os autores, o contacto entre alunos e professores, tanto dentro como fora das aulas, é um factor que tem relevância na motivação dos alunos. Este contacto permite também incentivar os alunos a pensar sobre os próprios valores e planos para o futuro.

Desenvolvimento da cooperação entre os alunos. Trabalhar em equipa torna-se mais motivador e melhora a aprendizagem, através da partilha de ideias que permite aprofundar conhecimentos. No entanto, deve ser numa perspetiva de colaboração e não de competição.

O uso de técnicas de aprendizagem ativas. Com o uso destas técnicas os alunos deixam de aprender simplesmente ouvindo um professor e decorando respostas para problemas que não fogem muito a um estereótipo específico, passando a relacionar e a aplicar conceitos a contextos mais práticos e reais. Estas técnicas tanto podem ser aplicadas dentro como fora de uma sala de aula.

Dar feedback de forma imediata. Os alunos precisam de um feedback apropriado sobre o seu atual desempenho, só assim é que conseguem evoluir. Precisam de ajuda para avaliar os seus
conhecimentos e as suas competências, por forma a poderem melhorar a sua aprendizagem. Os autores referem que durante vários períodos na universidade, um aluno precisa de ter oportunidades para refletir sobre aquilo que já aprendeu, o que ainda precisa de aprender e como se avaliar a ele próprio.

Evidenciar o tempo numa tarefa. Utilizar eficientemente o tempo é fundamental para todos, tanto em fase de aprendizagem como já num ambiente de trabalho. No entanto, é durante a universidade que um aluno aprende a gerir o seu tempo mais eficazmente. Segundo os autores, alocar eficientemente quantidades de tempo significa uma aprendizagem eficaz para os alunos e também um ensino eficaz para os professores.

Ter uma expectativa elevada. Com objetivo de se esperar alcançar mais na aprendizagem, os resultados também serão melhores. Os autores consideram que expectativas elevadas são importantes tanto para alunos mal preparados como para bons alunos e motivados. Esperar que os alunos tenham bons resultados, torna-se um ato que aparece naturalmente quando os professores mantêm grandes expectativas em si próprios e realizam esforços extra.

Respeitar diversas aptidões e métodos de aprendizagem. Cada aluno ao longo do seu percurso de estudante adquiriu a sua própria forma de aprender, sendo que existem uns mais aptos para a teoria e outros mais aptos para a prática. Cada um precisa de ter oportunidade de mostrar as suas capacidades e aprender da maneira que se sente seguro. Só depois é que podem ser impulsionados a aprenderem por outras formas.

Depois de apresentados os 7 princípios, a conclusão que é retirada é que os grandes responsáveis pela melhoria do sistema de ensino tanto são os professores como os alunos. Juntos conseguem com que o ambiente de ensino seja alterado, por forma a torná-lo mais motivador.

Entre os princípios acima referidos, aquele que mais interesse tem para o caso em estudo são as técnicas de aprendizagem ativas, embora outros também estejam presentes de forma indireta. Nos subcapítulos seguintes esse princípio será mais desenvolvido.

3.1.1. Nível de Aprendizagem

Num curso de Engenharia, os alunos tanto têm contacto com unidades curriculares com uma maior dependência ligada a ciências como a matemática e a física, como também existem outras com uma componente mais teórica, como é o caso das unidades curriculares do grupo de Operações e Logística. Neste tipo de disciplinas, a aprendizagem passa por um aluno assimilar conhecimentos numa primeira fase através de uma aula onde um professor expõe a matéria, de seguida, numa segunda fase, onde o aluno lê o material escrito que tem acesso e por fim, por forma a assimilar conhecimentos, passa pela resolução de problemas associados a essas temáticas. Segundo Hamouda e Tarlochan (2015), esta situação cria um envolvimento passivo por parte dos alunos que estão a aprender, onde a retenção de conhecimento nestes casos se torna muito reduzida, tornando-se assim um grande desafio em serem cumpridos todos os resultados de aprendizagem definidos.
Krivickas (2005), através da criação de uma pirâmide de aprendizagem, hierarquizou a percentagem de retenção de conhecimento conforme o nível de envolvimento. A pirâmide encontra-se representada na Figura 9.

Esta pirâmide encontra-se subdividida em duas grandes áreas segundo o nível de envolvimento, passivo ou ativo. Relativamente ao nível de envolvimento passivo, normalmente, uma pessoa tem tendência a reter 10% do que lê, 20% do que ouve e 30% do que vê. Conjugando o que uma pessoa vê ao mesmo tempo que ouve, já consegue reter 50% da informação. Através de uma aprendizagem ativa essa percentagem de retenção aumenta. É considerado que uma pessoa consegue reter 70% do que diz e 90% do que diz ao mesmo tempo que executa a ação. A todas estas percentagens, o autor associou um conjunto de ações associadas à forma como um aluno consegue apreender os conceitos lecionados numa unidade curricular.

3.1.2. Aprendizagem Ativa

Como forma de ensinar e aprender, Goodhew (2012) assume que independentemente da área da engenharia, os métodos de aprendizagem ativos são mais eficazes do que os métodos de aprendizagem passivos. Posto isto, os professores tendem a alterar os seus métodos de ensino, usando técnicas mais ativas e que possam também envolver trabalho em grupo por parte dos alunos, já que, geralmente, no futuro um engenheiro integrará uma equipa numa empresa.

Krivickas (2005) afirma que a aprendizagem ativa é conhecida também como aprendizagem cooperativa, onde um pequeno grupo de alunos é formado com o objetivo de que em conjunto percebam e se ajudem mutuamente em melhorar as suas percepções em relação a um tema em estudo.
Segundo o autor, várias estratégias de aprendizagem ativa podem ser implementadas por um professor durante uma aula, desde aulas teóricas, a seminários e a laboratórios. Numa aula teórica, a componente de aprendizagem ativa é um pouco limitada, no entanto através de procedimentos de pausa, onde os alunos tenham a possibilidade de verificar os seus apontamentos e questionar o professor sobre dúvidas relacionadas com o material exposto, através de questionários formativos e ainda através de estratégias de pensar para mais tarde partilhar, onde é proposto um problema aos alunos e em pequenos grupos os mesmo têm de identificar soluções, é possível tornar uma aula de um nível de envolvimento passivo, num nível de envolvimento ativo. Krivickas (2005) afirma ainda que o melhor espaço para uma aprendizagem ativa é o laboratório. Nestes espaços, os alunos para além de trabalharem em pequenos grupos, aprendem num ambiente onde são simuladas situações reais e onde conhecimentos previamente adquiridos são aplicados e discutidos.

Kolb (2014) afirma que é com a experiência que realmente se aprende. A educação baseada na experiência, tem crescido cada vez mais a nível do ensino superior, passando a ser considerada como um dos principais métodos de escolha para o desenvolvimento tanto a nível de aprendizagem como a nível pessoal. Numa escola de ensino superior, uma das formas de aprendizagem por intermédio da experiência é estabelecida num laboratório. Posto isto, a secção seguinte vai permitir descrever um laboratório, referindo os objetivos que devem fazer parte dos mesmos, assim como os diferentes tipos de laboratório existentes.

3.2. Laboratórios

Feisel and Rosa (2005) afirmam que os laboratórios têm sido uma componente fulcral no ensino na área da engenharia. Segundo os autores, existem três tipos diferentes de laboratórios de engenharia: educacionais, de investigação ou de desenvolvimento.

Um laboratório para fins educacionais é dirigido a alunos com o propósito de aprenderem os conceitos lecionados, mas numa componente prática. No entanto, para que um laboratório tenha benefícios, é necessário que o esforço dedicado ao mesmo assente em objetivos de aprendizagem bem definidos de acordo com a área em questão.

Um laboratório de investigação, orientado para acolher investigadores, é utilizado para aprofundar conhecimentos mais amplos, ou seja, é feita uma investigação que adiciona e desenvolve conhecimento àquele que já existe, através da extração e análise de dados experimentais.

Por fim, um laboratório de desenvolvimento é aquele que à semelhança de um laboratório de investigação, através da extração e análise de dados, desenvolve um novo produto. Este tipo de laboratórios é usado para comparar medições de desempenho a especificações, demostrando se um produto a ser desenvolvido está entre as conformidades ou se precisa de alterações. Em contrapartida aos laboratórios de investigação, este procura responder a questões específicas, enquanto que o anterior procura encontrar novos conhecimentos.
3.2.1. Objetivos de um Laboratório

Acerca dos objetivos de um laboratório, Feisel e Rosa (2005) afirmam que “projetar uma experiência laboratorial sem objetivos instrutivos claros é como projetar um produto sem um conjunto claro de especificações”. Acrescentam ainda, referindo que um laboratório sem objetivos torna a inovação do mesmo mais difícil de ser alcançada, devido ao facto de não existirem alvos para inspirar novas mudanças e também não existirem padrões pelas quais as mudanças possam ser refletidas. Para evitar problemas desta natureza, os autores enumeraram um conjunto de 13 objetivos que devem ser alcançados após a prática num laboratório:

Instrumentos. Devem ser aplicados os instrumentos e as ferramentas de software apropriados para serem feitas as medições necessárias, conforme o problema em questão.

Modelos. Com este objetivo devem ser identificados os pontos fortes e as limitações que os modelos teóricos apresentam, tendo em conta que são estes que serem como base à experimentação de determinado problema.

Experimentação. Desenvolver uma abordagem experimental, passando por especificar e implementar os procedimentos adequados, e no final interpretar os resultados obtidos com vista a caracterizar um sistema.

Capacidade Analítica. Este objetivo, que se encontra relacionado com o anterior, passa por o aluno ganhar capacidades para recolher, analisar e interpretar dados, formulando conclusões posteriores.

Projetar. Este objetivo envolve idealizar, construir ou agrupar partes de um sistema, através do uso de metodologias ou equipamentos apropriados para o caso em específico, tendo em conta determinadas especificações ou requisitos.

Aprendizagem através do insucesso. Este objetivo passa pela identificação de todos os resultados que não foram os esperados, tanto devido às condições envolventes como ao próprio processo. Sendo que, de seguida, essas soluções são reformuladas para serem obtidos os resultados desejados.

Criatividade. Este objetivo pretende que possam ser demonstradas capacidades de pensamento e criatividade, capazes de resolver problemas num ambiente real.

Aquisição de competências psicomotoras. As competências a adquirir referem-se à seleção e alteração de operações que sejam apropriadas aos recursos e às ferramentas disponíveis.

Segurança. Devem ser identificadas questões de segurança e saúde e questões relacionadas com o meio ambiente, lidando com elas de forma responsável ao longo de todo o processo de experimentação.

Comunicar de maneira eficaz. A comunicação pode ser oral, através de apresentações, e por escrito, através de relatórios.

Trabalhar em equipa. Este objetivo, já referido em secções anteriores, pretende que se atribuam tarefas e responsabilidades, tanto individuais como em grupo, para chegar ao produto final eficazmente.

Ética. Os alunos devem-se comportar exemplarmente e interagir com integridade.
Uso dos sentidos. Este objetivo diz respeito ao uso dos sentidos na recolha de informação e para fazer apreciações com uma base de engenharia, na formulação de conclusões sobre problemas aplicados ao mundo real.

Muitos destes objetivos podem ser facilmente alcançados tanto em ambientes laboratoriais físicos como em ambientes laboratoriais **online**, no entanto, para este último tipo de laboratório, existe uma dificuldade em alcançar objetivos como a aquisição de competências psicomotoras e como o uso dos sentidos. Na subsecção seguinte serão abordados em maior detalhe estes diferentes formatos de laboratório existentes.

3.2.2. Formatos de Laboratórios

Os laboratórios são um elemento importante na educação (Faltin et al. 2002). Os autores reafirmam, que outrora já foi referido por outros autores, que os mesmos servem para aplicar e testar conhecimentos teóricos em situações práticas. Dentro dos diferentes tipos de laboratório, existem diferentes formatos que se dividem entre laboratórios reais e laboratórios online.

Segundo Faltin et al. (2002), é através de um laboratório real que os alunos conseguem ver, ouvir e ter contacto com os espaços e equipamentos presentes no mesmo. Este conjunto de sensações só conseguem ser sentidas num laboratório real. No entanto, surgiram outros formatos de laboratório (**laboratórios online**), que serão abordados de seguida.

De acordo com os autores Balamuralithara e Woods (2009), o sistema de educação de engenharia **online é um verdadeiro desafio para quem lida diretamente com a educação, no que diz respeito à conversão de laboratórios reais em laboratórios virtuais.**

Os autores Cristaldi et al. (1999) afirmam que introduzir o ambiente de um laboratório em formato **online** é uma tarefa que à primeira vista, apresenta algumas dificuldades, no entanto, com o grande desenvolvimento da tecnologia que se tem verificado, essa tarefa torna-se mais simples de ser executada. Para Balamuralithara e Woods (2009), existem duas abordagens diferentes para dirigir laboratórios **online**, os laboratórios de simulação e os laboratórios remotos.

Relativamente aos laboratórios de simulação, os mesmos têm vindo a substituir os laboratórios de experimentação reais. Desde que os simuladores têm capacidade para desenvolver modelos matemáticos, com precições razoáveis, capazes de simular uma aproximação da realidade, Feisel e Rosa (2005) confirmam que a simulação tem vindo a substituir os laboratórios de experimentação reais. No contexto da educação, a simulação é utilizada para servir como um suporte de aprendizagem, que ajuda a ilustrar fenómenos, que não são de fácil visualização (Kadlowec et al., 2002).

Os autores Shen et al. (1999) afirmam que os profissionais de educação de engenharia consideram a simulação atrativa, do ponto de vista da portabilidade, da facilidade de uso e ainda da eficiência nos custos. Contudo, o conhecimento prático e experiência adquirida por um aluno num ambiente de laboratório de simulação, irá sempre depender da autenticidade, restrições e capacidades do software em questão (Ertugrul, 1998), que irão ter influência na criatividade do aluno.
Feisel e Rosa (2005) descreveram duas aplicações onde a simulação pode ser utilizada num ambiente laboratorial. Por um lado, as simulações podem ser utilizadas através de uma experiência pré laboratorial que anteceda uma experiência real, com o propósito de se fazer uma preparação prévia aos alunos, familiarizando-os com os conceitos e material a ser utilizado, reduzindo tempo e custos num laboratório. Por outro lado, as simulações são também utilizadas como forma de alunos poderem estudar sistemas que sejam de grandes dimensões ou demasiado dispendiosos devido aos equipamentos requeridos, ou ainda que possuam uma componente perigosa (Lee et al., 2002).

Surgiram também os laboratórios de simulação com tecnologia 3D, que segundo Budhu (2002) permitiram melhorar o ambiente de aprendizagem. Os alunos tornaram-se capazes de explorar mais, olhando para os equipamentos de forma mais realista, relativamente a gráficos 2D.

No entanto, uma das críticas a este tipo de aprendizagem em ambientes de simulação é que muitas das vezes, os modelos e os resultados apresentados não representam o comportamento de um sistema real. Os autores afirmam que hoje em dia as simulações existentes ainda não substituem totalmente a experiência real, no entanto, com o avanço da tecnologia, no futuro pode ser diferente.

Outro aspeto negativo das simulações apresentado por Henry e Knight (2003) é o facto de neste tipo de laboratórios os alunos ignorarem os procedimentos de segurança e ética, por estes aspetos não fazerem parte do mesmo. Os autores consideram ainda que a simulação “introduz um elemento de irrealidade”, ou seja, numa experiência real um aluno pode ser menos habilidoso ao manusear os equipamentos existentes num laboratório físico. Faltin et al. (2002) afirmam também que os laboratórios baseados em simulação, limitam o estímulo e a curiosidade de aprendizagem de um aluno, colocando-o num ambiente restrito.

Em relação aos laboratórios remotos, estes são considerados um método de educação à distância, que é muito utilizado no ensino superior. Balamuralithara e Woods (2007) afirmam que os laboratórios de simulação não conseguem fornecer aos alunos a sensação de se estar a trabalhar num ambiente real. Para se obterem as habilidades práticas necessárias, é necessário que os alunos tenham contacto com dispositivos reais e executar comandos em ferramentas reais. Para contornar essa situação, as escolas de educação à distância precisaram de encontrar soluções para proporcionar aos alunos experiências práticas relevantes, ao mesmo tempo em que trabalhassem numa plataforma online, surgindo daí os laboratórios remotos.

Depois de apresentados os três diferentes formatos de laboratórios existentes, encontra-se na tabela 10 uma comparação resumida entre os mesmos, do ponto de vista de vários parâmetros considerados pelos autores Balamuralithara e Woods (2007).

Através da análise, entre todos os formatos de laboratório apresentados, aquele que mais se adequa à finalidade do Operations and Logistics Lab é o Real, pois é aquele que permite ter uma melhor exposição, trazendo o maior beneficio esperado, a nível da educação, que é possibilitar o contacto com experiências reais, melhorando as capacidades práticas e por consequência a aprendizagem de um aluno.
Tabela 10: Comparação entre os diferentes formatos de Laboratórios (fonte: adaptado de Balamuralithara e Woods (2007))

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Laboratório Real</th>
<th>Laboratório Simulação</th>
<th>Laboratório Remoto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custo</td>
<td>Elevado</td>
<td>Reduzido</td>
<td>Elevado</td>
</tr>
<tr>
<td>Equipamentos e instalações</td>
<td>Necessita equipamentos e espaço físico</td>
<td>Não se aplica</td>
<td>Necessita equipamentos e espaço físico (pequeno)</td>
</tr>
<tr>
<td>Experiência</td>
<td>Melhor exposição</td>
<td>Virtual</td>
<td>Próximo laboratório Real</td>
</tr>
<tr>
<td>Realidade e controlo</td>
<td>Muito elevado</td>
<td>Reduzido para 2D</td>
<td>Razoavelmente elevado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elevado para 3D</td>
<td></td>
</tr>
<tr>
<td>Acessibilidade</td>
<td>Limitada</td>
<td>Ilimitada</td>
<td>Limitada (dependente de horário)</td>
</tr>
<tr>
<td>Supervisão</td>
<td>Responsável presente</td>
<td>Online/e-mail</td>
<td>Online/e-mail</td>
</tr>
<tr>
<td>Auxílio e trabalho em equipa</td>
<td>Auxílio dos responsáveis e membros da equipa</td>
<td>Independente</td>
<td>Independente</td>
</tr>
<tr>
<td>Benefícios educacionais</td>
<td>Experiências reais e capacidades práticas</td>
<td>Boa exposição à aprendizagem conceitual</td>
<td>Interacção online com equipamento real</td>
</tr>
<tr>
<td>Segurança</td>
<td>Sim</td>
<td>Não se aplica</td>
<td>Não se aplica</td>
</tr>
<tr>
<td>Manutenção</td>
<td>Equipamentos</td>
<td>Atualização de software</td>
<td>Equipamentos e atualização de software</td>
</tr>
</tbody>
</table>

3.3. Conclusão do Capítulo

No decorrer deste capítulo, foram analisados conceitos e abordagens científicas, desde boas práticas pedagógicas, com vista à melhoria do ensino e aprendizagem, à caracterização de diferentes tipos de laboratórios, que vão ao encontro das temáticas presentes no caso em análise.

Para a melhoria do ensino, foram referenciados sete princípios, baseados em práticas pedagógicas. Aquele que está de imediato relacionado com o propósito do Operations and Logistics Lab, na principal vertente abordada neste projeto (Ensino), é o uso de técnicas de aprendizagem ativa. Sendo os alunos o principal público alvo, este tipo de abordagem irá permitir melhorar a sua aprendizagem, tornando-a mais eficaz e até mesmo mais motivadora. No entanto, como já foi referido, este não é o único princípio presente. A implementação do Operations and Logistics Lab irá permitir também melhorar o contacto entre os alunos e a universidade, principalmente no ponto de vista da motivação e também irá permitir desenvolver cooperação entre os alunos, através da realização das diferentes atividades que serão propostas no laboratório. Consequentemente, essas atividades irão permitir aos alunos receberem feedback sobre o seu atual desempenho, por forma a torná-lo melhor, resultando assim num progresso do seu nível de aprendizagem. Relativamente às expetativas elevadas, apesar de este ser um princípio mais direcionado aos professores, também pode ser incorporado no Operations and Logistics Lab, tendo em conta que se espera que o mesmo permita alcançar melhores resultados no aproveitamento dos alunos como fruto do método de aprendizagem.

