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Abstract 

Alzheimer’s disease (AD) is a multifactorial age-dependent neurodegenerative disorder. The main 

hallmarks are the low levels of acetylcholine (ACh), responsible for memory loss, and the senile 

plaques, due to misfolding and aggregation of beta amyloid (Aβ), although disease progression is also 

enhanced by oxidative stress and metal (Fe, Cu, Zn) dyshomeostasis. Therefore, as multifunctional 

anti-AD drug candidates, two new series of tacrine derivatives were developed and evaluated, namely 

as inhibitors of AChE and self-induced Aβ aggregation along with the radical scavenging and metal 

chelation capacity. Compounds TAC-BTA (RSC-1 to 6) showed quite good AChE inhibitory capacity in 

the range of IC50 (0.04-0.27 µM), moderate self-induced Aβ aggregation inhibition (27-44%), but poor 

antioxidant activity. In case of TAC-HP hybrids (TACHP-9 to 16), they are good AChE inhibitors with 

IC50 in the range of (0.64-1.71 µM); some compounds presented reasonably good radical scavenging 

capacity, EC50 (TACHP-10, 450 µM; TACHP-12, 399 µM; TACHP-16, 483 µM), but all the compounds 

had very high potency to inhibit self-induced Aβ aggregation i.e. in the range of (84-95%). Metal 

chelation studies, performed for TACHP-12 by spectrophotometric and potentiometric techniques, 

showed that the chelating affinity depends on the metal ion (Fe>Cu>Zn), with pM values at the 

physiological pH (pFe = 21.7, pCu = 10.8, pZn = 6.9) confirming the good chelating capacity of the HP 

moiety. So, due to their multifunctional ability, both series of tacrine derivatives appear as multi-potent 

agents, which could be selected for further investigation as drug candidates against AD.  

 

Keywords: Alzheimer’s disease, tacrine, AChE inhibitors, self-induced Aβ-aggregation, antioxidant 

activity, metal chelation. 
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Resumo 

A doença de Alzheimer (AD) é um distúrbio neurodegenerativo multifatorial dependente da idade. As 

principais características são os baixos níveis de acetilcolina (ACh), responsáveis pela perda de 

memória, e as placas senis, devido ao enovelamento e agregação de beta amilóide (Aβ), embora a 

progressão da doença também seja reforçada pelo stresse oxidativo e dishomeostasia de metais (Fe, 

Cu, Zn). Portanto, como candidatos a medicamentos multifuncionais anti-AD, foram desenvolvidas e 

avaliadas duas novas séries de derivados de tacrina, nomeadamente como inibidores de AChE e da 

agregação de Aβ auto-induzida, juntamente com a capacidade anti-oxidante e de quelação de metais. 

Os compostos TAC-BTA (RSC-1 a 6) apresentaram bastante boa capacidade inibitória de AChE,(IC50 

= 0,04-0,27 μM), moderada inibição da agregação auto-induzida de Aβ (27-44%), mas baixa atividade 

antioxidante. Os híbridos TAC-HP (TACHP-9 a 16) são bons inibidores de AChE (IC50 = 0,64-1,71 

μM); alguns compostos apresentaram capacidade anti-oxidant (EC50) razoavelmente boa (TACHP-10, 

450 μM, TACHP-12, 399 μM, TACHP-16, 483 μM), mas todos apresentaram uma potência elevada 

(84-95%)para inibir a agregação de Aβ auto-induzida. Estudos de quelação de metais, realizados 

para TACHP-12 por espectrofotometria e potenciometria, mostraram uma boacapacidade quelante 

dependente do ião metálico (Fe> Cu> Zn),cujos valoresde pM ao pH fisiológico (pFe = 21,7, pCu = 

10,8, pZn = 6.9), concordam com o esperado para a unidade HP. Assim, devido à sua capacidade 

multifuncional, ambas as séries de derivados da tacrina aparecem como agentes multi-potentes, que 

podem ser selecionados para investigação posterior como candidatos de drogas contra AD. 

 

 Palavras-chave: doença de Alzheimer, tacrina, inibidores de AChE, agregação auto-induzida da Aβ; 

actividade antioxidante; agentes quelantes. 
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1. Introduction 

1.1 Alzheimer's disease 

 Alzheimer’s disease (AD) is a chronic, irreversible and progressive disorder, which is 

characterized by dementia, cognitive impairment and memory loss and finally to death [1], and also 

the most common cause of dementia [2]. Although the greatest known risk factor in case of AD is 

increasing age, i.e. usually the majority of people with AD are 65 and older. But it is not just a disease 

of old age. In fact, from recent studies, 5% of people with AD have found that younger-onset 

Alzheimer's usually can appear when someone is in their 40s or 50s. Usually early stages of disease 

characterized by mild memory loss turn out unfortunately in the late-stage in individuals that lose the 

ability to carry on a conversation and respond to their environment. Also AD is reported as the sixth 

leading cause of death in the United States. Patients with AD live an average of eight years after their 

symptoms become noticeable but survival range may vary from 4 to 20 years, depending on age and 

other health conditions [3].  

In AD brains, total brain size shrinks i.e. the tissue has progressively fewer nerve cells and 

connections, this sort of change in the brain being also witnessed in other disorders. Patients of AD 

show plenty of other features such as low levels of acetylcholine (ACh), caused by enzyme 

cholinesterase which is responsible for the hydrolysis of acetylcholine, misfolding of proteins and 

associated aggregation processes [4], oxidative stress and free radical formation, and the senile 

plaques and neurofibrillary tangles as a result from deposition of a beta-amyloid (Aβ) peptide [2, 4]. 

Usually this beta-amyloid (Aβ) peptide deposition and neurofibrillary tangles (NFTs) are associated 

with normal ageing, but also considered as main neuro-pathological lesions in AD. From recent 

research, this hypothesis of development of the amyloid-β (Aβ) cascade of AD pathogenesis by 

amyloid neuronal toxicity was evidenced by some in vitro experimental results [5]. 

Along with this, there is another factor, reported in recent studies, concerning the presence of 

transition metal ions, such as iron, copper, aluminum and zinc high concentrations in the brain. These 

metals are believed to change the normal functioning of brain besides catalyzing the free radical 

formation reaction in the patient body [6]. Redox-active Fe can mediate β-amyloid toxicity resulting in 

generation of hydrogen peroxide or hydroxyl radical which is responsible for lipid peroxidation and 

oxidative stress; also Zn
2+

 and Cu
2+ 

were reported to promote Aβ aggregation from some in vitro 

studies [7]. So, the synthetic inhibitor with metal chelating capacity could act as a therapeutic agent to 

cure AD by lowering down free radical formation and destabilizing the Aβ aggregates. 

Nevertheless, cholinesterase inhibitors remain the preferred therapy for early and intermediate 

AD, although antioxidants may delay disease progression. But from the different studies in the field of 

AD we come to know the fact that AD is multifactorial in nature, and this multifactorial nature of AD is 

believed to be the main reason for the absence of an effective treatment [8]. This type of disease 

successfully tackled through a complex pharmacological approach rather than through a single-target 

strategy. So inhibition of acetylcholinesterase (AChE), antioxidant capacity i.e. scavenging of the free 
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radical and the bio-metal chelation along with the plaque formation inhibition, can be used as AD 

therapeutic methods. Now we will discuss some major factor which contributes toward AD. 

1.2 Oxidative stress 

Oxidative stress is the base of many physiological and patho-physiological phenomena and it 

is related with inflammation, carcinogenesis, ageing and much other pathology [9]. Basically, oxidative 

stress is related with the concept of high intracellular levels of reactive oxygen species (ROS) which 

later used to become the cause of lipids, proteins and DNA damage [10]. These ROS are by-products 

of aerobic metabolism, including the superoxide anion (O2
– 

), hydrogen peroxide (H2O2), and hydroxyl 

radicals (OH), reported to induce pathology by damaging lipids, proteins, and DNA [10]; in recent 

research, metabolically generated H2O2 emerged as a main cause of redox signaling and oxidative 

stress in the cell mitochondria [11]. The term oxidative stress usually arises when there is imbalance 

between defensive mechanism, i.e. antioxidant and free radicals, and reactive metabolites, i.e. 

oxidants [12]. From reported studies, it is also proved that disturbance in homeostasis of redox-active 

metal ions in the body results in replacement of other metals from their natural binding sites of 

proteins. The toxic metal interacts with DNA and leads to oxidative deterioration of biological 

macromolecules [13]. 

1.3 Amyloid (Aβ) aggregation (AD pathogenesis) 

Amyloid-β (Aβ) plaques results in the insoluble amyloid β-peptide (Aβ) fibrillar aggregate 

genesis in the brain, which is responsible for oxidative stress, inflammation, and neurodegeneration 

[14]. On this amyloid accumulation in case of AD, “amyloid hypothesis” states that monomer (Aβ) 

peptides containing 39–43 amino acids in length are synthesized by the proteolytic cleavage of the 

parental amyloid precursor protein (APP) by β-secretases and γ-secretases named enzymes [15]. 

There are two forms of amyloidogenic Aβ peptides in AD brains: Aβ1–40 and Aβ1–42.  Among these, 

Aβ1–42 was found to be more toxic; these peptides aggregate, through hydrophobic interactions, and 

hydrogen bonding interactions possibly leads to higher order structures i.e. fibrils and it has been also 

hypothesized that fibrils cause neurodegeneration in AD. 

1.3.1 Role of metal ions 

From the many recent researches it has been confirmed that few transition metals, such as 

Cu, Zn, and Fe, are found in high micro molar to low mili molar concentrations in amyloid plaques and 

at the synapse. They have high possibility to be involved in the process of generating Aβ aggregates 

and their accumulation in the synaptic cleft (e.g. Zn(II)) has ability to aggregate Aβ into amorphous 

insoluble aggregates within milliseconds at concentrations >100 µM; Cu(II) is responsible for the 

formation of fibrillar or amorphous aggregates and also accelerates the rate of nucleated aggregate 

formation as compared to metal-free conditions [16]. Fe(II/III) are redox active metal ions associated 

with neurotoxicity i.e. oxidative stress [17].  

So targeting proteolytic enzymes (β-secretase and γ-secretase) responsible to mediate 

processing of amyloid precursor protein (APP), and through destruction of existing amyloid deposits 
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through immunotherapy, which provides enhancement of Aβ clearance [18] could be effective in the 

treatment of AD.  

1.4 Acetylcholinesterase (AChE) 

 Acetylcholinesterase (AChE) enzyme is located at the neuromuscular junctions and synaptic 

cleft, and functions to terminate synaptic transmission by hydrolyzing the neurotransmitter 

acetylcholine (ACh) into choline and acetic acid (see Scheme 1.) AChE is highly specific in its activity, 

functioning at a rate approaching that of a diffusion-controlled reaction [19]. 

 

O

O

N
AChE / H2O

O

O HO
N+

Acetylcholine Acetatae Choline  

 

Scheme 1. Acetylcholinesterase catalyzes the hydrolysis of acetylcholine to acetate ion and choline 

 

1.4.1 General structure of TcAChE 

TcAChE is reported as belonging to the class of α/β proteins [19], consisting of a 12-stranded 

central mixed β-sheet surrounded by 14 α-helices. It has a narrow gorge about 20 Å long, which 

penetrates more than half-way into the enzyme, and widens out close to its base which contains the 

active site i.e. lined by 14 aromatic residue rings. The active site consists of S200(Ser), E327(Glu) and 

H440(His) residues, these three residues forming a planar array; there is also present the oxyanion 

hole, which would be formed by the amide NH of the following C-terminal residue, A201(Ala) in AChE, 

and also present S200-Oγ, which can be seen looking down the gorge from the surface of the 

enzyme, being about 4Å above the base of the gorge. The rings of 14 aromatic residues contribute a 

substantial portion (≈40%) of the surface of the gorge; it has been also noticed that the gorge contains 

only a few acidic residues, which include D285(Asp) and E273(Glu) at the very top, D72, hydrogen-

bonded to Y334(Tyr), about half-way down, and E199(Glu), near the base. There is also present 

tryptophan in the active site of AChE [19, 20] and W84(Trp) was identified as part of the putative 

‘anionic’ (choline) binding site. Apart from this, it possesses two more active sites, catalytic anionic site 

(CAS) and peripheral anionic site (PAS). Three important amino acids, Phe330, Trp84 and Glu199 

forms CAS, which is situated at the lower part of the gorge, while PAS is located at the entrance of the 

gorge and formed by Trp279, Asp72 and Tyr70, as presented in Figure 1. 

It was evidenced, in previous studies, that in this deep pocket of the AChE enzyme, 

acetylcholine (substrate) can slip inside with water molecule and get hydrolyzed into acetic acid and 

choline. The compounds which have the capability to interact at both CAS and PAS site of the enzyme 

can fill up this deep pocket and have proved to be good AChE inhibitors.  
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Figure 1. a). Schematic view of the active-site gorge of TcAChE; b). Schematic description of position of CAS 

and PAS in active site. [19] 

 

 

1.4.2 AChE Inhibitors 

Some few anti-AD drugs were approved by regulatory agencies, but four of them were only 

cholinesterase inhibitors (rivastigmine, donepezil, galantamine, and tacrine) [21] thus capable of 

reducing AD symptoms by inhibiting AChE, which is responsible for the hydrolysis of ACh at the 

synaptic cleft. Working of these drugs depends on cholinergic hypothesis, according to which selective 

loss of cholinergic neurons in case of AD leads to deficiency of ACh in specific areas of the brain 

which are responsible for learning and memory functions [22]. 

1.4.2.1 Tacrine  

Tacrine is the first FDA approved safe and effective drug for the treatment of Alzheimer's 

disease. Tacrine is a planar three ring acridine i.e. (1,2,3,4-tetrahydro-5-aminoacridine or THA), as 

shown in Scheme 2, It has the ability to slice through cell membranes easily and was approved as 

anti-AD drug in 1993 [23]. Tacrine THA, 1,2,3,4-tetrahydro-5-aminoacridine, can be administrated 

orally in the body and in reference to AD it  has numerous mechanisms of action, but the putative 

principle mechanism of action for Alzheimer's disease is as a non-competitive reversible 

acetylcholinesterase inhibitor [22, 23]. Moreover, tacrine has been concluded to deplete the amyloid 

deposition in the pathology of this disease, actually blocking the secretion of Beta amyloid precursor 

protein [24]. Through the clinical pharmacokinetics studies of literature it has been reported that 

tacrine is rapidly absorbed with a bioavailability 10 to 30%. Tacrine is about 55% bound to plasma 

proteins and has a clinical half-life of about 3-6 h through a single oral dose [25], and the apparent 
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volume of distribution is 182 L, with the mean plasma half-life during terminal elimination phase of 2.5. 

From these studies, it seems that tacrine is uniquely suited to treat AD, although some adverse side 

effects have been reported, such as nausea, diarrhea, dyspepsia, rhinitis, myalgia, tremor, excessive 

urination and hepatotoxicity [26]. 

