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Abstract

In this work, we introduce a Monte-Carlo tree search (MCTS) approach for the game “Hearthstone:
Heroes of Warcraft”, the most popular online Collectible Card Game, with 50 million players as of April
2016.

In Hearthstone, players must deal with hidden information regarding the cards of the opponent,
chance, and a complex gameplay, which often requires sophisticated strategy.

We argue that, in light of the challenges posed by the game (such as uncertainty and hidden infor-
mation), Monte Carlo tree search offers an appealing alternative to existing Al players.

Additionally, by enriching Monte Carlo tree search with a properly constructed heuristic, it is possible
to introduce significant gains in performance.

We illustrate through extensive validation the superior performance of our approach against "vanilla”

Monte Carlo tree search and the current state-of-the art Al for Hearthstone.
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Artificial Intelligence, Monte Carlo Tree Search, Hearthstone, Game Tree Search, Search Algorithms,

Collectible Card Games






Resumo

Neste trabalho é proposta uma abordagem com base nos métodos Monte-Carlo, para o jogo Hearth-
stone: Herois de Warcraft, o jogo de cartas colecionaveis mais popular do momento e com mais de 50
milhdes de jogadores registados em Abril de 2016.

No Hearthstone, os jogadores sdo continuamente posto a prova devido ao conceito de informacao
escondida, onde a mao do oponente é desconhecida, devido ao conceito de aleatoriedade existente,
onde por exemplo as cartas sdo inicialmente baralhadas e devido a uma complexa jogabilidade, que
muitas vezes requer uma estratégia bastante robusta e refinada.

Com o trabalho desenvolvido, argumentamos que, a luz dos desafios colocados pelo jogo (conceito
de informagao escondida e incerteza), a abordagem desenvolvida para o efeito oferece uma alternativa
valida, face ao atual estado da arte neste dominio.

Adicionalmente, através do enriquecimento do algoritmo, mais especificamente através da introdugao
de informacao especifica do jogo, é possivel alcancar ganhos significativos de desempenho, relativa-

mente a sua versao mais tradicional.

Palavras Chave

Inteligéncia Atrtificial, Monte Carlo Tree Search, Hearthstone, Arvore de Jogos, Algoritmos de Procura,

Jogos de Cartas Colecionaveis






Contents

1

Introduction
1.1 MotivationandGoals . . . . ... . ... ..
1.2 Contributions . . . . ... ..........
1.3 ThesisOutline . ...............
1.4 Terminology . . . . . ... ... ... ....
Background
21 GameTypes . ... ... .. ........
22 GameTreeSearch . ... ..........
2.3 Monte Carlo Tree Search . . . . ... ...
2.3.1 Upper Confidence Bound . . . . ..
2.3.2 Progressive Strategies for MCTS . .
233 EAINMCTS .............
2.3.4 MCTS Characteristics . . . ... ..
2.4 Hearthstone: Heroes of WarCraft . . . . ..
2.41 HearthstoneCards . . . . ... ...
2.4.2 Hearthstone Card Abilities . . . . . .
2.4.3 Hearthstone Strategies . ... ...
2.4.4 Hearthstone Battlefield . ... ...
2.4.5 Hearthstone Mulligan and Fatigue .
2.4.6 Hearthstone Game Specification . .
2.4.7 Hearthstone Simulators: Metastone
Related Work

3.1 Predicting the Opponent’s Deck . . . . . ..

3.2 Evaluating Cards in Hearthstone . . . . ..

3.3 Automated Play for Card Games . . . . ..

3.3.1
3.3.2

Supervised Learning Approaches .
MCTS for Card Games . . ... ..

Vii



3.3.2.A Poker . . . .. e e e e

3.32.B Magic . . . . . . e

3.3.2.C Hearthstone . . . . .. . . . .. ...

3.4 ConcClusions . . . . . . L L e e e e

4 Approach

4.1 Node Structure . . . . . . L e e
41.1 ActionsinNodes . . . . . . . . e

4.2 Tree Policy . . . . o o e e e
421 Selection . . . . .. e e e
422 EXpansion. . . . . ... e e e e e

4.3 Default Policy . . . . . . e
4.3.1 UsingaDatabaseofDecks . .. ... .. ... . . . . .. .. .. ..
4.3.2 Adding Expert Knowledge . . . . . . . . .. e

4.4 Back-Propagation . . . . . .. ...
4.5 Heuristics . . . . . . . e e e e
451 Heuristic1 . . . . . . e
451.A Minionadvantage- MA . . . . . . . . e

4.5.1.B Tough Minion advantage - TMA . . . . . . . . . ...

451.C Handadvantage- HA . . . . . . . o o i i i i i i e et e e e

451.D Tradeadvantage - TrA . . . . . . i i i i i i i e e e

451.E Boardmanaadvantage- BM . . . ... ... ... ...

452 Heuristic2 . . . . . . . . e

4.6 Computational Budget . . . . . . . . . e e
4.7 SearchTree Reuse . . . . . . . . . o i e e
4.8 Final Action Return . . . . . . . . o e e

5 Parameter Selection Methodology
5.1 Number of lterations . . . . . . . . . . e
5.2 Numberof Roll-outs . . . . . . . .. . . . e
53 TheParameter K . . . . . . . . . e e
5.4 Final Action Return . . . . . . . . . e
5.5 SearchTree Reuse . . . . . . . . . e e
5.6 ConcClusions . . . . . . . . e e e

5.6.1 Finalparameters . . . . . . . . . . e

6 Results

viii

49
52
53
53
55
56
56
57

59



7 Conclusions and Future Work

7.1 ConcluSiONS . . . . . o e e e e e e e e e
7.2 Future Work . . . . . . o e e e e e e

A Parameters used in experimenters

A1 Numberof lterations . . . . . . . . . e e
A2 Numberof Roll-outs . . . . .. .. .. . . e
A3 Action Selection . . . . . . L e
A4 SearchTree Reuse . . . . . . . . o i i i e e e e
A5 Parameter k. . . . . . e e

A.6 Final Parameters . . . . . . . . . . e e e e e e e

B Genetic algorithm parameters

67
69
70

77
77
78
78
79
79
80

81






List of Figures

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2

4.1
4.2

4.3
4.4
45

5.1

5.2

Example ofagametreeinTicTacToe . . . . . . . . . . . o i
Diagram representing the 4 steps of MCTS. In the first two steps, the tree is traversed us-
ing the Tree Policy, until a leaf node is reached and marked for expansion. The expanded
node is selected again using the tree policy. The algorithm then simulates trajectories of
the system, using some default policy, until a terminal state is reached. The value of that
state is then back-propagated to its parents. Diagram adapted from [1]. . . .. ... ...
Example of 5iterations in MCTS . . . . . . . . o .
Screenshot of a Hearthstone game in process. ©Copyright Blizzard Entertainment.

Minion card example. ©Copyright Blizzard Entertainment. . . . . .. .. ... ... ....
Hearthstone battlefield. ©Copyright Blizzard Entertainment. . . . . ... ... ... ...
Mulligan stage of the second player. ©Copyright Blizzard Entertainment. . . . . ... ..
Metastone. ©Copyright Metastone. . . . . . . . . . .. . ... . . . e

Prediction opponent cards example. Image adapted from[2]. . . ... ... ... ... ..

Example of one equation. Image adapted from [3]. . . . .. ... ... ... ... ... ..

"vanilla” MCTS version vs Metastone’s Al[4] . . .. ... .. ... . ... .. .. .....
High-level overview of the interaction between our MCTS agent and the Metastone game
ENOINE. . . o e e e e e e e e e
Detail of the MCTS block from Fig. 4.2.. . . . . . . . . . . . e i
Different MCTS instances during the max time’sturn . . . . . . ... .. ... ... ....

Searchtreereuse example. . . . . . . . e

Game and computational performance of our proposed approach as a function of the
number of MCTS iterations. Results correspond to averages of 250 independent runs. . .
Game and computational performance of our proposed approach as a function of the
number of roll-outs performed during the simulation stage. The results correspond to

averages of 250 independentruns. . . . . . . . . ...

Xi

26

36

52



5.3

5.4

5.5

5.6

6.1
6.2

6.3
6.4

Game and computational performance of our approach as k varies between 0% and 100%
of the admissible actions. The results correspond to averages of 250 independent runs. .
Game and computational performance of our approach as k varies between 0% and 100%
of the admissible actions. The results correspond to averages of 250 independent runs. .
Performance of our proposed approach with the different action selection criteria. The
results correspond to averages of 50 independentruns. . .. ... ... ... .......
Impact in performance of tree reuse. Policy 1 corresponds to the policy obtained when
the search tree is maintained between execution steps. Conversely, Policy 2 is obtained

by rebuilding the tree at each executionstep. . . . . . . . ... ... oL,

Performance of MCTS players against Metastone’s Random player with different decks. .
Performance of MCTS players against Metastone’s No Aggression player with different
dECKS. . . o e e e e e
Performance of MCTS players against Metastone’s Greedy player with different decks. . .
Performance of MCTS players against Metastone’s Game State Value player with different

AdeCKS. . . . e e e e e e e e

Xii

54

64
65

66



List of Tables

2.1 Gametypestable example . .........

3.1 12 different Alsdeveloped . . . . .. ... ..

3.2 Overview of the MCTS works for card games

xiii



Xiv



List of Algorithms

2.1 General MCTS approach . . . . . . . . e

XV



XVi



Acronyms

IST

Al

MCTS

ucs

CCG

M:TG

GSV

EA

Instituto Superior Técnico
Artificial Intelligence
Monte Carlo Tree Search
Upper Confidence Bound
Collectible card games
Magic:The Gathering
Game State Value

Evolutionary Algorithms

XVii



Xviii



Introduction

Contents
1.1 Motivationand Goals . . . . . . . . . . it ittt e e e 3
1.2 Contributions . . . .. .. .. i e e e e e e 4
1.3 ThesisOutline . . . ... . .. ittt e e e e i e s e e e e e a e ns 5
1.4 Terminology . . . . o o i i i e e e e e e e e e e e e e e 5







The video game industry is increasingly growing. According to a new estimate from the Open Gam-
ing Alliance, the global game software market is expected to pass 100 billion in 2019 [5]. Indeed, such
success can be easily explained by today’s games characteristics. They are extremely engaging, provid-
ing enjoyable and rewarding gaming experiences. In addition, games are a cultural phenomenon, being
used for several purposes and even considered an interesting testbed for research and new ideas.

Due the nowadays requirements for the development of increasingly realistic games, several game
companies encourage the development of games with fast and intelligent systems, using all kinds of
Artificial Intelligence (Al) algorithms. Currently, Al can offer huge benefits, providing systems with intelli-
gent behaviors, improving the challenge and experience that any game can supply.

Besides that, and especially in off-line games, the use of Al has become a necessity, covering “the
behavior and decision-making process of the game-playing elements” [6]. Among the Al methods nor-
mally used, in the last years, several Monte Carlo Tree Search (MCTS) based methods emerged in the
field of computer games, allowing the development of games “not be hard coded, but learned to play as

a normal human” [7].