Neste capítulo foram referenciados vários autores, que estão de acordo quanto aos benefícios da utilização de métodos de aprendizagem ativa. Benefícios estes que tornam este método eficaz, comparativamente a outros, como é o caso dos métodos de aprendizagem passivos. Estes métodos
vão desde a participação dos alunos numa aula, à resolução e discussão de casos de estudo e ainda até à simulação de casos práticos reais, num laboratório. Deste modo, a inclusão do *Operations and Logistics Lab* torna-se um elemento fulcral na melhoria da aprendizagem dos alunos, no ramo da aprendizagem ativa.

Relativamente aos diferentes conceitos de laboratórios apresentados, o *Operations and Logistics Lab* tanto se poderá incluir nos tipos de laboratório para fins educacionais, sendo este o propósito deste trabalho, como também no tipo de laboratório para fins de investigação, potenciando assim a investigação no grupo de Operações e Logística.

Dentro dos tipos de laboratórios considerados, foram apresentados três diferentes formatos de laboratório: Real, Simulação e Remoto. Como foi referido anteriormente na última subsecção, entre estes formatos considerados, aqueles que mais se adequam às características do *Operations and Logistics Lab* são os laboratórios Reais, pois são aqueles que, a nível educacional, conseguem trazer um maior benefício para o principal alvo que são os alunos. Este benefício está relacionado com a melhoria do nível de aprendizagem, que advém da experiência prática baseada em situações reais. No entanto, uma crítica à bibliografia pesquisada é a escassez de informação relativa a este tipo de laboratórios, sendo toda a informação mais direcionada para os formatos de laboratórios *online*.

Posto isto, nos capítulos seguintes desta dissertação, será apresentada uma metodologia, bem como a aplicação da mesma para que a lacuna de um espaço de experiências práticas, simulando situações reais possa ser preenchida.
4. Metodologia

A caracterização do Técnico, com foco no grupo de Operações e Logística presentes no capítulo 2, juntamente com a revisão de conceitos sobre práticas pedagógicas por forma a melhorar a aprendizagem, presentes no capítulo 3, serviram como base para o desenvolvimento da metodologia a adotar nesta dissertação de mestrado. Deste modo, encontram-se reunidas as condições para executar uma proposta de metodologia a ser adotada e seguida.

Desta maneira, na figura 10, encontra-se esquematizada a metodologia a ser seguida. Propõe-se numa fase inicial um desenvolvimento de um *benchmark*. Neste *benchmark*, deve ser feita uma pesquisa com recolha de informação acerca de laboratórios já existentes, que englobem as temáticas abordadas pelo grupo de Operações e Logística, com vista a servir como orientação para a implementação do laboratório. Numa segunda fase, será estruturado um plano de atividades ligado ao ensino, para que o mesmo possa fazer parte do laboratório, servindo ao mesmo tempo como um apoio às unidades curriculares que o grupo de Operações e Logística leciona. Depois de estruturado o plano de atividades, numa terceira fase, serão definidas cada uma dessas atividades, juntamente com os seus objetivos. Serão igualmente desenvolvidas algumas das atividades mais em pormenor, por forma a serem criados suportes que sirvam de orientação e apoio tanto para os alunos, como para os docentes. Depois destas últimas fases, serão desenvolvidos *layouts* para cada uma das atividades, com o propósito de as mesmas serem incluídas no laboratório, mas de uma forma versátil, para o poder tornar flexível ao envolver não só todas estas atividades de ensino, como também outras atividades que surjam no mesmo. Por fim, numa última fase será desenvolvido um cronograma que contemple as últimas tarefas que são ainda necessárias para finalmente o laboratório poder ser implementado.

![Figura 10: Esquematização da Metodologia](image)

4.1. Desenvolvimento de um Benchmark

Nesta etapa será então desenvolvido um *benchmark*, onde será realizada uma pesquisa com posterior análise aos laboratórios encontrados. Os laboratórios abordados serão apenas aqueles que apresentem relevância face ao que o *Operations and Logistics Lab* se pretende tornar, para assim servirem como orientação à sua implementação.

De acordo com Main (1992), *benchmarking* é definido como a arte de descobrir como outros fazem determinadas técnicas da melhor forma, para que essas técnicas possam ser reproduzidas e até mesmo melhoradas. Este conceito já tem vindo a ser utilizado há muito tempo. Segundo Drew (1997), o crescimento e desenvolvimento industrial deveu-se à imitação de tecnologias e práticas de negócio já existentes. Bogan e English (1994) referem que o *benchmarking* é um processo sistemático não só de pesquisa pelas melhores práticas, como também de pesquisa de ideias inovadoras e procedimentos de operações distintamente eficientes, que levam a um desempenho superior. Fazer um *benchmarking*
através da consideração da experiência de outros, tornou-se numa abordagem fundamental muito utilizada na gestão estratégica, que resulta numa aprendizagem e mudança mais rápida (McGill e Slocum, 1994).

Os conceitos existentes na literatura ligados ao benchmarking são muito relacionados com a indústria, visto que foi na mesma onde o mesmo começou a ser utilizado e desenvolvido, dando assim origem a uma literatura muito extensa. Ainda assim, são também apresentados conceitos mais gerais e que se podem aplicar a qualquer situação, nomeadamente no ensino superior.

Os autores Burquel e Vught (2010) definem benchmarking como um processo de autoavaliação e melhoria, que é realizado através da comparação sistemática e colaborativa de práticas e de desempenhos com organismos idênticos, com o objetivo de identificar pontos fortes e fracos, por forma a aprender-se a adaptar e melhorar determinados processos.

O crescimento da utilização do benchmarking no ensino superior retrata a procura pela melhoria contínua a nível da qualidade e pela forma mais eficaz de melhorar uma determinada prática em alguma área ligada ao mesmo, em alguns casos por forma a garantir que o financiamento público é efetivamente utilizado para apoiar o ensino.

De acordo com os autores Nazarko et al. (2009), o objetivo no desenvolvimento de benchmarkings no ensino superior é a melhoria da competitividade nas universidades, quer a nível nacional como internacional. O mesmo permite também a identificação de processos que necessitam de ser melhorados, como processos de melhoria a nível pedagógico, de investigação, financeiro ou administrativo, e ainda uma melhor adaptação do ensino e da investigação em relação ao que o mercado procura. O desenvolvimento da cooperação entre diferentes universidades e a obtenção de possíveis parceiros para outros projetos é igualmente considerado pelos autores um dos objetivos do benchmarking.

Mas estes conceitos, como apresentam propósitos muito distintos, não apresentam uma teoria coerente que defina métodos uniformizados (ESMU, 2008).

O autor Jackson (2001) afirma que existe uma grande variedade de abordagens quando se aplica o benchmarking ao ensino superior, mas que, no entanto, o desenvolvimento do mesmo pode ser classificado de acordo com a natureza dos processos inerentes. Assim, o tipo de benchmarking tendo em conta a natureza dos processos segundo o autor, está então representada igualmente na tabela 11.

Tabela 11: *Benchmarking* no Ensino Superior

<table>
<thead>
<tr>
<th>Autores</th>
<th>Descrição</th>
</tr>
</thead>
</table>
| Alstete (1995) | • interno, onde a comparação é feita entre os diversos departamentos de uma instituição;
 • competitivo externo, onde o desempenho de áreas-chave é comparado com base em informações de instituições que são consideradas concorrentes;
 • colaborativo externo, onde as comparações são realizadas com outras instituições, mas que não são consideradas competidoras;
 • externo, mas associado aos melhores na área, onde são procuradas práticas novas e inovadoras. |
| Jackson (2001) | • implícito ou explícito;
 • independente ou colaborativo;
 • específico com a própria instituição, considerado assim a nível interno ou envolver mais instituições, passando a ser considerado a nível externo;
 • focado em todo o processo (vertical) ou envolvendo diferentes unidades (horizontal);
 • focado em *inputs, outputs* ou processos ou em informações quantitativas ou qualitativas. |
| UNESCO-CEPES (2007)| • benchmarking interno, onde são comparados programas idênticos em componentes diferentes, mas dentro da mesma instituição;
 • benchmarking competitivo (externo), onde a comparação é feita em áreas chave, mas baseadas em instituições consideradas concorrentes;
 • benchmarking funcional (externo), onde são comparados processos ou práticas em várias instituições da mesma área, mas que não são considerados concorrentes diretos;
 • Trans-Institucional benchmarking onde são pesquisadas várias instituições, com o intuito de serem procuradas práticas novas e inovadoras;
 • benchmarking implícito, onde são analisadas publicações de dados ou de indicadores de desempenho que são utilizados para análises comparativas entre diferentes instituições. Ao contrário dos outros tipos de *benchmarking*, este não se baseia numa participação voluntária e proactiva;
 • benchmarking genérico, onde é realizada uma análise básica à prática de uma atividade, processo ou serviço;
 • benchmarking baseado em processos, onde são observados os processos pelos quais os resultados são obtidos. |

Relativamente ao *benchmarking* desenvolvido nesta dissertação, de acordo com os diferentes tipos considerados pelo autor Alstete (1995), este inclui-se no *benchmarking* externo. É considerado a nível externo, porque é fora da própria instituição. Já dos dois tipos de *benchmarking* externos apresentados pelo autor, é considerado o último, visto que o objetivo é poder encontrar o que de melhor existe nos laboratórios já implementados nestas áreas. Não é considerado um *benchmarking* colaborativo, porque não foi realizada em colaboração com as outras instituições.

Relacionando agora a natureza dos processos considerados por Jackson (2001), a natureza do estudo em causa é considerada explícita, pois é considerada uma comparação objetiva de aspetos mais globais e não tanto específicos em determinados processos; é uma prática independente, porque não existe colaboração com as instituições em causa; como já foi referido anteriormente, como envolve outras instituições é considerado um *benchmarking* externo; e por último, é focado em informações qualitativas.
De acordo com o que foi apresentado pela UNESCO-CEPES (2007), este tanto se pode considerar um benchmarking funcional (externo), porque vão ser comparadas práticas em várias instituições, mas pode igualmente ser considerado um benchmarking genérico, onde são analisadas diferentes práticas.

O autor Partovi (1994) apresenta as diferentes etapas que fazem parte do processo de desenvolvimento de um benchmark. Apesar de o mesmo estar relacionado com o meio industrial, acaba por ser tão generalizado, que pode ser perfeitamente adaptado a outras áreas. Segundo o autor, este desenvolvimento inicia-se com a determinação do que deve ser incluído neste processo, ou seja, relativamente à indústria, engloba a avaliação de diversas atividades, com vista a analisar o que deve ser sujeito ao processo de benchmarking. Numa segunda fase, o autor sugere a formação de uma equipa para o desenvolvimento deste processo, onde a mesma deve ser composta apenas por pessoas relacionadas com essa atividade em particular. De seguida, a próxima etapa a ser seguida é a identificação dos associados ao benchmark. Aqui, depois de feitas pesquisas, no caso das indústrias, são identificadas as empresas que apresentam as melhores práticas a serem incluídas no processo. Depois de identificadas essas práticas, a etapa que se segue é a de recolha e análise de informações sobre a mesma. Com base nessas informações, por fim é então implementado o processo de benchmarking.

Para o desenvolvimento do benchmarking em causa, serão adaptadas as etapas apresentadas por Partovi (1994), por forma a serem adequadas ao problema em questão. Encontram-se representadas na figura 11 as etapas a seguir no desenvolvimento do mesmo.

- Determinar o que deve ser incluído no processo de benchmarking
- Identificar as instituições associadas ao benchmark
- Recolha e análise de informações
- Implementação

Figura 11: Etapas benchmarking (fonte: Adaptado de Partovi (1994))

Posto isto, e seguindo as etapas representadas na figura 11, o desenvolvimento do benchmarking em questão inicia-se com a identificação do que deve ser incluído neste processo. Para a análise serão tidos em conta aspetos relativos aos pilares que os laboratórios incluem, bem como as práticas que os mesmos abordam por forma a incluir esses mesmos pilares. Serão analisadas igualmente as áreas que os laboratórios englobam.

Tendo em conta que esta dissertação está associada a fases preliminares na criação de um laboratório, esta etapa não passa por melhorar algum aspeto específico, mas sim por encontrar laboratórios já existentes, que englobem as mesmas áreas em que o mesmo se encontra. Ao identificar esses
laboratórios, irá perceber-se como os mesmos funcionam para que assim possam servir como orientação à implementação do laboratório. Posto isto, na etapa seguinte serão então identificadas as instituições que incluem esses laboratórios, sendo que depois serão recolhidos todo o tipo de informações relevantes para o caso, para os mesmos serem analisados e assim retiradas conclusões acerca das práticas dos laboratórios encontrados.

A recolha destas informações será então realizada através de pesquisas nos próprios sites. Por forma a introduzir os laboratórios, inicialmente serão retirados pequenos aspetos relativos às próprias instituições, como as condições que as mesmas oferecem no âmbito do ensino e investigação, por forma a formarem profissionais nessas áreas, prontos para interagirem com o mundo profissional real. Posto isto, segue-se para o foco principal: os laboratórios. Aqui, tendo em conta a informação disponível, será efetuada uma descrição das atividades realizadas, bem como projetos associados, com dois propósitos. O primeiro de perceber qual é efetivamente o principal pilar presente nestes laboratórios e o segundo de se perceber o que é realizado nestes laboratórios, mostrando que as áreas abrangidas por estes se adequam às áreas presentes no Operations and Logistics Lab. No que for possível, serão igualmente retiradas informações sobre equipamentos presentes no laboratório, para se perceber os recursos que os mesmos têm disponíveis para realizarem as suas atividades. Outro aspeto que se pretende retirar destas informações é o intuito das parcerias que estes laboratórios realizam, por forma a perceber como é a realizada a interação entre os diferentes pilares associados ao Operations and Logistics Lab.

O resultado apresentado nesta dissertação, apenas engloba as etapas até à recolha e análise de informações, no entanto o laboratório na sua fase de implementação ou de crescimento, poderá incluir igualmente a implementação de práticas abordadas com este benchmarking.

4.2. Desenvolvimento do Plano de Atividades

Depois de desenvolvimento o benchmark na etapa anterior, onde foram analisados os diferentes laboratórios e centros de investigação, quanto à sua natureza, de que forma operam e quais as áreas que englobam, por forma a obterem-se resultados do benchmark, está na altura de se passar de uma visão mais global do laboratório, para uma mais específica. Com isso, nesta etapa será então estruturado um plano de atividades. Este plano é apenas dirigido ao ensino, na medida em que servirá como suporte às UC’s do grupo de Operações e Logística.

Para a sua estruturação, inicialmente será desenvolvido uma primeira versão do plano de atividades, onde serão apresentadas diferentes atividades para as diferentes UC’s. Algumas dessas atividades já estão incluídas no currículo das mesmas, enquanto outras serão novas propostas para que possam fazer parte do laboratório.

Por conseguinte, para a estruturação da primeira versão do plano de atividades, serão pesquisadas e analisadas atividades já existentes, por forma a que as mesmas influenciem a criação de novas atividades ou que as mesmas possam até mesmo fazer parte do plano do laboratório, ainda que sejam necessários pequenos ajustes, para que possam enquadrar nas diferentes UC’s tendo em conta os currículos das mesmas.
Depois de concluída esta primeira versão, o mesmo estará sujeito a uma discussão por parte de docentes do grupo de Operações e Logística, com o propósito de ser dado um feedback sobre o mesmo, assim como sugestões. Depois de concluído este processo e de analisados os diversos comentários e sugestões provenientes da mesma, esta discussão terá como resultado final o plano de atividades que será incluído no laboratório.

Esta discussão pode ser considerada uma sessão de *Focus Group Discussion*. Sendo considerado um método qualitativo de investigação, envolve um foco em determinadas questões, com um grupo escolhido previamente, onde é realizada uma discussão interativa. O seu principal propósito é identificar uma série de perspetivas, num determinado assunto e ao mesmo tempo compreender as questões abordadas pela perspetiva dos outros participantes (Hennink 2014). O que caracteriza o *Focus Group* é a interação que existe em grupo, com o objetivo de criar introspecções, que seriam menos acessíveis sem a interação que é possível criar nestes grupos de discussão (Morgan e Krueger 1988). Foi esta a intenção que se pretendeu com a discussão realizada. Nestas discussões, os participantes partilham os seus pontos de vista, ouvem os pontos de vista dos outros e com essa consideração do que ouvem dos outros, ainda aperfeiçoam os próprios pontos de vista.

As *Focus Group Discussions* são consideradas um método de investigação muito flexível, que engloba uma grande variedade de aplicações. Segundo Hennink (2014), as mesmas podem ser adequadas para:

- Explorar tópicos pouco desenvolvidos ou onde as questões não são claras;
- Explicar determinados comportamentos ou opiniões e em que circunstâncias é que ocorrem;
- Avaliar um determinado serviço ou programa e perceber as razões do seu sucesso ou do seu fracasso;
- Projetar uma pesquisa ou um estudo experimental, identificando na sessão questões a incluir;
- Obter uma diversidade de experiências e perspetivas no assunto em causa;
- Perceber a interação do grupo, no âmbito de tomada de decisões, através da observação de como os participantes discutem ou decidem sobre uma determinada estratégia.

Estas diferentes aplicações referidas, aquela que mais se adequa à discussão em causa é a quinta aplicação mencionada, pois é aquela que vai de encontro ao objetivo que é o de ser dado feedback bem como serem sugeridas propostas para o plano. Este objetivo é alcançado através das diferentes perspetivas e experiências que as docentes têm sobre o assunto em questão, visto que as áreas incluídas nas atividades do plano, fazem parte da área que as mesmas lecionam.

Relativamente à constituição do grupo de discussão, a sua natureza pode variar. O mesmo pode ser homogéneo, onde todos os participantes têm uma ligaçã e experiências e práticas semelhantes em relação ao assunto em discussão. Ou pode ser heterogéneo, onde os participantes apresentam características e áreas de formação diferentes que sejam relevantes para a discussão em causa (Flick 2009). O grupo participante no caso da discussão em causa é considerado um grupo homogéneo, visto que engloba docentes do grupo específico de Operações e Logística e que essa é a área que abrange todos as questões abordadas na sessão. Num *Focus Group*, os grupos são constituídos por seis a oito
participantes, sendo que pode igualmente variar entre cinco e dez pessoas, dependendo do propósito da discussão em causa. Neste caso a sessão contou com a presença de oito participantes.

Dos participantes das sessões de Focus Group, faz também parte um moderador, que é responsável por conduzir a sessão. Como tal, existem várias formas de o fazer. O moderador pode apenas estar presente para controlar a agenda da discussão, pode para além da função anterior, introduzir novas questões e orientar a discussão, e por último, acrescentado a todas as funções mencionadas anteriormente, pode ainda variar a dinâmica da discussão entre a reflexão e a utilização de perguntas provocatórias. Nestas discussões existe ainda a possibilidade de se recorrer à utilização de textos e imagens, por forma a estimular ainda mais a discussão, mas, no entanto, a utilização dos mesmos deve apenas apoiar a dinâmica e o funcionamento do grupo.