 

1.4.2.2. Other AChE inhibitors 

Rivastigmine was also approved as a drug for AD in 2000 by the means of oral administration, 

later on identified with some level of hepatotoxicity [27] and bad for gastrointestinal system [28]. Due 

to these limitations a new drug was discovered i.e. Donepezil [29], from the investigations Donepezil 

was found to be good AChE inhibitor (IC50 = 5.7 nM) 1250-fold more selective for butyryl-

cholinesterase (BuChE, IC50 = 7138 nM), without hepatoxicity [30], donepezil drug with N-

benzylpiperidine and indanone moieties as shown in Scheme 2, were concluded to having quite good 

interaction binding sites with AChE, and are responsible for inhibitory selectivity [31]. Also 

Galantamine was approved as a drug for the treatment of AD in 2001; it is the most recent one. It is a 

tertiary alkaloid as shown in Scheme 2, with dual mode of action, It is a reversible, competitive AChE 

inhibitor [28], Galantamine reported with quite good pharmacokinetic characteristics i.e. predictable 

linear elimination kinetics at the recommended maintenance doses (16 and 24 mg/day), but relatively 

short half-life (approximately 7 h), and high bioavailability. 

 

N

NH2

OO

O
N

N

O

O

N

O

N

OH
HO

Tacrine
Donepezil

Rivastigmine Galantamine  

 

 

Scheme 2. Representation of AChE inhibitors approved for cure of AD 
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1.5 Moieties used in the hybrids of the present work 

The present work is focused on the synthesis of tacrine derivatives (tacrine hybrids) and their 

evaluation as drugs for Alzheimer's disease treatment through in vitro physicochemical (antioxidant 

activity, metal chelation) and biological analysis, i.e. cholinesterase inhibition assay and beta-amyloid 

(Aβ) anti-aggregation peptide assay. These recently designed tacrine derivatives were classified in 

two series. The first series is composed of tacrine-benzothiazole (TAC-BTA) hybrids, which are based 

on combination of both TAC and BTA moieties with adequate linkers and substituent groups between 

both units to improve biological properties. The second series is based on the hybridization of tacrine 

with a hydroxypyridinone moiety (TACHP), again, using adequate linkers between both main moieties 

and also substituent groups to improve biological properties. The reason behind choosing these 

moieties for the synthesis of multifunctional drugs against AD is that they have some role that could be 

useful in multi-targeting AD. So, in the sections below, these two extra-functional moieties will be 

described in more detail.  

1.5.1 Benzothiazole 

 The benzothiazole moiety basically represents a heterocyclic system comprising a benzene 

ring fused with a thiazole ring, containing nitrogen and sulphur in its structure (Scheme 3). From the 

literature research, this kind of heterocyclic fused ring membered compounds were also reported to be 

present in the many natural molecules i.e. sugar and their derivatives, vitamin C, vitamin B group [32], 

and so it was also introduced in some synthetic molecules. From the synthetic molecules with 

benzothiazole moiety many good results have been observed in case of many diseases such as 

tumour, bacterial infection, tuberculosis, viral infections, and diabetes. Benzothiazole molecules found 

to be evaluated for as therapeutic drug candidates for the treatment of epilepsy and 

neurodegenerative diseases such as Alzheimer's disease [33], and many benzothiazole derivatives 

were also reported as potential β-amyloid imaging probes, i.e. fluorescent tracers for detecting β-

amyloid in Alzheimer’s brains [34]. Some of the benzothiazole phosphonate derivatives were found to 

be the antagonistic inhibitor of Amyloid binding alcohol dehydrogenase (ABAD) i.e. mitochondrial 

enzyme reported to induces dysfunction of mitochondria in synaptic cleft because of the some 

interaction with β-amyloid and leads to pathogenesis of AD [35]. From the recent studies 

benzothiazole hybrids considered as good AChE inhibitors also fluoro derivatives of benzothiazole 

proved as potent inhibitor AChE and butyrylcholinesterase (BChE) [36], few more methyl, ethyl, 

metoxy, chloro substituted benzothiazole has been reported from the recent research which has been 

evaluated as moderate AChE inhibitor [37]. 

1.5.2 Hydroxypyridinone 

The hydroxypyridinone moiety, or more specifically the 3-hydroxy-4-pyridinone, is also a 

heterocyclic i.e. pyridine ring with hydroxy and keto substitution (Scheme 3). From the very previous 

time this moiety has been proved as a class of an antimycotics i.e. antifungal in nature [38] and in the 

recent studies pyridone derivatives were found to possesses good anti-HIV activities [39]. Pyridone 

derivatives have been also reported as anti-tumor, anti-oxidant and hard metal ion chelator [40] one of 

the well-known hydroxypyridinone, i.e. deferiprone (DFP), has been proved as very good  tridententate 
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iron chelator [40], and from the recent studies it has been proved that disturbed homeostasis of metals 

(Fe, Cu, Zn) in the brain contribute to AD. Further derivatives of DFP also have been investigated as 

good inhibitor of beta amyloid aggregation and also used as prodrug against AD [41]. Also from the 

recent researches it has been concluded that, if mono-hydroxypyridinone-base ligands are further 

extrafunctionized, they could act as a multitarget molecule to tackle the various known disease 

targets, including acetylcholinesterase, oxidative stress and β-amyloid (Aβ) aggregation [42]. So 

because of anti-oxidant and metal chelating properties derivatives of hydroxypyridinones, they were 

also synthesized in the present work, conjugated with known tacrine, and then investigated against AD 

through various assays. 

 

 

 

 

 

Scheme 3. Moieties used to synthesize the studied hybrids (tacrine, benzothiazole, hydroxypyridinone) 
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2. Literature review 

2.1 Tacrine-benzothiazole series 

From the recent literature review, some TAC-BTA hybrids have been developed [43], and 

evaluated for AChE inhibition and Aβ aggregation inhibition. It has been concluded that they have 

potent activities in all assays. The common structure of derivatives (7a-7e) is presented in Scheme 4, 

the best AChE inhibitor was reported compound 7a ( IC50 = 0.34 µM) with phenyl linker between two 

moieties, but the remaining compounds were quite good inhibitor with the IC50 in the range (0.57±0.1 

µM to 1.84±0.2 µM), in the Aβ aggregation inhibition, compound 7b showed max inhibition ( 61.3%, 

with 80 µM) as compare to the reference compound tacrine (11%, with 80 µM), while remaining 

compounds are also much better than tacrine i.e. (22-35%), Also, two compounds 7a and 7d proved to 

have good antioxidant activity. 

 

N

NH N
H

O
X

N

S
4

Comp code                X
7a                            Ph
7b                          PhCH2
7c                        CH2PH2
7d                          (CH2)3
7e                           (CH2)5  

 

Scheme 4. (7a-7e) Representation of tacrine- benzothiazole derivative. [43] 

 

Two series of tacrine–S-allylcysteine–benzothiazole (TAC–SAC–BTA) and tacrine–S-

propargylcysteine–benzothiazole (TAC–SPRC–BTA) has also been reported in the literature [44], and 

it was found that all of these hybrids (see Scheme 5)10a-10h were comparable with the parent tacrine 

in the AChE inhibition i.e. in the range of ( IC50 = 0.25-0.37 µM), also few compounds were concluded 

as good inhibitors of Aβ1-42 self-aggregation i.e.10a (59%),10b (78%),10f (56%), although they were 

not good antioxidant compounds i.e. comparable to tacrine (IC50 >1000 µM).  
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Scheme 5. Representation of tacrine–S-allylcysteine–benzothiazole (TAC–SAC–BTA) and tacrine–S-

propargylcysteine–benzothiazole (TAC–SPRC–BTA) hybrids. [44] 

 

2.2 Hydroxypyridone-based anti-neurodegenerative agents 

 From the recent literature view, hydroxypyridinone derivatives have been reported as strong 

chelator of hard metal ions as well as to take part in the redistribution of misplaced metal ions in 

certain organs, for example the brain of patients with some neurodegenerative diseases [45]. As we 

knew already from the recent research that hydroxypyridinones (HP) being a benzenoid N-heterocyclic 

with ortho-positioned hydroxyl and ketone groups, stabilized itself in three types i.e. 1,2-HP, 3,2-HP 

and 3,4-HP, as shown in Scheme 6. All these types of HPs have high selectivity for trivalent metal 

ions over divalent biometals [46]. A series of hydroxypyridinone derivatives, with quite good 

antioxidant potential, has been reported [47] and the HP derivatives Va-Vf are presented in Scheme 6. 

Compounds Va (IC50 = 0.013 mg/ml), Vb (IC50 = 0.021 mg/ml) and Ve (IC50 = 0.013 mg/ml) were 

reported as good antioxidant compounds without any substitution at N
1
atom of the pyridinone ring so 

that it can donate hydrogen to stabilize the free radical, as compare to others with some kind of 

substitutions on N
1 

atom of the pyridinone, among all Va (IC50 = 0.013 mg/ml) concluded as more 

potent in antioxidant activity. All these compounds also reported to show good Fe chelating ability. 
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Scheme 6. Derivatives of hydroxypyridone. [47] 

 

Another series related with hydroxypyridinones, designed in accordance with multi–target 

approach against AD, are the tacrine-(hydroxy benzoyl-pyridone) hybrids recently reported in literature 

[48]. Analysis of the results of bioassays for these hybrids it was concluded that these tacrine-(hydroxy 

benzoyl-pyridone) (Scheme 7) have AChE inhibition potential in the range of (IC50 = 0.57-0.78 μM), 

which were quite comparable to the reference or parent moiety tacrine; also they were quite good anti-

oxidants, as they exhibit antioxidant values in the range (EC50 = 204-249 μM). 
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Scheme 7. Representation of tacrine-(hydroxybenzoyl-pyridone) hybrids.  [48] 

 

Another series of 3-hydroxy-4-pyridinones derivatives, as shown in Scheme 8, have also been 

reported for their potential activities against AD [49]. Anti-oxidant capacity of these 3-hydroxy-4-

pyridinones derivatives were concluded as almost equivalent to the reference drug Trolox i.e. 

analogue of α-tocopherol, also in the Aβ aggregate resolubilization assay these compounds 2b and 4b 

reported to have inhibitory potential against Zinc(II) and copper(II) induced Aβ aggregation. 
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Scheme 8. Representation of 3-hydroxy-4-pyridinones derivatives. [49] 

 

Very recent literature has also been reported on HP derivatives as anti-neurodegenerative 

drugs [42], in which series of mono-HP hybrids were synthesized on the basis of multifunctionalization 

of mono HP (see Scheme 9). They include the functionalization of mono HP with benzothiazole (1), 

which showed good interactions with the cross-β sheet structure of (Aβ) fibrils and inhibit their 

aggregation; also the functionalization of mono HP with tacrine (2) were reported to have much potent 

AChE inhibitory activity, and being HP compounds they have already good metal chelating and radical 

scvenanging ability. 
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Scheme 9. Representation of mono-HP functionalized hybrids. [42] 

 

This literature review is very specific, focusing on the moieties that have been used to 

synthesize the compounds of the present thesis work. It would be very helpful to get a multifunctional 

drug against AD, because all used moieties have proved to be active in different biological assays 

against AD, but we also know that, in spite of numerous research efforts, AD is still an incurable 

disease. Based on literature results relatively to synthesis and biological investigation of such type of 

tacrine derivatives against AD, namely antioxidant activity, AChE inhibition and (Aβ) peptides 

aggregation inhibition, it is possible to conclude that tacrine hybrids could be a good approach against 

AD.  
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3. Aim of present work (Thesis) 

Two series of compounds were synthesized and investigated in the present work, under a 

similar approach, i.e. hybridization of tacrine with metoxyphenyl-benzothiazole or hydroxypyridinone 

moieties with different carbon chain length linkers.  

The aim of the present thesis work lies on a multi-target approach towards the development of 

drugs against the multifactorial AD, because it is difficult to tackle AD with a single target approach, as 

it has been proved that multiple factors are involved in the pathogenesis of this disease. In the past, 

many scientists failed to overcome this disease with single inhibitory approach and so the present 

work was planned and applied and investigated in accordance with a multi-target approach. From 

literature results, it is known that AChE is responsible for the hydrolysis of ACh at its catalytic anionic 

site (CAS) and that it promotes the aggregation of Aβ1-42 at its peripheral anionic binding site (PAS). 

So, dual binding site inhibitors of AChE could be beneficial and promising factors in relieving 

symptoms of AD by reducing both ACh hydrolysis and Aβ1-42 aggregation [43].  

So, based on this fact, both herein studied series of tacrine derivatives, as shown in Scheme 

10, with adequate linker size/type, i.e. carbon spacer and substituent OH, could improve the inhibitory 

potential by a bimodal interaction with both active sites of AChE enzyme, i.e. CAS and PAS. In fact, 

the methoxyphenylbenzothiazole or hydroxypyridinone moieties are able to interact with the PAS, by 

forming aromatic stacking with amino acids of this active site, thus allowing strong interactions with the 

enzyme, and the tacrine moiety is always found well inserted in the CAS by π–π stacking with the 

aromatic ring of amino acids of this active site [50, 51]. Also it have been reported that peripheral 

anionic site (PAS) of the AChE is capable to promote aggregation and deposition of the Aβ peptides; 

from the molecular modeling, it was suggested that the methoxyphenylbenzothiazole and 

methylhydroxypyridone moieties of these hybrid compounds could have good interaction with the 

amino acids of PAS, via aromatic π-stacking; so inhibition of functioning of PAS would be good for 

(Aβ) peptides aggregation inhibition, also on the basis of fact that AChE catalytic gorge possesses 

strong lipophilic character in that respect interacts much better with the more hydrophobic synthetic 

inhibitors [51]. Herein, the used methoxyphenylbenzothiazole moiety, with increased hydrophobic 

character, as compared with the benzothiazole, because of metoxyphenyl substitution, would be 

expected to present a better interaction with AChE and concomitant increase of AChE inhibitition and 

(Aβ) peptide aggregation instead of simple benzothiazole moiety. 

 Hydroxypyridinones are very efficient in chelating therapy, because of their high affinity for a 

range of metal ions as and form stable complexes with trivalent cations such as iron(III) and 

aluminum(III); the chelating capacity depend on the arrangement of the (O,O) donor groups around 

the central pyridine ring. As in the present case it is a 3,4-HP moiety, that arrangement provides to the 

hydroxyl group the highest basicity (pKa ca. 9-9.5), and so highest electronic density at the 

coordinating atoms, leading to neutral compounds at physiological pH, which results in higher affinity 

for heavy metal ions (e.g. Fe
3+

) rather than the biologically important bivalent metal ions (e.g. Fe
2+

, 

Zn
2+

,Cu
2+

). These hybrids of both series have also the ability to act as antioxidants by their hydrogen 

donating ability through the OH functional group. So, the derivatives of both series should have ability 
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to tackle various pathological aspects of AD, being good antioxidants, quite good inhibitors of AChE, 

and few of them are also very potent Aβ1-42 aggregation inhibitors as well as good metal chelator. 
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Scheme 10. Representation of general structure of both present studied series; a)Tacrine-

methoxyphenylbenzothiazole (n = 2,3; R = H, OH and R1 = H, Cl); b)Tacrine-hydroxypyridinones  (n = 2,3,4; R = 
H, OH and R1 = H, Cl) 
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4. Discussion of results 

4.1 Molecular modeling 

 Docking studies of the TAC-BTA and TAC-HP hybrids into the active site of the enzyme 

involved in cholinergic loss i.e. AChE, were performed in order to know what are the type of 

interactions eventually established between this enzyme and the proposed hybrid molecule so that we 

can predict the binding modes. AChE enzyme contains a deep pocket, at the bottom of which is 

located the catalytic site, known as the ‘catalytic triad’ of AChE formed by three amino acids, Ser200, 

His440 and Glu327 (sequence numbering of Torpedo californica AChE, TcAChE) [52]. Apart from this, 

it possesses two more active sites CAS and PAS. Three important amino acids, Phe330, Trp84 and 

Glu199 forms CAS which is situated at the lower part of the gorge, while PAS  located at the entrance 

of the gorge  is formed by Trp279, Asp72 and Tyr70 [52]. It is known from previous studies that in this 

deep pocket of the AChE enzyme, acetylcholine (substrate) can slip inside with water molecule and 

get hydrolyzed into acetic acid and choline, which after hydrolysis no longer remains a 

neurotransmitter and contributes towards AD progression. The compounds which have the capability 

to interact at both CAS and PAS site of the enzyme can fill up this deep pocket and have proved to be 

good AChE inhibitors.  