Collectible Card Games

Collectible card games (CCG) are one of the most popular forms of contemporary game play. Since
the inception of Magic:The Gathering (M:TG) in the 90s—several such games emerged as popular forms
of entertainment (both physical and electronic) and even training and education [8, 9].

They often-intricate gameplay allied with aspects of hidden information and chance, what also makes
CCG appealing testbeds for Al research. For example, several works have explored both machine
learning [10, 11] and planning approaches in CCG such as M:TG and Hearthstone [12,13].

The former game, in particular, is the most popular online CCG, with over 50 million players as
of April 2016 [14]. The game mechanics is a turn-based duel between two opponents, and can be
played both in multiplayer and single player modes. In Hearthstone, players must deal with hidden
information regarding the cards of the opponent, chance, a complex gameplay, which often requires
sophisticated strategy, and a “wide combination of states, rules, cards that imply complex reactions” [15].
Several works in the literature have tackled different aspects of the game, such as deck building [15],
card generation [10] and general game-play [16], where in the last one, the use of MCTS was clearly

recommended.

1.1 Motivation and Goals

The development of Hearthstone suffered limitations in time and money. For example, the small team

of 5 game developers had only 18 mounts to develop the game [17]. Such limitations, directly influenced



the overall gaming experience of Hearthstone, and primarily, the development of Solo Adventures, a

game mode ruled by Al and mainly developed for teaching purposes. Solo Adventures aims primarily

for introducing new players to Hearthstone, and its characterized with the following features:

e The Al was designed to mimic an intermediate player. The developer’s team interviewed several
Blizzard employees, with different playing levels, for identifying the playing style of an intermediate

player;
e The Al system rarely keeps cards in hand and prioritizes playing cards whenever is possible;
o Two difficult modes, beginner and expert;
e The difficulty levels are mainly adjusted with changes decks;

e The Al does not cheat or know the opponent’s cards.

Solo Adventures, due its simplification, is challenging enough from a beginner point of view. However,

the gamming community widely claims the expert Al can be beaten with the basics decks by a skilled
player. Another common problem, often supported, is the rarity that the Al plays combos or keeps cards
in hand intentionally. Also, some expert players mentioned that the Al developed, is not able play in
medium and long term, leading to its own defeat.

So, in attempt to improve the gaming experience in Hearthstone, in this work, we develop an Al sys-
tem, using MCTS methods for the card game of Hearthstone. This work, aims to improve the competitive

level of the algorithm, by tacking in particular, the following problem:

Will the integration of expert knowledge in MCTS, improve the performance, regarding its *vanilla” ver-

sion?

To answer such question, the approach uses a modified version of MCTS, which integrates expert
knowledge in the algorithm and solves the hidden information problem presented in the game. MCTS
“vanilla” version was adapted previously for Hearthstone, an adaptation that neither solved the hidden
information problem or integrated expert knowledge of Hearthstone [4, 18]. Our results shown that our
system is superior to “vanilla” MCTS and able to attain competitive results with state of the art Al for

Hearthstone.

1.2 Contributions

The main contribution of this work consists on adapting the MCTS algorithm for Hearthstone. In the

recent years, MCTS as becoming a de facto standard in game Al, being particularly suited to address



the chance elements in Hearthstone [1,12,13,19]. In particular, we perform a modified version of MCTS,
which integrates expert knowledge in the algorithm’s search process. Such integration is done, on one
hand, through a database of decks that the algorithm uses to cope with the imperfect information; and,
on the other hand, through the inclusion of a heuristic that guides the MCTS roll out phase and which
effectively circumvents the large search space of the game.

The heuristic represents a particular game strategy, and aims at supporting the selection and simu-
lation process. We compare the performance of our proposed approach to that of the state-of-the-art Al
for the game; by using an adequate heuristic, we are able to attain a competitive performance.

Summarizing, the contributions of this document are as follows:

e The first contribution consists in using a deck database to address the problem of hidden informa-

tion in the game;

e The second and main contribution is the integration of a heuristic to handle the large search space

of the game.

1.3 Thesis Outline

The rest of the document is organized as follows. Chapter 2 provides a general overview of some
theoretical concepts, the game and the simulator used. Chapter 3 discusses the state-of-the art relevant
for the research presented. Chapter 4 describes the details of the proposed approach. Chapter 5 de-
scribes the methodology used to fine-tune our approach, while Chapter 6 discusses the results achieved
with our approach. Chapter 7 concludes the document, presenting the possible future work. Appendix
A and B provides information regarding the parameters used the experiments and the Evolutionary Al-

gorithms (EA) used to train the heuristic.

1.4 Terminology

There are terms in the literature, widely used in a variety of ways and sometimes inconsistently,
leading to confusions, regarding the characteristics of MCTS. So, for the remainder of this thesis, we

consider:

¢ "vanilla” MCTS: the standard MCTS version, that neither integrates expert knowledge or solves

the hidden information problem present in Hearthstone;
e UCB: commonly used Tree Policy;

e UCT: MCTS with Upper Confidence Bound (UCB) in the Tree Policy;



¢ Tree Policy: Another terminology for selection and expansion steps of MCTS;
e Default Policy: Another terminology for the simulation step of MCTS;

¢ Roll-out: The independent simulations performed. During the simulation stage, one or more

roll-outs can be run, to estimate the current expanded node’s value.
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In this chapter, its provided an examination of important theories and preliminary concepts that are

imperative to understand the work performed.

2.1 Game Types

With the enormous variety of games, there is the necessity for Al development purposes, to classify
them according some features. Essentially, games can be categorized in a distinction between deter-
ministic versus stochastic and perfect information versus imperfect information (see table 2.1) [20]. Such

features are explained as follows:

¢ Perfect information vs imperfect information: in games of perfect information, players can ob-
serve all the elements and features present. In board games like chess, the board and pieces are
visible for both players. On the contrary, in imperfect information games, some core elements are
invisible, what introduces uncertainty. Most card games are classified of imperfect information, as

player’s deal constantly with hidden information.

e Deterministic vs stochastic: in a deterministic game, the next state is solely determined by the
actual state and actions taken. An example, is the game of Go, where the next position is only
influenced by the player’s action. On the other hand, in stochastic games random features affect
the actual state. For example, in Hearthstone, the deck is initially shuffled, and some cards have

random abilities, aiming primarily to affect the current outcome.

According the above features, we can mention that Hearthstone is a stochastic game of imperfect
information. In Hearthstone, the player’s hand is invisible, from one or another, and the game state is

not solely determined by a sequence of moves of both players.

2.2 Game Tree Search

Game tree search is a technique commonly used in computer game playing [20]. Generally, a game
tree is gradually created, with nodes that represents game positions and edges game movements. At

the root node, the initial game state is usually represented.

Perfect Information Imperfect information

Deterministic Chess, Checkers Battleship, Mastermind

Stochastic Blackjack, Monopoly Poker, Hearthstone

Table 2.1: Game types table example



Current State

Player O moves

Next State

Player X moves

i
/\

O x

] < O O

Next State

O x

Player O moves

Leaf Nodes

X O Xx
x 00
O x

draw win draw draw draw

win

Figure 2.1: Example of a game tree in Tic Tac Toe

With game trees, not only it's possible the analysis of movements and their consequences, but also
the appreciation of the new game states created from that. Actually, there are several algorithms that
uses game trees in the decision-making process, in which Minimax' and MCTS are one of the popular
ones.

Figure 2.1 illustrates an example for the game of Tic Tac Toe?. In the game tree, the edges repre-
sents possible moves and the boards new game states. From the current state, the 0 player can make
3 possible moves, leading to new game states. In response to that movements, the X player have 2

possible moves. The game alternates between the X and O players, until a leaf node is reached.

2.3 Monte Carlo Tree Search

MCTS is a family of search methods designed to address sequential decision problems . MCTS

methods rely on sampling to handle both large branching factors (as observed in games such as Go

Thttps://en.wikipedia.org/wiki/Minimax
2https://en.wikipedia.org/wiki/Tic-tac-toe
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Y
=]

Selection Expansion Simulation Back-propagation
Tree traversed using New node added to the Rollouts are played Final state value is
tree policy tree (selected using the from new node using backpropagated to

tree policy) default policy parent nodes

Figure 2.2: Diagram representing the 4 steps of MCTS. In the first two steps, the tree is traversed using the Tree

Policy, until a leaf node is reached and marked for expansion. The expanded node is selected again
using the tree policy. The algorithm then simulates trajectories of the system, using some default policy,
until a terminal state is reached. The value of that state is then back-propagated to its parents. Diagram
adapted from [1].

[21—23]) and the randomness (as observed in games such as Hearthstone).

MCTS iteratively builds a game tree in memory, from the current state of the game, until some

computational budget has been reached, usually, time constrain or number of iterations. The 4 main

steps, applied per search iteration in MCTS, are (see Fig. 2.2):

1.

Selection: Starting at the root node, a selection function is recursively applied to determine the next
node to expand. Selection is mostly based in the information stored in each node, and continues

until a leaf node is reached.

2. Expansion: As soon as the algorithm reaches a leaf node, one or more child nodes are added to

the game tree, according the available actions.

Simulation: From each of the nodes expanded in the previous stage, one or more simulations (roll-
outs) are run until a terminal state is reached. The simulations are obtained using a predefined
policy, which can be as simple as random selection. The value of the terminal state provides a

(noisy) estimate of the value of the previous states.

. Back-propagation. Once the simulation ends, the result is back-propagated up to the root node,

allowing all the node values being constantly updated. Back-propagation is the final step of an
MCTS iteration.

These 4 main steps, are commonly grouped in the literature into 2 distinct policies:

1.

Tree Policy: Selection and creation of leaf nodes, from the ones already present in the tree (selec-

tion and expansion);

2. Default Policy: Produce a value estimation of the actual expanded node (simulation).

11



The back-propagation step doesn’t need to use a policy itself, as only updates the nodes statistics

that are used to inform future tree and default policies.

Algorithm 2.1: General MCTS approach

function MCTS(state s0)

while within computational budget do
state s1 < TreePolicy(s0)
reward r < DefaultPolicy(s1)
BACKUP(s1, )

end

return BestChild(s0)

The 4 main steps of MCTS are summarized in the pseudo Algorithm 1. After the initialization, is
created the initial state s0. Then, both policies are continuous applied to guide the algorithm: T'ree Policy
is a function applied in both selection and expansion steps, responsible for returning the new expanded
state s1; Default Policy is a function applied in the simulation that returns the reward associated r. The
BACKU P function represents the final step of MCTS, where the reward value r is back propagated
to the earlier expanded node s1. Finally, and after the computational budget is reached, the BestChild
function returns the action associated to the best child node of the initial state s0.

Figure 2.3 illustrates five iterations of MCTS. The algorithm starts with the initialization process,
where is added the root node to the tree. Each node is represented by the number of victories/visits,
respectively. After the initialization, each of the four steps takes place, being represented by the policies
previously mentioned. In the end of each iteration, the simulation result is back propagated, allowing all

the node values being constantly updated.