Na discussão em causa, apesar de não existir um moderador especialista, houve um responsável por conduzir a sessão, neste caso a autora da dissertação. Na sessão foi feita inicialmente uma breve introdução sobre as razões de o mesmo estar a ser realizado, bem como apresentada a sua agenda. O tópico começou por ser introduzido através de uma pequena explicação do intuito do laboratório e qual o papel do mesmo nesta dissertação. Posto isto seguiu-se para o foco da sessão: o plano de atividades. Através do suporte de uma apresentação, foi exposto o plano de atividades previamente elaborado, começando por apresentar de seguida uma explicação de cada atividade em si bem como os seus objetivos. Esta sessão foi organizada para que no final de cada breve apresentação de cada atividade fosse iniciado o processo de discussão das mesmas. Ou seja, a atividade era exposta e de seguida gerava-se uma discussão em torno da mesma. Foi discutido o enquadramento das atividades nas diferentes UC’s do grupo de Operações e Logística, bem como alterações que deviam ser feitas nas mesmas, por forma a estarem de acordo com o programa das UC’s em questão. Dessa discussão eram então anotadas as sugestões e os comentários para no final serem tomados em conta para o plano de atividades final. Esta sessão teve a duração de aproximadamente 1 hora e 30 minutos.

Depois de concluída a sessão, todos os comentários e sugestões provenientes da discussão foram analisados e complementados ao plano anterior, que teve como resultado final o plano de atividades, ligado ao ensino, que é apresentado nesta dissertação.

4.3. Definição de Atividades

Depois de realizado o Focus Group, estará concluído o plano de atividades que irá incorporar o laboratório. Como tal, o passo que se segue é então o de definir essas atividades. Para a sua definição não basta incluir a descrição da mesma e os propósitos básicos, é necessário igualmente identificar e definir objetivos de aprendizagem claros para que, através dessas atividades, se consigam alcançar os resultados esperados. Posteriormente, serão criados dois suportes de trabalho, um destinado aos docentes e outro destinados aos alunos. Estes suportes, considerados guias de apoio, serão utilizados como orientação à realização das atividades.

Na criação de um laboratório, é necessário estabelecer razões que justifiquem o mesmo. Relativamente a atividades de laboratório, é necessário que as mesmas justifiquem a quantidade de trabalho oferecido aos alunos como parte da sua educação e os recursos necessários para essas mesmas atividades.
Segundo Ferris e Aziz (2005), estes aspetos levam a questionar sobre o trabalho de laboratório esperado pelos alunos e o que os alunos devem aprender através do mesmo. Quando um aluno tem uma compreensão clara do que deve ser aprendido através da realização de uma atividade, torna-se possível projetar essa mesma atividade por forma a orientar de melhor forma a aprendizagem e consequentemente os resultados alcançados.

Assim sendo, para projetar essas atividades é necessário identificar e definir esses objetivos. Para isso existe uma ferramenta que é utilizada para analisar e pensar sobre esses mesmos objetivos, a chamada Taxonomia de Bloom. Esta taxonomia auxilia o processo de planeamento de situações de aprendizagem, como é o caso da definição de objetivos. De acordo com o autor Krathwohl (2002) “a taxonomia de objetivos educativos é um framework para classificar declarações do que se espera ou o que se pretende que os alunos aprendam como resultado de uma instrução”.

Esta taxonomia tem sido utilizada na área da engenharia e da gestão. Existem casos onde a mesma é proposta para ser utilizada na definição de objetivos de Unidades Curriculares em cursos de engenharia (Felder et al. 2000) e igualmente nas áreas de gestão (Athanassiou et al. 2003).

A Taxonomia de Bloom, criada por Bloom et al. (1956), aborda três diferentes domínios: cognitivo, afetivo e psicomotor. O domínio cognitivo inclui os objetivos que lidam com a identificação do conhecimento e o desenvolvimento de capacidades e competências intelectuais. Este é o domínio mais utilizado na identificação e definição de objetivos, sendo que também foi aquele onde foi dedicado mais tempo pelos autores. Neste domínio, as definições mais claras dos objetivos são encontradas como descrições dos comportamentos dos alunos. O domínio afetivo inclui objetivos que descrevem mudanças de interesse, atitudes e valores e incluem igualmente o desenvolvimento de apreciações. Já o domínio psicomotor, embora considerado não foi definido pelos autores Bloom et al. (1956). Foi apenas criada uma proposta mais tarde por Ferris e Aziz (2005).

Dos três domínios existentes, para a identificação e definição dos objetivos das atividades consideradas, apenas vai ser considerado o domínio cognitivo. Neste domínio, Bloom et al. (1956) definiram e desenvolveram seis diferentes categorias: Conhecimento, Compreensão, Aplicação, Análise, Síntese e Avaliação. Estas categorias foram pensadas de forma hierárquica, da mais simples para a mais complexa, e da mais concreta para a mais abstrata (pela ordem como foram mencionadas anteriormente). Outro aspecto considerado nesta hierarquia foi ainda o facto de que o domínio de cada categoria seria um pré-requisito para o domínio da categoria seguinte. Estas categorias foram ainda desenvolvidas pelos autores em subcategorias que se encontram apresentadas na tabela 12.
Tabela 12: Estrutura da Taxonomia de *Bloom* (adaptado de *Krathwohl* (2002))

<table>
<thead>
<tr>
<th>Nível</th>
<th>Domínio</th>
<th>Subdomínios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Conhecimento</td>
<td>1.1 Conhecimento específico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.1 Conhecimento de terminologia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.2 Conhecimento de factos específicos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2 Conhecimento de formas e significados relacionados com especificações do conteúdo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.1 Conhecimento de convenções</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.2 Conhecimento de tendências e sequências</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.3 Conhecimento de classificações e categorias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.4 Conhecimento de critérios</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.5 Conhecimento de metodologias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 Conhecimentos universais e abstrações num determinado campo do conhecimento</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3.1 Conhecimento de princípios e generalizações</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3.2 Conhecimento de teorias e estruturas</td>
</tr>
<tr>
<td>2.0</td>
<td>Compreensão</td>
<td>2.1 Tradução</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2 Interpretação</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3 Extrapolção</td>
</tr>
<tr>
<td>3.0</td>
<td>Aplicação</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>Análise</td>
<td>4.1 Análise de elementos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 Análise de relações</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 Análise de princípios organizacionais</td>
</tr>
<tr>
<td>5.0</td>
<td>Síntese</td>
<td>5.1 Produção de uma comunicação única</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2 Produção de um plano ou um conjunto de propostas de operações</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.3 Derivação de um conjunto de relações abstratas</td>
</tr>
<tr>
<td>6.0</td>
<td>Avaliação</td>
<td>6.1 Avaliação em termos de evidência interna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.2 Julgamentos em termos de critérios externais</td>
</tr>
</tbody>
</table>

A categoria relativa ao conhecimento incorpora aspetos verbais, incluído na definição dada ao conhecimento (como por exemplo, a capacidade do aluno recordar ou reconhecer uma área do conhecimento) e aspetos relativos ao próprio assunto, que está especificado nas subcategorias presentes na mesma. Com isto, estão presentes na mesma categoria duas naturezas diferentes, contrariamente às outras categorias presentes na Taxonomia. Esta particularidade esteve logo na base de ter surgido uma nova taxonomia - a taxonomia revista de *Bloom* (Anderson et al. 2001).

Esta taxonomia apresenta agora duas dimensões: a dimensão do processo cognitivo e a dimensão do conhecimento.

Na dimensão do processo cognitivo, foram mantidas na mesma seis categorias diferentes, mas em algumas delas, a sua designação foi alterada bem como a ordem de outras categorias. Outra alteração foi ainda no tipo de nomenclatura dada. As categorias passaram de substantivos a verbos, por forma a se adequarem mais facilmente à forma como são utilizadas na definição dos objetivos. Sendo assim, as categorias que fazem parte do processo cognitivo na taxonomia revista de *Bloom* são: Lembrar, Compreender, Aplicar, Analisar, Avaliar e Criar. Todas as subcategorias pertencentes a este domínio, foram igualmente substituídas por verbos no gerúndio, denominados como processos cognitivos. Estas subcategorias auxiliam na definição e classificação de objetivos de aprendizagem. Na tabela 13 estão
representadas essas categorias, bem como os verbos que podem ser igualmente utilizados, à semelhança das subcategorias do processo cognitivo, no auxílio da definição de objetivos, incluídos em cada categoria.

Tabela 13: Categorias do processo cognitivo da taxonomia revista de Bloom (adaptado de Anderson (2006))

<table>
<thead>
<tr>
<th>Dimensão do Processo Cognitivo</th>
<th>Verbos associados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lembrar: reconhecimento e reprodução de ideias e conteúdos;</td>
<td>Definir, recordar, reconhecer, listar, referir, repetir, localizar, reproduzir</td>
</tr>
<tr>
<td>Subcategorias: reconhecendo; recordando</td>
<td></td>
</tr>
<tr>
<td>Compreender: demonstração de conhecimento de fatos, explicando as suas ideias e conceitos;</td>
<td>Classificar, descrever, discutir, explicar, identificar, localizar, reconhecer, selecionar, traduzir, demonstrar, resumir</td>
</tr>
<tr>
<td>Subcategorias: interpretando; exemplificando; classificando; sumarizando; inferindo; comparando; explicando</td>
<td></td>
</tr>
<tr>
<td>** Aplicar**: utilização do conhecimento adquirido para a resolução de problemas, ou aplicação do mesmo em novas situações;</td>
<td>Aplicar, escolher, empregar, ilustrar, interpretar, mostrar, resolver, articular, executar</td>
</tr>
<tr>
<td>Subcategorias: executando; implementando</td>
<td></td>
</tr>
<tr>
<td>Analisar: analisar e dividir a informação em partes, para explorar relações;</td>
<td>Analisar, comparar, contrastar, criticar, classificar, diferenciar, discriminar, distinguir, experimentar, questionar</td>
</tr>
<tr>
<td>Subcategorias: diferenciando; organizando; atribuindo</td>
<td></td>
</tr>
<tr>
<td>Avaliar: defender opiniões e decisões, e justificar determinadas ações através de apreciações;</td>
<td>Argumentar, justificar, defender, julgar, apoiar, avaliar, estimar, testar, criticar, decidir</td>
</tr>
<tr>
<td>Subcategorias: verificando; criticando.</td>
<td></td>
</tr>
<tr>
<td>Criar: gerar novas ideias ou novos pontos de vista.</td>
<td>Construir, criar, projetar, desenvolver, formular, escrever, propor, planejar</td>
</tr>
<tr>
<td>Subcategorias: gerando; planeando; produzindo.</td>
<td></td>
</tr>
</tbody>
</table>

Relativamente à dimensão do conhecimento, em vez de três subcategorias, passaram a existir quatro. As categorias existentes foram reorganizadas e designadas de outra forma, enquanto foi igualmente criada uma nova categoria relacionada ao conhecimento metacognitivo. Na tabela 14 encontra-se estruturada esta dimensão, juntamente com as suas subcategorias.

Para a definição dos objetivos das atividades pertencentes ao plano referido anteriormente na secção 4.2, será então considerada esta taxonomia por forma a organizar o processo de aprendizagem. Através da análise a objetivos previamente estabelecidos, no caso de atividades já existentes, e através do estudo das novas atividades, serão definidos os objetivos para cada uma das atividades, por forma a contemplar todas estas categorias, existindo assim um maior controle no processo de aprendizagem.

Na taxonomia revista de Bloom (Anderson et al. 2001) foi sugerida uma tabela que inclui as duas dimensões (Anexo 1). Depois de definidos os objetivos, essa tabela é utilizada para classificar os mesmos. De acordo com a dimensão do processo cognitivo e a dimensão do conhecimento a que esse objetivo em causa pertence, o mesmo é colocado na interseção entre essas duas dimensões. Mais uma vez, as tabelas relativas a cada dimensão são utilizadas como orientação, neste caso para a classificação dos objetivos.
Tabela 14: Dimensão do conhecimento da taxonomia revista de *Bloom* (adaptado de Anderson (2006))

<table>
<thead>
<tr>
<th>Dimensão do Conhecimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conhecimento Factual: referente ao conteúdo básico que os alunos devem conhecer, por forma a que os mesmos consigam realizar e resolver problemas básicos apoiados nesse conhecimento;</td>
</tr>
<tr>
<td>Conhecimento de terminologia;</td>
</tr>
<tr>
<td>Conhecimento de elementos e detalhes específicos;</td>
</tr>
<tr>
<td>Conhecimento Conceitual: referente às relações entre os elementos básicos mas num contexto mais elaborado, onde os alunos sejam capazes de relacionar conhecimentos adquiridos;</td>
</tr>
<tr>
<td>Conhecimento de classificações e categorização;</td>
</tr>
<tr>
<td>Conhecimento de princípios e generalizações;</td>
</tr>
<tr>
<td>Conhecimento de teorias, modelos e estruturas;</td>
</tr>
<tr>
<td>Conhecimento Processual: alusivo ao conhecimento de como fazer algo, recorrendo a métodos, critérios, algoritmos e técnicas;</td>
</tr>
<tr>
<td>Conhecimento de conteúdos específicos, habilidades ou algoritmos;</td>
</tr>
<tr>
<td>Conhecimento de técnicas e métodos específicos;</td>
</tr>
<tr>
<td>Conhecimento de critérios para determinar quando utilizar procedimentos específicos;</td>
</tr>
<tr>
<td>Conhecimento Metacognitivo: similar ao conhecimento processual, mas implica relações entre várias áreas do conhecimento. A principal ideia é utilizar conhecimentos previamente assimilados, para a escolha do melhor método, teoria ou estrutura e igualmente para a resolução de problemas;</td>
</tr>
<tr>
<td>Conhecimento estratégico;</td>
</tr>
<tr>
<td>Conhecimento sobre atividades cognitivas;</td>
</tr>
<tr>
<td>Autoconhecimento.</td>
</tr>
</tbody>
</table>

A utilização desta tabela para classificar objetivos, fornece uma representação visual clara e concisa. Quando concluída, a mesma serve igualmente para analisar a ênfase dos objetivos em causa, permitindo avaliar igualmente possíveis oportunidades perdidas, a nível educacional. Com base nestas avaliações, os docentes podem decidir onde e como melhorar o planeamento do que está a ser objetivado.

Para os objetivos das atividades que serão definidos, será também apresentada esta classificação que irá permitir fazer uma análise auxiliar durante a definição dos objetivos, por forma a garantir que no final, quando estiverem todos os objetivos definidos, existe um processo de aprendizagem completo.

O facto de existirem objetivos organizados, ajuda os docentes a planear e a proporcionar uma aprendizagem adequada. A existência dos mesmos, permite ainda criar estratégias de avaliação válidas e assegura que a instrução e a avaliação estão alinhadas com os objetivos definidos (Anderson et al. 2001).

Depois de definidas as atividades quanto aos seus objetivos, serão então definidas para duas das atividades dois guias de apoio, um para os docentes, outro para os alunos.
Ambos os guias pretendem seguir o procedimento das atividades, mas em perspetivas diferentes. Como tal, a atividade terá de ser pensada desde aspectos iniciais em como organizar a atividade, até aspectos relacionados com o decorrer da execução da mesma e aspectos finais, relacionados com análises que devem ser realizadas.

Posto isto, o guia de apoio aos docentes será desenvolvido por forma a orientar o mesmo em conduzir a atividade, desde aspectos básicos, em como organizar os alunos e no material que deve ser fornecido, até às diferentes questões que devem ser analisadas durante a realização das atividades.

Para este guia será igualmente desenvolvida uma planificação da aula laboratorial com os passos a serem seguidos durante a atividade, na perspetiva do docente, por forma a servir como orientação. Será considerada a duração de uma aula de laboratório nas UC´s respetivas às atividades, e, portanto, serão apresentados os passos à execução da atividade num período de 90 minutos.

Relativamente ao guia de apoio aos alunos, este será desenvolvido por forma a incluir indicações que devem ser seguidas na execução das atividades, quais as informações disponíveis e a sequenciação dos processos nas mesmas. Para além disso, estes guias apresentam também indicações sobre o que deve ser analisado e avaliado no decorrer das atividades.

4.4. Definição do Layout

Depois de desenvolvido o plano de atividades, com posterior definição dos objetivos das mesmas e criados os dois suportes de apoio aos docentes e alunos de algumas das atividades, estão reunidas condições para serem criados os layouts de cada uma dessas atividades.

Estes layouts individuais têm de contemplar todas as necessidades das atividades envolvidas, mas, para além disso, têm de ser flexíveis o suficiente, pois o intuito do laboratório não é apenas focado na realização de atividades relativas ao ensino e cada atividade pode ter exigências diversas. Como tal, para o desenvolvimento destes layouts terão de se ter em conta esses fatores, por forma a tornar o mesmo o mais versátil possível.

Uma forma de tornar o layout do laboratório mais flexível, é o de poder complementar a utilização de equipamentos necessários às atividades. Para isso, tendo em conta a definição das atividades, poderão ser encontradas semelhanças entre as mesmas, por forma a verificar que diferentes atividades, necessitam dos mesmos recursos.

Através dessa análise, serão então identificados os recursos necessários à realização das atividades no laboratório, por forma a serem encontradas analogias nas atividades, por forma a poder complementar a utilização dos mesmos equipamentos, ainda que os mesmos necessitem de pequenos ajustes como por exemplo diferentes disposições.

Posto isto, serão apresentados os layouts para as diferentes atividades. Para facilitar a compreensão dos layouts apresentados, será igualmente criada uma tabela, que irá auxiliar na identificação dos diferentes recursos utilizados nas diferentes atividades, através de simbologias.

Estes layouts, apesar de desenvolvidos individualmente em cada atividade, terão sempre em conta as disposições dos layouts de outras atividades, que não possam ser complementadas. Este
procedimento, tem o intuito de que se os diferentes *layouts* foram sobrepostos, não existirá nenhum confronto entre disposições.

4.5. Planeamento da Implementação

Até este ponto, foi desenvolvido um *benchmarking*, por forma a serem encontradas boas práticas a implementar no laboratório, foi criado um plano de atividades, ligado ao ensino, com posterior definição das suas atividades e por último desenvolvidos os *layouts* para cada uma delas, por forma a enquadrem-se no espaço destinado ao laboratório.

No entanto, para a sua implementação ainda faltam algumas atividades que devem ser previstas e planeadas temporalmente. Para isso, vai ser desenvolvido um cronograma, que irá contemplar todas as atividades necessárias para finalmente o laboratório poder ser implementado. A partir deste ponto faltam ser executados quatro diferentes passos:

- preparação do espaço do laboratório;
- encontrar parcerias que possam fornecer os materiais e equipamentos necessários ao laboratório;
- equipar o laboratório, não só com os materiais cedidos por esses parceiros, como outros requisitados ao Técnico;
- proceder a um teste piloto às atividades definidas, que inicialmente ainda não faziam parte do programa das UC’s do grupo de Operações e Logística.

Quando todos estes passos estiverem concluídos, o laboratório estará implementado, e pronto para iniciar a sua atividade, nomeadamente ao nível do ensino.

Relativamente ao prazo temporal, e tendo em conta os aspetos considerados, prevê-se que o período para a implementação deste laboratório seja de 9 meses, com contagem a iniciar após a disponibilização do espaço.

Através da consideração destes passos e do período temporal considerado, será então desenvolvido o cronograma, onde serão estabelecidas as durações de cada procedimento e tido em conta determinadas precedências presentes nas mesmas.

Depois de desenvolvidas as diferentes etapas da metodologia proposta para esta dissertação, é possível agora passar aos resultados da implementação das mesmas, que se encontram dispostas ao longo dos próximos capítulos.
5. Benchmark

Como foi referido anteriormente, este benchmarking será desenvolvido por forma a serem encontrados laboratórios que através da sua análise pretendam servir como orientação para a implementação do Operations and Logistics Lab.