Therefore, the strategy followed herein for the design of new potential AChE inhibitors was the 

coupling of two main moieties- TAC and BTA or TAC and HP - unit through an alkyl spacer in such a 

way that one moiety can interact with CAS while at the same time other moiety can interact with the 

PAS and produces maximum AChE inhibition. Therefore, the length of the alkyl spacer between the 

selected two moieties of the designed inhibitors was decided by the docking study using program 

GOLD, v. 5.1. [53]. The crystal structure of TcAChE complexed with an inhibitor was taken from RCSB 

Protein Data Bank (PDB, entry 1ODC) [54]. This structure was chosen because of the similarity 

between its inhibitor and the synthesized ligands. The original ligand (N-quinolin-4-yl-N’-(1,2,3,4-

tetrahydroacridin-9-yl)octane-1,8-diamine) [43] is formed by tacrine connected through a long carbon 

chain to an aminoquinoline moiety, which is structurally very similar to the phenylbenzothiazole moiety 

containing phenyl ring attached to benzothiazole. The docking calculations were performed using the 

ASP scoring function, since this function has previously proven to give the best docking predictions for 

AChE inhibitors [6, 7, 51]. 

The docking studies revealed favorable interactions for the new inhibitors with many 

similarities in their binding conformations. (Figure 2) (RSC-3) and (Figure 3) (TACHP-12) show that 

the ligands are well inserted into the cavity of the active site, blocking the entrance to the substrate 

(choline) and water molecules. The TAC moiety is always found well inserted in the bottom of the 

gorge of the enzyme, binding to the CAS by π–π stacking with the aromatic ring of Trp84 and Phe330, 

overlapping almost perfectly with the TAC moiety of the original ligand. Generally, the alkyl spacer 

along with the methoxyphenylbenzothiazole rings, in case of TAC-BTA series, and the 

hydroxypyridone rings, in TAC-HP compounds, seems to be well accommodated along the 

hydrophobic cavity, and were always placed at the entrance of the gorge, being lipophilic in nature due 
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the presence of ´methoxy´ and ´methyl´ kind of lipophilic substitution, able to bind with PAS forming 

aromatic stacking interaction with Tyr70 and Trp279, allowing the maintenance of strong interactions 

with the enzyme.  

 

 

 

Figure 2. Docking results for the TAC-BTA hybrids with AChE: superimposition of RSC-3 (yellow) with original 

ligand (green) 
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Figure 3. Docking results for the TACHP hybrids with AChE: superimposition of TACHP-12 (pink) with original 

ligand (green) 

 

 

 

4.2 Chemistry  

The tacrine-benzothiazole hybrids (RSC-1 to RSC-6) were not synthesized under the 

framework of this thesis. The tacrine-hydroxypyridone (TACHP-9 to TACHP-16) hybrids were 

synthesized according to shown in Scheme 11. It involved the previous synthesis of an N-carboxylic 

derivative of hydroxypyridinone (5) followed by its attachment to alkylamine-tacrine derivatives. The 

preparation of compound 5 involved 4 steps. Firstly, the commercial available pyrone, 3-hydroxy-2-

methyl-pyran-4-one, was O-benzylated (2) by the refluxing with benzylchloride in a mixture of NaOH 

aqueous solution and MeOH. Afterwards, the protected pyrone (2) was transformed in the 

corresponding hydroxypyridinone (3) by its reflux in a mixture of NH3 and ethanol. Then, the 

heterocyclic amine group of (3) was attached to acetyl ester through nucleophilic substitution with 

ClCH2COOEt and K2CO3 in DMF, to provide compound (4). Further hydrolysis of compound (4), in the 

presence of NaOH in MeOH and H2O, afforded compound (5). Compound (5) was coupled with the 

previously synthesized alkylamine-tacrine intermediates (6-13), in the presence of base (NMM) and 
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coupling agent T3P in dry DCM, to provide (14-21). The benzyl groups of these pre-final intermediates 

were further removed by hydrogenolysis with, H2, Pd/C in MeOH to get the final compounds (22-29) 

i.e. (TACHP-9 to 16). 
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Scheme 11. Reagents and conditions: a) MeOH, NaOH (1.1eq), benzyl chloride, reflux; b) Ethanol, Ammonia 

(28%) reflux; c) anhydrous DMF, K2CO3, ClCH2COOEt; d) MeOH, NaOH, H2O; e) anhydrous DCM, NMM, T3P, 
RT, 7-8 h; f) MeOH, H2 (2 bar), Pd/C. 

 

 

4.2.1 Mechanism 

First step of the synthesis involves the protection of hydroxyl group with the benzyl group, by 

nucleophilic substitution, which mechanism is presented in Scheme 12. 

 

 

 

 

N

N
H

N
H

O

N

O

OH
R
1 R

n
N

N
H

N
H

O

N

O

O
R1

R
n

f

O

O

OH

O

O

O

a b

1 2
3

H
N

O

O

N

O

O

OEt

O

N O

O

d

4

c

N

HN

R1

NH2
n

+

6-8 R1 = R  = H;  n = 0, 1, 2

9-11 R1 = Cl; R = H;  n = 0, 1, 2

12/13 R1 = H/Cl, R  = OH, n = 1

R

e

14-16 R1 = R  = H;  n = 0, 1, 2

17-19 R1 = Cl; R  = H;  n = 0, 1, 2

20/21 R1 = H/Cl, R = OH, n = 1

(22, 23, 24) R1 = R = H;  n = 0, 1, 2

(TACHP-11, 9,10)

(25, 26, 27) R1 = Cl; R = H;  n = 0, 1, 2

(TACHP-15,13,14)

(28/29) R1 = H/Cl; R = OH, n = 1

(TACHP-12/16)

5
6-13

HO

O

1

2

3

4

5

6

7

8

9

12

10

11

1' ' 4'

2''
3''

4''

5''

6''



19 
 

Scheme 12. Mechanism of OH protection 

 

 In the work up excess of inorganic salt was filtered, and the filtrate so obtained was 

concentrated under reduced pressure and dissolved  in CH2Cl2 and washed with 5% NaOH to remove 

the excess of  starting material i.e. maltol. 

The second step of the synthesis follows the mechanism of Michael-type addition reaction 

which involves the opening and closing of the ring, as shown in Scheme 13. 
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Scheme 13. Mechanism of Michael type addition reaction 

 

 The carboxylic-amine coupling reactions (amide bond formation) to obtain the pre-final 

compounds (14-21), (Scheme.14), were performed with T3P coupling reagent. The mechanism of this 

coupling proceeds with the action of base in the deprotonation of carboxylic acid, and the so formed 

carboxylate anion attacks on T3P and forms an active T3P-carboxylic ester intermediate. The carbonyl 

group of this active intermediate is attacked by the amine group, as shown in Scheme 14. Excess of 

T3P and polyphosponate derivative of the leaving group get removed in water along the reaction work 

up. 

 

Scheme 14. Acid –amine coupling mechanism 
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4.3 Biological studies 

4.3.1TAC-BTAseries 

Biological evaluation of the TAC-BTA derivatives (RSC-1 to RSC-6) towards inhibition of 

AChE and Aβ1-42 self-aggregation has been performed. Pharmacokinetics properties were also 

determined using QIKPROP v. 2.5 [55] provided by MAESTRO [56], and so now we will discuss the 

results of the above referred assays. 

4.3.1.1 Acetylcholinesterase inhibition assay 

In order to determine the potential of these hybrid compounds towards AChE inhibition, all 

hybrids RSC-1 to RSC-6 were investigated by a modified method of Ellman et al [43]. Compound 

RSC-1 shows an IC50 value of 0.15 µM, RSC-2 0.13 µM, RSC-3 0.12 µM, RSC-4 0.05 µM, RSC-5 

0.14 µM and RSC-6 0.27 µM. From the obtained results it is possible to conclude that all the 

compounds are better in terms of inhibition of electric eel AChE than the reference compound tacrine 

(IC50 = 0.30 µM). Moreover, the TAC-BTA hybrids with chloro (Cl) substitution on the TAC moiety 

proved to be better inhibitors then the corresponding analogues without Cl group (and the same chain 

length of carbon linker between TAC and BTA). This can be observed for the pairs of compounds 

RSC-1/RSC-2, with three carbon atoms in the linker, RSC-3 /RSC-4, with two carbon atoms in the 

linker, or RSC-5/RSC-6, where a hydroxyl group has been further introduced in a three carbon linker 

chain. So the TAC-BTA derivative with two carbon chain linker and chloro substitution on the phenyl 

ring of TAC, i.e. RSC-4 (IC50 0.05 µM), was found to be the best inhibitor of electric eel AChE for this 

series of compounds. The set of results obtained for the assays performed with compounds TAC-BTA 

are summarized in Table 1. 

4.3.1.2 Inhibition of amyloid beta self-aggregation  

 All TAC-BTA hybrids (RSC-1 to 6) were tested for their potential to inhibit the amyloid β1-42 

self-aggregation by Thioflavin-T fluorescence method and the results compared to those of the 

reference compound TAC (see Table 1). Since the compounds of this series presented some 

solubility problems in methanol, the assays were performed with ligand concentration 40 µM, i.e. half 

of the concentration usually used in these assays. Therefore, reference compound TAC was used in 

both 80 µM and 40 µM, in order to compare the obtained values. Compounds (RSC-1 to 6) show 

percent of inhibition values for Aβ self-aggregation in the range 27-44.6%, while tacrine presented a 

value of 11% that was independent of the value of the ligand concentration. From the results it is 

possible to verify that all these TAC-BTA hybrids are moderate inhibitors of amyloid β1-42 self–

aggregation although better than the reference compound TAC. Among these hybrids, RSC-3 

(44.6%), with a two carbon linker between TAC and BTA moieties and without Cl substitution in TAC, 

seems to allow the best interaction of the BTA moiety with β-sheet secondary structure of amyloid-

beta aggregates. Cl substitution on the phenyl ring of TAC, with the same chain length of carbon 

linker, reduces the inhibition percentage of RSC-3 to 27.0% RSC-4. Chloro substitution also 

decreases the inhibition capacity for the compounds with three carbon chain linker, i.e. RSC-2 versus 

RSC-1, while further hydroxyl group introduction in the three carbon linker was found to attenuate 
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differences in the inhibitory capacity for the pair RSC-5/RSC-6 (ca 31%). So, the introduction of chloro 

substituent in TAC and/or hydroxyl group in carbon linker maybe is not well suited for the interaction 

with β-sheet secondary structure of amyloid-beta aggregates. But still all these hybrids are better than 

tacrine, so we can say that these hybrids, composed of biaryl heterocyclic groups, are able to 

recognize and interact with the abnormal β-sheet conformation of the Aβ peptide, and to induce the 

inhibition of the fibril genesis. 

4.3.1.3 Pharmacokinetic characterization 

 In the pharmacokinetic study, parameters such as the lipo-hydrophilic character (clog P), the 

ability to cross the blood-brain barrier (log BB) and the ability to be absorbed from the intestinal tract to 

the blood (Caco-2 cell permeability), were calculated along with verification of Lipinski’s rule of five 

[57]. As it can be seen in Table 1, all the compounds present clog P (octanol/water) coefficients 

superior to five, while RSC-2 is even greater than 6.5, which means that this set of compounds have a 

lipophilic character higher than recommended by Lipinski’s rule. All compounds also have molecular 

weights higher than 500, even higher than 600 for RSC-5, which accounts for two violations of this 

rule. Concerning Caco-2 permeability, some compounds (RSC-1,2,3,4) exhibited very good results, 

ranging from ca 700-1086 nm/sec (higher than 500 nm/sec is considered good [55], indicating that the 

absorption through the intestinal tract to the blood is possible. Nevertheless, compounds RSC-5 and 6 

have values lower than 500 nm/sec which precludes lower absorption through intestinal tract to the 

blood. 

Finally, the high lipophilic character and the low blood-brain barrier permeability (log BB) 

provides a conclusion that all these compounds are not eligible drug candidates for oral 

administration, and require further improvement to ameliorate compound absorption and entering into 

the cells. 

 

Table 1. Summary of activities of TAC-BTA derivatives (RSC-1 to RSC-6) towards radical scavenging (DPPH), 

inhibition of AChE and Aβ1-42 self-aggregation and Predicted pharmacokinetic values for TAC-BTA hybrids
a 

Comp. 

Code 

R
1
 

 

DPPH 
Scavenging 

(EC50,μM)
b

 

AChE 
(IC50, 
µM)

c
 

Inhibition 

of A-self-
aggr 

egation(%
)
d,e

 

MW clog P
f

 log 

BB
g

 

Caco-2 

Permeab

ility 

(nm/sec) 

Violations of 

Lipinski's 

rule of 5 

CNS 

activity 

RSC-1 H  1500 0.15 33.7 552.69 6.237 -0.975 1057 2 - 

RSC-2 Cl  1500 0.13 32.5 587.13 6.726 -0.739 1022 2 - 

RSC-3 H Nd* 0.12 44.6 538.66 6.200 -0.927 1086 2 - 

RSC-4 Cl Nd* 0.06 27.0 573.10 5.445 -0.914 722 2 - 
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a
Predicted values using program QikProp v. 2.5. K [55]; 

b
Capacity to scavenge the stable free radical 2,2-

diphenyl-1-picrylhydrazyl (DPPH) was monitored according to the Blois method [58] (EC50, µM) (means of two 
experiments)(see section 4.4); 

c
AChE from electric eel, IC50, inhibitor concentration (means of two experiments) 

for 50% inactivation of AChE; 
d
Inhibition of self-mediated Aβ42 aggregation (means of two experiments). The 

Thioflavin-T fluorescence method was used, and the measurements were carried out in the presence of an 

inhibitor; 
e
Assays performed with CL = 40 M; *Not determined due to very poor solubility in methanol; 

f
 

Calculated octanol/water partition coefficient; 
g
 Brain/blood partition coefficient.  
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Scheme 15. Representation of derivatives of TAC-BTA 

 

 

 

4.3.2 TACHP series 

Evaluation of the TACHP derivatives (TACHP-9 to16) towards radical scavenging (DPPH), 

inhibition of AChE and Aβ1-42 self-aggregation has been performed. Pharmacokinetics properties were 

also determined using QIKPROP v. 2.5 [55] provided by MAESTRO [56]. 