2.3.1 Upper Confidence Bound

Let us consider the 4 mains steps of MCTS in more detail. The goal of MCTS is to quickly estimate
the value of the current state (root node) and potential subsequent states, so that the game tree can
be used to guide the action selection of the agent. For this reason, each node contains information

regarding:

e The number of times that the node was visited in all simulations;

e The number of simulations from that node that resulted in victories.

MCTS uses this information to guide the selection of the next node to visit/expand. It does so by means
of the tree policy that balances exploration—i.e., experimenting actions and situations seldom experi-
enced before—and exploitation—i.e., taking advantage of the knowledge built so far (also known as the

exploration/exploitation dilemma).

12



Iteration 1 Iteration 2

@ i Tree Policy @ !

b

Tree Policy

Default Policy

Default Policy

- =<

Iteration 3 Iteration 4

\/Zfli

Tree Policy

%

Tree Policy

Default Policy
Default Policy

Iteration 5

New node in the Tree

Tree Policy
State visited in simulation

Reward

[] <& O

Default Policy

Figure 2.3: Example of 5 iterations in MCTS

A commonly used tree policy relies on the so-called UCB [1,24,25], and selects each child node v’
of v, according the following formula:

13



Q') 2In N (v)
v = arg max +ec ,
v’ € children ofV N(U/) N(U/)

(2.1)

where c is a constant, N(v) is the number of visits to node v and Q(v) is the number of victories. These
values are updated during the back-propagation stage by increasing both NV and @ as necessary.

Analyzing the formula, its noticeable the balance between exploration and exploitation: while the

21In N (v)
N(v")

reward term ]?,((Z)) encourages the exploitation of higher reward-nodes, the second term ¢
encourages the exploration of less visited ones.
Using UCB, MCTS is guaranteed to converge to the minimax tree as the number of simulations from

each node grows to infinity [24]. However, MCTS is an anytime algorithm: it continues to run until a

computational budget is reached, at which time it provides the best answer so far (see Chapter 2.3.4 for
the MCTS’ characteristics).

2.3.2 Progressive Strategies for MCTS

MCTS is a search algorithm that doesn’t need any specific domain knowledge. The algorithm selects
the best move by exploring the search space at pseudo-randomly. While the simplest instances of
MCTS can run without any specific domain knowledge, it has been shown in practice that the algorithm’s
performance can be improved significantly with additional knowledge [1,26,27].

Progressive bias is a method for integrating domain heuristic knowledge into MCTS: "when a node

has been visited only a few times and its statistics are not reliable, then more accurate information can

come from the heuristic value H (v)” [1]. So, Progressive bias modifies the tree policy, by taking the form

of an additional term included in (2.1):
,__H(v)

v = TN(U), (2.2)

Analyzing the formula, its noticeable the balance between exploration and exploitation: the influence of

such modification is very important within flew iterations, but rapidly decreases, ensuring that Progres-

sive Bias converges to a selection strategy [1].

2.3.3 EAin MCTS

One of the most significant benefits and appealing features of MCTS, is the fact that the algorithm
can be used without any domain specific knowledge: “it works reasonably well in its vanilla form on a
variety of problems” [28]. However, “it is also well known and not surprisingly, that the appropriate use
of a heuristic function can significantly boost the performance” [29].

So, a new adaptive MCTS algorithm was introduced, that uses EA to rapidly optimize the algorithm’s

performance. The main idea behind the Fast-Evolutionary MCTS approach, is to embed the EA fit-

14



ness function with the MCTS’ algorithm, where each MCTS’ iteration directly contributes for the fitness
evaluation.

In other words, in each MCTS’ iteration, an individual parameter vector is drawn from the population,
where each individual is characterized by a set of heuristic weights. The parameter vector is then used
to be integrated and influenced both the Tree and Default Policies, as seen for example in 2.3.2. Apart
such influence, the MCTS algorithm functions as normal, being the result of each iteration used as the
fitness function for the EA.

After running the MCTS within the computational budget, the algorithm returns the estimate of the

best parameter vector computed so far.

2.3.4 MCTS Characteristics

MCTS has characteristics, that make this algorithm to be considered a new framework for Al and a

popular choice for a variety of domains [1,23,30]:

e Aheuristic: One of the most significant benefits of MCTS, is the lack of need for expert knowledge.

As such, the algorithm is ready applicable for any domain, that can be modeled as a tree.

e Anytime: As MCTS back-propagates the result of each simulation, in every iteration of the al-
gorithm, all the node’s values are constantly updated. Such benefit ensures that MCTS can be

stooped anytime.

e Asymmetric: The tree policy in MCTS, and in particular UCB, allows the algorithm to favour the

more promising regions, where nodes with higher reward, are selected often, over those that seem
worse (despite the exploration/exploitation dilemma). This characteristic, leads to a asymmetric
tree construction over time, offering MCTS the ability of taking advantage of high quality plays,

without exploring all possibilities in the tree.

2.4 Hearthstone: Heroes of WarCraft

“Hearthstone” is a turn-by-turn online CCG with matches played between two opponents [2, 15, 31]
(see Fig. 2.4). There are several game modes available, being essentially divided in multiplayer and
single player modes.

Each player can be represented by one of the 9 heroes available. A hero has a special power, base
cards and begins with 30 life points. The goal, is to reduce the opponent hero’s life points to 0. To do so,
players can summon minions, use spell cards or applying damage to the opponent ones already present

on the board.
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Figure 2.4: Screenshot of a Hearthstone game in process. ©Copyright Blizzard Entertainment.

In Hearthstone, the player’s hand is invisible to the opponent. At the beginning, each player receives
her own deck, composed with 30 cards. In addition, the decks are initially shuffled, meaning that even
expert players doesn’t know the cards that are going to draw initially.

In each turn, each player receives a random card and one mana crystal. Mana crystals are the
resource used to play cards and use hero powers, and increases by 1 until each turn until 10’s, where
players control a maximum of 10. The game evolves as each player receives and uses mana crystals to

play new cards.

2.4.1 Hearthstone Cards

The collectible Hearthstone cards, are at the core of its gameplay and are one of its most appealing
features, as powerful cards may provide the player with a significant advantage. Cards can be grouped
into three main types: Spells®, Minions* and Weapons®. Spells activate a one-time ability or effect.
Minions are persistent creatures that remain in the battlefield (until they are destroyed). Weapons are
special cards used by the hero to attack.

Each card is associated to a mana cost, a description and effects or abilities (see Fig. 2.5). Card
effects range from situational and local (e.g. a target minion gains life points) to changing the rules of

the game (e.g. players draw more cards). The changing rules creates an additional challenge to artificial

Shttp://hearthstone.gamepedia.com/Spell
“http://hearthstone.gamepedia.com/Minion
Shttp://hearthstone.gamepedia.com/Weapon
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players.

Figure 2.5: Minion card example. ©Copyright Blizzard Entertainment.

2.4.2 Hearthstone Card Abilities

As previously described, minions are persistent creatures with some abilities®. There are in total 14

different types, what supplies distinct special powers and effects. Here its summarized some abilities:

e Charge ability: minions with this ability, are able to attack the opponent in the same turn that they

were placed in the battlefield.
e Freeze ability: minions with this ability, can freeze the opponent, removing its next possible attack.

e Taunt ability: the enemy hero and his minions, are forced to target this minion, before attacking

others.

¢ Divine shield ability: special ability, that allow minions to ignore the first attack received.

o Windfury ability: minions with this ability, are able to attack twice per turn, instead of only once.

e Enrage ability: when the minion with this ability is damaged, the stated effect in the card description
becomes active. Usually, its increased the minion’s attack by k points.

2.4.3 Hearthstone Strategies

In Hearthstone, building the best deck possible is an essential skill. Because players can select
the decks to play, the deck used governs the player’s strategy. Normally, it's not unusual to associate
“standard decks” with common strategies in the game [2, 15], and the decks are characterized "by the
distribution of the mana cost, of the cards they contain, which is referred as mana curve” [2].

Common decks/strategies include:

6http://hearthstone.gamepedia.com/Ability
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e Aggro (meaning “aggression”): Low mana curve deck, that is built with cheap cards with the main
purpose of finishing the game as quickly as possible. These decks consume a significant amount
of cards, as they seek to inflict the maximum damage, and exhaust themselves if are not able to
quickly kill the opponent.

e Mid-range: Balanced curve deck, very flexible and primarily designed for responding to the oppo-
nent’s moves. Its objective is to gain power in the mid-game turns, where the player can access

powerful finishers (something that, for example, aggro players cannot afford).

e Control: Higher mana curve deck, that prioritizes the survival in the first turns. Control decks
usually pose huge threats with just few minions, but without a careful early game, any aggro or
mid-range strategy can defeat it. Control decks are designed to gain control in the last stages of

the game.

2.4.4 Hearthstone Battlefield

In Hearthstone, the battlefield” represents the board where the actions takes place (see Fig. 2.6).
The battlefield incorporates the different Ul elements available in Hearthstone (e.g. the player's hands
and minions), and exists different types of them, with specific design that incorporates distinct interactive
elements. The interactive elements available, don’t affect the game in anyway, and initially the battlefield
used, is chosen at random from the available ones.

The hero selected is shown near to the bottom, being the opponent one displayed in the opposite
side, close to the top. To the right of the selected hero is the hero power, and bellow the player’s hand
and mana crystals, the resource used to place new cards into the battlefield.

A history of plays is preserved and shown in the history panel, while the number of cards presented
in both decks can be found all the way to the right. Both player’s minions are found in the center of the
battlefield, being its placement preserved between screens. All of items mentioned are mirrored in the

opponent’s side.

2.4.5 Hearthstone Mulligan and Fatigue

In Hearthstone, the player who goes first, is decided by tossing a coin in the beginning of the game
(commonly named as mulligan in the community). Then, random cards are drawn from the player’s
decks (3 for the player who goes first and 4 for the player who goes second), where they can choose the
ones to keep in hand or to replaced individually (see Fig 2.7). The discarded cards are shuffled back,

and new ones are randomly drawn as replacements for the player’s hand.

"http://hearthstone.gamepedia.com/Battlefield
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Enemy Minions

——

Your Deck

Figure 2.6: Hearthstone battlefield. ©Copyright Blizzard Entertainment.

For balancing the game, and in addition for receiving 1 more card, the second player also receives
an additional special card, named coin, that can be used to grant an extra mana crystal.

The game evolves, as both players use the mana crystals, to place new threads into the battlefield.
The player’s turn ends, when they run out of time, or in the moment they select the End Turn button.
Usually, a turn lasts a maximum of 75 seconds, with some additional time for animations. If players
drawn all the cards in the deck, they go into the fatigue stage. Fatigue initially deals 1 damage, in the

beginning of the player’s turn, and increases by 1 each time is triggered.