Tendo em conta que já estão identificados os aspetos a serem analisados, está na altura de referir as instituições a que os laboratórios a incluir neste benchmarking pertencem. Posto isto, a este benchmarking estão associadas três instituições de ensino superior, sendo que duas delas são instituições internacionais, a Universidade de Dortmund e a Georgia Tech, e uma instituição nacional, o Instituto Politécnico de Setúbal.

Relativamente às instituições internacionais, segundo o QS Subjects Ranking 2016/2017\(^\text{10}\), relativo à área de Engenharia e Tecnologia, a Georgia Tech ocupa a 16ª posição e a Universidade de Dortmund a 206ª, sendo que neste ranking o IST, como escola de engenharia da Universidade de Lisboa, ocupa a 172ª posição.

Procedendo à recolha de informação, de seguida encontram-se essas informações relativas aos laboratórios, com uma posterior análise aos aspetos considerados, no final deste capítulo.

5.1. Universidade de Dortmund

A Universidade Técnica de Dortmund\(^\text{11}\), com cerca de 80 programas de graduação, desde os habituais programas até outros mais inovadores, engloba 16 diferentes faculdades desde as áreas de ciências e engenharias até às áreas de ciências sociais. Relativamente à Investigação, a Universidade de Dortmund é reconhecida pelo foco em quatro diferentes áreas de onde faz parte a área de Produção e Logística.

Nesta área, os investigadores são responsáveis por analisar todo o ciclo de vida dos produtos, bem como explorar as instalações de produção. Nesta área de investigação, a Universidade de Dortmund é parceira do “Innovationlab – Hibríd Services in Logistics” que se situa no “Logistik Campus” da universidade de Dortmund. Este campus tem como objetivo a expansão das áreas de competência relacionadas com a logística técnica e logística da informação. Em cooperação com o Instituto Fraunhofer para o Fluxo de Materiais e Logística, foi criado um centro de investigação para as áreas da logística. Os projetos criados neste campus são referências para a educação e investigação nestas áreas.

O aparecimento do conceito “Internet of Things” e a Indústria 4.0, permitiram criar novas formas de serviços e interações entre as pessoas e as tecnologias, numa economia em rede, termo conhecido como economia híbrida. Neste contexto, no Innovationlab são desenvolvidas e testadas tecnologias

\(^{10}\) O ranking QS Subjects Ranking 2016/2017 na área da Engenharia e Tecnologia, foi consultado no seguinte site: https://www.topuniversities.com/university-rankings/university-subject-rankings/2017/engineering-technology;

inovadoras, em parceria com o Instituto Fraunhofer para o Fluxo de Materiais e Logística e o Instituto Fraunhofer para o Design de Sistemas Mecatrónicos, em Paderborn, bem como outros institutos e empresas e ainda parceiros sociais.

Este laboratório engloba dois espaços, totalmente equipados: um centro de investigação e um centro de aplicação. Todos os resultados das experiências, investigações e desenvolvimentos orientados para o mercado, são transferidos para as indústrias como uma inovação. Relativamente ao centro de aplicação, são aplicados casos às áreas de comércio, logística na produção, transporte, manutenção e treino virtual, garantem que o desenvolvimento das inovações possa ser transformado em serviços híbridos. De seguida, serão abordados mais em pormenor estes dois centros pertencentes ao Innovationlab.

5.1.1. Centro de Investigação do Innovationlab

Neste centro de investigação, vários equipamentos autónomos são combinados para criar formações temporárias que são controladas e descentralizadas por forma a permitir aos mesmos realizarem serviços de logística em conjunto.

Como são utilizados equipamentos autónomos, este centro está equipado de forma flexível, com poucos sistemas fixos. O equipamento utilizado está direcionado para duas questões: localização e comunicação sem fios. Questões estas que são consideradas extremamente relevantes para a logística nos próximos tempos. Este laboratório apresenta ainda sistemas de teste que incluem prateleiras móveis que são movidas por robôs de transporte, drones para transporte e outros vários dispositivos como contentores inteligentes e etiquetas inteligentes.

Através de um conjunto de computadores de alto desempenho, a grande quantidade de dados levantados, relativos aos movimentos de pessoas, prateleiras, drones de transporte, e outros dispositivos, pode ser calculada em tempo real, permitindo assim investigar diferentes cenários para a interação homem-máquina.

5.1.2. Centro de Aplicação do Innovationlab

O centro de Aplicação do Innovationlab, como o próprio nome indica, é um espaço onde são feitas aplicações práticas, em ambientes que simulam situações reais. Neste espaço, as empresas podem obter informações realistas sobre novos métodos e novas tecnologias.

Este centro está dividido em diferentes módulos, sendo seis no total, que são os seguintes:

Goods In/Goods Out: este módulo está relacionado com tarefas logísticas habituais, que se alteram rapidamente com a inclusão de processos que tornam as informações em formatos digitais. Cada vez mais, as encomendas recebidas são identificadas por procedimentos automatizados, utilizando sistemas de rádio ou processos inteligentes de identificação ótica. A tecnologia de sensores que é instalada nos transportadores ou nas próprias encomendas, traduz-se em controlos detalhados de qualidade, que podem ser utilizados no recebimento de encomendas.

Armazenamento e Picking das encomendas: neste módulo são realizadas pesquisas sobre a implementação adequada de ferramentas de suporte para determinadas tarefas que possam ter
impactos físicos e psicológicos sobre as pessoas. Nestas ferramentas incluem-se robôs, veículos de transporte sem condutor e outros dispositivos que conseguem dar instruções eficientes sobre determinadas tarefas, em tempo real.

Fluxo de Material: este módulo é responsável pelo transporte intralogístico de materiais ou produtos para, por exemplo, diferentes locais de trabalho. É neste módulo que é demonstrado de que maneira é que os veículos ou drones automáticos, se relacionam e colaboram com as pessoas envolvidas no mesmo ambiente.

Logística da Produção e Montagem: aqui são implementadas uma série de diferentes estruturas de produção e desenvolvimento de princípios. Neste módulo também é possível demonstrar diversas soluções que englobam a Indústria 4.0.

Acondicionamento: neste módulo existem locais de trabalho que demonstram como as pessoas podem ser suportadas por assistentes físicos e virtuais, incluindo robôs. O módulo engloba ainda sistemas baseados em rádio e ótica que são utilizados para avaliar diferentes possibilidades de posicionamento e identificação, tanto de objetos como pessoas.

Virtual Training Lab: por último, este espaço é dedicado à educação, ao planeamento e ao treino dos especialistas em logística do futuro próximo. É neste espaço que os mesmos aprendem tanto a desenvolver uma compreensão aprofundada dos processos como a identificar pontos fracos ou áreas problemáticas nas operações de uma determinada empresa.

5.2. Georgia Tech

O Instituto de Tecnologia localizado na Geórgia, um dos estados dos Estados Unidos da América (EUA), mais conhecido por Georgia Tech\(^ {12} \), é uma universidade pública que se foca na investigação científica e tecnológica, reconhecida igualmente, como sendo umas das melhores universidades do mundo. A mesma oferece um ensino com especial enfoque na tecnologia, abrangendo diferentes áreas como a engenharia, a informática, as ciências, os negócios, o design e as artes liberais. Resultante destas áreas, a Georgia Tech encontra-se dividida em seis faculdades diferentes. Entre elas encontra-se a faculdade de engenharia. Com os seus programas reconhecidos internacionalmente, a mesma oferece aos seus alunos diversas oportunidades de investigação e ainda oportunidades de experiências com situações reais, sendo que o facto de ser focada na inovação, dá igualmente aos seus alunos uma grande vantagem. Todas estas oportunidades servem para garantir que os alunos completem os seus programas com a devida experiência que necessitam.

A faculdade de engenharia é ainda composta por oito departamentos, abrangendo todas as principais áreas de engenharia, de onde faz parte a “Stewart School of Industrial & Systems Engineering”, onde os alunos projetam e melhoram sistemas e processos, onde são utilizadas máquinas, materiais, energia e informações para serem criados e entregues produtos ou fornecidos serviços. São responsáveis por

\(^{12}\) Toda a informação relativa à Georgia Tech foi obtida através do próprio site institucional: http://www.gatech.edu/.
melhorar o desempenho desses sistemas ao resolverem problemas onde os resultados provêm de interações incertas, por forma a aumentar a eficiência e a produtividade.

Na “Stewart School of Industrial & Systems Engineering”, a área de investigação está associada à produção, ao comércio e à logística, onde a Georgia Tech tanto orienta investigações básicas como aplicadas, mas que estas são complementadas por pontos fortes de determinadas disciplinas na área. Deste modo, torna-se possível por parte dos patrocinadores industriais, aproveitarem conhecimentos abrangentes, desde processos de produção, até à gestão de cadeias de abastecimento. A Georgia Tech colabora ainda com estes patrocinadores, em transferir investigações inovadoras que resultam em novos produtos, do laboratório para o próprio mercado.

Fazem parte deste departamento dois laboratórios: o laboratório de otimização e aprendizado interativa e o laboratório William M. Keck que representa uma fábrica virtual. Nas seguintes subsecções irão ser apresentados mais detalhadamente cada um deles.

5.2.1. Laboratório de Otimização e Aprendizagem Interativa

O Laboratório de Otimização e Aprendizagem Interativa13, é um laboratório onde existe uma instalação experimental que investiga otimizações avançadas, aprendizagem de máquinas e análiases a sistemas de suporte a decisões, bem como também a sua implementação em várias situações reais.

O mesmo apresenta quatro diferentes áreas de aplicação, onde está incluída a área de aplicação relacionada com a logística.

Está cada vez mais a aumentar a quantidade, a velocidade e a variedade de dados em cadeias de abastecimento que são recebidos pelas empresas. Com este aumento, aumenta também a necessidade de extrair e utilizar valores desses dados que permitam melhorar o controlo de uma cadeia de abastecimento ou de um armazém e ainda melhorar a tomada de decisões a nível logístico, quase em tempo real.

A logística, a gestão de cadeias de abastecimento e a gestão de armazém são áreas que permitem a geração de mais dados em processos de tomada de decisão. À medida que circulam mais bens e produtos no final de uma cadeia de abastecimento, são originados mais dados nos processos, que tanto podem ser úteis para melhorar as previsões da procura e facilitar a transição de produtos para as empresas que são orientadas para a procura, como também podem ser usados para melhorar políticas de armazém e inventário e permitir uma produção avançada, sendo que são também muito importantes para a automação em grande escala.

Atualmente, este laboratório está envolvido num projeto relativo ao pré empacotamento de inventário de rápido movimento. Esta operação é considerada uma estratégia de gestão de inventário que tem como consequência a redução dos tempos de entrega e o custo de inventário, permitindo aumentar ao mesmo tempo os níveis de serviço. Neste projeto são analisadas a eficiência e a eficácia de várias estratégias de pré embalagem que estão de acordo com requisitos de situações reais. O objetivo final

13 A informação sobre o Laboratório de Otimização e Aprendizagem Interativa foi retirada da seguinte fonte: http://iol.gatech.edu/.
é ser criado um sistema de gestão de dados de inventário e pré empacotamento, que aproveita análises de última geração, em dados de encomendas em tempo real, como também utiliza uma grande quantidade de dados históricos e auxiliares, para além de dados das habituais políticas de inventário.

5.2.2. Laboratório da Fábrica Virtual

O Laboratório da Fábrica Virtual\(^\text{14}\), criado com o apoio da Fundação *William Myron Keck*, inicialmente tinha apenas como objetivo criar fábricas virtuais, onde era possível fazer várias experiências por forma a tirar conclusões sobre como verdadeiras fábricas poderiam ser projetadas, geridas e controladas.

Até aos dias de hoje o seu âmbito foi-se alargando, tomando-se num laboratório de sistemas de logística de eventos discretos. Estes sistemas consistem em redes de recursos através dos quais existe um fluxo de produtos, sendo os mesmos transformados, através de processos, com vista em ser criado um maior valor. Com esta transformação, ficaram incluídos neste sistema não só fábricas, como também cadeias de abastecimento e armazéns.

Para uma fábrica ser competitiva no mercado onde atua, tem de estar constantemente a desenvolver e implementar melhorias em novos sistemas de produção. No entanto, estes sistemas muitas das vezes são complexos e requerem um grande capital de investimento. Através do recurso a este laboratório, as empresas podem testar e analisar soluções antes de incorrerem num grande investimento.

A investigação neste laboratório é financiada por uma combinação de financiamento privado, através de indústrias, financiamento federal e ajudas, e oferece suporte a alunos de mestrado e doutoramento e ainda a bolsistas pós-doc.

5.3. Instituto Politécnico de Setúbal

O Instituto Politécnico de Setúbal\(^\text{15}\) é uma instituição pública de ensino superior que se insere nos estabelecimentos de ensino politécnico. Atualmente, esta instituição engloba cinco escolas diferentes, entre as quais se insere a Escola Superior de Ciências Empresariais. De entre todas as escolas, é esta que merece evidência, porque foi através da mesma que surgiu a criação de um laboratório nas áreas da logística e distribuição.

A Escola Superior de Ciências Empresariais, localizada no campus em Setúbal, engloba no seu leque de cinco cursos de licenciatura, três deles divididos ainda em regime normal e pós-laboral, o curso de Gestão da Distribuição e Logística. O objetivo desta escola é formar qualificados que sejam flexíveis e dinâmicos e que consigam criar uma ligação entre os conhecimentos gerais de gestão adquiridos com uma especialização, no caso do curso de Gestão da Distribuição e Logística, em logística. Como o próprio nome indica, este curso proporciona uma formação nas áreas da gestão da distribuição e nas áreas da gestão da logística. Mais especificamente, prepara os seus alunos, para já em contexto profissional, gerirem todo o tipo de fluxos desde o ponto de origem até ao destino final, considerando

\(^\text{14}\) A informação sobre o Laboratório da Fábrica Virtual, foi obtido através do seguinte site: https://factory.isye.gatech.edu/.

\(^\text{15}\) Toda a informação referente ao Instituto Politécnico de Setúbal, bem como toda a informação sobre a sua Escola Superior de Ciências Empresariais, foi retirada do seu site institucional: https://www.ips.pt/ips_si/web_page.inicial.
todas as necessidades dos clientes. Os próprios conteúdos lecionados estão adaptados com as disposições do Concelho Europeu de Certificação Logística. Esta licenciatura tem como objetivo permitir aos alunos adquirirem conhecimentos técnicos e operacionais, conciliado com o domínio das novas tecnologias, competências estas essenciais à execução de funções de gestão no domínio da Logística e Distribuição. O curso de Gestão da Distribuição e Logística integra ainda a execução de um estágio curricular ou a realização de um projeto, possibilitando um contacto direto com o mundo profissional, desenvolvendo competências específicas nos alunos para a sua inclusão a nível profissional.

Tendo em conta o âmbito deste curso e a necessidade de aproximar a instituição a parceiros tecnológicos e empresariais, a Escola Superior de Ciências Empresariais criou um laboratório de logística\(^\text{16}\). Este laboratório é um espaço de partilha e formação, que permite providenciar aos alunos uma aprendizagem mais prática, através não só da utilização de equipamentos e tecnologias, como também ao recurso de soluções implementadas em determinadas empresas. Como tal, o laboratório denominado como “Logistics Lab”, conta com parcerias de empresas e entidades tanto nas áreas da logística e distribuição, como nas áreas de sistemas de informação, parcerias estas que serviram para a sua criação e também irão servir para a criação de projetos de investigação. Na tabela 15 encontram-se as empresas parceiras deste laboratório. Entre estas parceiras, encontram-se também o Porto de Setúbal e o Porto de Sines e ainda as revistas Logística Moderna, Transportes em Revista, Revista Cargo e a Fleet Magazine.

Tabela 15: Parceiras do laboratório de logística do Instituto Politécnico de Setúbal

<table>
<thead>
<tr>
<th>Empresa/ Software</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPR</td>
<td>Empresa de paletes</td>
</tr>
<tr>
<td>MAEIL</td>
<td>Empresa de engenharia de software especialista em soluções de Gestão Logística e Transportes</td>
</tr>
<tr>
<td>DHL</td>
<td>Empresa líder no mercado da indústria da logística</td>
</tr>
<tr>
<td>TECNIBITE</td>
<td>Empresa de serviços informáticos</td>
</tr>
<tr>
<td>STORAX</td>
<td>Empresa de soluções de armazenamento</td>
</tr>
<tr>
<td>Havi-Logistics</td>
<td>Empresa produtora, distribuidora e prestadora de serviços logísticos</td>
</tr>
<tr>
<td>Entrepôsto Logístico</td>
<td>Empresa de serviços logísticos</td>
</tr>
<tr>
<td>Zetes</td>
<td>Empresa de software e consultoria industrial</td>
</tr>
<tr>
<td>Jungheinrich</td>
<td>Empresa de equipamentos de movimentação de cargas</td>
</tr>
<tr>
<td>ThinkOpen Solutions</td>
<td>Empresa de software de gestão</td>
</tr>
<tr>
<td>Eye Peak</td>
<td>Empresa de softwares de gestão de armazéns e redes de distribuição</td>
</tr>
<tr>
<td>Shipperform</td>
<td>Empresa de software de exportação</td>
</tr>
<tr>
<td>Decathlon</td>
<td>Empresa retalhista e produtora de artigos desportivos</td>
</tr>
<tr>
<td>Carlo-Cargo Logistics</td>
<td>Software de logística</td>
</tr>
<tr>
<td>A-safe</td>
<td>Empresa produtora de barreiras de proteção</td>
</tr>
<tr>
<td>SFORI</td>
<td>Empresa de Formação e Consultoria</td>
</tr>
</tbody>
</table>

\(^\text{16}\) As referências relativas ao laboratório de logística foram consultadas na sua página: http://www.esce.ips.pt/id-e-empresas/laboratorios
Inaugurado no presente ano, a criação deste laboratório veio reforçar o investimento na investigação e também complementar o ensino com uma componente mais prática.

Para o presidente do Instituto Politécnico de Setúbal17, a conceção deste tipo de laboratórios, inseridos numa escola de ensino superior com contacto com empresas da área inerentes ao âmbito do laboratório em causa, fortalece a utilização de métodos de ensino ativos, permitindo um melhor desenvolvimento de competências por parte dos alunos.

Através desse desenvolvimento de competências, em primeira instancia, o laboratório pretende formar profissionais no domínio da logística. Por intermédio dos diferentes parceiros, o laboratório possibilita assim aos alunos contacto com o mundo empresarial.

Um outro propósito do laboratório é melhorar e acelerar o processo de inserção profissional dos seus alunos. Assim, o laboratório pretende proporcionar às empresas um conjunto de possíveis soluções para problemas que possam surgir nas mesmas, promovendo assim a relação entre a escola e a sociedade, a nível empresarial. Neste contexto, os alunos têm também a oportunidade de criar novos projetos de investigação e desenvolver essas soluções para as empresas. Todas estas oportunidades permitem assim desenvolver igualmente diferentes cooperações entre a escola e outras empresas ou parceiros.

Relativamente à vertente pedagógica, espera-se que o laboratório permita também o desenvolvimento de novas ideias que possam vir a ser incorporadas nos planos curriculares da escola, como a inclusão de casos de estudo no currículo dos ciclos de estudo.

O espaço do laboratório encontra-se inserido numa sala, composta no seu interior por \textit{racks} de armazenamento, equipadas com paletes, situadas na envolvente da sala. Como este laboratório não é tão dirigido a atividades práticas, e este facto justifica-se também pela existência de um grande número de empresas parceiras de softwares nas áreas da gestão, logística e transportes, o mesmo apresenta 16 computadores no centro da sala, juntamente com um projetor.

Este laboratório pretende não só ser um espaço de partilha de tecnologia e de soluções aplicadas ao ambiente empresarial, com também um espaço que possibilite a realização e sirva de apoio aos estágios curriculares e projetos, promovendo igualmente o aparecimento de novas parcerias. Este espaço é considerado um centro de estudos em logística, que pretende da mesma forma dar suporte ao desenvolvimento de projetos. O mesmo é dedicado ainda à realização de formações específicas da área da logística, que são também facultadas pelos diferentes parceiros do laboratório.