4.3.2.1 Acetylcholinesterase inhibition  

In order to determine the potential of these hybrids towards AChE inhibition, all TACHP 

compounds were assayed by modified method of Ellman et al [43, 52]. It was found that the 

compound with three carbon chain linker between TAC amine and HP, i.e. TACHP-9, has a better IC50 

value (0.90 μM) than the compound with four carbon linker (TACHP-10, IC50 = 1.71 μM) or with two 

carbon linker (TACHP-11, IC50 = 1.07 μM). Moreover, TACHP-12 (IC50 = 0.96 μM), with three carbon 

linker containing hydroxyl group, shows better inhibition, similar toTACHP-9. So, the hydroxyl group is 

RSC-5 Cl Nd* 0.14 31.3 603.13 5.692 -1.268 496 2 - 

RSC-6 H 1500 0.27 31.1 568.60 5.222 -1.592 388 2 - 

TAC - 1000 0.30 11 198.1 - - - - - 
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not responsible for an enhancement of the inhibitory potential of the compound with three carbon 

linker. Compound TACHP-13 (IC50 = 0.86 μM), with three carbon linker and chloro-substitution at 

phenyl ring of TAC, presents a quite good AChE inhibition capacity, while TACHP-14 (IC50 = 1.01 μM), 

with four carbon chain linker and chloro substitution at TAC is a better inhibitor than its analogue 

TACHP-10, with the same carbon linker but without chloro substitution. Compound TACHP-15 (IC50 = 

0.97 μM), with ethyl linkage and chloro substitution, is similar to TACHP-11. Finally, compound 

TACHP-16 (IC50 = 0.64 μM), with three carbon chain linker and both chloro and hydroxy substitution, 

shows the best inhibitory activity among all analogues of this series. 

Therefore, it was demonstrated that the chlorosubstitution at the phenyl ring of tacrine 

increases AChE inhibition, besides the existence of a three carbon linker being necessary to better 

accommodate the inhibitor molecule in the reactive sites of AChE. Even though hydroxy substitution in 

the linker was found to decrease the inhibition potential, in the case of TACHP-16 both hydroxyl and 

chloro groups seem to contribute to the increase of the inhibition capacity. 

 

4.3.2.2 Inhibition of amyloid beta aggregation  

All TACHP hybrids (TACHP-9 to TACHP-16) were tested for their potential to inhibit the 

amyloid β1-42 self-aggregation by Thioflavin-T fluorescence method in comparison to the reference 

compound tacrine. So, as shown in Table 2, all these derivatives proved to have a very high inhibitory 

capacity (ca 85-95%) of amyloid β1-42 self–aggregation, when compared with the reference compound 

tacrine. Two of the compounds of this series were also checked for copper (Cu
2+

) self-mediated 

inhibition of aggregation: TACHP-9 (94.8%)and TACHP-12 (54.0), in (Cu
2+

) self-mediated inhibition of 

aggregation assay, TACHP-9 without substituted linker was proved good inhibitor because only pyridyl 

OH involves in metal chelation, not OH of alkyl linker, also non substituted  alkyl liker compounds 

reported to have better amyloid β1-42 self–aggregation inhibition as compare to substituted alkyl linker 

compounds [59]. 

In order to try to gain support for the rationalization of the obtained results in terms of the 

effect of the hybrids on the inhibition of Aβ1-42 aggregation instead of their competition with ThT for 

fibril binding, independent transmission electron microscopy (TEM) assays were performed (see 

Figure 4) with one model compound, TACHP-12. The visualization of the fibrils by TEM shows the 

presence of heavily intertwined networks for Aβ1-42 alone and in the presence of copper, while in the 

presence of ligand TACHP-12 the aggregates become sparser. Although these results point to the 

role of these hybrid compounds as inhibitors of Aβ1-42 aggregation, they are not clear about the role of 

Cu(II). 
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Figure 4. TEM images of Aβ-aggregation inhibition experiments performed with samples incubated (37 °C) for 24 

h. Experimental conditions: [Aβ42] = [CuCl2] = 25 μM; [TACHP-12] = 50 μM; pH 6.6. 

 

 

4.3.2.3 Pharmacokinetic characterization 

 In the pharmacokinetic study, the determined parameters were calculated along with 

verification of Lipinski’s rule of five and the results are contained in Table 2. All the compounds 

presented clog P (octanol/water) coefficients inferior to five, approximately in the range 1-3, which is 

considered to be good in order to penetrate the cell membrane and maintain water solubility. This 

range of clog P values leads this set of compounds to have a balance character between lipophilic and 

hydrophilic character recommended by Lipinski’s rule. All compounds also have molecular weights 

lower than 500, which is also in accordance with Lipinski’s rule [57]. Nevertheless, concerning Caco-2 

permeability, all compounds (TACHP-9 to 16) exhibit poor results, ranging from ca. 66 to 260 nm/sec 

(higher than 500 nm/sec is considered good [55], indicating that the absorption through the intestinal 

tract to the blood would be very poor. As a conclusion, the balanced lipophilic/hydrophilic character 

and the low blood-brain barrier permeability (log BB) point towards the possible eligibility of all these 
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compounds as drug candidates for oral administration, although requiring further improvement to 

ameliorate compound absorption through blood in intestinal tract and entering into the cells. 

 

Table 2. Activities of the TACHP derivatives (TACHP-9 to TACHP-16) towards radical scavenging (DPPH), 

inhibition of AChE and Aβ1-42 aggregation and predicted pharmacokinetic values for TACHP hybrids
a
 

 

Comp. 

Code 

R1 DPPH 
scavenging 

(EC50,μM)
b

 

AChE  
 

(IC50,µM)
c
  

Inhibition of 

Aself- aggr 
egation(%)

d,e
 

MW clog 
P

f
 

log 
BB

g
 

Caco-2 
Permeability 

(nm/sec) 

Violations 
of 

Lipinski's 
rule of 5 

CNS 
activity 

TACHP-
9 

H 9258 0.90 85.3 
Cu/94.8 

420.51 2.745 -1.739 154 0 -- 

TACHP-
10 

H 4508 1.71 89.1 434.53 3.128 -1.941 139 0 -- 

TACHP-
11 

H  1200 1.07 88.1 406.48 2.531 -1.494 230 0 -- 

TACHP-
12 

H 3995 0.96 86.0 
Cu/54.0 

436.50 1.812 -2.199 69 0 -- 

TACHP-
13 

Cl 11107 0.86 95.2 454.18 3.341 -1.649 161 0 -- 

TACHP-
14 

Cl 9551 1.01 90.1 468.98 2.926 -1.562 265 0 -- 

TACHP-
15 

Cl 10854 0.97 89.6 440.92 2.976 -1.507 167 0 -- 

TACHP-
16 

Cl 483 0.64 87.0 470.17 2.274 -2.106 66 0 -- 

Tac -  1000 0.30 11.0 198.12 - - - - - 

 

a
 Predicted values using program QikProp v. 2.5[55]; 

b
Capacity to scavenge the stable free radical 2,2-diphenyl-1-

picrylhydrazyl (DPPH) was monitored according to the Blois method [58] (see Section 4.4) (means of two 
experiments)(EC50, µM); 

c
AChE from electric ell, IC50, inhibitor concentration (means of two experiments) for 50% 

inactivation of AChE; 
d
Inhibition of self-mediated Aβ42 aggregation (means of two experiments). The Thioflavin-T 

fluorescence method was used, and the measurements were carried out in the presence of an inhibitor; 
e
Assays 

performed with CL = 80 M; *Not determined; 
f
Calculated octanol/water partition coefficient; 

g
 Brain/blood partition 

coefficient. 
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Scheme 16. Representation of TACHP derivatives 
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4.4 Physicochemical studies 

4.4.1 Antioxidant activity 

In the herein performed radical scavenging assay with 2,2-diphenyl-1-picrylhydrazyl (DPPH), 

the TAC-BTA hybrids showed poor antioxidant activity, as already found for tacrine (EC50 >1000 µM). 

All the compounds of this series, apart from RSC-1, presented solubility problems in the solvent 

methanol, compounds RSC-3, 4 and 5 being particularly insoluble. Table 1, includes the results 

obtained for compounds RSC-1, 2 and 6 (EC50 > 1500 µM), therefore confirming their low radical 

scavenging activity. 

On the other hand, by analysis of the results contained in Table 2, for the TACHP hybrids, it is 

possible to conclude that some compounds, i.e. TACHP-9, TACHP-10, TACHP-12 and TACHP-16 

(EC50 ca 399-483 µM), exhibit significant antioxidant activities. These values can be explained mainly 

by the presence of phenolic hydroxyl groups that are important in the scavenging action of ROS 

species, although the chain length of the carbon linker connecting both moieties may also play some 

unexpected role. For instance, TACHP-9, with three carbon chain linker and phenolic hydroxyl, shows 

moderate antioxidant activity (EC50 = 9258 µM), while TACHP-10 (EC50 = 4508 µM), with four 

carbon chain linker and phenolic hydroxyl group has a higher scavenging potential. Moving to TACHP-

11, with two carbon chain linker, i.e. ethyl linker, and also phenolic hydroxyl substitution, the condition 

becomes very worst (EC50 >1200 µM). In TACHP-12, another hydroxyl substitution in the three carbon 

chain linker is present, besides the phenolic hydroxyl of the HP moiety, which enhances the 

antioxidant capacity significantly (EC50 = 3995 µM). Compounds TACHP-13 (EC50 = 11107 µM), 

TACHP-14 (EC50 = 9551 µM) and TACHP-15 (EC50 = 10854 µM) have chloro substitution on the 

phenyl ring of the TAC moiety, and this chloro substitution seems to be associated to the decrease of 

the antioxidant activity of these hybrids with two, three and four carbon chain linkers although the 

compound with four carbon atoms in the linker TACHP-14 is slightly better, as already observed for 

the triad TACHP-9, 10 and 11. Particularly interesting is the fact that TACHP-16, containing both 

hydroxy in a three carbon linker and chloro-substituted TAC, is able to keep a good antioxidant activity 

(EC50 = 4831 µM).  

So, in conclusion, TACHP compounds with extra hydroxyl substituted three carbon chain 

linkers connecting TAC and HP moieties along with phenolic hydroxyl at the pyridinone ring and with 

or without chloro-substitution, were found to be good antioxidant compounds (TACHP-12 EC50 = 

3995 µM, TACHP-16 EC50 = 4831 µM). So hydroxyl substituent increases scavenging capacity by 

providing a proton to interact with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, so these 

compounds able to neutralize free radicals and ROS species. For the remaining compounds of the 

TACHP series with phenolic hydroxyl a four carbon chain linker seems to privilege better results.  

4.4.2 Metal chelation 

Some transition metals, such as iron, copper and zinc, have functional roles in the body i.e. 

these metals can be the co-factors of several enzymes, catalyzing oxidation-reduction reactions, but 

also it has been proved that metal ions accumulate in the brain with aging leading to oxidative stress 

and inflammation in the central nervous system (CNS). These symptoms are associated to Wilson’s 
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disease and Alzheimer’s disease (AD). Specifically in the case of AD, it is known that iron, copper and 

zinc deposition in brain leads to metal ion induced Aβ deposition, while deregulated redox-active metal 

ions (Cu and Fe) stimulate the overproduction of ROS species with consequent biomolecule 

degradation. In the present study, the compounds of TACHP series can act as metal chelator, through 

their HP moiety, and therefore interfere with the above mentioned processes reducing neurotoxicity. 

TACHP-12 was the compound chosen as a model for analyzing the chelating capacity of the 

TACHP hybrids and the equilibrium solution studies were performed in a mixed 20% (w/w) 

DMSO/water medium, due to solubility reasons. The solvent DMSO was selected because it is quite 

used and well tolerated in biological and cellular studies.  

First, the acid-base behavior of TACHP-12 was studied, namely its protonation constants (log 

Ki) were determined by pH-potentiometry (see Figure 5). The compound was obtained in the neutral 

monoprotonated form (HL) and the values of the protonation constants, calculated by fitting the 

titration experimental curves with Hyperquad 2008 program [60], are contained in Table 3. They 

correspond to the protonation of the phenolic hydroxyl group of the HP moiety (10.54), the TAC amine 

(8.59) and the pyridinic nitrogen (2.88). In fact, the values of log K1 and log K3 of TACHP-12 are 

similar to those corresponding to the drug Deferiprone (DFP, log K1 and log K2) apart from the different 

media used for the respective determination. 

The chelating capacity of compound TACHP-12 towards Cu(II) and Zn(II) was evaluated 

through the determination of the global formation constants of the complexes by pH-potentiometric 

(Hyperquad 2008 program) [60] titrations while for the Fe(III) complexes by UV–vis spectrophotometry 

(PSEQUAD program) [61].  

 

All the curves for the Cu/TACHP-12 and Zn/TACHP-12 systems lye below that of the ligand 

for -2 ˂ a  1. This indicates formation of metal complexes with the protonated (in amine tacrine) and 

deprotonated forms of the ligand with relative stability order Cu(II)  Zn(II), as shown in Figure 5, and 

confirmed by the global stability constants of the respective complexes (see Table 3). 
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Figure 5. Potentiometric titration curves of TACHP-12 (20% w/w DMSO/H2O, I = 0.1 M KCl, T = 25.0  0.1 
º
C, CL 

= 2  10
-4

 M); a represents moles of base per mole of ligand 

 

In the case of the Fe(III)/TACHP-12 system, spectrophotometric titrations were performed for 

the 1:1 and 1:3 Fe(III)/ligand molar ratios because at pH = 2 a high percent of FeHL complex (ca 60%) 

was already formed. (Figure 6a) confirms the consecutive formation of Fe(III) complexes with 

increasing coordination number, when the pH value increases, since max shifts to lower values. In 

fact, similar changes in the absorption spectra with the pH were already found for the Fe(III)/DFP [62, 

63], which precludes the formation of complexes with the same coordination sphere, involving the two 

oxygen atoms of the HP moiety. 

From the spectra obtained for the 1:1 Fe(III)/TACHP-12 system, βFeHL was calculated and the 

stability constants of the remaining complex species, i.e. βFeH2L2, βFeH3L3 and βFeH3L2,were determined 

from the titration performed under 1:3 molar stoichiometric metal ion to ligand ratio while holding the 

value of βFeHL constant. (Figure 6b) shows the species distribution curves for the 1:3 Fe(III)/TACHP-

12 system where it can be confirmed that the iron complexation started below pH 2, with the formation 

of both FeHL and FeH2L2 complexes, while the fully coordinated tris-chelate species FeH3L3 is 

predominant above pH ca 3.8 and at the physiological pH (7.4) the hexaco-ordinated species FeH2L3, 

with one of the tacrine amines deprotonated, exists in ca 90%. Moreover, by analyzing data contained 

in Table 3, in particular the pFe value at pH 7.4 (21.7) of TACHP-12, it is possible to conclude that the 

studied compound is a quite potent iron chelator, such as the drug DFP (pM ca 19.4 - 20.7 at pH 7.4 in 

water medium) [62, 63]. 
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Figure 6. a)Electronic spectra for the 1:3 Fe(III)/TACHP-12 system (CL = 2.0 10

-4
 M, pH 2.42-7.43); b)Species 

distribution curves for the 1:3 Fe(III)/TACHP-12 system (CL = 2.0 10
-4

 M). 