2.4.6 Hearthstone Game Specification

In Hearthstone, players must deal with hidden information regarding the cards of the opponent,
chance, randomness, and a complex gameplay, which often requires sophisticated strategy. In addition

to the properties mentioned in 2.1, the work in [30] also defines Hearthstone as:

e Scaling complexity game: Hearthstone features more than 1000 playable cards, with different prop-

erties that can be grouped to define a complex strategy. In addition, new expansions are continu-

ously being released, increasing the game’s complexity at many levels.

e Zero-sum game: Hearthstone is an adversarial game of 2 players, meaning that the gains of one

are strictly balanced by the losses of the other.

e Non-reactive game: The player who is waiting, can’t interfere the opponent’s turn.
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Figure 2.7: Mulligan stage of the second player. ©Copyright Blizzard Entertainment.

e Timed game: A turn in Hearthstone lasts at least 75 seconds, with some additional time for ani-
mations. If such time is reached, the actual turn is forcefully ended and then passed to the other

player.

e Turn-based game: The game flow of Hearthstone is partitioned with sequential turns, what means

that the player’s turn alternate, until the game results in a victory.

¢ Finite game: Hearthstone has a limited number of 90 turns, coming to a draw after such condition.

2.4.7 Hearthstone Simulators: Metastone

The Hearthstone community is massive and essentially characterized with devoted players. From
forums, where gamers exchange new strategies, to the existence of simulators that emulates the main
mechanics in Hearthstone, there are many tools available for experienced players.

Since the collectible cards are the Hearthstone basis, there is the necessity for other tools, not
present in the real game, to quickly allow the testing of new decks. Simulators thus represent an impor-
tant role, and besides the emulation of the main gameplay mechanics, they provide additional means
for the creation and evaluation of decks recently built. For instance, Fireplace, Metastone and Hearth-
breaker are examples of simulators available to the community. In particular, Metastone [32] includes
functionalities for allowing the simulation of a large number games between different heroes, decks and
Al systems, providing summarized statistics after the matches. The simulator already includes some Al

systems that can be tested, including:

e Random: Agent that selects actions at random and provides a naive baseline for comparison.
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Figure 2.8: Metastone. ©Copyright Metastone.
o No Aggression: Agent that does not attack the opponent. The Al randomizes between playing
cards or simply performing the “end-turn” action.

e Greedy: Myopic player whose actions are driven by a heuristic, built on several game metrics, and

whose weights were tuned using an evolutionary approach (see Chapter 4).

e Game State Value (GSV): Player that uses a recursive alpha-beta algorithm driven by the afore-

mentioned heuristic. To the extent of our knowledge, this is the best Al system available, and

several existing players report disappointing performances against it [4].

Given the functionalities it provides, we adopt Metastone as the testbed in which we evaluate our Al

system.
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This chapter presents a description of several works performed, that were relevant to our research.
Despite Hearthstone being a recent game, there are already a considerable number of existing method-
ologies, that considered different aspect of the game. We start by presenting some works performed
in Hearthstone and similar games, proceeding with others that directly played a significant role in our

methodology.

3.1 Predicting the Opponent’s Deck

“Hearthstone” features more then 1,000 playable cards that can be collected. Despite the result-
ing number of possible decks being extremely large, the decks normally used features a predictable

structure:

e Some cards are specially designed to work with others;
e Hearthstone have cards that are restricted to a specific class or hero;

¢ A significant number of cards are under-powered, representing bad choices for any deck.

Besides that, another interesting factor that corroborate this predictable structure is the net-decking
phenomenon, representing the the act of using a deck made by another player. So, to study this pre-
dictable structure, a statistical learning algorithm was used in [2], aiming to predict the most probable and
playable future cards. The algorithm, by modeling the relationship between cards and using a database

of game’s replays, returns a list of possible future cards with the corresponding probability.

In particular, the algorithm uses a modified version of Markov chains, that modulates the card rela-
tions as a set of n-grams. The idea, is through the opponent’s cards, already played, extract bi-grams
(sequence of 2 cards) from the games database and then counting their frequency. Figure 3.1 illustrates

the point. Lets suppose the opponent already played 2 cards, being Deadly Poison and Shiv. From

those cards, the algorithm extracts all the bi-grams present in the games database, being then counted
and sorted by frequency. The bi-grams with higher frequency are returned, representing the cards more
often associated with the ones previously played.

This study, is an attempt to address the issue of predicting the opponent’s next action using Markov
chains. The approach was able to achieve an accuracy above 95% after analyzing 50,000 game re-
plays, indicating that, in fact, the number of effective decks that the players choose can be significantly

narrowed down.
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Played Bi-grams Predictions

Figure 3.1: Prediction opponent cards example. Image adapted from [2].

3.2 Evaluating Cards in Hearthstone

The collectible Hearthstone cards are the core of its gameplay, and one of its mots appealing fea-
tures. As powerful cards may provide the player with a significance advantage, the work in [3], revealed
an algorithm to find these cards. As explained in Chapter (2), to each card is associated a set of prop-
erties. So, the algorithm creates an equation system, where the manna cost of each card is treated as
the sum of it’s properties. After gathering cards with similar properties and solving the equation system

with the least squares method, the real value of each card is calculated.

Figure 3.2 illustrates the point, where the card argent commander is modulated. For instance, if after

solving the equation system, the card’s properties were equal to 1, according the example in the Figure

3.2, we will obtain the following equation:

da+2h+c+d+i&
3.1
4 +20)0+M)+ 1)+ (1) =9 e

According equation 4.3, since the real value of Argent Commander would be 9, a value higher than

is 6 of mana, this card would represent a overpowered one. Applying this approach to 134 cards, the
author concluded that the real value of most cards were very close to the mana cost. At the time, he was
able compile a list, representing the most overpowered cards, where Light’s justice and Soulfire were
the top 2.
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mana= + health + charge + divine shield + intrinsic value
6=da+2h+c+d+i

Figure 3.2: Example of one equation. Image adapted from [3].
3.3 Automated Play for Card Games

3.3.1 Supervised Learning Approaches

In this work, David Taralla developed Nora, an intelligent agent for the game of Hearthstone [33].
Using a supervised learning algorithm, more particularly, decision trees, Nora was able to predict a
(discrete) value for each action and state. The result of such classifier was used for the action selection.

Regarding the training process of Nora, the author generated the training examples with an im-

pressive number of 640,000 games between 2 random agents, where was used a heuristic function for

evaluating such examples. The heuristic function, was developed in cooperation with expert players of
Hearthstone, and reflected a typical control strategy, a strategy that reproduced the process of gaining
board control for preventing the opponent’s victory. For this purpose, several game metrics were used,

changing and influencing the gamming strategy of Nora:

e Minion advantage (MA): number of minions the player controls over her opponent.

e Tough Minion advantage (TMA): number of powerful minions the player controls over her opponent.

e Hand advantage (HA): number of hand cards the player has minus her opponent’s hand cards.

e Trade advantage (TrA): factor that represents how good the minions on the board are to lead to

advantageous trades.

H(s) =175 MA(s) +2.50« TMA(s) + 1.00 x HA(s) + 3.75 x7,4 (5). (3.2)
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Against a random agent, Nora presented good results, performing a win-rate near to 93%. However,
against an agent that implemented a mid-level playing strategy, Nora just obtained a win-rate close to
10%.

In this work, the author put forward the claim that the process of defining the representation of
states and actions (heuristic) was difficult, being such improvement even more challenging, since would
required even more knowledge of Hearthstone. Also, the author mentioned that the the random training
process used by Nora lead her to underestimate the value of the play actions. Surprisingly, despite this
training process, Nora was even successful at aiming the correct targets. As future work, the author

suggested that would be interesting to work with a simulation based algorithm like MCTS.

3.3.2 MCTS for Card Games
3.3.2.A Poker

Poker is a card game with similarities to Hearthstone. Its characteristics of imperfect information
and stochastic outcomes, make this game a subject of great interest for Al researchers. So, the work
in [26], proposed the use of MCTS, with the integration of expert knowledge for the game of Poker.
In particular, the approach integrated a probabilistic model that estimated the opponent’s behavior in
unseen situations. The probabilistic model predicted 2 sources of information: the opponent’s private

cards and future actions. More concretely:

e The prediction of cards was used to circumvent the hidden information problem, by sampling the

opponent’s cards.

e The prediction of actions was used to assist the tree and default policies during iterations, when-

ever the opponent performed actions in the game tree.

For evaluating the real impact of such integration into MCTS, the authors compared the results
using the “vanilla” version of MCTS, in a one-o0-one game against different Al. In general, the MCTS
version with expert knowledge always performed better than its “vanilla” version, performing a higher
aggression and deciding to bet constantly in early stages. In particular, versus a more challenging
opponent, MCTS with expert knowledge had a small margin of victories, unlike the "vanilla” version that
lost quite severely. For further research, was suggested the performance of more elaborate tests, for

optimizing the parameters used in MCTS.

3.3.2.B Magic

The work in [12], studied hybrid solutions for general game play in M:TG. The same solutions merged

3 different Al approaches, that covered the 3 gaming decisions points considered in the experiments (see
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Table 3.1: 12 different Als developed

Al Name Attack Strategy | Blocking Strategy | Card Play Strategy
RA_RB_RP | Random Random Random
RA_RB_SP | Random Random Rule-based
RA_RB_MC | Random Random MCTS
RA_SB_RP | Random Rule-based Random
RA_SB_SP | Random Rule-based Rule-based
RA_SB_MC | Random Rule-based MCTS
SA_RB_RP | Rule-based Random Random
SA_RB_SP | Rule-based Random Rule-based
SA_RB_.MC | Rule-based Random MCTS
SA_SB_RP | Rule-based Rule-based Random
SA_SB.SP | Rule-based Rule-based Rule-based
SA_SB_MC | Rule-based Rule-based MCTS

table 3.1):

o Attack strategy: deciding which creatures to attack;

¢ Blocking strategy: deciding how to defend and how to block the opponent’s attacking creatures;

e Card selection: deciding which hand’s cards to play.

In an initial stage, was studied the advantages of being the first player to draw. Such results, indicated
that starting at first, didn’t offer a significant advantage, where the former players achieved a performance
of 52% of victories.

In a second test set, was studied the performance of the MCTS based solutions for the card selection
stage. The results obtained, suggested that existed a significant advantage for the same solutions, over
the rule-based and random ones. In particular, the MCTS hybrid solutions consistently scored more,
performing better win-rates and specially over the random ones.

In a final test set, was investigated the effect of the number of roll-outs in MCTS. With only 10
roll-outs per node, in average, these hybrid solutions performed a win-rate close to 61%, whereas the
increasing number continued to improve the performance, reaching the plateau of 80% at 600 roll-outs.

This work shown that MCTS, could successful be applied to a domain of card selection in M:TG. Also,
the inclusion of MCTS with other Al approaches, namely a rule based solution, yielded an convincing

performance, with the only few simulations used.

3.3.2.C Hearthstone

As stated in Chapter 2, the development of Hearthstone suffered limitations that directly influenced
the gaming experience. So, in order to improve such experience, the works in [18] and [4] proposed the

development of a game agent using the MCTS "vanilla” version for the game of Hearthstone. Both works
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were developed in Metastone, and used the different Al systems available, for evaluating the algorithm’s
performance (see Chapter 2).

The major bottleneck and difficulty at the time was the hidden information concept of Hearthstone.
To circumvent such difficulty, both projects performed modifications in the simulator, allowing MCTS to
know the opponent’s deck.