\textbf{5.4. Conclusões}

Neste capítulo foram apresentados diferentes laboratórios inseridos em escolas de Ensino Superior, com vista a ser realizado um \textit{benchmarking}. Os mesmos foram escolhidos por, para além de abrangerem as áreas do \textit{Operations and Logistics Lab}, apresentam práticas que incluem os pilares

17 As declarações apresentadas foram consultadas através do seguinte site: http://www.ips.pt/ips_si/noticias_geral.ver_noticia?p_nr=6845.
sobre o qual este laboratório pretende assentar e, portanto, servem como orientação para a sua posterior implementação.

Para a análise aos laboratórios apresentados anteriormente, serão agora tidos em conta os aspetos que foram considerados para o processo de *benchmarking*. Desses aspetos fazem parte os pilares envolvidos, e de que forma as práticas dos mesmos se relacionam com esses pilares.

Para resumir a análise dos aspetos inicialmente definidos, estão presentes na tabela 16 os aspetos considerados neste *benchmarking*.

Tabela 16: Aspetos considerados nos diferentes laboratórios

<table>
<thead>
<tr>
<th>Instituição</th>
<th>Universidade de Dortmund - Alemanha</th>
<th>Georgia Tech - EUA</th>
<th>Instituto Politécnico de Setúbal - Portugal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituição</td>
<td>16 faculdades</td>
<td>6 faculdades</td>
<td>5 escolas</td>
</tr>
<tr>
<td>Laboratórios</td>
<td>Innovation Lab</td>
<td>Laboratório de Otimização e Aprendizagem Interativa</td>
<td>Laboratório da Fábrica Virtual</td>
</tr>
<tr>
<td>Data Abertura</td>
<td>2011</td>
<td>* (*)</td>
<td>1996</td>
</tr>
<tr>
<td>Áreas abrangidas</td>
<td>Logística e gestão armazém</td>
<td>Logistica, cadeias de abastecimento e gestão de armazém</td>
<td>Cadeias de abastecimento, gestão de armazém e planeamento de operações</td>
</tr>
<tr>
<td>Principal pilar envolvido</td>
<td>Investigação</td>
<td>Investigação</td>
<td>Investigação</td>
</tr>
<tr>
<td>Parcerias</td>
<td>Institutos de investigação e empresas</td>
<td>Centros de investigação e empresas</td>
<td>Centros de investigação e empresas</td>
</tr>
<tr>
<td>Equipamentos</td>
<td>Equipamentos autônomos inteligentes (robós, drones), computadores, sistemas fixos</td>
<td>Computadores de alto desempenho</td>
<td>Computadores de alto desempenho</td>
</tr>
</tbody>
</table>

(*) não existe informação disponível

Todos os laboratórios considerados têm ligação aos três pilares: ensino, investigação e sociedade. No entanto, em todos eles há um pilar sobre o qual o mesmo é mais direcionado. Este facto está relacionado com o tipo de equipamentos que os mesmos possuem e atividades que realizam. O mesmo pode acontecer no *Operations and Logistics Lab*. O espaço disponível pode não ser comparado aos espaços do *Innovation Lab*, por exemplo, nem ter a mesma gama de equipamentos, mas isso não quer dizer que o pilar da investigação deixe de estar presente no mesmo. Antes pelo contrário. Podem igualmente ser propostos e criados projetos de investigação, neste laboratório, como são realizados nos laboratórios da Universidade de Dortmund e na Georgia Tech.

Outro pilar que apesar de não ser o principal pilar envolvido nestes laboratórios, está presente em todos eles é a sociedade, em termos de ligação a empresas. No caso dos laboratórios da Universidade de Dortmund e da Georgia Tech, todas as áreas de investigação têm o propósito de criarem novas formas inovadoras de poder melhorar a eficiência de diferentes processos, ligados às áreas das operações e logística. Quem beneficia desta investigação são as empresas, que procuram estes laboratórios por
forma a melhorar a sua própria eficiência, aplicando estes processos à própria empresa. No caso do laboratório da fábrica virtual, até são as próprias empresas que recorrem ao mesmo por forma a serem solucionados problemas específicos em conjunto. Já no caso do Logistics Lab do Instituto Politécnico de Setúbal, embora ainda não existam casos concretos devido ao facto de o mesmo ser recente, é pretendido igualmente que as empresas recorram ao mesmo por forma a serem solucionados problemas propostos pelas mesmas. Esta é, portanto, uma prática que pode ser implementada no Operations and Logistics Lab, que permite não só ao laboratório poder aplicar conhecimentos, como poder tornar-se um laboratório com inúmeros projetos potenciados por essas empresas.

Uma outra prática realizada por todos estes laboratórios, e que deve ser implementada no Operations and Logistics Lab é a existência de parcerias. Desde empresas, até centros de investigação, as parcerias tornam-se um importante fator a incluir num laboratório. Não só do ponto de vista de poderem ser facultados espaços, equipamentos, softwares específicos ou até mesmo serem dadas formações, como também a possibilidade de poderem ser criados projetos em conjunto, tornando o impacto do mesmo maior.

Relativamente ao ensino, embora não tenham sido encontradas atividades específicas realizadas nos laboratórios, ligadas a este pilar, através das informações é possível perceber que os alunos que frequentam estas escolas de ensino superior, através da sua formação, estão igualmente envolvidos nestes laboratórios, através de oportunidades de investigação e ainda a oportunidade de poder lidar com situações reais.
6. Atividades

No presente capítulo será apresentado na primeira subsecção o plano de atividades resultante da sessão de Focus Group realizada com os docentes do grupo de Operações e Logística. Já as subsecções seguintes irão incluir a definição das atividades que fazem parte desse plano anteriormente realizado, que será ainda dividido em duas partes, contemplando na primeira parte os objetivos das mesmas, e na segunda parte, para as atividades desenvolvidas em mais pormenor, serão apresentados os dois guias, que servem de orientação para docentes e alunos, respetivamente.

6.1. Plano de Atividades

Através de uma pesquisa aprofundada com posterior análise à mesma, foi então estruturada uma primeira versão do plano de atividades. O plano de atividades inicial apresenta nove atividades, englobando entre elas atividades que já são realizadas nas UC´s de Operações e Logística e outras novas que se pretendem incluir. Esta primeira proposta pode ser consultada na tabela 17, onde estão apresentadas as atividades e correspondentes UC´s em que as mesmas se enquadram.

<table>
<thead>
<tr>
<th>UC’s / Atividades</th>
<th>Gestão de Operações</th>
<th>Gestão de Cadeias de Abastecimento</th>
<th>Logística e Distribuição</th>
<th>Gestão de Armazéns e Materiais</th>
<th>Planeamento e Controlo de Operações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beer Game</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulador CELEMIS Apples & Oranges (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incoterms (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estratégias Picking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picking (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construção Paletes (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produção Kits (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanceamento Linha/Layout (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulador River (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) atividades novas que se pretendem incluir

Durante a sessão de Focus Group Discussion, foi então apresentado este plano, por forma a discutir cada uma das atividades. O resultado dessas discussões encontra-se de seguida em análise, mencionando quais as alterações que foram elaboradas na passagem do plano de atividades inicial, para o plano de atividades final.

O Beer Game é uma atividade que já é realizada na UC de Gestão de Cadeias de Abastecimento, enquadrando-se bem no programa, e como tal manteve-se no plano.

Relativamente à atividade apresentada que engloba o Simulador CELEMIS Apples & Oranges, através da discussão, chegou-se à conclusão que esta atividade para além de não se enquadrar bem no
programa, esta UC já inclui um programa muito extenso, e como tal não faria sentido incluí-la. Sendo assim, para o plano de atividades final, esta atividade foi excluída.

A atividade relativa aos Incoterms, é uma atividade nova que se pretenderia inserir na UC de Logística e Distribuição. O seu feedback foi positivo, e como tal a mesma manteve-se no plano de atividades.

Em relação à atividade de estratégias de picking, a mesma pretende inserir-se na UC de Gestão de Armazéns e Materiais, e à semelhança da atividade anterior, esta também seria inserida no programa pela primeira vez. Dado o seu enquadramento nesta UC, esta atividade também continuou a fazer parte do plano.

A próxima atividade, apesar de estar ligada ao mesmo processo da atividade anterior, aborda conceitos diferentes, importantes para a compreensão dos alunos. A atividade de picking, já realizada nesta UC, manteve-se igualmente no plano de atividades.

Como os conceitos lecionados na UC Gestão de Armazéns e Materiais são muito propícios à criação de exemplos práticos, foi então apresentada outra nova atividade para se enquadrar na mesma. Desta forma, a atividade que engloba a construção de paletes, foi assim mantida no plano de atividades final do laboratório.

Ainda para a mesma UC foi apresentada uma outra nova atividade, referente à produção de kits, mas que através da discussão, foi vocacionada para ser inserida noutra UC, em Gestão de Operações. Para isso, foram sugeridas alterações, por forma a adequar os conceitos abordados na atividade ao seu programa.

Relativamente à atividade de Balanceamento de Linha/Layout existiam inicialmente questões em relação à UC em que esta atividade deveria ser incluída, em Gestão de Operações ou em Planeamento e Controlo de Operações. Através da experiência e dos conhecimentos do programa das docentes presentes na sessão, a discussão em torno desta atividade, orientou-a para a UC de Planeamento e Controlo de Operações, sendo que os conceitos aplicados à mesma teriam de ser revistos por forma a adequar-se à UC em causa.

Por último, a atividade relativa ao simulador River, apesar de se encontrar inserida na UC a que foi atribuída inicialmente, acabou por ser retirada do plano de atividades final, por falta de informação relativa à mesma.

Posto isto, está apresentado na tabela 18, o plano de atividades final que resultou da análise da discussão realizada. Neste plano, foi igualmente adicionada mais uma atividade que surgiu na discussão: o Risk Pooling Game. Como esta atividade já é realizada na UC de Gestão de Cadeias de Abastecimento, foi sugerido que a mesma deveria fazer parte deste plano.
6.2. Definição das Atividades

Depois de definido o plano de atividades anterior, estão reunidas condições para se focar mais em pormenor em cada uma delas. Como foi referido anteriormente, esta subsecção está dividida em duas partes. Sendo assim, na primeira parte, que se encontra de seguida, serão apresentados os objetivos de cada uma das atividades, bem como a sua classificação elaborados segundo a taxonomia revista de Bloom. Na segunda parte estarão apresentados os dois guias correspondentes às atividades que foram desenvolvidas detalhadamente.

6.2.1. Objetivos

Nesta subsecção serão então desenvolvidos os objetivos para cada uma das atividades presentes no plano desenvolvido e apresentado na secção 6.1 do presente capítulo. Antes de os mesmos serem referidos, será igualmente feita uma pequena apresentação das mesmas, por forma a perceber-se o conteúdo das mesmas.

6.2.1.1. Beer Game

O Beer Game (também conhecido como Beer Distribution Game) é um jogo de simulação que foi criado pelo Massachusetts Institute of Technology (MIT), mais precisamente pela escola de gestão do mesmo (MIT Sloan School of Management), nos anos 60, com o intuito de demonstrar conceitos aplicados à gestão de cadeias de abastecimento.

Este jogo simula o funcionamento de uma Cadeia de Abastecimento, onde o produto a ser comercializado é cerveja. Apesar de existirem versões em tabuleiro, é igualmente jogado num computador e permite ter uma experiência, próxima da realidade, de como funciona uma cadeia de abastecimento, bem como também permite perceber a dinâmica do envolvimento de várias entidades na distribuição do produto em causa desde a sua produção até ao cliente final, lidando com os problemas que vão surgindo. Tendo em conta os custos envolvidos, relativamente aos níveis de inventário e às encomendas em atraso, os alunos realizam pedidos ao seu fornecedor por forma a manterem um nível de inventário baixo, mas que consiga satisfazer todas as necessidades dos seus

<table>
<thead>
<tr>
<th>UC’s / Atividades</th>
<th>Gestão de Operações</th>
<th>Gestão de Cadeias de Abastecimento</th>
<th>Logística e Distribuição</th>
<th>Gestão de Armazéns e Materiais</th>
<th>Planeamento e Controlo de Operações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beer Game</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incoterms</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estratégias Picking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picking</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construção Paletes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produção de Kits</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanceamento Linha/Layout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Pooling Game</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
clientes. Nesta atividade são criados dois cenários diferentes. Um primeiro cenário onde não existe partilha de informação sobre os pedidos entre as diferentes entidades da cadeia, e outro cenário onde já podem ser partilhadas todas as informações que os alunos considerem pertinentes.

De seguida, estão então apresentados os objetivos referentes à atividade do Beer Game, bem como a sua classificação na tabela 19.

Objetivo 1: definir uma cadeia de abastecimento, identificando entidades presentes na mesma;

Objetivo 2: distinguir e explicar a função e a posição de cada entidade da cadeia, bem como identificar os diferentes fluxos existentes;

Objetivo 3: prever diferenças na cadeia com e sem partilha de informação entre as entidades, exemplificando possíveis variações ao longo da cadeia;

Objetivo 4: desenvolver e executar uma estratégia por forma a tomar decisões com vista a minimizar os custos totais da cadeia, mantendo um nível de inventário baixo e ao mesmo tempo satisfazendo sempre as necessidades dos clientes;

Objetivo 5: analisar o efeito de bullwhip que se cria ao longo da cadeia;

Objetivo 6: comparar as duas cadeias de abastecimento relativamente à partilha de informação, fazendo uma crítica à sua influência nos custos;

Objetivo 7: em caso de partilha de informação, planear e criar a melhor forma de o fazer, por forma a minimizar os custos totais da cadeia no geral.

<table>
<thead>
<tr>
<th>Dimensão do Conhecimento</th>
<th>Dimensão do Processo Cognitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>Lembrar, Compreender, Aplicar, Analisar, Avaliar, Criar</td>
</tr>
<tr>
<td>Conceitual</td>
<td>Objetivo 1</td>
</tr>
<tr>
<td>Processual</td>
<td>Objetivo 2, Objetivo 3</td>
</tr>
<tr>
<td>Metacognitivo</td>
<td>Objetivo 4, Objetivo 5, Objetivo 6, Objetivo 7</td>
</tr>
</tbody>
</table>

6.2.1.2. *Incoterms*

A atividade de *Incoterms* é uma atividade que foi proposta por Foltos (2009). A mesma simula os procedimentos, relativos à negociação, que estão envolvidos na transação de um produto, quando o mesmo tem de ir além-fronteiras. Esta atividade permite, assim, aos alunos desenvolver e avaliar os preços e condições de venda para uma transação de exportação, com base nos *Incoterms*.

Existem dois exportadores, representados por dois grupos de alunos e um importador, representado por um outro grupo de alunos. A função dos exportadores é a de, através da análise dos diferentes *Incoterms*, sugerirem ofertas ao importador, ao passo que a função do importador é a de avaliar essas ofertas provenientes dos exportadores. Cada representante recebe informações específicas sobre todo o tipo de custos, conforme a função da empresa que estão a representar.
Esta atividade permite aos alunos compreenderem as obrigações relacionadas com este tipo de transações de produtos para países estrangeiros, ao mesmo tempo que lidam com os desafios relacionados com a negociação dos mesmos, onde estão sempre presentes *trades-offs* entre os preços, tempos de entrega e níveis de serviço.

Encontram-se de seguida os objetivos apresentados para a atividade de *Incoterms*. igualmente como a sua classificação na tabela 20.

Objetivo 1: definir os diferentes *Incoterms* existentes;

Objetivo 2: classificar esses *Incoterms* (tipo de meio de transporte), explicando e as obrigações envolvidas para o exportador e importador em cada um deles;

Objetivo 3: analisar informações de custos, por forma a comparar as diferentes opções (no caso dos exportadores para serem feitas as propostas, no caso dos importadores, para analisar essas mesmas propostas);

Objetivo 4: avaliar as diferentes propostas (realizadas no ponto de vista do exportador, e recebidas no ponto de vista dos importadores), justificando as opções tomadas;

Objetivo 5: desenvolver o poder de negociação, propondo alternativas, por forma a atingir-se um acordo entre as partes.

Tabela 20: Classificação dos objetivos da atividade de *Incoterms* segundo a Taxonomia Revista de *Bloom*

<table>
<thead>
<tr>
<th>Dimensão do Conhecimento</th>
<th>Dimensão do Processo Cognitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>Lembrar</td>
</tr>
<tr>
<td></td>
<td>Compreender</td>
</tr>
<tr>
<td></td>
<td>Aplicar</td>
</tr>
<tr>
<td></td>
<td>Analisar</td>
</tr>
<tr>
<td></td>
<td>Avaliar</td>
</tr>
<tr>
<td></td>
<td>Criar</td>
</tr>
<tr>
<td>Conceptual</td>
<td>Objetivo 1</td>
</tr>
<tr>
<td>Processual</td>
<td>Objetivo 3</td>
</tr>
<tr>
<td>Metacognitivo</td>
<td>Objetivo 5</td>
</tr>
<tr>
<td></td>
<td>Objetivo 4</td>
</tr>
<tr>
<td></td>
<td>Objetivo 5</td>
</tr>
</tbody>
</table>

6.2.1.3. **Estratégias *Picking***

As estratégias de *picking* englobam a simulação, como a própria designação indica, de diferentes estratégias de *picking* ao longo de um corredor de um armazém fictício. Através da recolha de produtos distribuídos em diversas localizações nesse corredor, são testadas diferentes estratégias lecionadas na UC de Gestão de Armazém e Materiais e utilizadas nos próprios armazéns em situações reais.

Através de um conjunto de encomendas provenientes de supostos clientes, o objetivo é que diferentes *pickers* satisfaçam essas encomendas em simultâneo, ao mesmo tempo em que são testadas essas estratégias de *picking*, por forma a perceber quais as estratégias que aplicadas à atividade, tendo em conta determinadas limitações, proporcionam uma maior eficiência no processo. Nesta atividade é então necessário perceber os desafios inerentes ao equilíbrio de trabalho quando existem diferentes ordens progressivas de clientes, tentado assim alcançar a estratégia mais eficiente.

O *picking* dos produtos é feito através de métodos diferentes, com o objetivo de simular diferentes organizações da operação e diferentes velocidades de *picking*. Este procedimento serve para demonstrar igualmente a influência que os mesmos, à semelhança do que acontece em casos reais,
têm na escolha das melhores estratégias e, consequentemente, na eficiência da própria atividade de picking.

De seguida, à semelhança das outras atividades, encontram-se definidos os objetivos desta atividade, bem como a sua classificação na tabela 21.

Objetivo 1: definir o conceito picking, bem como as diferentes estratégias existentes;

Objetivo 2: distinguir as diferentes estratégias, comparando-as sobre diferentes situações onde são suscetíveis de serem aplicadas;

Objetivo 3: aplicar e testar as estratégias à atividade, por forma a alcançar uma maior eficiência na operação, justificando as opções aplicadas;

Objetivo 4: analisar cada uma das estratégias aplicadas, comparando-as quanto aos seus resultados;

Objetivo 5: justificar a ineficiência da aplicação de determinadas estratégias à operação;

Objetivo 6: planear e propor novas formas de executar a operação, sugerindo outras estratégias ou diferentes disposições para alcançar melhores resultados.