 

In the case of the Cu(II)/TACHP-12 system, both pH-potentiometric titrations were performed 

for the 1:1 and 1:2 Cu(II)/ligand molar ratios and (Figure 7.) presents the species distribution curves 

for the 1:2 Cu(II)/L system in the used experimental conditions. In this system, complex formation 

occurs above pH 2 with the formation of CuHL while the tetradentate species CuH2L2 is predominant 

above pH ca 4 and attains almost 100% formation at the physiological pH. Once again, Table 3, 

shows a calculated pCu value at pH 7.4 for TACHP-12 (10.8) similar to that of DFP (pM =10.5 at pH 

7.4 in water medium [62, 63]), confirming once more the analogous coordination core of both 

compounds.  
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Figure 7. Species distribution curves for the 1:2 Cu(II)/TACHP-12 system (CL = 6.7 10
-4

 M). 

 

 
In the case of the Zn(II)/TACHP-12 system, pH-potentiometric titrations were also performed 

for the 1:1 and 1:2 Zn(II)/ligand molar ratios and the complexation model obtained is presented in 

Table 3, and used in Figure 8. In this case, the zinc complexes are weaker, and begin to form only 

above pH 3.5, which is compatible with the superimposition of the curves of the ligand and Zn/L for -2 

  a   - 1 in Figure 8, For 5  pH  8, a polynuclear Zn3L2 species is present but at the physiological 

pH the 1:1 ZnL complex predominates. The Zn3L2 complex probably involves two bidentate 

coordination of two Zn(II) at the HP moieties plus a tetradente 4N coordination involving the TAC 

amine and the N-amide of each ligand with the formation of two 6-chelate rings. Data depicted in 

Table 5, concerning the Zn(II)/TACHP-12 system, shows, once more, a pZn value at pH 7.4 similar to 

the one found for DFP [62, 63] in water medium. 

 

Figure 8. Species distribution curves for the 1:2 Zn(II)/ TACHP-12 system (CL = 6.7 10
-4

 M) 



31 
 

 

Table 3. Stepwise protonation constants of TACHP-12, global formation constants
a
 of its Fe(III), Cu(II))and Zn(II) 

complexes (T = 25.0  0.1 
º
C, I = 0.1 M KCl, 20% w/w DMSO/water) and pM

b
 values 

 

Compounds MmHhLl 

(MHL) 

logKi log 

lhm LHFe
 

log 

lhm LHCu
 

log 

lhm LHZn
 

 

TACHP-12 

(011) 

(021) 

(031) 

(111) 

(101) 

(122) 

(102) 

(133) 

(123) 

(302) 

 

pM(pH 7.4) 

 

10.54(5) 

8.59(7) 

2.88(9) 

 

 

 

 

23.88(5) 

- 

45.62(1) 

- 

65.57(2) 

59.01(4) 

- 

 

21.7 

 

 

 

19.48(7) 

12.46(5) 

38.51(6) 

22.16(7) 

- 

- 

- 

 

10.8 

 

 

 

16.78(2) 

10.16(2) 

- 

15.18(7) 

- 

- 

28.79(4) 

 

6.9 

 

DFP
[62, 63)

 

(011) 

 

(021) 

 

 

pM (pH 7.4) 

9.77
[64]

 

9.82
[65]

 

3.62
[64]

 

3.66
[65]

 

 

 

 

 

 

19.4; 20.7 

 

 

 

 

 

10.5 

 

 

 

 

 

6.3 

 

a

lhm LHM = MmHhLl/M
m
H

h
L

l
; 

b
pM = −log[M] with CL/CM = 10 and CM = 10

−6
 M;

c
 . 
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5. Conclusion 

As we know that Alzheimer’s disease is of multifactorial nature, so drug development for this 

disease should take in consideration that drug should be able to modulate multiple targets to improve 

its efficacy. Thus, compounds as potential drug candidates should have capability to reduce oxidative 

stress by scavenging free radical, and also should have some structural characteristics that makes it 

capable to inhibit AChE as well as to reduce the beta aggregation. In the present study some tacrine 

derivatives i.e. tacrine-methoxyphenylbenzothiazole (BTA) hybrids (RSC-1 to RSC-6) and tacrine-

hydroxypyridones (TACHP) hybrids (TACHP-9 to TACHP-16) has been assessed for the antioxidant 

properties, AChE inhibition, Aβ self-induced aggregation, in order to evaluate their capacity to combat 

the main pathophysiological hallmarks of the Alzheimer’s disease i.e. oxidative stress, lack of 

acetylcholine and amyloid plaques of beta amyloid aggregation. Results from the study of these 

synthetic compounds shows that the BTA hybrids are poor antioxidant but very good AChE inhibitor 

(even better than the reference tacrine), specifically the chloro derivatives (RSC-2,4,5); this behavior is 

rationalized by the molecular modeling study of all compound, in which the chloro-derivatives proved 

to interact better with the catalytic triad of AChE. Although beta amyloid studies are not very much 

conclusive due to the poor solubility of BTA hybrids but seems to possesses good inhibitory activity on 

self-induced Aβ1-42 aggregation (RSC-1, 2,3,6 showed the best results). In case of TACHP hybrids, it 

was observed a moderate antioxidant activity; compounds with OH substitution in linker (TACHP-

10,12,16) are much better than the reference compound tacrine, while chloro-derivatives(TACHP-13, 

14, and 15) proved poor antioxidant. TACHP hybrids are conclusive to be good AChE inhibitors, 

specifically the chloro derivatives of TACHP (TACHP-12,13,15,16) but not better than tacrine. From 

beta amyloid studies it has been concluded that compounds of the TACHP series are very potent 

inhibitors of self-induced Aβ1-42 aggregation (TACHP-9 to 16), even in the presence of copper metal 

(TACHP-9 and 12) inhibited Aβ1-42 aggregation with high potency. Rationalization of these Aβ1-42 

aggregation inhibitory results was done through transmission electron microscopy (TEM) assays with 

model compound TACHP-12. It was observed the presence of heavily intertwined networks, for Aβ1-42 

alone and in the co-presence of copper, while in the co-presence of ligand TACHP-12 the aggregates 

became sparser. Furthermore, 3,4-HP-based chelator TACHP-12 proved to be a good chelator of Fe, 

Cu and moderate chelator of Zn, so the potentiometric chelation study of TACHP derivative TACHP-

12 gives support to the potential interest of this chelator in detoxification of hard metal ions, and this is 

the another promising factor of TACHP series towards the cure of AD. 

Overall, these two series of multifunctional tacrine derivatives evidenced several important 

properties, which make these compounds to deserve future studies for the development of drug 

candidates against AD. 
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6. Experimental part 

6.1 Chemistry 

6.1.1 General Methods and Materials 

Analytical grade reagents were purchased from Sigma-Aldrich, Fluka and Acros and were 

used as supplied. Solvents were dried according to standard methods [66]. The chemical reactions 

were monitored by TLC using alumina plates coated with silica gel 60 F254 (Merck). Column 

chromatography separations were performed on silica gel Merck 230-400 mesh (Geduran Si 60).The 

melting points were measured with a Leica Galen III hot stage apparatus. The 
1
H and 

13
C NMR 

spectra were recorded on Bruker AVANCE III spectrometers at 300 MHz and 400 MHz, respectively. 

Chemical shifts (δ) are reported in ppm from the standard internal reference tetramethylsilane (TMS). 

The following abbreviations are used: s = singlet, d = doublet, t = triplet, m = multiplet. Mass spectra 

(ESI-MS) were performed on a 500MS LC Ion Trap (Varian Inc., Palo Alto, CA, USA) mass 

spectrometer equipped with an ESI ion source, operated in the positive ion mode. For the target 

compounds, the elemental analyses were performed on a Fisons EA1108 CHNS/O instrument and 

were within the limit of ± 0.4%. 

6.1.2 Experimental Procedure 

Synthesis of 3-(benzyloxy)-2-methyl-4H-pyran-4-one (2):  

To a solution of maltol (1) (30 g, 0.237 mol) in methanol (100 mL) was added NaOH solution 

(10.46 g in 30 mL of H2O), drop wise with stirring. When mixture becomes clear solution then BnCl 

(26.99 g, 0.213 mol) was added drop wise over a period of 0.5 h and reaction mixture was heated for 

12 h. The reaction mixture was cooled to room temperature, filtered to remove the inorganic salt, and 

the filtrate so obtained was concentrated under reduced pressure. The crude mixture was taken in 

CH2Cl2 (300 mL), and washed with 5% NaOH (2×100 mL) to remove the excess of maltol. The organic 

layer was washed with brine and dried over anhydrous sodium sulphate and finally evaporated to give 

the desired compound as an oily material with 82% yield; 
1
H NMR (400 MHz, MeOD-d4), δ (ppm): 

2.14 (s, 3H, CH3), 5.10 (s, 2H, OCH2Ph), 6.43 (d, 1H, J = 7.0 Hz, H-5, Py), 7.37–7.44 (m, 5H, Ph), 

7.93 (d, 1H, J = 8.5 Hz, H-6, Py); 
13

C NMR (400 MHz, MeOD-d4), δ (ppm): 13.68, 73.38, 116.14, 

128.15, 128.79, 136.78, 143.46, 155.16, 161.21, 175.98; m/z (ESI MS): calculated for C13H12O3 

obtained 239.13 (M+ Na)
+
. 

3-(benzyloxy)-2-methylpyridin-4(1H)-one (3): 

 The solution of compound (2) (10 g) in ethanol (30 mL) was heated to reflux with 30 mL of 

30% aqueous ammonia. After 4 h, during the reflux course, an additional 10 mL of aqueous ammonia 

was added drop wise with the help of a dropping funnel. The reaction was monitored on TLC, and 

subjected to completion over a period of 18 h by adding more aqueous ammonia (additional aqueous 

ammonia is required to add due to its high volatile nature). On completion, the mixture was 

concentrated under reduced pressure to yield a light brown solid residue, which was recrystallized 

from ethanol/ether to afford white solid in 80% yield; m.p. 189-190 °C; 
1
H NMR (400 MHz, MeOD-d4), 
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δ (ppm): 2.08 (s, 3H, CH3), 5.08 (s, 2H, OCH2Ph), 6.47 (d, 1H, J = 7.1 Hz, H-5, Py), 7.31-7.40 (m, 5H, 

Ph), 7.54 (d, 1H, J = 8.0 Hz, H-6, Py); 
13

C NMR (400 MHz, MeOD-d4), δ (ppm): 12.85, 72.97, 115.98, 

127.91, 128.02, 128.72, 135.01, 137.29, 141.97, 144.82, 174.73; m/z (ESI MS): calculated for 

C13H13NO2 obtained 216.05 (M + H)
+
. 

Ethyl 2-(3-(benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl) acetate (4):  

The mixture of 3-(benzyloxy)-2-methylpyridin-4(1H)-one (8 g) (37.2 mmol), K2CO3 (1 g, 7.3 

mmol) in anhydrous DMF (10 mL), was treated with ethyl chloroacetate (1.2 g, 7.3 mmol) and the 

reaction mixture was stirred for 12 h at room temperature. Progress of reaction was analyzed with the 

help of TLC. On completion, inorganic material was filtered and the filtrate so obtained was dried 

under reduced pressure to give a semisolid mixture, which was taken into ethyl acetate and washed 

with brine solution and water. Finally organic layer was dried over anhydrous sodium sulphate and 

then evaporated under reduced pressure. The solid material so obtained was washed with diethyl 

ether to give pure compound (4) in 63% yields; m.p. 110-112 °C; 
1
H NMR (400 MHz, DMSO-d6), δ 

(ppm): 1.05 (m, 3H,CH3), 1.92 (s, 3H, CH3), 4.00 (q, 2H, J = 7.0 Hz, CH2CH3), 4.76 (s, 2H, NCH2), 

4.89 (s, 2H, OCH2Ph), 6.06 (d, 1H, J = 10.0 Hz, 5-HPy), 7.17–7.28 (m, 5H, Ph), 7.45 (d, 1H, J  = 10.3 

Hz, 6-HPy); 
13

C NMR (400 MHz, DMSO-d6), δ (ppm): 12.42, 14.39, 54.24, 62.02, 72.43, 116.38, 

128.31, 128.68, 128.89, 138.11, 140.97, 141.76, 145.50, 168.65, 172.89; m/z (ESI MS): calculated for 

C17H19NO4 obtained 302.22 (M + H)
+
. 

2-(3-(benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl) acetic acid (5): 

To the solution of ethyl-2-(3-(benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)acetate (1 g) in 

methanol (20 mL), sodium hydroxide solution (1.05 eq, in 1 mL of water) was added and reaction was 

stirred at room temperature for 3-4 h. Completion of reaction was monitored on TLC. On completion, 

methanol was removed under reduced pressure to give a light brown solid. The solid material so 

obtained was then dissolved in 10 mL of ice cold water and acidified with conc. HCl (pH ≈ 1-2) to give 

a white solid, which was filtered and washed with 2 mL of water to give the desired compound (6) with 

80% yield; m.p. 186-188°C; 
1
H NMR (400 MHz, DMSO-d6), δ (ppm): 2.17 (s, 3H, CH3), 4.97 (s, 2H, 

CH2N), 5.06 (s, 2H, OCH2Ph), 6.59 (d, 1H, J = 8.5 Hz, 5-HPy), 7.34–7.44 (m, 5H, Ph), 7.86 (d, 1H, J = 

10.0 Hz, 6-HPy); 
13

C NMR (400 MHz, DMSO-d6), δ (ppm): 12.80, 55.29, 73.16, 128.51, 128.77, 

128.95, 137.66, 141.88, 144.51, 144.71, 169.53, 170.40; m/z (ESI MS): calculated for C15H15NO4 

obtained 274.15 (M + H)
+
. 

General procedure for synthesis of 2-(3-(benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)-N-(3-

((1,2,3,4-tetrahydroacridin-9-yl)amino)alkyl)acetamide (14-21): 

To the mixture of 2-(3-(benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)acetic acid (5) (0.5 g, 1.83 

mmol) in 25 ml of dry DCM, N-methylmorpholine (3.66 mmol) was added under nitrogen. Few minutes 

later, when reaction become clear solution, propylphosphonic anhydride (T3P) solution (2.2 mmol) 

was added drop wise under nitrogen and reaction was stirred for half an hour. Finally, solution of 

different amines (6-13) (1.83 mmol) in dry DCM was added to it under nitrogen atmosphere and the 

reaction mixture was stirred at RT for overnight (completion of reaction mixture was monitored with 
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TLC). On completion of reaction, DCM layer was washed with brine solution and crude reaction 

mixture was purified through column chromatography over silica in 3-5% MeOH-DCM system to give 

desired compounds (14-21) in 70-89% yield. 