In [18], besides the evaluation with the different Al systems, was compared the algorithm’s perfor-
mance with different decks, that represented different gaming strategy’s. Generally, none MCTS agent
won less than 75% of the games against the most challenging Metastone’s Al present at the time, the
rules-based agent. Also, for evaluating the real competitive level of the approach, the authors made
additional tests with human players of different competitive levels. To do so, were performed empirical
modifications in the MCTS’ parameters, for adapting the approach. Such results indicated that the MCTS
agent got slightly less than 50% victories against a human player, with moderate and skilled level, but
0% against a master player.

Regarding the work in [4], a similar approach was conducted. Against the current state of the art of
Metastone’s Al, the GSV, the approach performed a poorly performance of just 9%. However, versus a
less skilled opponent, the Random agent, the approach obtained a performance of 69%.

In both works, the authors concluded that MCTS performed better than expected. They reported,
that the agents occasionally made extremely smart moves, playing combos and keeping cards in hand
intentionally, behaviors that even the actual Al system implemented in Hearthstone performs poorly.
Also, was recommended, the integration of expert knowledge and the realization of more elaborate test

to optimize the MCTS’ parameters.

3.4 Conclusions

To conclude this chapter, we present a brief overview of the various works presented:

e Predicting the opponent’s deck were able to achieve successful results on the complex task of

general gameplay, indicating that, in fact, the number of effective decks that the players choose in

Hearthstone can be significantly narrowed down;

e Evaluating cards in Hearthstone revealed an approach that creates an equation system to find

overpowered cards in the game. Each card was modulated as the sum of its properties, properties
that can be use for instance, to evaluate the opponent’'s game state (e.g. sum of the player’s

minions properties, for evaluating their quality regarding the opponent ones);

e Supervised Learning Approaches used decision trees, for the creation of an intelligent agent for

Hearthstone. The same work also revealed an heuristic function, that evaluated the training exam-
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ples, and can be use in the future, to integrate expert knowledge into MCTS;

e MCTS For Card Games adapted different MCTS methods, for different card games (see table

3.2). Regarding the ones applied to Hearthstone, the behaviors achieved, the performance and

the possible improvement with expert knowledge of the game, were conclusions widely discussed.

Expert Knowledge Hidden Information Notes
MCTS for Poker [26] yes yes vs the “vanilla” version
MCTS for Magic [12] no no hybrid MCTS approach
MCTS for Hearthstone [18] no no tested with humans
MCTS for Hearthstone [4] no no 9% vs GSV; 69% vs random

Table 3.2: Overview of the MCTS works for card games
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This chapter presents the solution of our approach, describing each component developed, with the

goal of understanding the proposed enhancements to MCTS.

In the last chapter, we have seen different methodologies that considered distinct aspect of Hearth-
stone. From those that considered general game play, the application of the "vanilla” version of MCTS’
clearly stand out (a version that neither solves the hidden information problem or integrates any type of
knowledge).

Despite the disappointment performances against the best Al present in Metastone [4], the GSV (see
Figure 4.1), it has been shown in practice that the algorithm’s performance can be improved significantly
with the integration of expert knowledge.

So, in attempt to improve the MCTS competitive level and solving the hidden information problem
of Hearthstone, we propose to use of MCTS with the integration of expert knowledge of the game’s

domain. The knowledge used, can be divided in two parts:
e a heuristic that guides the tree and default policies of MCTS;

e a deck’s database that allows the algorithm to reason about the possible cards that the opponent

may have.

Our approach is summarized in Figs. 4.2 and 4.3, and the details are discussed in the continuation.

4.1 Node Structure

The node structure developed, contains all the information necessary for MCTS to perform the dif-

ferent steps per iteration. The node structure contains the basic statistics considered in the literature,

100
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o
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Metastone's A
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Figure 4.1: "vanilla” MCTS version vs Metastone’s Al [4]
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Figure 4.2: High-level overview of the interaction between our MCTS agent and the Metastone game engine.
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Figure 4.3: Detail of the MCTS block from Fig. 4.2.

with some additional information that assists the expansion and back-propagation steps of MCTS. In

particular, we considered:

e State: All the information regardless the current state:

— Active Player in such node:

x Hero:
- Hero Power;
- Weapon.
x Health and Attack points;
x The Al used for returning a single action;
x Graveyard;
x History of plays;
x Hand Cards;
x Deck: List of cards without the hand ones;

+ Minions in board;
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e Number of Victories: How many times, a certain node, has been victorious;

e Number of Visits: How many times a certain node has been visited;

e Parent Node: Relation to the node to which the current is a child. This relation is used to perform

the back-propagation. Also, the root node doesn’t have a parent one;
e Children Nodes: List of child nodes;

¢ Available Actions: List of the remaining available actions per node. If the current list is empty, then

the current node is not expandable;

e Action: The action that originated such node. When the computational budget is up, we return this

structure;

e Player: The player associated to such node.

4.1.1 Actions in Nodes

When a node is being expanded, a child node is generated according the available actions. Metas-

tone considers 5 different types of actions:

e Play Card: the most primitive type of action in Metastone. Occurs when a card is played into the
battlefield or activated. All entities in Metastone are initially cards, being then transformed to a
more particular set, after they are played (e.g. initially we have the card minion, and only after the

card has been played, the entity minion is generated and placed into the battlefield);
e Battlecry: action activated, when the card with such property is played;

e Discover: action that allows the player to select, from a given number of auto-generated random

cards, the one to add to her hand;

e Physical attack: action that happens, when the active player commands one character, to attack

another;

e End Turn: action that ends the actual player’s turn. Plays a very important role, since to a node is
only associated a single action. So, this action enables MCTS to handle the multiple actions per

turn, functioning as leaf nodes between the player’s turn.

As an important observation, is the fact that, since MCTS relies on a search tree, its important to
consider all the possible targets for a given action. In other words, if during the expansion, a certain

physical attack action is select, from the available ones, we considered all the possible targets, including

the friendlies and enemies ones for this action (e.g. minions with the enrage ability improve the attack
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as they suffer damage, so expert players often provoke damage on purpose to these minions, to make
it stronger).

As another example, is the possible positions that some card or minion can be placed in the battle-
field, being such position very strategical in Hearthstone. So, each time the Play Card action is selected

to expand, we considered all the possible target positions that can be placed.

4.2 Tree Policy

4.2.1 Selection

In our approach, we want to accurately select the next node to expand. Its main difficulty, regards the
balance between the exploitation of the most promising nodes and exploration of alternatives ones, that
in future iterations, may become to be extremely beneficial. Not only we want to preserve such balance
but also to refine it, with expert knowledge of Hearthstone.

So, the selection strategy implemented, merges 2 distinct methods:

e The UCB algorithm, that has been show in practice to balance the dilemma of the exploration

versus exploitation;

e Progressive Bias, as a mean to integrate expert knowledge of Hearthstone, in a form of an heuristic
in MCTS.

In other words, we enrich the UCB selection rule with an extra term, that accounts for the domain-
specific knowledge. So, each time a node is selected in MCTS, its choice maximizes the following
formula:

, Q) 21n N(v) H(v)

v = arg max +c + (4.1)
v'e ch%d'r'en ofV N(’Ul) N('U/) 1+ N(U)

In other words, all the children of the node v, are compared to each other, being returned the one
with the highest score. The selection, is then recursively applied, until a leaf node is reached. Also, this
process in only performed on fully expanded nodes (nodes with none available actions), what certifies

that all the actions are explored, before a deeper search is allowed.

4.2.2 Expansion

After the node’s selection, MCTS reaches a leaf node. So, as expansion policy, we use the one
proposed in [34], where the available actions are chosen at random, from ones not yet expanded. The
list of possible actions is then updated, by removing the chosen action from the same list. Finally, the

new expanded node is returned for the next step of MCTS.
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4.3 Default Policy

Regarding the hidden information problem of Hearthstone, where its unknown the player’s hand and
remaining cards in deck, its impossible to perform the standard default policy that choses actions at
random, until a leaf node has been reached.

So, our default policy, implements a series of adaptations, that not only handles the hidden informa-
tion problem, but also integrates expert knowledge, as has been shown in practice to improve the levels

of play [35]. Our default policy uses:

e Deck’s database: to circumvent the hidden information problem, aiming to predict the current

opponent’s deck;

e EA Selection method: to add expert knowledge during the roll-outs phase.

As an important observation, initially, the recently expanded node is cloned, where all the operations

are performed. This aims to ensure, that the default policy is independent from the nodes present the

tree. The motivation behind such adaptations is as follows:

4.3.1 Using a Database of Decks

“Hearthstone” features more then 1,000 playable cards, from which the players can build their 30
card deck. For competitive play it is crucial to predict what cards can be played by the opponent, which
creates an added difficulty for the tree and default policies of the MCTS algorithm, when simulating the
opponent’s moves.

Fortunately, the choice of hero is known from the beginning, and the efficiency of a deck strategy
implies a more limited choice of cards. In the lack of game data from which probable decks can be es-
timated, we instead adopt a simpler alternative that relies on community-build decks as representatives

of the most common game strategies (Aggro, Mid-Range and Control). In particular, we use a set of

decks built from those used by professional players in recent tournaments.

So, we develop an deck database that effectively reduces the search space that MCTS needs to
consider. Intuitively, it can be understood as the artificial counterpart to the knowledge of a master
player, who is aware of common decks types and is able to (approximately) infer the opponent’s deck
type with the most likely cards from its hero.

In our approach, we use the cards played by the opponent so far, to select/sample one deck from
the deck database that is compatible therewith. In other words, our approach counts the common
references present in both the cards played by the opponent so far, and each deck at the database.
The deck selected is the one with most common references, which will be the one that most accurately

translates the opponent’s strategy and which has, therefore, the best predictive ability. After removing
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from the selected deck the cards already played, we obtain a collection of the likely cards to be played,
that MCTS then uses in its search.

As an example, lets assume the opponent already played so far 4 cards, and has in hand 5. So, from

the 4 cards already played, we select the deck in the database that preferably reproduces such cards.
After removing the cards played from the deck selected in the database (e.g. 30-4=26), is selected
randomly 5 new cards to replace the new opponent’s hand (being such cards after removed, 26-5=21).
Finally, we have a collection of the new 21 cards to be drawn in the roll-out, that will replace the remaining

opponent’s deck in the cloned node.

4.3.2 Adding Expert Knowledge

Given the large branching factor in Hearthstone, the default policy of MCTS will generally require a
large number of iterations, before each node is properly explored and an accurate estimated of each
action’s value can be obtained. Such extensive process is time-consuming, which is inconvenient given
the limited time to play imposed by the game.

To circumvent this difficulty and to integrate expert knowledge, we adopt the tournament selection

approach commonly used in EA [36,37]. In particular, at each step of the default policy, k& actions are

sampled at random from the set of allowed actions.