Tabela 21: Classificação dos objetivos da atividade Estratégias de Picking segundo a Taxonomia Revista de Bloom

<table>
<thead>
<tr>
<th>Dimensão do Conhecimento</th>
<th>Dimensão do Processo Cognitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lembrar</td>
</tr>
<tr>
<td>Factual</td>
<td>Objetivo 1</td>
</tr>
<tr>
<td>Conceitual</td>
<td>Objetivo 2</td>
</tr>
<tr>
<td>Processual</td>
<td>Objetivo 3, Objetivo 4</td>
</tr>
<tr>
<td>Metacognitivo</td>
<td>Objetivo 3, Objetivo 5</td>
</tr>
</tbody>
</table>

6.2.1.4. Picking

A atividade de picking é realizada igualmente num armazém fictício, onde existem produtos distribuídos por várias localizações em diversos níveis ao longo de um corredor. A atividade consiste em satisfazer encomendas provenientes de clientes, por forma a garantir níveis elevados de serviço, ou seja, que os produtos sejam recolhidos nas quantidades certas, no menor espaço de tempo possível. O tipo de produtos incluído nesta atividade irá depender do material que possa ser cedido através de parcerias, e que poderá ser alterado e substituído em determinados períodos de tempo (ano a ano, por exemplo), por forma a serem criadas outras parcerias.

Nesta atividade, terão de ser realizadas duas abordagens diferentes. Uma realizando um fluxo por encomenda e outra realizando um fluxo por produto. No entanto, inicialmente estas abordagens de realizar a atividade ficam ao critério dos alunos, por forma a integrá-los, motivando-os a sugerirem a melhor forma de o fazer. Aqui é apenas simulada uma atividade de picking numa pequena parte de um armazém, mas é logo permitido aos alunos ter uma percepção dos fluxos existentes nos mesmos, e quais as suas influências num verdadeiro armazém de grandes dimensões.
Para além de serem simuladas estas duas abordagens, será também desafiado aos alunos sugerirem novas localizações, tendo em conta a frequência em que o mesmo produto é requerido, por forma a melhorar a eficiência no armazém.

Nos pontos seguintes, encontram-se os objetivos relativos a esta atividade de *picking*, igualmente como a sua classificação na tabela 22.

Objetivo 1: definir processo de *picking*;

Objetivo 2: identificar as diferentes localizações no armazém, com o auxílio dos códigos de localização;

Objetivo 3: executar e testar a melhor estratégia para operação de *picking*, procedendo à concretização das encomendas;

Objetivo 4: comparar os diferentes fluxos existentes no armazém (fluxo de *picking* por encomenda com o fluxo de *picking* por produto);

Objetivo 5: analisar e testar diferentes localizações para os produtos;

Objetivo 6: propor essas localizações para os produtos, por forma a tornar a operação mais eficiente, reduzindo fluxos e consequentemente tempos de operação.

Tabela 22: Classificação dos objetivos da atividade de *Picking* segundo a Taxonomia Revista de Bloom

<table>
<thead>
<tr>
<th>Dimensão do Conhecimento</th>
<th>Dimensão do Processo Cognitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lembrar</td>
</tr>
<tr>
<td>Factual</td>
<td>Objeto 1</td>
</tr>
<tr>
<td>Concetuial</td>
<td>Objeto 2</td>
</tr>
<tr>
<td>Processual</td>
<td>Objeto 3</td>
</tr>
<tr>
<td>Metacognitivo</td>
<td>Objeto 5</td>
</tr>
</tbody>
</table>

6.2.1.5. **Construção Paletes**

Esta atividade está relacionada, como o próprio nome indica, com a construção de uma palete. As paletes sendo consideradas como uma unidade de carga, têm de se carregadas de forma eficiente, de acordo com as especificações dos produtos em causa, considerando igualmente limites máximos, por forma não só a não atingir as dimensões de uma localização, como também por motivos de estabilidade dos produtos.

Posto isto, nesta atividade é permitido aos alunos testarem várias disposições de produtos, com dimensões diferentes, numa palete por forma a encontrarem a melhor solução, maximizando as quantidades a serem colocadas na mesma, ao mesmo tempo que são reduzidos ao máximo os espaços inutilizados. Com isto, esta atividade possibilita aos alunos lidarem com mais um dos desafios que muitas empresas enfrentam, devido às diferentes dimensões das embalagens dos produtos, e muitas vezes à irregularidade do formato dos mesmos, que têm influência direta não só no armazenamento e recolha dos produtos, como também no carregamento dos mesmos.

Encontram-se de seguida, mais uma vez, os objetivos referentes a esta atividade, bem como a sua classificação presente na tabela 23.
Objetivo 1: identificar diferentes unidades de carga;

Objetivo 2: reconhecer problemas associados às diferentes disposições de produtos numa paleta;

Objetivo 3: dispor os produtos na paleta, testando diferentes disposições tendo em conta determinadas especificações (dimensões, estabilidade);

Objetivo 4: analisar as diferentes disposições consideradas do ponto de vista da área/volume utilizada(o) e área/volume inutilizada(o);

Objetivo 5: propor alternativas para a paletização de produtos com formatos irregulares, por forma a maximizar o espaço utilizado, tendo sempre em consideração as limitações.

<table>
<thead>
<tr>
<th>Tabela 23: Classificação dos objetivos da atividade de Construção de Paletes segundo a Taxonomia Revista de Bloom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensão do Conhecimento</td>
</tr>
<tr>
<td>Factual</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
</tr>
<tr>
<td>Processual</td>
</tr>
<tr>
<td>Objetivo 2</td>
</tr>
<tr>
<td>Objetivo 3</td>
</tr>
<tr>
<td>Objetivo 4</td>
</tr>
<tr>
<td>Objetivo 5</td>
</tr>
</tbody>
</table>

6.2.1.6. Produção de Kits

Como foi referido anteriormente, a atividade correspondente à produção de kits está inserida na UC de Gestão de Operações. Como tal, é uma atividade em que os alunos têm de lidar com a eficiência das operações, por forma a garantir que os produtos enviados para os clientes, sejam entregues nas melhores condições, com o menor lead time possível, ou seja, garantir o melhor nível de serviço.

Esta atividade simula o que é feito em algumas empresas, onde tem de ser preparado um kit com diversos produtos no seu interior. Simulando uma célula de trabalho, a mesma tem de ir sendo abastecida, por forma a garantir um fluxo contínuo, onde não podem existir paragens por falta de produto. Para isso, as estações de trabalho têm de ser adaptadas para conseguirem responder a este tipo de questões. A melhor forma de o fazer é recorrer a conceitos da filosofia Lean. Os alunos serão assim desafiados a melhorar a eficiência da célula de trabalho recorrendo à aplicação de ferramentas lecionadas na UC de Gestão de Operações.

Encontram-se de seguida os objetivos definidos para esta atividade de produção de Kits, bem como a sua classificação na tabela 24.

Objetivo 1: definir o conceito de célula de trabalho;

Objetivo 2: identificar diferentes formatos de células trabalho e as suas diferentes aplicações;

Objetivo 3: identificar problemas associados a ineficiências que surgem em células de trabalho;

Objetivo 4: executar os kits, de acordo com as encomendas provenientes dos clientes, garantindo um nível de serviço elevado;
Objetivo 5: analisar o desempenho na construção do *kit*, questionando possíveis alterações ao processo por forma a melhorar a operação;

Objetivo 6: criar soluções, com recurso à filosofia *Lean*, e testar novas ferramentas que auxiliem a melhorar a eficiência da operação.

Tabela 24: Classificação dos objetivos da atividade de Produção de *Kits* segundo a Taxonomia Revista de *Bloom*

<table>
<thead>
<tr>
<th>Dimensão do Conhecimento</th>
<th>Dimensão do Processo Cognitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>Lembrar</td>
</tr>
<tr>
<td>Conceitual</td>
<td>Objetivo 1</td>
</tr>
<tr>
<td>Processual</td>
<td>Objetivo 2</td>
</tr>
<tr>
<td>Metacognitivo</td>
<td>Objetivo 4</td>
</tr>
</tbody>
</table>

6.2.1.7. **Balanceamento Linha/ Layout**

A atividade de balanceamento de linha diz respeito à simulação de várias estações de trabalho, com vista a serem melhorados tempos de ciclo de produção, através do balanceamento de linha e consideração de diferentes layouts.

Nesta atividade, é simulado um processo de montagem que é transmitido de estação em estação de trabalho. Estas estações são responsáveis por manter um fluxo de produto, que faça chegar o produto final aos clientes, com a melhor qualidade e no menor período de tempo possível. Cada estação é composta por um trabalhador, que está alocado a uma ou mais tarefas.

O desafio lançado aos alunos nesta atividade, é o de identificar e tomar medidas sobre aspetos que podem ser melhorados, como por exemplo desperdícios a serem eliminados, por forma a encontrem um balanceamento de linha, onde estão alocados às tarefas os trabalhadores estritamente necessários para garantir que existe um fluxo contínuo de produto, garantindo qualidade e eficiência no tempo de produção dos produtos.

À semelhança de todas as outras atividades, de seguida encontram-se os objetivos que dizem respeito à atividade de balanceamento de linha e a sua classificação na tabela 25.

Objetivo 1: definir o conceito de balanceamento de linha;

Objetivo 2: identificar consequências de um ineficiente balanceamento de linha;

Objetivo 3: executar as tarefas nas diferentes estações de trabalho, por forma a criar um fluxo contínuo de produtos;

Objetivo 4: analisar *bottlenecks* criados ao longo do fluxo de produtos, questionando as razões para tal;

Objetivo 5: criar novas estratégias e testá-las nas diferentes estações de trabalho, por forma a melhorar o processo;
Tabela 26: Classificação dos objetivos da atividade de Balanceamento de Linha segundo a Taxonomia de Bloom

<table>
<thead>
<tr>
<th>Dimensão do Conhecimento</th>
<th>Dimensão do Processo Cognitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lembrar</td>
</tr>
<tr>
<td>Factual</td>
<td>Objeto 1</td>
</tr>
<tr>
<td>Conceptual</td>
<td>Objeto 2</td>
</tr>
<tr>
<td>Processual</td>
<td>Objeto 3</td>
</tr>
<tr>
<td>Metacognitivo</td>
<td></td>
</tr>
</tbody>
</table>

6.2.1.8. Risk Pooling Game

O *risk pooling* é um conceito que envolve a centralização de inventário, para tirar partido do facto de que se a procura num determinado mercado é elevada, esta pode ser compensada com a procura de outro mercado que seja reduzida. Assim, ao agregar essa procura, torna-se possível reduzir a variabilidade e consequentemente o nível médio de inventário.

Desta forma, esta atividade representa um jogo de simulação que pretende comparar dois sistemas diferentes: sistema centralizado e sistema descentralizado. No primeiro sistema, existem três retalhistas diferentes que são abastecidos por apenas um armazém, ou seja, o inventário está centralizado. Já no segundo sistema, esses três retalhistas são abastecidos cada um deles pelo seu fornecedor, sendo que neste caso o inventário está descentralizado.

Em simultâneo, os alunos são desafiados a controlar os dois sistemas, durante um período de 30 semanas, procedendo ao pedido dos produtos, em cada um deles, por forma a manter um nível de inventário que consiga satisfazer a procura. Tendo em consideração o preço de venda dos produtos e os seus custos associados à compra e armazenamento, o principal objetivo deste jogo de simulação é maximizar o lucro.

Através desta atividade de simulação, é possibilitado aos alunos verificarem que quando a variabilidade da procura é elevada, o efeito do *risk pooling* é maior, e, que por isso, é melhor adotar-se uma cadeia de abastecimento centralizada.

Apresentam-se de seguida os objetivos correspondentes ao jogo do *risk pooling*, bem como a sua classificação na tabela 26.

Objetivo 1: definir os conceitos associados ao *risk pooling*;

Objetivo 2: explicar as diferenças entre sistemas centralizados e sistemas descentralizados;

Objetivo 3: desenvolver e executar uma estratégia, por forma a manter inventário suficiente para conseguir satisfazer a procura, e consequentemente maximizar os lucros;

Objetivo 4: analisar a evolução do lucro, ao longo do tempo considerado na atividade, comparando as diferenças entre os dois sistemas;

Objetivo 5: justificar as razões de possíveis diminuições do lucro ao longo do tempo;
Objetivo 6: avaliar de que forma o lucro varia consoante diferentes condições de procura, provenientes de diferentes mercados, justificando qual a correlação entre a procura (positiva, negativa ou independente);

Objetivo 7: formular uma estratégia para responder ao mercado consoante a procura seja positivamente ou negativamente correlacionada.

Tabela 26: Classificação dos objetivos do Risk Pooling Game segundo a Taxonomia Revista de Bloom

<table>
<thead>
<tr>
<th>Dimensão do Conhecimento</th>
<th>Dimensão do Processo Cognitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>Lembrar Compreender Aplicar Analisar Avaliar Criar</td>
</tr>
<tr>
<td>Conceitual</td>
<td>Objetivo 1</td>
</tr>
<tr>
<td>Processual</td>
<td>Objetivo 2 Objetivo 3 Objetivo 4</td>
</tr>
<tr>
<td>Metacognitivo</td>
<td>Objetivo 5 Objetivo 6 Objetivo 7</td>
</tr>
</tbody>
</table>

6.2.2. Estruturação dos guias

Nesta secção serão então desenvolvidas as atividades de *picking* e balanceamento de linha. A escolha destas atividades em particular deve-se ao facto de, para além de as mesmas nunca terem sido realizadas nas UC’s do grupo de Operações e Logística, as duas pertencem a UC’s opcionais de mestrado, e, portanto, torna-se mais fácil incluí-las no programa. Para tal, serão estruturados, como foi dito anteriormente dois guias diferentes. O primeiro será destinado aos docentes, incluindo os procedimentos para possibilitar a orientação da atividade em questão, e outro será destinado aos alunos, que incluirá uma breve descrição da atividade, bem como os passos a seguir para a execução da mesma.

6.2.2.1. Guia apoio aos docentes – Atividade de *picking*

Nesta atividade, estão distribuídos no armazém 8 produtos diferentes, existindo um total de 96 localizações. Todas estas localizações estão devidamente identificadas, existindo um código de localizações que se encontra no Anexo 2.

Devem ser constituídos grupos de 4 a 5 alunos, sendo que a atividade será realizada por dois grupos em simultâneo. O número de grupos total depende do número de alunos por aula.

Para apoio ao docente, existe um mapa auxiliar do armazém onde se encontram todas as localizações com os respetivos produtos (Anexo 3), já para os alunos é cedido um mapa onde para além da localização desses produtos, está a localização de outros produtos fictícios (Anexo 5). Neste mapa existem localizações à qual não está alocado qualquer tipo de produto.

No início da atividade, os alunos recebem as notas das encomendas dos clientes (5 no total) e a localização física dos produtos (para a localização dos produtos os alunos recebem igualmente os códigos de localização do armazém). Poderá ser dado um curto período de tempo, para os alunos fazerem uma breve análise às informações apresentadas. Cada grupo deve ir buscar então 5
caixas/paletes e colocar junto à zona de preparação de expedição, que estão devidamente assinaladas. Durante a realização da atividade, o tempo das tarefas deve ser cronometrado.

Para a realização desta atividade, existe um conjunto de regras que deve ser seguido:

- só pode estar um aluno de cada grupo no armazém;
- cada grupo deve realizar a atividade de picking da forma que considerar mais produtiva;
- na zona de preparação de expedição, cada encomenda deve ter a sua própria caixa/palete;
- as notas de encomendas devem acompanhar a mercadoria correspondente;
- as caixas/paletes têm de ser colocadas na zona definida;

A atividade termina quando a última caixa/palete se encontrar na zona definida.

Quando a mesma tiver então terminado, são registados todos os tempos que levaram à realização da atividade, bem como terão de ser confirmadas todas as encomendas.

Nesta atividade, é esperado que numa primeira volta os alunos realizem a operação por fluxo de encomenda. Caso não tenha sido feito um pequeno estudo prévio da localização dos produtos, os alunos irão realizar as encomendas pela ordem em que as mesmas se encontrarem. Assim, será criado um conjunto de fluxos desordenados no armazém. A discussão levantada aqui, dirá respeito à influência que estes fluxos desnecessários têm em situações reais em grandes armazéns.

Com esta discussão, devem surgir soluções para que estes fluxos desnecessários sejam eliminados, ao mesmo tempo que devem ser sugeridas formas de melhorar o tempo da operação. Deverá ser iniciada neste ponto uma nova questão relativa ao fluxo de picking por produto em contraste com o fluxo de picking por encomenda. Assim, deve ser sugerida pelos alunos a realização da atividade por fluxo de produto. Depois de testada esta solução, os dois processos devem ser comparados. Apesar da realização da operação de picking desta forma, criar um fluxo mais ordenado no armazém, é expectável que apesar de a atividade ser realizada num período mais reduzido, os alunos apontem desvantagens relativamente ao processo realizado anteriormente. Essas desvantagens são relativas ao facto de numa primeira fase serem recolhidos todos os produtos nas respetivas quantidades presentes nas encomendas, de uma só vez, e que depois numa segunda fase os mesmos tenham ainda de ser distribuídos, já na zona de expedição, pelas respetivas caixas/paletes de acordo com as encomendas. Em contrapartida, os alunos deverão apontar a vantagem relativa ao facto de que como estão a ser contabilizadas duas vezes as quantidades dos produtos presentes nas encomendas, a probabilidade de estas serem realizadas nas quantidades corretas é maior.

Depois de testadas estas duas diferentes abordagens, e tendo em conta as encomendas dos clientes e a disposição do armazém, é pedido aos alunos que proponham localizações que tornem esta operação de picking mais eficiente. Destas propostas deve surgir a alteração dos produtos para localizações de mais fácil acesso e onde os produtos se encontrem em localizações mais próximas umas das outras. Fica ao critério dos alunos nesta última volta, realizarem a operação por fluxo de encomenda ou por fluxo de produto.
Após a sua realização, deverá ser conduzida uma nova discussão, comparando os resultados obtidos com os resultados das operações realizadas anteriormente.

É expectável que o grupo de alunos presente na atividade seja grande, e por isso, como existe a possibilidade de a atividade ser repetida, pode ser sugerida a alteração dos elementos que realizem a operação de picking. Contudo, é preciso ter em atenção que ao alterar estes elementos, a velocidade da realização da atividade também é alterada, devendo este ser um ponto de discussão na análise dos resultados.

Outra questão analisada, deve ser o facto de que ao longo da atividade as encomendas irão permanecer inalteradas, ou seja, as quantidades associadas aos produtos em causa manter-se-ão. Esta situação terá igualmente influência na velocidade da operação de picking, pois ao longo da atividade é natural que estas quantidades começem a ser memorizadas, deixando assim de existir uma dependência total ao recurso da análise das encomendas, durante a operação.

A realização da operação de picking fica ao critério de quem quiser participar, no entanto todos os alunos presentes devem interagir na discussão e análise dos resultados, propondo igualmente as novas localizações a serem testadas.

Por forma a servir como orientação, na figura 12 encontra-se a planificação para esta atividade, com a inclusão de todas as etapas que devem ser realizadas, ao longo da aula de laboratório.

<table>
<thead>
<tr>
<th>Tarefas</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apresentação geral da atividade</td>
<td></td>
</tr>
<tr>
<td>Organização dos grupos</td>
<td></td>
</tr>
<tr>
<td>Breve análise aos documentos oedidos</td>
<td></td>
</tr>
<tr>
<td>Preparação caixas/paletes</td>
<td></td>
</tr>
<tr>
<td>Primeira volta</td>
<td></td>
</tr>
<tr>
<td>Verificação das encomendas</td>
<td></td>
</tr>
<tr>
<td>Análise dos resultados</td>
<td></td>
</tr>
<tr>
<td>Segunda volta</td>
<td></td>
</tr>
<tr>
<td>Verificação das encomendas</td>
<td></td>
</tr>
<tr>
<td>Análise dos resultados</td>
<td></td>
</tr>
<tr>
<td>Proposta de novas localizações</td>
<td></td>
</tr>
<tr>
<td>Teste às novas localizações</td>
<td></td>
</tr>
<tr>
<td>Análise e comparação dos resultados</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempo (minutos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Figura 12: Planificação da atividade de picking

6.2.2.2. **Guia apoio aos alunos – Atividade de picking**

O guia que serve de orientação aos alunos referente à atividade de picking encontra-se representado na figura 13. Este guia apresenta inicialmente uma breve introdução à operação de picking, por forma a enquadrar o problema. De seguida apresenta as indicações que os alunos devem seguir, bem como as tarefas que devem ser realizadas.
A operação de picking é considerada uma das operações fundamentais num armazém. Sendo considerada como a operação que implica um maior trabalho intensivo, é indispensável para que as encomendas cheguem em perfeitas condições, em termos de quantidade e qualidade, aos clientes. Em média, 65% das despesas de um armazém são relativas à função de picking. Tendo em conta que em grandes armazéns, é necessário preparar todos os dias uma grande quantidade de encomendas, é essencial então que estas operações sejam realizadas de forma mais eficiente possível.

