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Resumo 

Na modelagem de reservatório e caracterização diferentes técnicas de inversão sísmica são 

condicionados pelos dados existentes disponíveis fornecidas pelo estudo da sísmica e as 

propriedades petro-elástica de subsuperfície obtidas por poços, a solução do inversão tenta fornecer 

um modelo de subsuperfície que se encaixa de forma igual todos os dados observados existentes. 

Um quadro geoestatística é uma solução natural para integrar os dados dentro do mesmo quadro ao 

avaliar a incerteza espacial da propriedades invertidas. O objetivo principal desta tese é avaliar o 

desempenho de uma nova implementação dentro de uma metodologia de inversão sísmica 

geoestatística conhecida para recuperar modelos elásticos subsuperficiais (impedância acústica) para 

caracterizar um reservatório real, não-estacionária. A nova implementação do algoritmo de inversão 

sísmica geoestatística consiste em uma regionalização por zonas da área de estudo como forma de 

interpretar os dados existentes e o conhecimento sobre a geologia do subsolo. A metodologia 

proposta utiliza funções de distribuição multi-locais com base em algoritmos de simulação 

sequenciais diretos. O estudo de caso apresentado nesta tese consiste na inversão de um reais e 

complexos dados sísmicos partial-stacked onde três poços estão disponíveis. Os resultados obtidos 

pela metodologia proposta são comparados com os obtidos por um método convencional. 
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Abstract 

In reservoir modelling and characterization different seismic inversion techniques are conditioned by 

the available existing data provided by seismic surveys and the subsurface petro-elastic properties 

obtained by wells, the inversion solution tries to provide a subsurface model that fits equally all the 

existing observed data. A geostatistical framework is a natural solution to integrate both data within 

the same framework while assessing the spatial uncertainty of the inverted property. The main 

objective of this thesis is to assess the performance of a new implementation within a known 

geostatistical seismic inversion methodology to retrieve subsurface elastics models (acoustic 

impedance) to characterize a non-stationary real reservoir. The new implementation of geostatistical 

seismic inversion algorithm consists in a regionalization by zones of the study area as interpreted form 

the existing data and the knowledge about the subsurface geology. The proposed methodology uses 

multi-local distribution functions based on direct sequential simulation algorithms. The case study 

presented in this thesis consists in the inversion of a real and complex partial-stacked seismic data 

where three wells are available. The results obtained by the proposed methodology are compared with 

those obtained by a conventional approach. 
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1 Introduction  

The thesis was carried out under the Master of Petroleum Engineering in the Institute Superior 

Técnico, in particular CERENA - the Center for Natural Resources and Environment, with a real 

dataset provided by Partex Oil & Gas. 

1.1 Scope of the study 

Among the tools to identify potential hydrocarbon reservoir, 3D seismic volumes allow exploring a 

huge volume of area of the subsurface helping oil and gas companies to obtain enough information 

regarding the geological structures and predict the best locations to drill wells. Depending on the 

existing data, there are different ways to build 3D models and different modeling techniques allow 

obtaining models with variable degrees of detail. However, independently of the methodology, all of 

them have some degree of uncertainty. Choosing the right modelling approach allow decreasing the 

risk level and consequently the costs related with a given hydrocarbon reservoir, and consequently 

allowing better management decisions (Doyen 2007; Caers 2011). 

In order to achieve more reliable 3D models the companies use seismic reflection data to estimate the 

subsurface geology properties and fluid distribution, instead of the traditional seismic interpretation 

approach where seismic reflection data is exclusively used for constraining the reservoir’s geometry 

(Bosch et al 2010).  

In petroleum applications, stochastic modeling of the reservoirs’ internal properties, such as lithofacies 

and sand bodies, is normally done by using core and log data which locally provide detailed reservoir 

information but lack spatial information, therefore, these models have great level of uncertainly far 

from the wells locations. For this reason the integration of seismic reflection data, take into account the 

properties directly measured at the wells, allow inferring more reliable subsurface models with less 

uncertainty, i.e., better spatially constrained.   

Normally seismic inversion methodologies take into account stacked seismic reflection data allowing 

the inference of acoustic and/or impedance models. Inferring the spatial distribution of impedance 

limits the identification of different litho-fluid facies of interest that could be obtained using pre-stack 

seismic data. The proliferation of high quality pre-stack seismic data allows us to obtain more reliable, 

with less uncertainty, reservoir models when compared with reservoir models derived exclusively from 

post-stack seismic reflection data.  