Each of these k actions is then “scored”, according to a pre-defined heuristic function, that evaluates
the game state resulting from executing such action. It is the value of k and the heuristic function that, in

our approach, define the roll-out phase int the default policy. For example, if £ = 1, the resulting default

policy reduces to standard random sampling. On the other hand, if k = N4 (where N4 is the number of
currently admissible actions), the resulting default policy is greedy with respect to the heuristic.
This approach is used in both the player's game states, is tested with different values of k, and uses

different policies, according the player’s turn for selecting actions. Indeed we assume rational players:

e Player’s policy: it's selected the action, from the & sampled ones, that maximizes the heuristic

value (roll-out in player’s turn);

e Opponent’s policy: it's selected the action, from the k£ sampled ones, that minimizes the heuristic

value (roll-out in opponent’s turn);

As an example, lest assume the values of k = 75% for the player, and &k = 50% for the opponent.
Also, lets assume in the current default policy state s;, we have 50 available actions, and is the player the
one to intervene in the state s;. So, in such conditions, if £ = 75%, we randomly select 38 actions (e.g.
0.75"50=38), where the one it the maximum heuristic value is selected. On the contrary, if the opponent

is the one to return an action, we randomly select 25 actions (e.g. 0.50*50=25), where the one with the

"1t is worth emphasizing that the heuristic used in the simulation stage need not be the one used in the selection stage.
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lowest value is selected. After such effort, we move to the new state s; + 1, where the roll-out continues,

until a leaf node is reached.

4.4 Back-Propagation

The default policy, aims to estimate the current expanded node’s value. This is followed, by the back-
propagation step of MCTS, where the nodes statistics are updated. In our approach, this is performed
by means of an function, that always increase the visits count in 1, and the number of victories according
the default policy’s result. As long as the root node hasn’t been reach, all the nodes and their respective

fathers are updated, using the same effort.

4.5 Heuristics

Both the tree and the default policies used in the selection and simulation stages of MCTS, relies on
a heuristic function that evaluates subsequent states and informs the action selection. In order to assess
the impact of such heuristic in the performance of the method, we consider two distinct heuristics. Both
heuristics were constructed as linear combinations of a small number of features extracted from the

state s, taking the general form

N
H(s) =Y andn(s), (4.2)

n=1
where ¢, (s) is the value of feature n at the state s. The difference between the two heuristics lies on the
features used. Another important observation, is the fact that both heuristics are symmetric, meaning
that if one state is considered very good for one player (e.g H(s) = 30), in the same way is considered

very bad for its opponent (e.g. H(s) = —30).

4.5.1 Heuristic 1

The first heuristic, included a small number of hand-picked features, that reflect a game control
strategy, reproducing the process of gaining board control and preventing the opponents victory (see

3.3.1). The first heuristic can be written as follows:

H(s) = apadrmal(s) +armadrma(s) +amadmals) +arradrra(s) +apudpm(s). (4.3)

where M A is the minion advantage, T'M A is the tough minion advantage, H A is the hand advantage,

TrA is the trade advantage and BM the board mana advantage.
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Variables with hat (") symbol, denote values associated with the opponent.

4.5.1.A Minion advantage - M A

The minion advantage represents the number of minions that one player controls over her opponent.
In Hearthstone, the more minions one player controls, more tempted is the opponent to kill them all. So
this feature, is pretty straightforward: "with more minions than my enemy, | can more easily prevent him
from putting minions for himself” [16]. In other words, the minion advantage aims clearing the opponent’s
creatures, and after the trade, still having a higher overall number of threads in the battlefield. The

resulting formula can be written as follows:

J

MA = Z(mz‘) = (my) (4.4)

where m; is the friendly minion ¢ and m; the enemy minion j.

4.5.1.B Tough Minion advantage - 7'M A

The tough minion advantage represents the number of powerful minions that one player controls over
her opponent. Its an important modification from M A due the characteristics of Hearthstone: if a player
at her side a board full of minions, but if they are all weak, that’s not considered as having control. In
Hearthstone, "there are too many chances that the opponent casts a devastating spell, that he reserved

specially for board control situations” [16]. An example, lets consider the Flamestrike spell:
"Deal 4 damages to all enemy minions.”

So, the tough minion advantage captures these observations, by subtracting the number of powerful

minions, with health over 4, that one player controls over its opponent:

TMA =3 (tmi) = (1) (4.5)

J

where tm; is the tough friendly minion i and ¢m; the tough enemy minion ;.

4.5.1.C Hand advantage - HA

In Hearthstone, the number of cards that one player has in hand is very representative of the actual
board control situation. This metric assumes: "with more cards than my opponent, more chances | have

to react my opponent’s tentatives of taking control over the board” [16]. Another important observation,
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is the fact that one player is doing better, as more cards he has in hands, because he will have more
actions to choose from. So, the hand advantage subtracts the number of cards the one player has in

hands over her opponent:

HA = Z(hm - Z(hé) (4.6)

where he; is player’s hand card ¢, and h&j the opponent’s hand card ;.

4.5.1.D Trade advantage - 7'rA

The trade advantage reflects how good the execution of an action was, and facilitates the possible
subsequent actions for a given player. This metric, is a subset of a more general one named as card
advantage: "Card advantage is ultimately an expression of the difference between the rate that on player
gains and lose cards in the battlefield” [16].

For example, if for killing a friendly minion, the opponent used 2 cards, this action lead to a gener-
ation of "2-1” card advantage for the player. Another important observation, is the trading metric that
represents the physical attack actions that one player performs. So, and to summarize everything that
has been said, the trade advantage, is the advantage generated after the trading is done: "The process
of finding the best trade is not trivial, as an exhaustive search would result in evaluating all possible
combinations of possible attacks” [16].

The trade advantage performed in this thesis, captured these observations, being modulated as the
difference of the health and attack points, between the 2 players, that was generated in an action/trade.
In other words, if a good trade was performed, must be generated a positive difference in points, re-
garding the player who played (e.g. if during a trade, 1 of the enemy’s minions was killed, and the
friendly minion still lives, the enemy minion’s statistics no longer influences the trading function, being

then generated a positive difference in points). The resulting formula is as follows:

i J
where q; is the attack and h; the health for the friendly minions ¢, H the hero’s health, A the hero’s
attack, d; and h; the attack and health, respectively, for the enemies minions j and finally, A and A the

opponent’s health and attack respectively.

4.5.1.E Board mana advantage - BM

The board mana advantage reflects the difference between the sum of the mana for the player’s

cards versus the sum of the mana for the opponent’s cards in the battlefield:
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BM = Z(mq) - Z(n@) (4.8)

where m; is the mana cost of the friendly minion ¢ and m; the mana cost of the enemy minion ;.
According the work in [2], this metric is a better indicator than the number of minions, as the author

implied that a 3-cost minion is more powerful that 2 minions with cost 1.

Several of the features above, were already used in the literature, although in a different setting
(see Chapter 3). The value of the weights was optimized using EA, by having a myopic greedy agent,
driven only by the heuristic, play numerous games against the greedy Metastone player [36—38].> As
expected, the weights depend greatly on both decks. However, since the opponent’s deck is unknown,
we optimized our weights against different decks, selecting the configuration that performs best against

all decks in average (see Appendix B).

4.5.2 Heuristic 2

As a second heuristic, we use the one driving the Greedy and the GSV Metastone’s players. This

heuristic takes the form in (4.2), includes similar metrics than the ones used by heuristic 1, also adding
new ones, that account for example, the hero’s life points. According the hero’s life points, the heuristic

adapts to a certain strategy (e.g. defensive or offensive).

4.6 Computational Budget

When the computational budget is reached, MCTS stops the search and returns the best action
associated to the root node. As mentioned in Chapter 2.4.5, in Hearthstone, a turn last a maximum of
75 seconds, where players can perform multiple moves each turn.

So, following this line of thinking, MCTS needs to return different actions, in different instances of
the algorithm and during the same turn. As an example, and assuming the turn just began, initially is
started a new instance of MCTS, by creating the root node ¢ and started the search. Then, and after
the computational budget has been reached, is returned the best child action a., associated to the root
t. So, if a; doesn’t represent the End Turn, MCTS stills remain the active player, being then solicited to
return a new action ( what will initiate a new instance of MCTS).

So, our approach, approximate the different instances performed by MCTS, where in each of them

is returned a single action, to the maximum time of 75 seconds, for completing the turn. In other words,

2In fact, our myopic greedy agent is similar to Metastone’s, although using a different heuristic.

44



MCTS L factionab», MCTS | Gctiongha{, MCTS
instance t instance (t+1) instance (t+2)

-
75 seconds

Figure 4.4: Different MCTS instances during the max time’s turn

the MCTS player planes and returns all the actions, during her respective turn, in a maximum time of 75
seconds (see Fig 4.4).

To do so, before a new instance of MCTS is started, it's checked if the maximum of time per turn was
already been reached. If not, a new instance of MCTS is started. Otherwise, we perform the end turn

action, forcefully ending the MCTS’ turn.

4.7 Search Tree Reuse

Traditionally, being an online planning algorithm, MCTS is a restarted at every new instance t of the
execution, bearing as root node the state s; of the system. In other words, at each new instance ¢, the
agent builds a MCTS tree from state s; for as long as it is allowed to plan; when the computation time
is up, MCTS prescribes an action a; (the action associated to the state s;) and the system moves to a
new state, s;11. The process then repeats, constructing a new tree rooted at s;,;. This means that the
tree constructed in one instance (e.g. instance ¢) (and the outcome of the corresponding simulations)
are discarded, losing all the previous information, when is constructed a new tree rooted at s;1.

In order to maximize the use of information, from one instance to the next, we explore the possibility
of reusing the tree, from the previous instance, in growing the new one, by continuing MCTS’s search
from the previous returned node.

Fig. 4.5 illustrates the point, being represented 2 distinct instances of MCTS. After the computational
budget is up, the best child action of the rote node A is returned, represented in the example by the action
associated to the node C. Then, in the next instance ¢ + 1, MCTS continues the search, by assuming
the node C as the new root node, what allows the refinement of the knowledge already present. Such

reuse is reminiscent of search seeding, wherein the values at each node are not started at 0.

4.8 Final Action Return

Being an anytime algorithm, when the computational budget is exhausted, MCTS returns the best

candidate action at the root node, v,,0t. Following the recommendations in [1, 39], we compared 4
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Figure 4.5: Search tree reuse example.

different criteria selection methods, for selecting the candidate action in MCTS:
e Max-child: returns the (action) child node v at the root with the highest number victories, i.e.,
Uyie = argmax Q(v),
vEC (Vroot )

where we write C'(v) to denote the set of children of v.

e Robust-child: returns the child node v at the root with the highest number of visits, i.e.,

vyis = argmax N(v).
vEC (Vroot)

e Max-robust-child: returns the child node v at the root with the highest combined number of victories

and visits, i.e.,

Urob = argmax (Q(v) + N(v)).
UEC(Umot)

46



e Secure-child: returns the child node v at the root that maximizes the lower confidence bound, i.e.,

! 2InN
Ulch = argmax (U ) —C - (U)

vEC (Vroot ) N(U/) N(’U/)
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As seen in the previous chapter, our proposed approach to Hearthstone, includes a number of adap-
tations whose impact should be tested. In addition, the different works performed with MCTS for Hearth-
stone, never considered or studied such parameters, performing an empirical adjustment according the
computational time of the algorithm.