Nesta atividade será então simulada a operação de picking, que será realizada num armazém fictício.

Este armazém está devidamente identificado e para auxílio existe um código que ajuda na identificação das diferentes localizações. Existe igualmente uma planta do armazém, onde estão representados os corredores do armazém, bem como o tipo de rack e as localizações (Anexo 4).

Existem 5 encomendas diferentes de clientes, devidamente identificadas, que incluem o tipo de produto e a quantidade requerida pelos mesmos.

Antes de iniciar a atividade, as caixas/paletes que irão corresponder cada uma à sua encomenda, deverão ser colocadas junto à zona de preparação de expedição, junto ao armazém. A atividade termina quando a última caixa/palete for colocada nessa zona. O método de recolha dos produtos fica ao critério de cada grupo.

Nota: depois de cada encomenda ficar completa, é necessário colocar a nota de encomenda, juntamente com a mesma.

Nesta atividade é pedida a realização das seguintes tarefas:

- Realizar a operação de picking da forma mais produtiva possível;
- Confirmar encomendas, em termos de quantidade e produto, no final de cada volta;
- Analisar os resultados das diferentes voltas, sugerindo novas formas de melhoria;
- Sugere novas localizações estratégicas para os diferentes produtos, de forma a tornar a operação de picking ainda mais eficiente.

Figura 13: Guia de apoio aos alunos - atividade de picking
6.2.2.3. Guia apoio aos docentes – Atividade de balanceamento de linha/ layout

Esta atividade engloba a montagem de tomadas, que têm de passar por diversas estações de trabalho, seis no total. No final destas estações, estará o cliente (representado por um aluno) que irá receber os produtos, verificando a sua qualidade.

Inicialmente, a cada uma dessas estações, será alocado um aluno que estará responsável por uma tarefa na montagem do produto. Cada estação de trabalho terá igualmente a presença de um outro aluno que estará responsável por contabilizar o tempo de ciclo de produção do aluno que estiver a realizar a montagem do produto nessa estação.

A disposição da atividade no laboratório incluirá as estações de trabalho distantes entre si, com uma sequência de montagem desordenada. As tarefas alocadas aos alunos em cada estação também não estarão balanceadas.

Nestas condições, será realizada a atividade por um período de 10 minutos. Ao fim desses 10 minutos, deverá ser feita uma análise com os alunos sobre os diferentes problemas inerentes a esta forma de trabalho. Os alunos deverão analisar igualmente a quantidade de produtos que chegou ao cliente final e a quantidade de work in progress, que ficou ao longo das estações de trabalho.

Desta análise deverão resultar sugestões de melhoria, para tornar o processo mais eficiente. Os alunos devem sugerir de que forma é que as estações de trabalho devem estar dispostas, por forma a eliminar desperdícios. Desta forma, os alunos deverão sugerir a aproximação das estações de trabalho, por forma a serem eliminados logo à primeira vista desperdícios relativos à movimentação. Com esta aproximação das estações, deverá ser criada igualmente uma sequência ordenada das diferentes tarefas presentes na atividade.

Outra sugestão que deve ser sugerida é relativa à forma de como é que o trabalho deve estar balanceado ao longo das diferentes estações, por forma a equilibrar os diferentes tempos de ciclo. Fazendo este balanceamento é logo possível reduzir outro desperdício relativo aos tempos de espera, reduzindo assim o tempo de inatividade dos alunos nas respetivas estações de trabalho, permitindo criar um fluxo contínuo de produto. Assim, através da medição dos tempos de ciclo que são realizados em cada estação, os alunos terão de sugerir sugestões quanto ao número efetivo de alunos que deve estar alocado às estações de trabalho, por forma a que os mesmos estejam equilibrados entre si e igualmente para que exista o mínimo work in progress ao longo das estações.

Depois de realizado este balanceamento nas diferentes estações, deverão ainda ser sugeridos pelos alunos pequenos ajustes, nomeadamente relativos à disposição dos mesmos, nas estações de trabalho que necessitem de dois responsáveis. Este ajuste passa por colocar os dois alunos que estão alocados a uma das tarefas em paralelo. Na prática, será ficarem colocados cada um no seu lado da estação de trabalho, evitando assim pequenas obstruções quando o produto está a ser transferido para a estação seguinte.
À medida que essas análises são feitas, deverão ser experimentadas as sugestões dadas pelos alunos, por forma a verificar essas melhorias ao longo da montagem do produto. O número de vezes que a atividade é repetida, depende das sugestões criadas pelos alunos. Cada volta terá sempre a duração de 10 minutos, por forma a poderem ser realizadas comparações entre as mesmas. No entanto, tendo em conta que a aula laboratorial tem a duração de 90 minutos, a atividade não deve ser realizada mais do que três vezes.

No final, os alunos devem realizar ainda uma análise comparativa entre todas as simulações efetuadas ao longo desta atividade, tendo em conta os resultados das mesmas.

Como esta atividade não permite que todos os alunos presentes na aula laboratorial façam parte das estações de trabalho, em simultâneo, é possível alterar os elementos presentes nas mesmas, caso existam alunos interessados em fazê-lo. Contudo, é preciso ter em atenção nas análises efetuadas que ao serem feitas estas alterações, a experiência do novo aluno não é a mesma da do aluno que estava na tarefa anteriormente, e que, por isso, existirão influências nos tempos de ciclo de produção.

Na figura 14, encontra-se a planificação para esta atividade, apresentando os respetivos passos que devem ser seguidos, ao longo do tempo de aula laboratorial.

<table>
<thead>
<tr>
<th>Tarefas</th>
<th>Tempo (minutos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apresentação geral da atividade</td>
<td></td>
</tr>
<tr>
<td>Preparação das estações de trabalho</td>
<td></td>
</tr>
<tr>
<td>Distribuição dos alunos pelas estações</td>
<td></td>
</tr>
<tr>
<td>Primeira volta</td>
<td></td>
</tr>
<tr>
<td>Análise dos resultados</td>
<td></td>
</tr>
<tr>
<td>Sugestões de melhoria</td>
<td></td>
</tr>
<tr>
<td>Preparação da nova disposição das estações, com novo balanceamento de linha</td>
<td></td>
</tr>
<tr>
<td>Segunda volta</td>
<td></td>
</tr>
<tr>
<td>Análise dos resultados</td>
<td></td>
</tr>
<tr>
<td>Novas sugestões de melhoria</td>
<td></td>
</tr>
<tr>
<td>Preparação da nova disposição das estações, com novo balanceamento de linha</td>
<td></td>
</tr>
<tr>
<td>Terceira volta</td>
<td></td>
</tr>
<tr>
<td>Comparação dos resultados</td>
<td></td>
</tr>
</tbody>
</table>

Figura 14: Planificação da atividade de balanceamento de linha/ layout

6.2.2.4. **Guia apoio aos alunos – Atividade de balanceamento de linha/ layout**

O guia para os alunos que diz respeito à atividade de balanceamento de linha/ layout encontra-se representado na figura 15. À semelhança do guia apresentado para a atividade de picking, este também inclui uma introdução relativa ao problema em causa, expondo de seguida as indicações a serem seguidas, igualmente como as tarefas a serem realizadas.
6.3. Conclusões

Neste capítulo foi desenvolvido um plano de atividades para ser implementado no âmbito do ensino, como forma de apoio às UC’s do grupo de Operações e Logística. O desenvolvimento do mesmo passou por um processo de discussão até ser apresentado o plano final. Esta discussão teve um papel fundamental no seu desenvolvimento, visto que como foi realizada com docentes envolvidos na área, permitiu ter uma visão de diferentes perspetivas sobre as atividades, bem como a utilização de sugestões aplicadas às mesmas, do ponto de vista de quem tem experiência e lida diariamente com questões nestas áreas.

Seguidamente, passou-se à definição dessas atividades pertencentes ao plano de atividades desenvolvido anteriormente. Essa definição passou por uma descrição das mesmas por forma a
poderem ser descritos e desenvolvidos os seus objetivos. Os objetivos desenvolvidos são claros e concisos, e englobam a condução organizada do processo de aprendizagem dos alunos, por forma a facilitar o desenvolvimento das capacidades e competências, alcançando assim os resultados esperados. O facto destes objetivos serem definidos como descrições dos comportamentos dos alunos, ajuda igualmente este processo de aprendizagem, visto que deste modo é permitido aos mesmos terem uma compreensão clara do que deve ser aprendido. Para além destes objetivos, foram ainda apresentadas as classificações dos mesmos, segundo a tabela sugerida na taxonomia de Bloom, considerando as duas dimensões, o processo cognitivo e o conhecimento. Para além de terem servido de auxílio no desenvolvimento dos mesmos, no sentido em que permitiu analisar se estavam a ser incluídos todas as categorias ou não, é possível verificar no final, através de uma rápida análise às mesmas, que todos os objetivos das atividades aqui descritas permitem ter um processo de aprendizagem completo.

Por fim, através da seleção de duas atividades, que ainda não estão incluídas no processo de planeamento das UC’s do grupo de Operações e Logística, foram desenvolvidos dois guias de apoio para os docentes e alunos. Com recurso aos mesmos, é permitido aos docentes conseguirem orientar todo o processo das atividades, desde questões práticas a questões de análise e avaliação, ao passo que para os alunos, é permitido seguir as indicações que devem ser feitas durante a atividade, bem como aspetos a ter em conta com a realização da mesma, por forma a conseguirem ser feitas análises posteriores.
7. Definição do Layout e Planeamento da Implementação

7.1. Layouts

O laboratório já tem um espaço reservado nas instalações do IST-Taguspark. O mesmo será a junção de duas salas, ficando assim com uma área de cerca de 107 m2, na sua totalidade. O espaço do laboratório estará ainda sujeito a uma intervenção, onde não só será removida a parede existente entre as salas, transformando-a numa só, como também irá ser permitido colocar uma parede envidraçada, que dará visibilidade para o átrio principal do edifício, por forma a promover a dinâmica do laboratório.

Para facilitar a compreensão dos *layouts* apresentados nesta secção, estão representados na tabela 27 as diferentes simbologias utilizadas. De seguida serão então apresentados os diferentes *layouts* considerados.

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Limite laboratório</th>
<th>Parede envidraçada</th>
<th>Mesa redonda</th>
<th>Mesa retangular</th>
<th>Racks (armazém)</th>
<th>Localização Paletes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simbologia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.1.1. Beer game, incoterms e risk pooling

As atividades relativas ao *beer game*, aos *incoterms* e ao *risk pooling*, apresentam dois aspectos em comum. Ambas são atividades estáticas, que carecem de uma discussão em grupo para a sua realização, e recorrem à utilização de um computador por grupo/mesa. Como tal, estas três atividades conseguem partilhar o mesmo *layout*, que neste caso, como está representado na figura 16, engloba a utilização de mesas redondas. A utilização desta forma de mesas é proposta. Assim, é possível envolver todos os elementos do grupo na discussão das melhores estratégias para alcançar os melhores resultados nas atividades consideradas.
No caso do beer game, simulando duas cadeias de abastecimento com quatro entidades cada (fábrica, grossista, distribuidor e retalhista), existem no total oito grupos diferentes. Esses grupos estariam divididos pelas mesas, conforme a cadeia a que pertencem. No risk pooling a mesma situação, como podem existir até oito grupos, os mesmos estarão distribuídos pelas diferentes oito mesas. Relativamente à atividade de incoterms, é possível incluir com este layout dois conjuntos de negociação, estando os mesmos distribuídos por seis mesas.

7.1.2. Estratégias de picking

Para a atividade de estratégias de picking, como tem de ser simulado um corredor fictício de um armazém, que tem de possuir uma flexibilidade tal para que possam ser testadas as diferentes estratégias de picking, o mesmo não podia incluir os corredores de um armazém fixo, devido à sua inflexibilidade relativa às suas dimensões (dimensões das racks). Como tal, a melhor forma de simular o ambiente desta atividade é através de um conjunto de mesas como está representado na figura 17. Este layout, por sua vez, confere flexibilidade ao laboratório, onde como poderá ser observado de seguida, o mesmo layout aqui utilizado, sofrendo pequenos ajustes consegue satisfazer logo as necessidades de outras atividades.

Como nesta atividade não existe oportunidade de todos os alunos realizarem a atividade ao mesmo tempo, ao ser criado este corredor fictício, é possível aos alunos observarem e analisarem as operações testadas pelos colegas.

![Figura 17: Layout da atividade de estratégias de picking](image)

7.1.3. Picking

A próxima atividade cujo layout está em análise, é a atividade de picking. Tendo em conta todo o material necessário às atividades presentes nestes layouts, aquele que apresenta uma maior inflexibilidade é este armazém devido às suas grandes dimensões. Uma vez colocadas as racks no laboratório, torna-se quase impossível alterar a sua disposição, como tal a sua localização tem de ser pensada não só para as atividades relacionadas ao ensino, como para futuras atividades e eventos que possam vir a ser realizados no laboratório. Tendo em consideração esses aspetos, este armazém foi pensado para ser colocado na zona onde está representado, tanto na figura 18 como 19, por forma a acompanhar a profundidade do espaço, onde imediatamente a seguir existe espaço para que, não
só nesta atividade, como noutras, possa surgir a continuidade das mesmas, com recurso a outros materiais.

No caso da presente atividade, no espaço que sucede ao armazém estão representadas umas marcas, que assinalam a localização de onde devem ser colocadas as caixas/paletes das diferentes encomendas dos clientes consideradas nesta atividade. Tendo em conta que existem cinco encomendas diferentes, o facto de essas localizações estarem em duplicado, é justificado pelo facto de que nesta atividade são realizadas duas operações de picking em simultâneo.

Como foi referido na secção 6.2.1.4, esta atividade apresenta duas abordagens: fluxo por encomenda e fluxo por produto. No fluxo por encomenda, é normal que os alunos, numa primeira tentativa, realizem as encomendas pela ordem em que os produtos são apresentados na mesma. Com isso, acabam por ser criados demasiados fluxos no armazém que poderiam ser evitados se houvesse um planeamento prévio. Esta situação, inserida no layout desta atividade encontra-se representada na figura 18.

![Figura 18: Layout da atividade de picking - fluxo por encomenda](image18)

No caso de ser realizado um fluxo por produto, tendo em conta que existe um estudo prévio da localização dos mesmos, o fluxo no armazém fica assim mais organizado. O mesmo está representado na figura 19.

![Figura 19: Layout da atividade de picking - fluxo por produto](image19)

7.1.4. Construção de paletes

O layout para a atividade de construção de paletes é relativamente simples. O mesmo que está representado na figura 20, engloba apenas as marcas que assinalam onde poderão ser colocadas as
paletes, para a realização da atividade. O único aspeto que merece ser referido é que a sua localização se justifica pela proximidade ao armazém, de onde as paletes e as caixas, que vão compor cada palete, são retiradas no início da atividade e novamente colocadas no final.

7.1.5. Produção de kits

Como foi referido no capítulo anterior, na secção 6.2.1.6 correspondente à atividade de produção de kits, esta atividade simula o funcionamento de uma célula de trabalho. Como tal, as mesmas podem ser representadas por mesas. A disposição dessas células está representada na figura 21. Para além das mesas, representando células de trabalho, como esta atividade tem a componente do abastecimento dessas mesmas células, está presente igualmente no seu layout, um conjunto de racks, que representam o armazém do laboratório.

7.1.6. Balanceamento de linha/ layout

Por último, falta apresentar o layout da atividade de balanceamento de linha/ layout. Como a própria atividade envolve a criação de um layout por forma a melhorar a eficiência do processo, para a mesma serão apresentados duas diferentes disposições, uma inicial e outra final. As mesmas encontram-se representadas na figura 22 e 23 respetivamente. Em ambos os layouts, o cliente está representado a amarelo.

Na figura 22 está representada uma possível disposição, porque o que interessa com este layout é apenas o de verificar a sua ineficiência, onde as diferentes estações de trabalho, para além de não
estarem juntas, não existe uma sequenciação ordenada entre as diferentes estações, como pode ser observado na figura, causando inúmeros desperdícios.

Já na figura 23, encontra-se representado um layout daquele que se aproxima mais do que se espera que os alunos sugiram ao longo da atividade. A ordem da montagem do produto com este layout já está devidamente sequenciada.

7.2. Planeamento da Implementação

Para que finalmente seja possível proceder à implementação do laboratório, como foi referido na metodologia, é necessário então ainda serem seguidos um conjunto de passos delineados que serão representados através de um cronograma, por forma a facultar uma visão geral sobre os mesmos, tendo em conta o fator do tempo.

Neste subcapítulo, o cronograma desenvolvido inclui então o plano do laboratório a partir do ponto em que atualmente se encontra, até ao momento da sua inauguração. Este cronograma está representado na figura 24.
O primeiro passo a avançar está relacionado com a realização de parcerias, tendo em conta que neste momento não existe nada que impeça este passo de ser iniciado. Neste passo, devem então ser procuradas e feitas parcerias, por forma a que sejam fornecidos equipamentos e materiais necessários ao funcionamento do laboratório, como por exemplo, racks para o armazém, paletes, caixas e produtos, que dependem das parceiras realizadas, para a realização das atividades.

O passo seguinte, e que neste momento está dependente da sua disponibilidade, é a preparação do espaço. Este contempla os trabalhos que ainda terão de ser realizados no mesmo para que sejam criadas condições no espaço, nomeadamente a junção das salas e a substituição de uma parede, para uma parede envidraçada, como foi referido na secção anterior. Como atualmente estes espaços ainda estão a ser utilizados para aulas, este passo só poderá ter início em janeiro, já fora do período de aulas. Com isso, prevê-se que a realização destes trabalhos esteja concluída em abril do próximo ano.

Seguindo o cronograma, os pontos que se seguem dizem respeito à instalação dos equipamentos e materiais do laboratório. Este está ainda dividido em duas partes, materiais cedidos pelas parcerias e materiais cedidos pelo Técnico, como mesas e cadeiras. Estes pontos estão dependentes da preparação do espaço, de modo que, segundo a previsão, apenas poderão ter início a partir de abril quando os trabalhos estiverem concluidos. Relativamente à instalação dos equipamentos e materiais cedidos pelas parcerias, os mesmo estão igualmente dependentes do próprio acordo com essas parcerias, por isso teria de ser sempre uma tarefa posterior. No entanto, segundo a previsão o que realmente está a condicionar este ponto é a preparação do espaço.

Depois de o espaço estar finalmente equipado com todos esse equipamentos e materiais, está na altura de ser feito um teste piloto às atividades propostas nesta dissertação, por forma a que as mesmas sejam testadas com a finalidade de avaliar pequenos ajustes.

Posto isto, ao serem seguidos todos estes passos, prevê-se que ao final de 9 meses, a implementação do laboratório esteja concluída, existindo ainda uma reserva de tempo de um mês antes do milestone pré-definido que é a inauguração do laboratório, em setembro. No cronograma, este marco está assinalado a amarelo. Posto isto, o laboratório está pronto a ser utilizado e a explorar mais vertentes incluídas nos três pilares.
7.3. Conclusões

Neste capítulo foram desenvolvidos numa primeira parte os layouts das atividades a serem incluídos no laboratório e numa segunda parte foi desenvolvido um cronograma que inclui os próximos passos na implementação do laboratório.