Iterative geostatistical seismic inversion methodologies are a common modelling technique in Earth 

science allowing the simultaneous integration of well-log and seismic reflection data. These seismic 

inversion methologies use stochastic sequential simulation as the model perturbation technique. 

Traditional stochastic sequential simulation techniques assume for the entire study area stationarity of 
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the spatial continuity pattern and a single probability distribution function as inferred from the available 

experimental data respectively. This problem can be tackled by using multi-local distribution functions 

taking into consideration a multiple regionalization by zones (Azevedo, 2013). 

The work presented in the next chapters of this thesis tries to give new insights for the geostatistical 

seismic reservoir characterization within methodologies already known. This work has a particular 

focus on a novel geostatistical seismic inversion methodology that is able to deal with non-stationary 

geological environments 

1.2 Objective and motivation 

The main objective of this thesis is the implementation on a real and challenging dataset of a new 

geostatistical seismic inversion that is able to deal with non-stationary geological environments. The 

results obtained are compared against those retrieved from conventional iterative geostatistical 

seismic inversion methodology. 

This Master thesis provides a novel approach within geostatistical methodologies already known for 

stochastic post-stack seismic inversion. The proposed workflows allow for more reliable reservoir 

models by allowing the assessment of the spatial uncertainty related with the properties of interest. 

The main objectives of this work may be summarized by the following: 

 Implementation of the conventional global stochastic inversion GSI (Soares 2007) that uses a 

global approach during the stochastic simulation stage and allows the inversion of fullstack 

seismic reflection data for acoustic impedance (AI) models. 

 Development and implementation within the GSI framework of a new methodology to handle 

multi-local distribution functions and spatial continuity patterns taking into consideration a 

regionalization of the study area by zones.  

The development of these algorithms was performed recurring to geostatistical toolboxes from 

CERENA/CMRP research group and Matlab. Petrel® (Schlumberger) was used for visualization of the 

results. 

1.3 Overview of methodologies 

Nowadays to obtain reservoir models as close as possible to reality we use inverted acoustic model 

inferred from existing seismic reflection data and integrating information from existing wells. However, 

in order to derive petro-elastic properties from seismic reflection data we need to solve an inverse 

problem. Seismic inversion problem is characterized for being nonlinear, with non-unique solution and 

ill-conditioned. Due to this reason the inverted acoustic models are only one possibility among several 

models that equally satisfy the observed seismic reflection data. Regardless of the method chosen to 

solve the seismic inverse problem, there is always the uncertainty associated with the acoustic model, 
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so here is important to ensure that the uncertainty is assessed continuously and spreads throughout 

the investment process. 

Seismic inversion solutions can be divided in two main approaches: deterministic, and probabilistic 

(Bosch, Mukerji, and González 2010). 

 - Deterministic methods are generally based on minimizing the differences between synthetic 

and observed seismic reflection data, based on the convolutional model and only allow inferring a 

single best-fit inverse model (Francis, 2006). 

 - In the probabilistic setting there are two main approaches to solve the seismic inversion 

problem: the Bayesian linearized framework and the one based on stochastic sequential simulation as 

the model perturbation technique.  

Bayesian approaches ensure the propagation of the uncertainty from the prior probability distributions, 

estimated from experimental data (e.g. well-log data) to the probability distributions of the model 

parameters space (Grana et al. 2012). This framework assumes a linearized forward model and 

Gaussian, or multi-Gaussian, for the prior distribution function of the property to be inverted. In this 

setting the posterior distribution can be analytically expressed as multi-Gaussian. 

Alternatively stochastic inversion methodologies allow a more comprehensive exploration of the model 

parameter space because the assumption about any prior parametric probability distribution may be 

relaxed depending on the stochastic sequential algorithm used within the inversion procedure. 

Traditional stochastic sequential simulation technique assume for the entire study area stationary of 

the spatial continuity pattern and a single probability distribution function, as revealed by a single 

variogram model as inferred from the available experimental data. In this thesis we extended the 

traditional direct sequential simulation algorithm to handled non-stationary natural phenomena take 

into consideration multiple regionalized spatial continuity patterns a probability distribution functions 

depending of the spatial location of the grid node to be simulated.  