So, in this chapter, we explain the conducted validation process, aimed at establishing the impact, in

our approach’s performance, of the:

e number of iterations: the number of nodes available in the tree. With more nodes, the algorithm

becomes more knowledgeable about the domain;

e number of roll-outs per iteration: the number of independent simulations performed to a leaf node.

By increasing this parameter, its possible to perform more quickly estimations of the current ex-

panded node, although, the amount of computational time quickly grows in such conditions;

¢ value of sampling the parameter & in the simulation: the number of k£ actions randomly selected

from the available ones. By increasing k, is expect the simulation to become more knowledgeable

about the domain;

e heuristics used in the tree and default policies: 2 different heuristics are used, with different gaming

metrics;

e action selection criterion: when the computational budget is exhausted, its tested 4 different meth-

ods, that considered the different node’s statistics implemented;

e search tree reuse: using the previous tree knowledge, in the construction of the new tree.

To correctly optimize these parameters, it's necessary to perform all the possible combinations be-
tween them. Due the large number of possibilities and variables present, we investigated the impact, of
each of the above components, by varying one while keeping the other fixed (details of the parameters
used in the different experiments can be found in appendix A). For example, if is currently being tested
the number of iterations, the other parameters not related are fixed, being only changed such parameter.

These experiments, aims to find the best configuration to use, regarding overall performance and
computational time. The last one is particularly important, since a configuration with good performance
but huge computational time it’s not ideal

For each configuration, we measure both the performance against Metastone’s GSV (see Chapter 2)
and the computational time." Computational times were measured on a 2.6GHz Intel Core i7 processor
with 16GB of RAM memory.

The base configuration for the validation process is:

TAs mentioned before, the computational time is an important performance measure to consider, since Hearthstone players
have a limited amount of time to play.
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e Player 0 (our approach):

— Hero: Warlock hero;

— Deck: Tarei’'s warlock zoo deck.
e Player 1 (Metastone’s GSV):

— Hero: Warlock hero;

— Deck: Tarei’'s warlock zoo deck.

5.1 Number of lterations

In a first test, we evaluated the impact of the number of iterations allowed to MCTS both in terms of
time and game performance, using each of the two simulation heuristics. The results are summarized
in Fig. 5.1, and correspond to averages over 250 independent runs. We report as performance the
percentage of games won against Player 1 (Metastone’s GSV player), and as time the average time-
per-play.

Several observations are in order. First, both heuristics perform similarly in terms of computation
time. This is not surprising, since they both involve a small number of operations. There is a slight over-
head in Heuristic 2, since it requires the computation of a larger number of features, but the difference
is not significant.

In terms of performance, however, Heuristic 2 does seem to offer an advantage, that tends to in-
creases with the number of iterations. This is also not surprising, since Heuristic 2 includes more in-
formation than Heuristic 1. Also unsurprisingly, this effect is negligible when the number of iterations of

MCTS is small (i.e., the tree is shallow), but increases with more interactions.
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(a) Performance vs. number of MCTS iterations. (b) Time vs. number of MCTS iterations.

Figure 5.1: Game and computational performance of our proposed approach as a function of the number of MCTS
iterations. Results correspond to averages of 250 independent runs.
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ulation.

Figure 5.2: Game and computational performance of our proposed approach as a function of the number of roll-
outs performed during the simulation stage. The results correspond to averages of 250 independent
runs.

Finally, we note in Fig. 5.1(a) that there is some variability in the observed performance. Such
variability can be explained by the chance aspects of the game, since two games played exactly with the

same decks may turn out to be very different.

5.2 Number of Roll-outs

A second parameter that influences the performance of our approach is the number of roll-outs
performed per iteration in the simulation stage of the game. The results are summarized in Fig. 5.2, and
correspond to averages over 250 independent runs. We again report as performance the percentage of
games won against Player 1 (Metastone’s GSV player), and as time the average time-per-play.

The results are qualitatively similar to those observed in Section 5.1, with both heuristics performing
equivalently in terms of computation time, while Heuristic 2 showing a small advantage in terms of
performance.

A curious observation is that both heuristics seem to drop somewhat in performance as the number
of simulations grows beyond 20. While this may simply be due to the inherent stochasticity of the game,
it may also be the case that the large number of simulations makes the UCB heuristic too greedy too

soon, preventing sufficient exploration.

5.3 The Parameter K

We also investigated the impact of parameter & (which is combined with the heuristic to control the

default policy during simulation) on the algorithm—again both in terms of performance and computation
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Figure 5.3: Game and computational performance of our approach as k varies between 0% and 100% of the
admissible actions. The results correspond to averages of 250 independent runs.

time. We varied k between 0% and 100% of the admissible actions, both in the nodes of Player 0 (where
the action is selected to maximize the heuristic) and in those of Player 1 (where the actions are selected

to minimize the heuristic). The corresponding results are reported in Fig. 5.3 for Heuristic 1 and Fig. 5.4
for Heuristic 2.

Regarding performance, two observations are in order. First, the performance of our agent does not
change significantly with k. A second observation is that the best results are achieved with different
values of k for the Player 0 nodes and the Player 1 nodes, namely when ky = 75% and k; = 50%.2

We also note that extreme values of k (for example, kg = k1 = 0% or kg = k1 = 100%) lead to
poorer performance—in one case because the heuristic is not used and MCTS is, therefore, unable to
properly handle the large branching factor of the game, while in the other the simulation is bound to the

heuristic and unable to properly handle the differences between the predicted and actual behaviors of
the opponent.

2We write k; to denote the value of  for player 1.
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Figure 5.4: Game and computational performance of our approach as k varies between 0% and 100% of the
admissible actions. The results correspond to averages of 250 independent runs.

We conclude by noting, from Fig. 5.3(b) and Fig. 5.4(b), that the amount of computational time
required grows with k since, for larger values of k, the algorithm must go over a larger number of

alternatives and select the best, according to the heuristic.

5.4 Final Action Return

We also compared the performance of the different action selection alternatives discussed in Chap-

ter 4. The results are summarized in Fig 5.5, and indicate that:

e Max-child selects the action with most victories, and is the best-performing action-selection crite-
rion.

o Robust-child selects the most visited action. However, since the correlation between the number
of visits and its impact towards victory is a less direct indicator of the quality of an action, the

resulting performance is, expectedly, worse. In our experiments, we face situations that nodes with
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Figure 5.5: Performance of our proposed approach with the different action selection criteria. The results corre-
spond to averages of 50 independent runs.

extremely high visits but lower victories were even selected, which may explain the performance

drop.

e Max-robust-child selects the action that jointly maximizes the number of visits and victories. Inter-

estingly, its performance lies exactly in the middle between the Max- and Robust-child players.

o Finally, the secure-child is far too conservative and is unable to ever lead to a winning state.

5.5 Search Tree Reuse

Finally, we investigated the impact of tree reuse in the performance of the algorithm. In particular,
we compared a first policy (police 1) obtained when the tree is reused between different instances and
a second policy (police 2) obtained when the search tree is rebuilt at each new instance.

The results are depicted in Fig. 5.6, and clearly show that tree reuse does, in fact, lead to improved
performance, reaching a maximum gap of 15% if used heuristic 2 and police 1. Regarding policy 2, the
same results are verified, but without a gap so larger between the 2 heuristics as seen earlier.

In general, such results suggest that policy 1 performs better, by allowing the refinement of the

knowledge already present in the game tree.

5.6 Conclusions

In this chapter, we have seen the importance that the parameters used by MCTS, can have in the
algorithm’s performance. We conclude by presenting a brief overview of the results, followed by the final

parameters chosen, to be used in the final evaluation:
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Figure 5.6: Impact in performance of tree reuse. Policy 1 corresponds to the policy obtained when the search tree

is maintained between execution steps. Conversely, Policy 2 is obtained by rebuilding the tree at each
execution step.

Number of iterations: it's noticeable that the performance improved between iterations. Indeed, as

we increased this parameter, the game tree becomes larger and knowledgeable about the domain,

being progressively added new nodes.

Number of roll-outs: This step of MCTS, aims to estimate the current expanded node value. So, in

theory as we increased this parameter, more quickly can a node be estimated. On the other hand,
our approach integrates heuristic knowledge, that in situations where a larger value of roll-outs are

being used, the simulation became too greedy, preventing sufficient exploration.

The parameter K: An informed simulation strategy generally performed better. Analyzing the re-

sults, using K equal to 0%, achieves worse results than other K configurations, regardless the
player's node or the heuristic to use. Another similar behavior is the performance drop when it’s
used a K equal to 100%. As expected in such conditions, the simulation becomes too greedy, be-

ing even contrary to the MCTS principals of randomness, for dealing with large branching factors.

Action return: Analyzing the different methods, the max child is the one that accomplishes the best
results. As this method chooses the candidate action based on victories, being victories directly

related to the node’s performance, this result followed the expected.

Search tree reuse: Was clear, that continuing iterating performs better results than not to, sug-

5.6.1

gesting that this approach allowed the refinement of the knowledge already present in the search
tree.

Final parameters

Algorithm: Monte Carlo tree search
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Heuristic: 2;

Hero: (Target hero);

Deck: (Target deck);

N. iterations: 60;

N. simulations: 20;

Parameter k: 75% for player 1; 50% for player 2;
Action selection criterion: Max-child;

Tree reuse: yes.
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In this chapter, the discussion will point to the conducted validation process aimed to appreciate the

improvements of our approach, regarding the actual state of the art for Hearthstone.

In order to validate the improvements and contributions of our approach into MCTS, we paired it with

the "vanilla” version of the algorithm and against the different Als in Metastone (see Chapter 2):

e Random: Selects actions at random and provides a naive baseline for comparison;

e No Aggression: Does not attack the opponent. This Al randomizes between playing cards or

simply performing the “end-turn” action;

e Greedy: Myopic player whose actions are driven by a heuristic (heuristic 2), built on several game

metrics, and whose weights were tuned using an evolutionary approach (see Chapter 4).

e GSV: Player that uses a recursive alpha-beta algorithm driven by the aforementioned heuristic
(heuristic 2). To the extent of our knowledge, this is the best Al system available in Metastone, and

several existing players report disappointing performances against it [4].

where the different Als represented different competitive levels of difficulty. In addition, we also
studied how our approach adapted in different gaming scenarios. To do so, we used 3 different decks,

that represented a wide variety of gaming strategies:

e Tarei’s Warlock Zoo: A moderate aggro-based deck that aims to control the board while damaging

the opponent.

e JasonZhou’s N'’Zoth Control Warrior: control-based deck, one of the most consistent in Hearth-

stone. It aims to exhaust the opponent’s resources, dominating in late-game turns.

e CheOnsu’s Yogg Tempo Mage: Mid-range based deck, consisting of heavy minions with a higher

curve compared to Aggro ones.

For each deck, we run a total of 250 games and record the percentage of victories. The results
are summarized in Fig. 6.1, Fig. 6.2, Fig. 6.3 and Fig. 6.4, where Approach 1 is our approach and
Approach 2 is the “vanilla” MCTS player. Both approaches used the deck database to handle hidden
information and used the same parameters throughout (see Appendix A).