Os layouts foram desenvolvidos segundo as necessidades de cada atividade, e como foi possível encontrar semelhanças de requisitos nas mesmas, foi possível complementar essas atividades por forma a que as mesmas pudessem ser realizadas com os mesmos recursos a nível de equipamentos, dispostos da mesma forma. Tornado desta forma o laboratório mais flexível. Mas o mesmo não acontece apenas para estas atividades de ensino, como é o caso dos layouts apresentados para as atividades do beer game, incoterms e risk pooling, que da maneira como estão representados apresentam muitas outras aplicações fora do âmbito do ensino.

No entanto, mesmo nas outras atividades com layouts mais específicos foi possível dispor as mesmas de tal forma que, como nunca será realizada mais do que uma atividade ao mesmo tempo, seja possível alterar a disposição dos mesmos sem grandes mudanças e dificuldades. Este é por exemplo o caso da disposição das mesas retangulares consideradas, que mesmo quando não estão a ser utilizadas podem ser agrupadas, sem causar grandes transtornos no espaço do laboratório.

O caso do armazém considerado para o laboratório, também foi pensando por forma a não condicionar muito todo o espaço disponível no laboratório, já que este uma vez implementado, não convém ser deslocado, devido às suas dimensões.

Na tabela 28, encontram-se as quantidades de equipamentos necessários à realização destas atividades, bem como os materiais necessários. No entanto, só nas atividades que foram desenvolvidas mais em detalhe é que são apresentadas quantidades mais exatas. Relativamente aos equipamentos, são apresentados em geral equipamentos de apoio, à exceção da atividade de picking onde é apresentado um equipamento mais específico.

| Tabela 28: Equipamentos e materiais das atividades |
|---------------------------------|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| **Atividades** | **Beer game, incoterms e risk pooling** | **Estratégias picking** | **Picking** | **Constr. paletes** | **Produção de kits** | **Balan. de linha/ layout** |
| Equip. | | 5 mesas retangulares | 6 conjuntos de racks | - | 4 mesas retangulares | 6 mesas retangulares |
| Materiais | - | caixas; produtos; | 10 caixas/ paletes; 8 produtos diferentes; 2 cronómetros; | caixas; paletes; | caixas para kits; caixas para produtos; | 50 tomadas; 16 caixas pequenas; 1 cronómetro por estação; |

Relativamente ao cronograma desenvolvido, prevê-se que a implementação do laboratório esteja finalizada ao fim de 9 meses, tendo em conta a duração de cada passo considerado que é essencial à implementação do mesmo e que ainda tem de ser realizado.
Através da caracterização do Técnico, desde a sua missão, visão e plano estratégico, até à constituição da sua estrutura orgânica e oferta formativa, é possível concluir que o Técnico, como grande escola de engenharia reconhecida a nível mundial, preza muito a aprendizagem dos seus alunos, bem como a investigação a si associada e ainda o impacto que causa na sociedade, preocupando-se constantemente com a melhoria destes três pilares fulcrais. À semelhança do Técnico, também o Operations and Logistics Lab pretende assentar nestes três pilares. Relativamente à investigação, o grupo de Operações e Logística tem um vasto leque de projetos realizados e ainda em curso, por isso, a integração do laboratório será considerada uma vantagem. O mesmo irá possibilitar a realização de mais estudos e projetos, em parceria com o laboratório e até mesmo outras entidades envolvidas, com benefícios recíprocos. A nível da sociedade, tendo em conta todas as atividades desenvolvidas pelo grupo e conjugando-as com as que ocorrem anualmente no Técnico, a implementação do laboratório irá não só fortalecer o grupo de Operações e Logística, reforçando a sua imagem, como também irá permitir alcançar um maior impacto, a nível da visibilidade do Técnico. Já em relação ao ensino, a implementação do laboratório irá permitir tornar a aprendizagem dos alunos mais ativa. Através de simulações de situações reais, existirá agora um espaço devidamente equipado, onde os alunos poderão aplicar os conhecimentos teóricos aprendidos nas diferentes UC’s do grupo.

A aprendizagem ativa, sendo considerada por vários autores como um método de aprendizagem eficaz, integra totalmente o conceito e o propósito do Operations and Logistics Lab na sua vertente de ensino. Após a realização de determinadas atividades no laboratório, os alunos irão adquirir competências que lhes permitirão reforçar o seu conhecimento. Dentro dos formatos existentes, este laboratório pretende enquadrar-se no formato de laboratório real. Apesar do investimento necessário para preparação de espaços, é aquele que permite ter um maior contacto possível com atividades que se assemelham a situações reais, trazendo inúmeros benefícios a nível educacional para os alunos. Através dos procedimentos estipulados na metodologia, foi desenvolvido um benchmarking por forma a serem encontradas práticas em laboratórios que englobassem as mesmas áreas do Operations and Logistics Lab. Mesmo que um laboratório possa ser mais focado para um pilar do que para os outros, não quer dizer que não possam estar os três presentes ligados entre si. Através do benchmarking, foi possível analisar essas questões, de onde surgiram práticas a ser aplicadas no laboratório, englobando todos os pilares.

Apesar de a análise do benchmarking ter sido realizada num contexto por forma a abranger os três pilares, já que são praticamente inexistentes laboratórios com principal foco para o ensino, esta dissertação voltou ao foco deste pilar através do desenvolvimento de um plano de atividades. A discussão que foi criada à volta deste plano foi extremamente importante, por terem sido debatidas, com docentes envolvidos na área, diferentes perspetivas e propostas sugestões, que permitiram adequar melhor as atividades aos programas das diferentes UC’s do grupo de Operações e Logística. Através da metodologia apresentada, foram igualmente definidas as atividades onde foi apresentada uma descrição, seguida do desenvolvimento dos seus objetivos. Os mesmos ao serem desenvolvidos
de forma clara e precisa, através da taxonomia revista de *Bloom*, facilitam dessa forma a aprendizagem dos alunos nestas atividades, existindo desta forma um processo organizado de aprendizagem, onde através da definição de objetivos como descrição de comportamentos, é permitido aos alunos terem uma compreensão clara do que deve ser aprendido. Através da análise da classificação dos objetivos, é possível afirmar que para além destes objetivos constituírem um processo organizado de aprendizagem, também permitem ter um processo de aprendizagem completo, onde são incluídas todas as categorias dos domínios do processo cognitivo e do conhecimento.

Os guias de apoio criados para as atividades que foram desenvolvidas permitem, através de duas perspetivas criadas um para os docentes outra para os alunos, criar uma orientação de como a atividade deve ser seguida e quais os aspetos a analisar durante as mesmas.

Relativamente aos *layouts* das atividades, os mesmos foram desenvolvidos por forma a tornar o laboratório o mais flexível possível, já que o mesmo não se propõe apenas a ser ligado ao pilar do ensino. Com isso, os *layouts* das atividades ao serem complementados, têm de ser flexíveis de tal forma que permitam a inclusão de outro tipo de atividades no mesmo.

A implementação do laboratório acontece quando todo o seu planeamento é executado. Até este ponto, para o mesmo acontecer, ainda falta proceder à realização de algumas etapas, que através de o desenvolvimento de um cronograma espera-se que a implementação do laboratório esteja finalizada ao fim de 9 meses.

Depois de implementado, este laboratório tem muito por onde se desenvolver integrando os três pilares, ao mesmo tempo que cria interligações entre os mesmos. O foco desta dissertação foi o ensino, mas as atividades aqui desenvolvidas podem perfeitamente ser realizadas por i) colaboradores de empresas, quando as mesmas pretendem que os seus colaboradores ampliem a área dos seus conhecimentos relacionados com a função que desempenham ou ii) alunos de escolas do ensino básico e secundário, que podem ter contato pela primeira vez com a temática de operações e logística. Nestes casos, existiria uma relação entre o pilar do ensino e o pilar da sociedade. Relativamente ao pilar da investigação com a sociedade, poderiam ser desenvolvidos projetos, onde como foi apresentado nos resultados do *benchmarking*, as empresas procurariam o laboratório para em conjunto serem analisadas operações e processos, por forma a serem encontradas soluções para a resolução de problemas. Este tipo de projetos, dependendo da sua dimensão, poderiam estar igualmente a ligar estes pilares juntamente com o ensino, onde estariam os três presentes. Outra alternativa é o desenvolvimento de colaborações com outros laboratórios. Neste caso, já existe ligação com a Universidade de Dortmund, havendo possibilidade de colaborar ao nível da investigação.

Por forma a serem desenvolvidas atividades para o laboratório, poderia motivar-se igualmente os alunos através de prémios, a participarem num concurso, onde seriam propostas ideias com vista a serem implementadas no laboratório, incluídas em qualquer um dos pilares.

Em suma, este laboratório apresenta um enorme potencial para poderem ser criados neste espaço condições que permitam ao mesmo ser reconhecido pelas suas funções e projetos desenvolvidos no âmbito da ligação entre os três pilares.
Referências

Flick, Uwe. 2009. An Introduction to Qualitative Research. 4th ed. ed. SAGE.

Anexo 1 – Classificação dos objetivos segundo a taxonomia revista de Bloom

<table>
<thead>
<tr>
<th>Dimensão do Conhecimento</th>
<th>Dimensão do Processo Cognitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lembrar</td>
</tr>
<tr>
<td>Factual</td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
</tr>
<tr>
<td>Processual</td>
<td></td>
</tr>
<tr>
<td>Metacognitivo</td>
<td></td>
</tr>
</tbody>
</table>

Anexo 2 – Código localização Armazém

<table>
<thead>
<tr>
<th>Código Localização Armazém</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armazém</td>
</tr>
<tr>
<td>Corredor</td>
</tr>
<tr>
<td>Tipo rack</td>
</tr>
<tr>
<td>Nível palletes</td>
</tr>
<tr>
<td>Nível pick</td>
</tr>
</tbody>
</table>

Anexo 3 – Planta do Armazém com localização dos produtos

<table>
<thead>
<tr>
<th>OLL-A-PAL-N1-01</th>
<th>Produto 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLL-A-PAL-02</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PAL-03</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PAL-04</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PAL-05</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PAL-06</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PICK-01</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PICK-02</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PICK-N0-03</td>
<td>Produto 5</td>
</tr>
<tr>
<td>OLL-A-PICK-04</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PICK-05</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PICK-06</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PICK-07</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PICK-N1-08</td>
<td>Produto 7</td>
</tr>
<tr>
<td>OLL-A-PICK-09</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PICK-10</td>
<td></td>
</tr>
<tr>
<td>OLL-A-PICK-N0-11</td>
<td>Produto 3</td>
</tr>
<tr>
<td>OLL-A-PICK-12</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PAL-01</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PAL-02</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PAL-03</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PAL-04</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PAL-05</td>
<td>Produto 2</td>
</tr>
<tr>
<td>OLL-B-PAL-06</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-01</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-02</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-N0-05</td>
<td>Produto 6</td>
</tr>
<tr>
<td>OLL-B-PICK-03</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-04</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-N0-05</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-06</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-07</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-08</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-09</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-10</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-N0-11</td>
<td></td>
</tr>
<tr>
<td>OLL-B-PICK-12</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 4 – Planta do Armazém

<table>
<thead>
<tr>
<th>OLL-A-PAL-01</th>
<th>OLL-B-PAL-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLL-A-PAL-02</td>
<td>OLL-B-PAL-02</td>
</tr>
<tr>
<td>OLL-A-PAL-03</td>
<td>OLL-B-PAL-03</td>
</tr>
<tr>
<td>OLL-A-PAL-04</td>
<td>OLL-B-PAL-04</td>
</tr>
<tr>
<td>OLL-A-PAL-05</td>
<td>OLL-B-PAL-05</td>
</tr>
<tr>
<td>OLL-A-PAL-06</td>
<td>OLL-B-PAL-06</td>
</tr>
<tr>
<td>OLL-A-PICK-01</td>
<td>OLL-B-PICK-01</td>
</tr>
<tr>
<td>OLL-A-PICK-02</td>
<td>OLL-B-PICK-02</td>
</tr>
<tr>
<td>OLL-A-PICK-03</td>
<td>OLL-B-PICK-03</td>
</tr>
<tr>
<td>OLL-A-PICK-04</td>
<td>OLL-B-PICK-04</td>
</tr>
<tr>
<td>OLL-A-PICK-05</td>
<td>OLL-B-PICK-05</td>
</tr>
<tr>
<td>OLL-A-PICK-06</td>
<td>OLL-B-PICK-06</td>
</tr>
<tr>
<td>OLL-A-PICK-07</td>
<td>OLL-B-PICK-07</td>
</tr>
<tr>
<td>OLL-A-PICK-08</td>
<td>OLL-B-PICK-08</td>
</tr>
<tr>
<td>OLL-A-PICK-09</td>
<td>OLL-B-PICK-09</td>
</tr>
<tr>
<td>OLL-A-PICK-10</td>
<td>OLL-B-PICK-10</td>
</tr>
<tr>
<td>OLL-A-PICK-11</td>
<td>OLL-B-PICK-11</td>
</tr>
<tr>
<td>OLL-A-PICK-12</td>
<td>OLL-B-PICK-12</td>
</tr>
</tbody>
</table>
Anexo 5 – Localização Física dos Produtos

<table>
<thead>
<tr>
<th>LOCALIZAÇÃO</th>
<th>PRODUTO</th>
<th>LOCALIZAÇÃO</th>
<th>PRODUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLL-A-PAL-N0-01</td>
<td>26</td>
<td>OLL-B-PAL-N0-01</td>
<td>26</td>
</tr>
<tr>
<td>OLL-A-PAL-N0-04</td>
<td>OLL-B-PAL-N0-04</td>
<td>50</td>
<td>OLL-B-PAL-N0-05</td>
</tr>
<tr>
<td>OLL-A-PAL-N0-05</td>
<td>OLL-B-PAL-N0-05</td>
<td>34</td>
<td>OLL-B-PAL-N0-06</td>
</tr>
<tr>
<td>OLL-A-PAL-N1-01</td>
<td>OLL-B-PAL-N1-01</td>
<td>OLL-B-PAL-N1-02</td>
<td>OLL-B-PAL-N1-03</td>
</tr>
<tr>
<td>OLL-A-PAL-N1-02</td>
<td>OLL-B-PAL-N1-02</td>
<td>OLL-B-PAL-N1-03</td>
<td>OLL-B-PAL-N1-04</td>
</tr>
<tr>
<td>OLL-A-PAL-N1-04</td>
<td>OLL-B-PAL-N1-04</td>
<td>38</td>
<td>OLL-B-PAL-N1-05</td>
</tr>
<tr>
<td>OLL-A-PAL-N1-05</td>
<td>OLL-B-PAL-N1-05</td>
<td>21</td>
<td>OLL-B-PAL-N1-06</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-01</td>
<td>OLL-B-PICK-N0-01</td>
<td>OLL-B-PICK-N0-02</td>
<td>30</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-02</td>
<td>OLL-B-PICK-N0-02</td>
<td>OLL-B-PICK-N0-03</td>
<td>32</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-03</td>
<td>OLL-B-PICK-N0-03</td>
<td>OLL-B-PICK-N0-04</td>
<td>8</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-04</td>
<td>OLL-B-PICK-N0-04</td>
<td>OLL-B-PICK-N0-05</td>
<td>40</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-05</td>
<td>OLL-B-PICK-N0-05</td>
<td>OLL-B-PICK-N0-06</td>
<td>40</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-06</td>
<td>OLL-B-PICK-N0-06</td>
<td>OLL-B-PICK-N0-07</td>
<td>40</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-07</td>
<td>OLL-B-PICK-N0-07</td>
<td>OLL-B-PICK-N0-08</td>
<td>18</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-08</td>
<td>OLL-B-PICK-N0-08</td>
<td>OLL-B-PICK-N0-09</td>
<td>39</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-09</td>
<td>OLL-B-PICK-N0-09</td>
<td>OLL-B-PICK-N0-10</td>
<td>OLL-B-PICK-N0-10</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-10</td>
<td>OLL-B-PICK-N0-10</td>
<td>OLL-B-PICK-N0-11</td>
<td>20</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-11</td>
<td>OLL-B-PICK-N0-11</td>
<td>OLL-B-PICK-N0-12</td>
<td>47</td>
</tr>
<tr>
<td>OLL-A-PICK-N0-12</td>
<td>OLL-B-PICK-N0-12</td>
<td>OLL-B-PICK-N1-01</td>
<td>31</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-01</td>
<td>OLL-B-PICK-N1-01</td>
<td>OLL-B-PICK-N1-02</td>
<td>10</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-02</td>
<td>OLL-B-PICK-N1-02</td>
<td>OLL-B-PICK-N1-03</td>
<td>42</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-03</td>
<td>OLL-B-PICK-N1-03</td>
<td>OLL-B-PICK-N1-04</td>
<td>24</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-04</td>
<td>OLL-B-PICK-N1-04</td>
<td>OLL-B-PICK-N1-05</td>
<td>48</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-05</td>
<td>OLL-B-PICK-N1-05</td>
<td>OLL-B-PICK-N1-06</td>
<td>16</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-06</td>
<td>OLL-B-PICK-N1-06</td>
<td>OLL-B-PICK-N1-07</td>
<td>33</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-07</td>
<td>OLL-B-PICK-N1-07</td>
<td>OLL-B-PICK-N1-08</td>
<td>7</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-08</td>
<td>OLL-B-PICK-N1-08</td>
<td>OLL-B-PICK-N1-09</td>
<td>44</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-09</td>
<td>OLL-B-PICK-N1-09</td>
<td>OLL-B-PICK-N1-10</td>
<td>4</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-10</td>
<td>OLL-B-PICK-N1-10</td>
<td>OLL-B-PICK-N1-11</td>
<td>36</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-11</td>
<td>OLL-B-PICK-N1-11</td>
<td>OLL-B-PICK-N1-12</td>
<td>19</td>
</tr>
<tr>
<td>OLL-A-PICK-N1-12</td>
<td>OLL-B-PICK-N1-12</td>
<td>OLL-B-PICK-N2-01</td>
<td>41</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-01</td>
<td>OLL-B-PICK-N2-01</td>
<td>OLL-B-PICK-N2-02</td>
<td>6</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-02</td>
<td>OLL-B-PICK-N2-02</td>
<td>OLL-B-PICK-N2-03</td>
<td>OLL-B-PICK-N2-03</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-03</td>
<td>OLL-B-PICK-N2-03</td>
<td>OLL-B-PICK-N2-04</td>
<td>28</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-04</td>
<td>OLL-B-PICK-N2-04</td>
<td>OLL-B-PICK-N2-05</td>
<td>46</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-05</td>
<td>OLL-B-PICK-N2-05</td>
<td>OLL-B-PICK-N2-06</td>
<td>46</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-06</td>
<td>OLL-B-PICK-N2-06</td>
<td>OLL-B-PICK-N2-07</td>
<td>22</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-07</td>
<td>OLL-B-PICK-N2-07</td>
<td>OLL-B-PICK-N2-08</td>
<td>46</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-08</td>
<td>OLL-B-PICK-N2-08</td>
<td>OLL-PICK-N2-02</td>
<td>14</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-09</td>
<td>OLL-B-PICK-N2-09</td>
<td>OLL-PICK-N2-03</td>
<td>23</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-10</td>
<td>OLL-B-PICK-N2-10</td>
<td>OLL-PICK-N2-04</td>
<td>46</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-11</td>
<td>OLL-B-PICK-N2-11</td>
<td>OLL-PICK-N2-05</td>
<td>23</td>
</tr>
<tr>
<td>OLL-A-PICK-N2-12</td>
<td>OLL-B-PICK-N2-12</td>
<td>OLL-PICK-N2-06</td>
<td>34</td>
</tr>
</tbody>
</table>