1.4 Structure of the thesis 

This thesis is divided in fives Sections: 

The present section (section 1) comprises the introduction divided in different sections: objective and 

motivation that led to the research of this thesis, a scope of the study where is identified and describe 

the problem and a briefly overview of the main methodology used. 

Section 2 introduces a broad description of the methodology used already knows and the novel 

proposed methodology applied to the methods described above. 
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Section 3 present the study area with a geological brief introduction, showing the different physical 

properties used for a real case with dataset provided by Partex Oil & Gas, well logs and a description 

and explication the regionalization of the study area. 

In Section 4 the algorithms introduced in the previous chapter were tested and implemented in the 

case study and shown the result of applying the proposed methodology by zones as a part of the 

geostatistical seismic inversion methodology.  

In the last section (Section 5) presents a brief discussion and conclusion comparing the final results 

obtained in the previous chapter with the traditional approach GSI. 
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2 Methodology 

2.1 Conventional Global Stochastic Inversion 

The methodology used as the basis to develop the new methodology proposed under the scope of this 

thesis was the Global Stochastic Inversion (GSI, Soares 2007). The traditional GSI procedure uses a 

stochastic sequential simulation algorithm based on a single distribution function as estimated from 

the available well-log data and a single spatial continuity pattern as expressed by a variogram model 

for the entire study area. This methodology uses a global approach during the stochastic simulation 

stage and allows the inversion of fullstack seismic data for acoustic impedance (AI).  

This iterative geostatistical methodology is based on two key main ideas: the use, at the end of each 

iteration, of a global optimizer based on cross-over genetic algorithm based on the trace-by-trace 

match between synthetic and the seismic data to ensure the convergence of the inversion procedure 

from iteration to iteration; and the perturbation of the inverted models with stochastic sequential 

simulation, the direct sequential simulation (DSS; Soares et al 2007).  

This methodology generates for an entire seismic grid a set of Ns impedance models using existing 

well-log data as experimental data. Each impedance model is then convolved for the wavelet to create 

Ns synthetic seismic volumes which are compared on a trace-by-trace basis against the observed 

seismic reflection data. With this approach the areas of low signal-to-noise ratio remain poorly 

matched at the end of the inversion process. Contrary to the trace-by-trace approaches, an ensemble 

of best-fit inverted models will always present high uncertainty, for those noisy areas where the signal-

to-noise ratio is low (Figure 1). 

The GSI may be summarized in the following sequence of steps: 

-  First, a set of Ns acoustic impedance models, conditioned to the available acoustic 

impedance well-log data, is performed using DSS. Each realization of acoustic impedance 

reproduces the well-log data at its locations and the global distribution as inferred from the 

available experimental data and a single spatial continuity pattern as revealed by a variogram 

model; 

 

- Then, from this set of impedance models a corresponding set of Ns synthetic seismic volumes 

is derived by computing the corresponding normal incidence reflection coefficients (1) which 

are then convolved by an estimated wavelet for that particular seismic dataset;  

(1) 
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Where the indexes 1 and 2 correspond, respectively, to the mean above and below the 

reflection interface considered; 

- Each seismic trace from the Ns synthetic seismic volumes is then compared in terms of 

correlation coefficient against the real seismic trace from the same location;  

 

- From the ensemble of simulated AI models, the acoustic impedance traces that produce 

synthetic seismic that ensure the highest correlation coefficient when compared with the 

corresponding real seismic trace are stored. These stored volumes, the one with the best 

acoustic impedance traces and the one with the local correlation coefficients, are used as 

secondary variables, or seeds, for the generation of the new set of acoustic impedance 

models for the next iteration. 

 

- The iterative procedure finishes when the global correlation coefficient between the synthetic 

and the real seismic volumes is above a certain threshold (Soares et al. 2007). 

 

 

Forward model 

Figure 1- Schematic representation of GSI (from Azevedo 2013) 
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2.2 Global Stochastic Inversion for non-stationary geological environments 

This section introduces the proposed geostatistical seismic inversion methodology that is able to 

simultaneously integrate a regionalization model based in zones. The regionalization model may be 

created based on the simultaneous interpretation of seismic and well-log data and geological 

constrains from a priori knowledge of the geology. Each zone will be constrained by a given 

distribution function and his corresponding spatial continuity patterns as inferred from the experimental 

data (the available well-log given for each zone and a variogram model by zone).  