As a initial test, we first decided to evaluate both approaches against the Random Player present in

Metastone. Each MCTS version played into a round-robin, being used all the possible combinations of

TMCTS was run for 60 iterations per play, 20 simulations per node. Both approaches used sampling in simulation with kg = 75%
and k1 = 50%, Max-child output selection and tree reuse.

61



decks between them. Since the complexity of the game prevents the Random Player from any mean-
ingful play, not surprisingly, both approaches almost crushed the opponent, performing a win-rate near
of 100% in every scenario.

In a second test set, we used the No Aggression Player as opponent. Since this Al in particular,

randomizes between fishing her turn and playing cards, not participating in attack actions, we faced
similar results as the ones seen previously, for both approaches.

In a third test set, we tested the performance against the Greedy Player. Several observations are in
order:

e Since this Al represents an myopic player, whose actions are driven by a heuristic, our MCTS

adaptation clearly out-performed the opponent, presenting a win-rate in average of 61%;

e In average, the "vanilla” MCTS version presented a win-rate close to 40%, being a gap close to
20%, between our adaptation;

e An exception, is the one seen in Fig.6.3(b), when the opponent uses the CheOnsu’s deck. In
such conditions, the deck used by MCTS, is not particularly suitable against the one used by the

opponent. However, our adaptation even overcomes, but this time, by a close margin of 4%.

Finally, we tested the performance of both approaches against the actual-state-of-the-art of Metas-
tone’s Al, the GSV:

e As expected, against a more competitive player, some decks were better matched than others,

which explained the variation across the different decks;
e In average, our adaptation to MCTS performed a win-rate close to 42%;

e Overall, the MCTS "vanilla” version presented an win-rate close to 21%, being a gap close to 20%,

considering our adaptation;

e Another important observation, is that the fact that the heuristic parameters are optimized to per-
form well against all decks, what eventually hampers the performance of the agent (as seen, for

example, with the JasonZhou’s deck).

In any case, against the different strategies and Als opponents, our results show that the MCTS
approach with expert knowledge clearly outperformed the “vanilla” approach in all situations, often by a
large margin, proving that MCTS with the integration of expert knowledge is able to attain more compet-

itive results.
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Figure 6.1: Performance of MCTS players against Metastone’s Random player with different decks.
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Figure 6.2: Performance of MCTS players against Metastone’s No Aggression player with different decks.
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Figure 6.3: Performance of MCTS players against Metastone’s Greedy player with different decks.
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Figure 6.4: Performance of MCTS players against Metastone’s Game State Value player with different decks.
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7.1 Conclusions

In the beginning of this work, we have seen that the Al in Hearthstone, suffered limitations that directly
affected the gaming experience. In order to improve such experience, several works were performed

with different methodologies and motivations, that considered different aspects of the game.

From all methodologies developed, the use of MCTS for general game play, clearly stands out in
Hearthstone. As stated in Chapter 2 and 3, the results and behaviors achieved in recent applications,
and the ability to be used without domain specific knowledge, are examples of benefits that lead this
algorithm to be considered as a new framework for Al in games. In addition to such benefits, and the
possibility of improving the algorithm’s performance with expert knowledge, are benefits to be taken into

account.

So, in this work, we developed an MCTS-based approach for Hearthstone. Our approach was
boosted MCTS with domain specific knowledge of 2 types: a database of decks that mitigates the
impact of imperfect information, and a heuristic that guides the tree construction. Regarding the heuris-
tics, and since it represents a sum of different game metrics, we used an EA approach that targeted a

specific deck to learn the weights to use.

During experiments, we conducted a simple grid search across the space of possible values, for
optimizing the MCTS’s parameters. For each configuration, we measured both the performance against

Metastone’s GSV and the computational time.

During the same tests, we noticed some interesting behaviors. Our approach was able to quickly
predict the opponent’s deck, performed good trades, played correctly cards in the right position and

even hurt himself if needed, for gathering attack bonus in minions with enrage ability.

Our results, shown that our approach is superior to “vanilla” MCTS, being able to attain competitive
results with state of the art Al for Metastone. In particular, our approach achieved very good results

against a Random player, performing a win-rate close to 100% in every case scenario.

Against the more competitive player present in Metastone’s, the GSV, some decks were better
matched than others, which explained the variation across the different decks. Nevertheless, our ap-
proach achieved an win-rate optimal near to 60%, representing a performance quite superior to the one

presented in [4] of just 9%.

To conclude, in any case, our results show that the MCTS approach with expert knowledge clearly
outperformed the “vanilla” approach in all situations and often by a large margin. The available evidence,
seems to suggest that MCTS with the integration of expert knowledge is able to attain more competitive

results than his "vanilla” version.
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7.2 Future Work

Our results also open avenues for future research. First we would like to recommend to update the
simulator used in this work to the latests version. Being Metastone a stable platform, also presents bugs
and features that clearly influenced our MCTS’s approach. In addition to such reasons, is the fact that
the latest expansions, release in Hearthstone, will be available in Metastone, upgrading the development
environment for the continuation of this work.

Secondly, we strongly encourage the use of any alternative methodologies, to optimize the MCTS’
default policy, where this particularly phase performed a significant role in MCTS computational time.
For example, since the roll-outs performed, at the recently expanded nodes, are independent from one
and another, we recommend to start all the roll-outs at the same time (e.g. threads), updating the node’s
statistics after such effort.

Along similar lines, we recommend to study different selection methods of EA, to improve the inte-
gration of expert knowledge into the default policy (see Chapter 4.3.2). During experiments, we faced
the successful application of these methods, because in particularly, they merged stochastic information
with expert knowledge, allowing the refinement of this peculiarly stage.

Also, we would like adapt new Progressive Strategies, namely Progressive Unpinning, for study-

ing how the branching factor influences MCTS (see Chapter 2.3.2 and 4.2.1). During the research
conducted, we have seen that MCTS performs poorly, when the branching factor is high and the compu-
tational budge is low. So, the idea is to reduce artificially the branching factor in the beginning of MCTS,

increasing progressively with the number of iterations [40] (also including the Progressive Bias method).

Regarding particularly the expert knowledge, in our approach, the heuristic governing the tree con-
struction uses a single set of weights that is deck-dependent. We observe that an improvement in
performance could probably be achieved by considering specialized weights for the deck or even by us-
ing a more specialized EA method for the learning phase (see the Fast-Evolutionary MCTS in Chapter
2.3.3).

Still considering the expert knowledge, we would like to develop our own heuristic, with a dynamic
approach, for targeting a specific game strategy. The dynamic approach should be directly influenced by
the actual H P, in which for instance, when in low H P conditions, a defensive strategy should be used,
and otherwise, an attacking instead. Hopefully, this would allow to optimize MCTS for specific behavior,
instead a specific deck.

Additionally, we desire to study new methods for selecting the candidate root action in MCTS. In our
experiments, we only adapted approaches that returns a single action. The idea would be to optimize
the MCTS’ turn, by selecting the best moves, from the root node to the end turn, that maximizes a certain
criteria (e.g. number of victories).

It's also important to investigate new forms to deal with the principal characteristic of MCTS, the
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variance of results. During experiments, we faced this problem , having some discrepancy in the results
obtained. As such, we performed series of 250 games, averaging the results obtained, what really
slowed our validation process.

Last but not least, we really suggest to perform tests with professional player of Hearthstone, and
preferably with different ranks. As seen in Chapter 3, MCTS could be adapted with different competitive

players, so the idea, would pass to study the parameters to use in different players with different ranks.
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Parameters used in experimenters

In this appendix, we specify the parameters used in the different experiments reported in the paper.

Player 1 refers to the MCTS player, being always held fixed and described in Chapter 5.

A.1 Number of Iterations

Algorithm: Monte Carlo tree search

Heuristic: Both 1 and 2;

Hero: Warlock hero;

Deck: Tarei’s warlock zoo deck;

N. iterations: every 10 between 10 and 100;

N. simulations: 20;

Parameter k: 75% for player 1; 50% for player 2;
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e Action selection criterion: Max-child;

e Tree reuse: yes.

A.2 Number of Roll-outs

Algorithm: Monte Carlo tree search

Heuristic: Both 1 and 2;

Hero: Warlock hero;

Deck: Tarei’s warlock zoo deck;

N. iterations: 30;

N. simulations: 1 through 35;

Parameter k: 75% for player 1; 50% for player 2;

Action selection criterion: Max-child;

Tree reuse: yes.

A.3 Action Selection

Algorithm: Monte Carlo tree search

Heuristic: Both 1 and 2;

Hero: Warlock hero;

Deck: Tarei’s warlock zoo deck;

N. iterations: 60;

N. simulations: 20;

Parameter k: 75% for player 1; 50% for player 2;

Action selection criterion: {Max-child, Robust-child, Max-robust-child, Secure-child};

Tree reuse: yes.
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A.4 Search Tree Reuse

Algorithm: Monte Carlo tree search

Heuristic: Both 1 and 2;

Hero: Warlock hero;

e Deck: Tarei's warlock zoo deck;

N. iterations: 60;

N. simulations: 20;

Parameter k: 75% for player 1; 50% for player 2;

Action selection criterion: Max-child;

Tree reuse: {yes, no}.

A.5 Parameter &

Algorithm: Monte Carlo tree search

Heuristic: Both 1 and 2;

e Hero: Warlock hero;

Deck: Tarei’'s warlock zoo deck;

e N. iterations: 60;

N. simulations: 20;

Parameter k: {0%, 25%, 50%, 75%, 100%} for player 1; {0%, 25%, 50%, 75%, 100%} for player
2;

Action selection criterion: {Max-child, Robust-child, Max-robust-child, Secure-child};

Tree reuse: yes.
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A.6 Final Parameters

Algorithm: Monte Carlo tree search

Heuristic: 2;

Hero: (Target hero);

Deck: (Target deck);

N. iterations: 60;

N. simulations: 20;

Parameter k: 75% for player 1; 50% for player 2;

Action selection criterion: Max-child;

Tree reuse: yes.
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Genetic algorithm parameters

We now describe the parameters of the genetic algorithm used to optimize the weights in the heuristic
(4.3).

e Player 1 Al: Greedy;
e Player 1 Deck (Target deck): “Tarei’s warlock zoo deck”;
e Player 2 Al: Metastone’s Greedy;

e Player 2 Decks: {“Amnesiac’s Secret Face”; “Jasonzhou’s N’zoth Control Warrior”; “Frozen’s
N’zoth Paladin”; “Yulsic’'s Midrange Shaman”; “CheOnsu’s Yogg Tempo Mage”; “Tareis’s Warlock
Zoo”; }

e Population size: 50;
e Population restarts: 10;
o N. games used to compute fitness: 30;

e Selection methods: {Random, Rank, Roulette, Tournament};
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e Crossover probability: 0.7;

e Mutation probability: 0.01;

The resulting weights were

a:[1.0457 0.2058 9.6557 0.9407 5.2249}.
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