2-(3-(Benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)-N-(2-((1,2,3,4-tetrahydroacridin-9-

yl)amino)ethyl)acetamide (14): 

 Compound 14 was obtained as a yellow solid at room temperature in 74% isolated yield from 

the reaction of 6 with 5 by following the general procedure; m.p. 146-148°C; 
1
H NMR (400 MHz, 

DMSO-d6), δ (ppm): 1.79 (br.s, 4H, H-2 & H-3), 1.94 (s, 3H, CH3), 2.65 (br.s, 2H, H-1), 3.02 (br.s, 2H, 

H-4), 3.51-3.52 (m, 2H, H-2′), 3.99-4.01 (m, 2H, H-1′), 4.68 (s, 2H, NCH2), 4.98 (s, 2H, OCH2Ph), 6.98 

(d, 2H, J = 8.5 Hz, H-5′′), 7.30-7.51 (m, 5H, Ph), 7.55 (t, 2H, J = 7.0 Hz, H-6 & H-7), 7.82-7.86 (m, 2H, 

H-5 & NH), 8.04 (d, 1H, J = 7.3 Hz, H-8), 8.47 (d, 1H, J = 9.5 Hz, H-6′′), 9.04 (s, 1H, NH); 
13

C NMR 

(400 MHz, DMSO-d6), δ (ppm): 12.47, 20.69, 20.76, 21.89, 24.38, 28.35, 47.59, 55.55, 72.46, 111.76, 

115.86, 115.95, 119.58, 125.52, 125.64, 128.24, 128.69, 132.98, 138.19, 141.36., 141.99, 145.37, 

151.17, 156.27, 168.01, 172.26; m/z (ESI MS): calculated for C30H32N4O3 obtained 497.39 (M + H)
+
. 

2-(3-(Benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)-N-(3-((1,2,3,4-tetrahydroacridin-9-

yl)amino)propyl)acetamide (15):  

Compound 15 was obtained as a yellow solid at room temperature in 81% isolated yield from 

the reaction of 7 with 5 by following the general procedure; m.p. 159-160°C; 
1
H NMR (300 MHz, 

DMSO-d6), δ (ppm): 1.81 (br.s, 4H, H-2 & H-3), 1.88-1.92 (m, 2H, H-2′), 2.00 (s, 3H, CH3), 2.67 (br.s, 

2H, H-1), 3.01 (br.s, 2H, H-4), 3.19 (t, 2H, H-3′), 3.88-3.90 (m, 2H, H-1′), 4.66 (s, 2H, NCH2), 4.98 (s, 

2H, OCH2Ph), 6.14 (d, 1H, J = 10.5 Hz, H-5′′), 7.29-7.40 (m, 5H, Ph), 7.55 (t, 2H, H-6 & H-7), 7.83-

7.85 (m, 2H, H-5 & NH), 7.99 (d, 1H, J = 7.5 Hz, H-8), 8.44 (1H, H-6′′), 8.77 (s, 1H, NH); 
13

C NMR 

(300 MHz, DMSO-d6), δ (ppm): 12.55, 20.72, 21.92, 24.50, 28.40, 30.25, 36.40, 45.11, 55.51, 72.35, 

111.74, 115.99, 116.06, 119.64, 125.53, 128.20, 128.65, 128.71, 132.94, 138.25, 138.35, 141.30, 

141.70, 145.48, 151.14, 156.09, 167.16, 172.61; m/z (ESI MS): calculated for C31H34N4O3 obtained 

511.40 (M + H)
+
.  

2-(3-(Benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)-N-(4-((1,2,3,4-tetrahydroacridin-9-

yl)amino)butyl)acetamide (16): 

 Compound 16 was obtained as a yellow solid at room temperature in 80% isolated yield from 

the reaction of 8 with 5 by following the general procedure; m.p. 84-86 °C; 
1
H NMR (400 MHz, DMSO-

d6), δ (ppm): 1.45-1.46 (m, 2H, H-2′), 1.54-1.56 (m, 2H, H-3′), 1.80 (m, 4H, H-2 & H-3), 2.02 (s, 3H, 

CH3), 2.71 (br.s, 2H, H-1), 2.90-2.91 (m, 2H, H-4), 3.08-3.10 (m, 2H, H-4′), 3.41-3.42 (t, 2H, J = 7.1 

Hz, H-1′), 4.56 (s, 2H, NCH2), 5.01 (s, 2H, OCH2Ph), 5.45 (br.s, 1H, NH (D2O exchanged)), 6.14 (d, 

2H, J = 10.0 Hz, H-5′′), 7.32-7.42 (m, 6H, Ph & H-7), 7.50-7.52 (m, 2H, H-6 & H-5), 7.72 (d, 1H, J = 7.5 

Hz, H-8), 8.12 (1H, H-6′′), 8.23 (s, 1H, NH (D2O exchanged)); 
13

C NMR (400 MHz, DMSO-d6), δ 

(ppm): 12.43, 22.89, 23.21, 25.58, 26.92, 28.52, 33.93, 48.06, 55.54, 72.34, 116.00, 116.34, 120.71, 

123.50, 123.73, 128.20, 128.39, 128.66, 128.71, 138.36, 141.28, 141.49, 145.58, 147.26, 150.75, 

158.32, 166.76, 172.63; m/z (ESI MS): calculated for C32H36N4O3 obtained 525.43 (M +H)
+
. 
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2-(3-(Benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)-N-(2-((6-chloro-1,2,3,4-tetrahydroacridin-9-

yl)amino)ethyl)acetamide (17): 

 Compound 17 was obtained as a yellow solid at room temperature in 84% isolated yield from 

the reaction of 9 with 5 by following the general procedure; m.p. 118-120°C; 
1
H NMR (400 MHz, 

DMSO-d6), δ (ppm): 1.79-181 (m, 4H, H-2 & H-3), 1.96 (s, 3H, CH3), 2.68 (br.s, 2H, H-1), 2.98-2.90 

(m, 2H, H-4), 3.34-3.35 (m, 2H, H-2′), 3.54-3.56 (m, 2H, H-1′), 4.56 (s, 2H, NCH2), 4.99 (s, 2H, 

OCH2Ph), 5.66 (br.s, 1H, NH (D2O exchanged)), 6.14 (d, 2H, J = 10.5 Hz, H-5′′), 7.31-7.42 (m, 6H, Ph 

& H-7), 7.47 (d, 1H, J = 7.1 Hz, H-8), 7.73 (s, 1H, H-5), 8.13 (d, 1H, J = 8.5 Hz, H-6′′), 8.37 (s, 1H, NH 

(D2O exchanged)); 
13

C NMR (400 MHz, DMSO-d6),δ (ppm): 12.39, 22.67, 23.00, 25.34, 33.90, 47.91, 

55.46, 72.34, 116.06, 116.51, 118.82, 124.02, 125.91, 128.20, 128.67, 128.68, 133.04, 138.34, 

141.20, 141.49, 145.56, 147.91, 150.75, 159.72, 167.59, 172.64; m/z (ESI MS): calculated for 

C30H31ClN4O3 obtained 531.36 (M+H)
+
. 

2-(3-(benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)-N-(3-((6-chloro-1,2,3,4-tetrahydroacridin-9-

yl)amino)propyl)acetamide (18): 

 Compound 18 was obtained as a yellow solid at room temperature in 89% isolated yield from 

the reaction of 10 with 5 by following the general procedure; m.p.118-120°C; 
1
H NMR (400 MHz, 

DMSO-d6), δ (ppm): 1.70-1.76 (m, 2H, H-2′), 1.79-1.80 (m, 4H, H-2 & H-3), 2.01 (s, 3H, CH3), 2.69-

2.70 (m, 2H, H-1), 2.88-2.90 (br.s, 2H, H-4), 3.16 (t, 2H, J = 7.1 Hz, H-3′), 3.43 (t, 2H, J = 7.1 Hz, H-1′) 

, 4.58 (s, 2H, NCH2), 5.00 (s, 2H, OCH2Ph), 5.60 (br.s, 1H, NH (D2O  exchanged)), 6.14 (d, 2H, J = 

10.5 Hz, H-5′′), 7.30-7.37 (m, 5H, Ph), 7.42 (d, 1H, J = 8.5 Hz, H-7), 7.51 (d, 1H, H-8), 7.73 (d, 1H, J = 

8.0 Hz, H-8), 8.14 (d, 1H, J = 8.5 Hz, H-6′′), 8.27 (s, 1H, NH (D2O exchanged)); 
13

C NMR (400 MHz, 

DMSO-d6), δ (ppm): 12.45, 22.74, 23.04, 25.51, 30.92, 33.98, 36.84, 45.83, 55.48, 72.33, 116.03, 

116.86, 119.21, 124.03, 125.77, 127.20, 128.19, 128.65, 128.70, 132.96, 138.33, 141.26, 141.50, 

145.56, 148.00, 150.86, 159.91, 167.09, 172.63; m/z (ESI MS): calculated for C31H33ClN4O3 obtained 

545.41 (M + H)
+
. 

2-(3-(Benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)-N-(4-((6-chloro-1,2,3,4-tetrahydroacridin-9-

yl)amino)butyl)acetamide (19): 

 Compound 19 was obtained as a yellow solid at room temperature in 83% isolated yield from 

the reaction of 11 with 5 by following the general procedure; m.p. 118-120°C; 
1
H NMR (400 MHz, 

DMSO-d6), δ (ppm): 1.41-1.46 (m, 2H, H-2′), 1.54-1.57 (m, 2H, H-3′), 1.78-1.80 (m, 4H, H-2 & H-3), 

2.01 (s, 3H, CH3), 2.67-2.68 (br.s, 2H, H-1), 2.87-2.90 (m, 2H, H-4), 3.07-3.08 (m, 2H, H-4′), 3.56 (t, 

2H, J = 7.0, H-1′), 4.55 (s, 2H, NCH2), 4.99 (s, 2H, OCH2Ph), 5.76 (br.s, 1H, NH (D2O exchanged)), 

6.14 (d, 2H, J = 10.5 Hz, H-5′′), 7.30-7.37 (m, 5H, Ph), 7.41 (d, 1H, J = 8.5 Hz, H-7), 7.50 (d, 1H, J = 

8.0 Hz, H-8), 7.73 (d, 1H, H-8), 8.16 (d, 1H, H-6′′), 8.23 (t, 1H, J = 4.0 Hz, NH (D2O exchanged)); 
13

C 

NMR (400 MHz, DMSO-d6), δ (ppm): 12.42, 22.55, 22.94, 25.40, 26.83, 28.36, 33.93, 47.93, 55.54, 

72.34, 115.99, 116.13, 118.72, 124.04, 126.04, 128.21, 128.66, 128.73, 133.28, 138.29, 141.29, 

141.57, 145.54, 147.33, 151.27, 159.23, 166.76, 172.65; m/z (ESI MS): calculated for C32H35ClN4O3 

obtained 559.57 (M +H)
+
.  
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2-(3-(Benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)-N-(2-hydroxy-3-((1,2,3,4-tetrahydroacridin-9-

yl)amino)propyl)acetamide (20): 

Compound 20 was obtained as a yellow solid at room temperature in 74% isolated yield from 

the reaction of 12 with 5 by following the general procedure; m.p. 134-136°C; 
1
H NMR (300 MHz, 

DMSO-d6), δ (ppm): 1.81 (br.s, 4H, H-2 & H-3), 2.00 (s, 3H, CH3), 2.71 (br.s, 2H, H-1), 2.93 (br.s, 2H, 

H-4), 3.21 (br.s, 2H, H-3′), 3.43-3.59 (m, 2H, H-1′), 3.77 (br.s, 1H, H-2′), 4.62 (s, 2H, NCH2), 4.98 (s, 

2H, OCH2Ph), 5.41 (br.s, 1H, NH (D2O exchanged)), 5.98 (br.s, 1H, OH (D2O exchanged)), 6.13 (d, 

2H, J = 10.1 Hz, H-5′′), 7.30-7.42 (m, 6H, Ph & H-7), 7.51 (d, 1H, J = 8.0 Hz, H-5), 7.62  (t, 1H, J = 8.5 

Hz, H-6), 7.78 (d, 1H,H-8), 8.20 (d, 1H, J = 8.0 Hz, H-6′′), 8.44 (br.s, 1H, NH (D2O  exchanged)); 
13

C 

NMR (300 MHz, DMSO-d6), δ (ppm): 12.52, 22.20, 22.74, 24.83, 32.17, 43.32, 51.87, 55.45, 69.22, 

72.34, 115.15, 116.01, 119.20, 124.20, 124.37, 128.20, 128.66, 128.69, 129.94, 138.33, 141.28, 

141.54, 145.54, 152.75, 167.46, 172.62; m/z (ESI MS): calculated for C31H34N4O4 obtained 527.41 (M 

+ H)
+
. 

2-(3-(Benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)-N-(3-((6-chloro-1,2,3,4-tetrahydroacridin-9-

yl)amino)-2-hydroxypropyl)acetamide (21): 

Compound 21 was obtained as a yellow solid at room temperature in 70% isolated yield from 

the reaction of 13 with 5 by following the general procedure; m.p. 134-136°C; 
1
H NMR (400 MHz, 

DMSO-d6), δ (ppm): 1.80 (br.s, 4H, H-2 & H-3), 2.00 (s, 3H, CH3), 2.71 (br.s, 2H, H-1), 2.89 (br.s, 2H, 

H-4), 3.18 (br.s, 2H, H-3′), 3.32-3.42 (m, 2H, H-1′), 3.70 (br.s, 1H, H-2′), 4.61 (s, 2H, NCH2), 4.99 (s, 

2H, OCH2Ph), 5.31-5.33 (m, 1H, NH (D2O exchanged)), 5.36-5.38 (br.s, 1H, OH (D2O exchanged)), 

6.14 (d, 2H, J = 10.4 Hz, H-5′′), 7.30-7.43 (m, 6H, Ph & H-7), 7.51 (d, 1H, J = 7.5 Hz, H-8), 7.73 (s, 1H, 

H-5), 8.11-8.14 (m, 1H, H-6′′), 8.32-8.34 (m, 1H, NH (D2O exchanged); 
13

C NMR (400 MHz, DMSO-

d6), δ (ppm): 12.47, 22.74, 23.00, 25.03, 31.13, 43.38, 52.18, 55.48, 69.40, 72.34, 116.02, 116.90, 

119.10, 123.99, 125.94, 127.25, 128.18, 128.64, 128.69, 132.94, 138.33, 141.25, 141.51, 145.55, 

148.10, 151.07, 159.88, 167.40, 172.63; m/z (ESI MS): calculated for C31H33ClN4O4 obtained 561.37 

(M + H)
+
. 

General procedure for synthesis of 2-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl)-N-(2-((1,2,3,4-

tetrahydroacridin-9-yl)amino)alkyl)acetamide (22-29): 

The mixture of 2-(3-(benzyloxy)-2-methyl-4-oxopyridin-1(4H)-yl)-N-(3-((1,2,3,4-

tetrahydroacridin-9-yl)amino)alkyl)acetamide (14-21) (0.95 mmol) and 10% Pd/C in 25 mL of methanol 

was stirred for 3 h under H2 (2 bar). Completion of the reaction was monitored on thin layer 

chromatography (TLC). On completion, reaction mixture was filtered through the bed of ceilite and 

evaporated to dryness under reduced pressure to give the desired deprotected 2-(3-hydroxy-2-methyl-

4-oxopyridin-1(4H)-yl)-N-(2-((1,2,3,4-tetrahydroacridin-9-yl)amino)alkyl)acetamide derivatives (22-29) 

in 90-95% yield. 