The definition of the regions within the inversion grid does not need to be regular as the proposed 

methodology is able to deal with regions with considerable different shapes and size. 

In the proposed methodology the inversion area is first subdivided in zones. This zonation of the study 

area may be arbitrary, based on a priori knowledge of the natural system one is modelling or taken 

from seismic facies interpreted from available seismic reflection data. The number of regions its 

individual size and shape are defined deterministically. It is important to highlight that a division of the 

area in too many zones do not ensure a good inversion, i.e., each zone must be statistically 

representative. The number of zones from which the methodology is unreliable is out of the scope of 

this thesis.  

The methodology can be summarized in the following sequence of steps (Azevedo et al. 2016): 

- The first step comprises the generation of a geological model as realistic as possible and the 

division of the entire study area into smaller zones which should be geologically consistent. 

The independent simulation of each region is not feasible since it does not ensure the 

reproduction of the global statistics as inferred from the global available experimental data. 

Also, this approach may result in discontinuities at the boundaries of each sub-region.  

 

Figure 2- Dataset obtained from each zone 
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- For each zone a histogram (one for each elastic property of interest such as density, Vp, Vs or 

AI) is assigned for each zone, the spatial continuity pattern of the property to be simulated is 

conditioned by the imposed variogram model for each zone individually. 

 

- Taking into account the regionalization model, the available dataset is extracted from wells as 

a function of the zones thus obtaining each model for each zone (Figure 3 and Figure 4).  

         

Figure 3 - Dataset from well A1 by zones for AI property 

 

 

 

 

 

 

 

- Generated of a random seed to define a random path over the entire simulation grid, 𝑢 = 1, … 

, 𝑁, where N is the total number of nodes that compose the simulation grid and “u ” is the 

current node location where the simulation is being performed. 

-  Estimation of the local mean and variance at 𝑥𝑢 with simple kriging estimate [Z(𝑥𝑢)∗] (2) and 

the corresponding kriging variance (𝜎
2
(𝑥𝑢)) (3) to sample directly from the global conditional 

distribution function as estimated from the experimental data (𝑧(𝑥𝛼)) located within a specific 

zone and the previously simulated data (𝑧(𝑥𝛼 )∗) within a neighbourhood around u. 

Figure 4 - Examples of histograms by zones for one property, zone 0(left), zone 1(center), zone 2(right) 
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                                                              (2) 

                                                    (3) 

These global conditional distribution functions are going to be conditioned by the zones, 

however it is important nothing that, the simple kriging estimate and variance are computed 

taking into account point data that belong to different regions. The simple kriging estimate and 

variance are computed with all the point data within a given neighbourhood that may cross 

different sub-regions. This is an important feature of the proposed approach since it avoids the 

generation of discontinuities at the boundaries of each region in the simulated models. 

-  Definition the interval of the 𝐹𝑧 (𝑧) (conditional distribution) to be sampled based on the simple 

kriging estimate and variance computed from the previous step (Figure 5). 𝐹𝑧 (𝑧) corresponds 

to the probability distribution function of the variable to be simulated and estimated from the 

available experimental data that is located within that specific zone. 

 

Figure 5 - Example of global cdf obtained from one zone with the conditional distribution centered by simple 

kriging and variance 

-  The simulated values 𝑧𝑠 (𝑥0) are drawn from an auxiliary Gaussian probability distribution 

function Fz’(z) which is built from the global cdf 𝐹𝑧 (𝑧), Fz’(z) is defined by selecting and interval 

over  𝐹𝑧 (𝑧) centered on the simple kriging estimate [Z(𝑥𝑢)∗] value with an interval range 

proportional to the kriging variance (𝜎
2
(𝑥𝑢)). Generate a value 𝑦𝒔 from a Gaussian distributions 

((𝑥0)∗, 𝜎 2𝑆𝐾 (𝑥𝑢)) Return the simulated value 𝑧𝑠(𝑥0) = 𝜑−1(𝑦𝑠) 

-   Add the simulated value as conditioning for the simulation of the next location.  

-  Loop until all the N nodes of the simulated grid have been simulated. 
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The models resulting from the proposed stochastic sequential simulation reproduce simultaneously 

the regional and global variogram models and target distribution functions relative to the average 

volume of each zone (Azevedo et al. 2016). 

In term of inverse procedure this work proposes replacing the traditional stochastic sequential 

simulation in the methodology summarized in (Figure 1) with the stochastic sequential simulation with 

multi-local distributions. The proposed iterative inversion methodology may be summarized such as:  

- stochastic sequential simulation of Ns AI models simulated with DSS taking into account the 

regionalization model;  

 

- synthetic seismic data calculation from the Ns Ip models previously simulated; 

 

- comparison on a trace-by-trace basis against the observed seismic data;  

 

- Selection of the best local correlation coefficient of a given iteration along with the elastic 

traces; 

 

- Use the best local correlation coefficient volume and the corresponding Ip traces as secondary 

variable for the co-simulation of a new ensemble of Ip models; 

 

- The iterative procedure stops when the global correlation coefficient is above a certain 

threshold. At the end the retrieved inverse models should be more geologically realistic, since 

they incorporate the knowledge of the subsurface geology. 
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3 Real case application  

3.1 General overview of the background geology 

The available real dataset, where the methodology described in the previous chapter was 

implemented, is located in an area characterized as a huge salt basin that has undergone a complex 

geological history and can be divided into stages of basin development: pre-rift stage (late Proterozoic 

to Late Jurassic), syn-rift stage (Late Jurassic to Early Cretaceous), and post-rift stage (Late 

Cretaceous to Holocene) (Figure 6). 

 

Figure 6 - Generalized stratigraphic column of the basin (from USGS, Michael E. Brownfield and Ronald R. 

Charpentier) 



12 

 

This sedimentary basin can be divided into a number of sub-basins aligned in a north-south direction 

and delimited by an east-west-trending fault system and other structural arches and highs related to 

syn-rift tectonics (Brownfield and Charpentier 2006). 

Pre rift stage: 

The pre-rift stage lasted through the Late Jurassic and incorporated several phases of intracratonic 

faulting and downwarping during which as much as 600 m of continental clastic rocks of Carboniferous 

to Jurassic age were deposited in the Interior subbasin.  

Pre-rift rocks in this basin are limited to the Jurassic Sandstone, which directly overlies Precambrian 

basement. This unit consists of well-sorted, quartzes, micaceous sandstone and was most likely 

deposited as alluvial or eolian sands. The total thickness of pre-rift rocks in the Basin is unknown, but 

more than 1,000 m of clastic rocks have been penetrated in some wells. 

Syn rift stage: 

Initial rifting in the salt basin formed a series of asymmetrical horst-and-graben basins trending parallel 

to the present-day coastline. Thick sequences of fluvial and lacustrine rocks were deposited in the rift 

basins forming turbidities deposits. Organic-rich, lacustrine rocks of the rift stage are some of the most 

important hydrocarbon source rocks in these basins. 

Post rift stage:  

Post-rift rocks from Aptian to Holocene in age represent the initial opening of the Atlantic Ocean. The 

initial post-rift rocks are of early to mid-Aptian age and consist of continental, fluvial, and lagoonal 

rocks that were deposited as rifting ceased in the province. A period of extensive deposition of 

evaporates units, mainly salt, followed. Younger post-rift rocks were generally deposited in two distinct 

regimes: as transgressive units and as open-ocean deep-water units. 

The area of interest basin covers 115,000 square km from shoreline to water depths of 3500 meters. 

In this basin has been discovered a lot of potential reservoir from tertiary age this led to focus in the 

deep-water turbidities sand associated with a large river within the continent. 

The turbidities systems located in different sedimentary basins around the world actually have a high 

economic interest, while more than 80% of the giant oil fields in production developed in this type of 

sedimentary systems. Thus, understanding how they are formed and their characteristics is vital for oil 

exploration, so the turbidic channels and other associated elements as overflow deposits are currently 

the target of oil studies. (USGS, Michael E. Brownfield and Ronald R. Charpentier) 
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Turbidities are not characteristic of a particular tectonic environment, turbidite sequence is the result of 

the transport and deposition of sediments due to turbidity current deep-water any tectonic condition. 

(Figure 7). 

 

Figure 7 - Example of turbidity current and deposit sediments (from Wadsworth Publishing company 1998) 

The oil and gas production is intimately related to its working petroleum systems, which are primarily 

Lower Cretaceous and Tertiary in age. The geological evolution began during the Early Cretaceous 

with the continental break-up of Gondwana. Lacustrine rift basins developed in extensive north-south 

trending linear. The now-famous major source rock, an organically rich lacustrine shale known as the 

Bucomazi Formation (Figure 6) fed oil into the recently-formed Kwanza Basin pre-salt traps as well as 

into the numerous Pinda carbonate oil fields in the basin. 