2-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl)-N-(2-((1,2,3,4-tetrahydroacridin-9-

yl)amino)ethyl)acetamide(22):  
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Compound 22 was obtained as light yellow solid in 93% yield through the hydrogenolysis of 14 

by following general procedure; m.p. 176-177°C; 
1
H NMR (400 MHz, DMSO-d6), δ (ppm): 1.81 (br.s, 

4H, H-2 & H-3), 2.00 (s, 3H, CH3), 2.65 (br.s, 2H, H-1), 3.03 (br.s, 2H, H-4), 3.53 (m, 2H, H-2′), 4.01 

(m, 2H, H-1′), 4.68 (s, 2H, NCH2), 6.10 (d, 2H, J = 10.9 Hz, H-5′′), 7.48 (d, 1H, J = 7.1 Hz, H-5), 7.55 (t, 

1H, J = 7.5 Hz, H-7), 7.78 (s, 1H, NH (D2O exchanged)), 7.86 (t, 1H, J = 7.5 Hz, H-6), 8.01 (d, 1H, J 

=7.0 Hz, H-8), 8.46 (d, 1H,H-6′′), 8.93 (s, 1H, NH (D2O exchanged)); 
13

C NMR (400 MHz, DMSO-d6), 

δ (ppm): 11.80, 20.77, 21.92, 24.32, 28.48, 31.10, 47.85, 55.54, 110.73, 111.97, 116.09, 119.78,  

125.52, 125.60, 129.60, 132.96, 138.54, 139.53, 145.45, 151.38, 156.30, 168.26, 169.69; m/z (ESI 

MS): calculated for C23H26N4O3 obtained 407.38 (M + H)
+
. 

2-(3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl)-N-(3-((1,2,3,4-tetrahydroacridin-9-

yl)amino)propyl)acetamide (23): 

Compound 23 was obtained as light yellow solid in 93% yield through the hydrogenolysis of 15 

by following general procedure; m.p. 170-172°C; 
1
H NMR (400 MHz, DMSO-d6), δ (ppm): 1.83 (br.s, 

4H, H-2 & H-3), 1.92 (br.s, 2H, H-2′), 2.10 (s, 3H, CH3), 2.69 (br.s, 2H, H-1), 3.03 (br.s, 2H, H-4), 3.21 

(br.s, 2H, H-3′), 3.91 (br.s, 2H, H-1′), 4.68 (s, 2H, NCH2), 6.11 (d, 2H, J = 10.9 Hz, H-5′′), 7.49-7.51 (m, 

1H, H-7), 7.57 (t, 1H, J = 7.5 Hz, H-6), 7.84-7.86 (m, 2H, H-5 & NH (D2O exchanged)), 8.00 (d, 1H, J = 

7.1 Hz, H-8), 8.45 (1H, J = 7.5 Hz, H-6′′), 8.72 (s, 1H, NH (D2O exchanged)), 14.05 (s, 1H, OH (D2O 

exchanged)); 
13

C NMR (400 MHz, DMSO-d6), δ (ppm): 11.95, 20.75, 21.94, 24.52, 28.46, 30.30, 

36.42, 45.17, 55.58, 110.73, 111.83, 116.13, 119.73, 125.47, 125.54, 129.67, 132.96, 138.44, 139.52, 

145.48, 151.24, 156.12, 167.28, 169.68; m/z (ESI MS): calculated for C24H28N4O3 obtained 421.40 (M 

+ H)
+
. 

2-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl)-N-(4-((1,2,3,4-tetrahydroacridin-9-

yl)amino)butyl)acetamide (24):  

Compound 24 was obtained as light yellow solid in 93% yield through the hydrogenolysis of 16 

by following general procedure; m.p. 113-114°C; 
1
H NMR (400 MHz, DMSO-d6), δ (ppm): 1.43-1.47 

(m, 2H, H-2′), 1.55-1.56 (m, 2H, H-3′), 1.81 (br.s, 4H, H-2 & H-3), 2.10 (s, 3H, CH3), 2.72 (br.s, 2H, H-

1), 2.91 (br.s, 2H, H-4), 3.08-3.10 (m, 2H, H-4′), 3.42 (br.s, 2H, H-1′), 4.60 (s, 2H, NCH2), 5.45 (br.s, 

1H, NH(D2O exchanged)), 6.10 (d, 2H, J = 10.1 Hz, H-5′′), 7.35 (t, 1H, J = 7.5 Hz, H-7), 7.47 (d, 1H, J 

= 7.1 Hz, H-5), 7.53 (t, 1H, J = 7.5 Hz, H-6), 7.72 (d, 1H, J = 8.0 Hz, H-8), 8.12 (1H, J = 10.9 Hz, H-6′′), 

8.23 (t, 1H, J = 4.0 Hz, NH (D2O exchanged)); 
13

C NMR (400, MHz, DMSO-d6), δ (ppm): 11.86, 22.89, 

23.21, 25.58, 26.93, 28.52, 33.93, 48.05, 55.59, 110.70, 116.35, 120.71, 123.50, 123.74, 128.39, 

128.66, 129.51, 139.54, 145.53, 147.26, 150.75, 158.34, 166.87, 169.78; m/z (ESI MS): calculated for 

C25H30N4O3 obtained 435.46 (M + H)
+
. 

N-(2-((6-chloro-1,2,3,4-tetrahydroacridin-9-yl)amino)ethyl)-2-(3-hydroxy-2-methyl-4-oxopyridin-

1(4H)-yl)acetamide (25): 

Compound 25 was obtained as light yellow solid in 95% yield through the hydrogenolysis of 17 

by following general procedure; m.p. 181-182°C; 
1
H NMR (400 MHz, MeOD-d4), δ (ppm): 1.92 (br.s, 

4H, H-2 & H-3), 2.18 (s, 3H, CH3), 2.67 (t, 2H, J = 4.0 Hz, H-1), 3.04 (t, 2H, J = 4.0 Hz, H-4), 3.74 
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(br.s, 2H, H-2′), 4.18-4.19 (m, 2H, H-1′), 4.81 (s, 2H, NCH2), 6.38 (d, 2H, J = 10.5 Hz, H-5′′), 7.54 (d, 

2H, J = 7.1 Hz, H-7), 7.59 (t, 1H, J = 7.5 Hz, NH (D2O exchanged)), 7.81 (d, 2H, J = 1.5 Hz, H-5), 7.88 

(d, 1H, J = 7.1 Hz, H-8), 8.44 (d, 1H, J = 10.9 Hz, H-6′′); 
13

C NMR (400 MHz, DMSO-d6), δ (ppm): 

11.80, 20.77, 21.92, 24.32, 28.48, 31.10, 47.85, 55.54, 110.73, 111.97, 116.09, 119.78, 125.52, 

125.60, 129.60, 132.96, 138.54, 139.53, 145.45, 151.38, 156.30, 168.26, 169.69; m/z (ESI MS): 

calculated for C23H25ClN4O3 obtained 441.46 (M + H)
+
. 

N-(3-((6-Chloro-1,2,3,4-tetrahydroacridin-9-yl)amino)propyl)-2-(3-hydroxy-2-methyl-4-

oxopyridin-1(4H)-yl)acetamide (26): 

Compound 26 was obtained as light yellow solid in 92% yield through the hydrogenolysis of 18 

by following general procedure; m.p. 162-163°C; 
1
H NMR (400 MHz, MeOD-d4), δ (ppm): 1.98-1.99 

(m, 4H, H-2 & H-3), 2.08-2.11 (m, 2H, H-2′), 2.26 (s, 3H, CH3), 2.76 (br.s, 2H, H-1), 3.04 (br.s, 2H, H-

4), 3.45 (t, 2H, J = 8.0 Hz, H-3′), 4.03 (t, 2H, J = 8.0 Hz, H-1′), 4.79 (s, 2H, NCH2), 6.40 (d, 2H, J = 8.0 

Hz, H-5′′), 7.53 (d, 1H, J = 8.0 Hz, H-7), 7.61 (t, 1H, J = 8.0 Hz, NH (D2O exchanged)), 7.80 (d, 1H, J = 

8.0 Hz, H-5), 7.88 (d, 1H, J = 8.0 Hz, H-8), 8.41 (d, 1H, J = 8.0 Hz, H-6′′); 
13

C NMR (400 MHz, DMSO-

d6), δ (ppm): 11.96, 20.73, 21.93, 24.52, 28.41, 30.30, 35.42, 45.15, 55.61, 110.75, 111.76, 116.07, 

119.64, 125.54, 129.82, 132.97, 138.35, 139.53, 145.45, 151.15, 156.12, 167.27, 169.60; m/z (ESI 

MS): calculated for C24H27ClN4O3 obtained 455.91 (M + H)
+
. 

N-(4-((6-chloro-1,2,3,4-tetrahydroacridin-9-yl)amino)butyl)-2-(3-hydroxy-2-methyl-4-oxopyridin-

1(4H)-yl)acetamide (27):  

Compound 27 was obtained as light yellow solid in 96% yield through the hydrogenolysis of 19 

by following general procedure; m.p. 148-149°C; 
1
H NMR (400 MHz, MeOD-d4), δ (ppm): 1.66-1.70 

(m, 2H, H-2′), 1.86-1.88 (m, 2H, H-3′), 1.97 (br.s, 4H, H-2 & H-3), 2.27 (s, 3H, CH3), 2.72 (br.s, 2H, H-

1), 3.03 (br.s, 2H, H-4), 3.28-3.30 (m, 2H, H-4′), 4.01 (t, 2H, J = 7.0 Hz, H-1′), 4.78 (s, 2H, NCH2), 6.39 

(d, 2H, J = 10.5 Hz, H-5′′), 7.55 (d, 1H, J = 7.5 Hz, H-7), 7.59 (t, 1H, J = 8.0 Hz, NH (D2O exchanged)), 

7.78 (d, 1H, J = 7.0 Hz, H-5), 7.85 (d, 1H, J = 8.5 Hz, H-8), 8.40 (d, 1H, J = 10.9 Hz, H-6′′); 
13

C NMR 

(400 MHz, DMSO-d6), δ (ppm): 11.93, 20.78, 21.97, 24.55, 26.58, 27.84, 28.52, 38.76, 47.24, 55.66, 

110.69, 111.73, 116.16, 119.82, 125.47, 129.73, 132.84, 138.54, 139.59, 145.47, 151.32, 155.95, 

167.00, 169.67; m/z (ESI MS): calculated for C25H29ClN4O3 obtained 470.14 (M + H)
+
. 

2-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl)-N-(2-hydroxy-3-((1,2,3,4-tetrahydroacridin-9-

yl)amino)propyl)acetamide (28): 

Compound 28 was obtained as light yellow solid in 91% yield through the hydrogenolysis of 20 

by following general procedure; m.p. 150-152°C; 
1
H NMR (400 MHz, DMSO-d6), δ (ppm): 1.82 (br.s, 

4H, H-2 & H-3), 2.09 (s, 3H, CH3), 2.72 (br.s, 2H, H-1), 2.94 (br.s, 2H, H-4), 3.23 (t, 2H, J = 7.0 Hz, H-

3′), 3.47-3.49 (m, 1H, Ha-1′), 3.58-3.61 (m, 1H, Hb-1′), 3.79-380 (m, 1H, H-2′), 4.67 (s, 2H, NCH2), 

5.99 (br.s, 1H, NH (D2O exchanged)), 6.10 (d, 2H, J = 10.1 Hz, H-5′′), 7.41 (t, 1H, J = 7.5 Hz, H-7), 

7.48 (d, 1H, J = 7.1 Hz, H-5), 7.65  (t, 1H, J = 7.0 Hz, H-6), 7.79 (d, 1H, J = 7.5 Hz, H-8), 8.21 (d, 1H, J 

= 10.5 Hz, H-6′′), 8.47 (t, 1H, NH (D2O exchanged)); 
13

C NMR (400 MHz, DMSO-d6), δ (ppm): 11.93, 

22.21, 22.74, 24.84, 31.09, 43.33, 51.89, 55.52, 69.25, 110.73, 115.18, 119.21, 124.21, 124.38, 
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125.80, 129.58, 129.94, 139.54, 144.43, 145.49, 152.74, 156.04, 167.58, 169.78; m/z (ESI MS): 

calculated for C24H28N4O4 obtained 437.40 (M + H)
+
. 

N-(3-((6-chloro-1,2,3,4-tetrahydroacridin-9-yl)amino)-2-hydroxypropyl)-2-(3-hydroxy-2-methyl-4-

oxopyridin-1(4H)-yl)acetamide (29): 

Compound 29 was obtained as light yellow solid in 91% yield through the hydrogenolysis of 21 

by following general procedure; m.p. 161-162 °C; 
1
H NMR (400 MHz, MeOD-d4), δ (ppm): 1.97-1.98 

(br.s, 4H, H-2 & H-3), 2.27 (s, 3H, CH3), 2.75 (br.s, 2H, H-1), 3.05 (br.s, 2H, H-4), 3.41-3.47 (br.s, 2H, 

H-3′), 3.91-3.95 (m, 1H, H-1′), 4.0-4.09 (m, 1H, H-2′), 4.80 (s, 2H, NCH2), 6.37 (d, 2H, J = 10.0 Hz, H-

5′′), 7.50 (d, 1H, J = 7.5 Hz, H-7), 7.58 (t, 1H,NH (D2O exchanged)), 7.78 (d, 1H, J = 7.7 Hz, H-5), 7.85 

(d, 1H, J = 8.5 Hz, H-8), 8.43 (d, 1H, J = 10.5 Hz, H-6′′); 
13

C NMR (400 MHz, DMSO-d6), δ (ppm): 

12.00, 20.84, 21.94, 24.37, 28.61, 43.19, 51.25, 55.56, 68.86, 110.75, 112.13, 116.34, 119.96, 125.40, 

125.53, 129.72, 132.83, 138.70, 139.55, 145.46, 151.48, 156.35, 167.61, 169.73; m/z (ESI MS): 

calculated for C24H27ClN4O4 obtained 471.84 (M + H)
+
. 

 

6.2 Biological activities 

6.2.1. Material and equipment 

Analytical grade reagents and solvents were purchased from Sigma-Aldrich, Fluka and Acros 

and were used as supplied. For antioxidant assay reading the solution absorbance at 517 nm, 

recorded on a Perkin-Elmer scan Lambda 35 UV-Vis Spectrophotometer. For AChE inhibition the 

initial rate of the enzymatic reaction was monitored by reading the solution absorbance at 405 nm, 

recorded on a Perkin-Elmer Lambda 35 UV-Vis spectrophotometer. ThT fluorescence assay for β-

amyloid aggregation was measured using a Cary Eclipse of Varian fluorimeter. (Molecular Devices) at 

the following wavelengths: excitation (446 nm) and emission (486 nm). TEM assays were performed 

with a Hitachi H8100 transmission electron microscope, at MicroLab/IST.Amyloid β-peptide, (1-42) 

(Aβ1-42), was purchased from Aldrich as a lyophilized powder.   

 

6.2.2. Anti-oxidant activity 

All synthesized ligands were investigated for their antioxidant activity (EC50), based on 

reduction of 2,2-diphenyl-1-picrylhydrazyl (DPPH), a stable free radical. The free radical DPPH with an 

odd electron having purple color gives a maximum absorption at 517 nm [67, 58]. When an antioxidant 

(synthetic ligand) reacts with DPPH, which is a stable free radical, it becomes paired off in the 

presence of hydrogen donor (i.e. free radical scavenging antioxidant ligand) and 2,2-diphenyl-1-

picrylhydrazyl (DPPH) reduced to 2,2-diphenyl-1-picrylhydrazyl-hydrazine (DPPHH) and so 

absorbance decreased from DPPH radical to DPPHH form which results in the decolorisation of purple 

color to yellow color. So this antioxidant assay by DPPH method is the most accepted model for 

evaluating the free radical scavenging activity of any new drug. Compounds that can donate hydrogen 

atoms to DPPH are able to give rise to the reduced form of DPPHH and in that case the violet color 
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changes to the pale yellow color from the picryl group. In the presence of any free radical scavenger, 

this odd electron pairs up and causes the diminishing of absorption band which is proportional to the 

number of electrons taken up. 
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(DPPH) radical                                      Ligand                            2,2-diphenyl-1-picrylhydrazyl hydrazine    

                                                                                               (DPPHH)                                                                                                                               

 

Scheme 17. Reaction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with hydrogen donating ligand to give 2,2-

diphenyl-1-picrylhydrazyl hydrazine (DPPHH) 

 

 

The capacity to scavenge the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 

monitored according to the Blois method [58] by reading the solution absorbance at 517 nm, recorded 

on a Perkin-Elmer scan Lambda 35 UV-Vis Spectrophotometer. The test compounds (200 µL-1 mL) 

were mixed with 2.5 mL of DPPH solution and filled up with methanol solvent to the total volume of 3.5 

mL according to Table 4, The samples were incubated for 30 min at room temperature protected from 

light. The absorbance was measured at 517 nm against the corresponding blank (methanol) in a 

visible range (300-700 nm) of spectrophotometer. The antioxidant activity was calculated by an 

equation shown in Annexure 1. The compound antioxidant activity (EC50) was obtained by plotting the 

antioxidant activity against the compound concentration. 

 

Table 4. Solution preparation for antioxidant assay 

a
VT = 3.5 mL 

Solution 1 2 3 4 5 6 

DPPH 2.5mL 2.5 mL 2.5 mL 2.5 Ml 2.5mL 2.5mL 

MeOH 1mL 800 µL 600 µL 400 µL 200 µL 0 

Inhibitor 0 mL 200 µL 400 µL 600 µL 800 µL 1 mL 

 

a
Total volume of each solution 
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6.2.3. Acetylcholinesterase Activity Assay 

 This assay is mainly dealing with the evaluation of the inhibitory potential of the compounds. 

So AChE inhibitors are among the key drugs approved for Alzheimer’s disease (AD) [68]. Assay of 

acetylcholinesterase activity carried out with Acetylcholinesterase stock solution was prepared by 

dissolving 500 U (extracted from Electrophorus electricus and purchased from Sigma-Aldrich) in TRIS 

buffer (50 mM, pH 8) (10 mL). The enzyme was later diluted with HEPES buffer to give the final AChE 

concentration conditions [69]. The initial rate of the enzymatic reaction was monitored by reading the 

solution absorbance at 405 nm, recorded on a Perkin-Elmer Lambda 35 UV-Vis Spectrophotometer. In 

this modification method of Ellman et al. [43, 52, 68] used for the determination of AChE activity, 

portions of enzyme were added to HEPES buffer and in different volume inhibitor and methanol were 

added to it then samples were left to incubate for 15 min at room temperature then sodium chloride 

and magnesium chloride, pH 8.0, containing 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and 

acetylthiocholine iodide (AChI) i.e. the substrate for enzyme and source of thiol also added to it and 

reaction was monitored for 5 min at 405 nm. All the solutions were prepared according to Table 5. 

Also run with a blank containing all the components except AChE, which was replaced by Hepes 

buffer. The velocities of the reaction were calculated as well as the enzyme activity. A control reaction 

was carried out using the sample solvent (methanol) in the absence of any tested compound, and it 

was considered as 100% activity. The percentage inhibition of the enzyme activity due to the presence 

of increasing test compound concentration was calculated by the equation shown in Annexure 2. 

Then percentage inhibition plotted against the concentration of compound from where we can get the 

IC50 value, which gives idea about the inhibitory capacity of compound. 

In this method thiol group of the acetylthiocholine iodide reacts with DTNB cleaving the 

disulfide bond to give 2-nitro-5-thiobenzoate (TNB), which ionizes to the TNB
2- 

dianion in water at 

neutral and alkaline pH. This TNB
2-

 ion has a yellow color and this reaction is rapid and stoichiometric, 

with the addition of one mole of thiol releasing one mole of TNB. The TNB
2−

 is quantified in a 

spectrophotometer by measuring the absorbance of visible light at 405 nm [69]. 
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Scheme 18. Reaction of AChE with substrate AChE to give thiol (R-SH) 
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Scheme 19. Reaction of DTNB with a thiol (R-SH) 

 

Table 5. Solution preparation for Acetylcholinesterase Activity Assay 

  

ASSAY BLANK 

HEPES 374µL HEPES 374 µL 

AChE 25 µL HEPES 25 µL 

MeOH (0-40)
a
 µL MeOH (0-40)

a
 µL 

INHIBITOR (10-50)
b
 µL INHIBITOR (10-50)

b
 µL 

15 min 

AChI 75 µL AChI 75 µL 

DTNB 476 µL DTNB 467 µL 

 

a
Amount of methanol varies according to the 

b
amount of inhibitor. 

 

6.2.4 Amyloid beta aggregation assay 

As we know through genetic and biochemical studies that the formation of β -amyloid (Aβ) 

plaques is a key neurodegenerative event in Alzheimer’s disease (AD) and so a logical approach to 

treat AD is the development of small molecule inhibitors that either blocks the proteases that generate 

Aβ from its precursor (β- and γ-secretases) or reverse Aβ aggregation. The ThT (Thioflavin T) β-

Amyloid aggregation assay provides a convenient and standard method [70] to measure Aβ42 

aggregation using Thioflavin T dye. Aβ42 peptide is pre-treated to ensure that it is in a monomeric 
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state. An optimized fibrillation buffer i.e. phosphate buffer is included and also a known inhibitors 

(tacrine) is assayed as control. The assay is based on the property of ThT dye in which fluorescence 

is increased when bound to aggregated Aβ peptides, but when a compound, which act as inhibitor of 

aggregated Aβ peptides, is added to it the fluorescence intensity decreases [71]. ThT fluorescence 

was measured using a Cary Eclipse of Varian fluorimeter (molecular Devices) at the following 

wavelengths: excitation (446 nm) and emission (486 nm). From this intensity difference, it is possible 

to calculate the percentage inhibition capacity of the compound by using equation shown in Annexure 

3. 

 

N
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N

 

Scheme 20. Structure of Thioflavin -T dye 

 

 

Table 6. Preparation of solutions for Amyloid beta aggregation inhibition assay. 

Control 

BLANK ASSAY 

PHOSPHATE BUFFER    60 µL 

pH=8 

PHOSPHATE BUFFER    30 µL 

a
 Aβ42 (40 μM)   30 µL 

After 24 h (immediately before reading in the fluorimeter) 180 μL 
b
ThT (5 μM) in glycine NaOH buffer. 

 

Ligand 

BLANK ASSAY 

PHOSPHATE BUFFER          50 µL 

Ligand (80 μM)                 10 µL 

PHOSPHATE BUFFER     20 µL 

Ligand (80 μM)                 10 µL 

a
 Aβ42 (40 μM)                 30 µL 

After 24 h (immediately before reading in the fluorimeter) 180 μL 
b
ThT (5 μm) in glycine NaOH buffer. 

 

a
Aβ1-42 peptide, 

b
Thioflavin T dye. 

 

6.2.5 Transmission Electron Microscopy (TEM) 

The samples for TEM assays were previously prepared according to the following procedure. 

Aβ stock solutions were prepared by dissolving the lyophilized peptide in a mixture of acetonitrile (48 
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L), 2% NH4OH (10 L) and NaCl 300 M (48 L). The peptide stock solution was diluted to a final 

concentration of 50 M in a buffered solution containing 4-(2-hydroxyethyl)-1-piperazine-

ethanesulfonic acid (HEPES, 50 mM, pH = 6.6). For the inhibition studies, compounds (50 M final 

concentration) were added to the sample of Aβ (25 M final concentration) in the absence or in the 

presence of copper chloride (25 M final concentration) followed by incubation for 24 h at 37 
0
C. 

Formvar/Carbon 200-mesh Cu grids (Ted Pella) were treated with amyloid-β peptide aggregated 

samples (10 μL) for 2 min at room temperature. Excess samples were removed using filter paper 

followed by washing twice with deionized water. Each grid incubated with uranyl acetate (1%, 10 μL, 1 

min) was stained and dried for 15 min at room temperature. Images from each sample were taken by 

a Hitachi H8100 TEM with a Lab 6 filament (200kV, 10000-20000 × magnification). 

 

6.2.6 Potentiometric and spectrophotometric studies 

pH-potentiometric and UV-Vis spectrophotometric titrations of compound TACHP-12 were 

done in a 20% w/w DMSO/H2O medium, at T = 25.0 ± 0.1 °C and ionic strength (I) 0.1 M KCl, by using 

0.1 M KOH as titrant.  

Both glass and Ag/AgCl reference electrodes were previously calibrated in different 

DMSO/H2O mixtures of increasing DMSO % composition i.e. first with aqueous solution, then 10% and 

20% DMSO/H2O respectively and the response of the glass electrode was evaluated by strong acid – 

strong base (HCl/KOH) calibrations with the determination of the Nernst parameters by Gran's method 

[72]. The measurements were performed in a final volume of 30.00 mL, the ligand concentrations (CL) 

were 6.7 × 10
-4

 M (potentiometry) and 2.0× 10
-4 

M (spectrophotometry), under different CM/CL ratios: 

0:1 (L), 1:1 (M/L, M = Fe, Cu, Zn), 1:2 (M/L, M = Cu, Zn) and 1:3 (M=Fe). The spectrophotometric 

measurements were carried out in a 300–700 nm wavelength range at pH approximately 2-9. 

 All titrations were performed in triplicate and under the stated experimental conditions the pKw 

value (13.7) was determined and subsequently used in the computations. The stepwise protonation 

constants of the ligand, K = [HL]/[L][H] and the overall metal–complex stability constants
lhm LHM = 

MmHhLl/M
m
H

h
L

l
, were calculated by fitting the pH-potentiometric and spectrophotometric data 

with, respectively, Hyperquad 2008 [60] and PSEQUAD [61] programs. The metal hydrolysis 

constants were taken from values in the literature [72] determined in aqueous media and were also 

included in the equilibrium models. The species distribution curves were obtained with the Hyss 

program [60]. 

 

6.2.7 Molecular modeling 

The modeling of ligand–protein docking was performed using program GOLD, v. 5.1 [53]. The 

X-ray crystallographic structure of acetylcholinesterase Torpedo californica AChE (TcAChE) in 

complexation with an inhibitor (original ligand) was taken from RCSB Protein Data Bank (PDB entry 

1ODC) [54] to be used as a receptor in the docking simulations. For simulations, original complex 
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structure was treated using a MAESTRO v. 9.3 [56] by removing the original ligand, solvent, and co-

crystallization molecules and also by adding hydrogen atoms. The 3D structures of the ligand 

(synthetic inhibitors) were built with Maestro, first of all geometry of synthetic ligand was optimized  by 

making a random conformational search (RCS) of 1000 cycles, after that optimization done  by 2500 

optimization steps with a program GHEMICAL v. 2.0 [73]. All ligands were docked into the AChE 

structure using GOLD v. 5.1 [53] with the default parameters of GOLD and the ASP scoring function. 

The zone of interest was defined as the residues within 10 Å from the original position of the ligand in 

the crystal structure. 

 

6.2.8 Pharmacokinetic study 

 Prediction of some pharmacokinetic proprieties were carried out using in silico tools, namely 

descriptors using QIKPROP v. 2.5 [55] provided by MAESTRO [56]. The following drug-like properties 

have been calculated: the lipo-hydrophilic character (clog P), blood–brain barrier partition coefficient 

(log BB), the ability to be absorbed through the intestinal tract (Caco-2 cell permeability), and CNS 

activity along with the verification of Lipinski’s rule of five. This study may give an idea of drug likeness 

of different synthesized hybrid compounds for being orally used as anti-AD agents. 
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Appendix 

Annexure 1. 

The free radical scavenging of the compounds in the solution was calculated as percentage 

(%) of DPPH decoloration using the equation   

I (%) = ( blank − sample/  blank) × 100 

Where  blank is the absorbance of the control reaction mixture excluding the test compounds, 

and  sample is the absorbance of the test compound. Then this percentage I (%) is plotted against the 

concentration of compound under investigation, from there radicals scavenging potential as EC50 was 

calculated, which represents the sample concentration at which 50% of the DPPH radicals were 

scavenged by the concentration of compound and expressed in µM.   

The inhibition curves were obtained by plotting the percentage of radical scavenging vs. 

inhibitor concentration and a calibration curve was drawn from which the linear regression parameters 

were obtained. The final values were obtained as the mean of two different experiments. 

 

       
    

 
 

 

 

Figure 9. Graph for the calculation of % absorbance of ligand (TACHP-9) as EC50. 

 

Annexure 2. 

The velocities of the reaction were calculated as well as the enzyme activity. A control reaction 

was carried out using the methanol solvent in the absence of the testing compound and it was 

considered as 100% activity. The percentage inhibition of the enzyme activity due to the presence of 

increasing compound concentration is calculated by the following equation  

 

y = 0.0389x + 13.668 
R² = 0.9848 
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                                                       %  = 100 − (   /  0∗ 100)  

 

in which VI is the initial reaction rate in the presence of inhibitor, and V0 is the initial rate of the control 

reaction. The inhibition curves were obtained by plotting the percentage of enzymatic inhibition vs. 

inhibitor concentration and a calibration curve was drawn from which the linear regression parameters 

were obtained. The final values were obtained as the mean of two different experiments.  

 

 

 

 

Figure 10. Graph for the calculation of AChE inhibition as IC50 by respective concentration of inhibitor (RSC-6). 
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Where 

 

m = 90.95 

b = 22.60 

IC50= 0.27 µM. 

 

 

 

 

y = 98.95x + 22.609 
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Annexure 3. 

The percent inhibition of the self-induced aggregation due to the presence of the test 

compound (RSC-1) was calculated on basis of equation  

 

%  = 100 − (   /  0∗ 100) 

 in which IFI and IF0 correspond to the fluorescence intensities, in the presence and absence of the 

test compound (RSC-1), respectively, minus the fluorescence intensities due to the respective blanks. 

The reported values were obtained as the mean of two different experiments.  

 

 