The primary source rock for the Delta Composite Total Petroleum System is the syn-rift Lower 

Cretaceous lacustrine shales of the Bucomazi Formation. Additional marine source rocks from the 

post-rift section are marine shales and marls of the Upper Cretaceous Labe Formation, the Paleocene 

to Eocene Landana Formation, and the Oligocene to Miocene Malembo Formation.  

Oil generation began in the Late Cretaceous and has continued to the present. The migration 

pathways are mostly fault related, but some lateral migration has occurred below the Loeme Salt 

within the Chela Sandstone. Lacustrine oils charged many of the Upper Cretaceous and Tertiary 

turbidite channels and sandstones in the Basin (Schoellkopf and Patterson, 2000). 

In the shallow-water areas, of the Basin, the majority of reservoir rocks are sandstones of both syn-rift 

and post-rift age, traps are mostly anticlinal. Some are relate to rollovers. Other traps are related to 

fault blocks or paleotopography. Seals are Cretaceous to Tertiary lacustrine and marine shales. In 

deeper water, reservoir rocks are expected to represent primarily Oligocene and Miocene turbidities 
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channels and basin-floor fans and mounds, traps are both stratigraphic and structural and include 

turbidite channels and sandstones, growth-fault-related sandstones sealed by shales. 

 

3.2 Dataset description 

The study area is located within an offshore turbidite environment in a medium-to-deep water 

environment with a large turbid channel that runs the entire study area in north-east to south-west 

direction. The known reservoirs are easily recognized on partial angles stack due to amplitude 

anomalies with the offset.  

The available data set comprised partial seismic volumes of 794 inline by 1194 crossline with a 

sampling rate of 4 ms. From the entire study area an inversion grid was defined such as 398 x 598 x 

200 and vertically delimited by within the interval of interest from 1100 ms to 1700 ms (Figure 9) 

inversion area delimited by Partex.  A set of 3 wells with Vp, Vs and density logs was also available. 

Notice a few P-wave velocity data in the well 4 located within the inversion area and that 

subsequently, this lack of information will have repercussions on the final model, however all data from 

wells 1 and 3 are located within the inversion area. A wavelet extracted from each partial angle stack 

individually was also made available.  

Figure 8 - Schematic cross-section of the basin with the possible location of the study area (rounded in red) (from 
USGS, Michael E. Brownfield and Ronald R. Charpentier) 
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Figure 9 - Cross section of the study case with the inversion area delimited by Partex and his location 
in the grid.  

 

The wells are located along the study area preferentially drilling the geologic pay formation. These 

wells were previously tied to the available seismic reflection data and the resulting angle-depend 

wavelets were also available. Any question related to the seismic to well tie and wavelet extraction 

procedures are out of the scope of this thesis. The high-resolution well-log data were upscaled into the 

reservoir grid ensuring that the extreme values, the mean and variance as retrieved from the original 

well-log data were preserved after the upscaling. 

 

Figure 10 - Comparison between the histograms of the original well-log data and the well-log data after the 

upscaling into the reservoir grid. From left of right: density, P-wave, S-wave velocities and density. The main 
statistics (mean and variance) are preserved after the upscaling process. 
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3.3 Well logs  

The inversion grid encompasses the three well (A1, A3, A4) preferentially drilling the geologic pay 

formation. The well-log data (Figure 11) was used along with the seismic reflection data to define 

different zones within the inversion grid. The Figure below show the bottom of the zones considered to 

generate the regionalization model.  

The proposed methodology is conditioned by the location of the existing experimental data, i.e., the 

wells locations. Figure 11 shows that the experimental data is mainly located between zones 2 and 5. 

The lack of data within all the zones represents a challenge for this application example.  

 

Figure 11 - well logs (A1, A3, A4) located along the study area preferentially drilling the geologic pay formation. 

 

3.4 Division by zones  

The study area is located in a high-energy turbiditic depositional environment that is expressed in term 

of rapid variations of the amplitudes content of the recorded seismic reflection data. The simultaneous 

interpretation of the available properties logs for the different wells along with the seismic reflection 

data was used to divide the study area in eight vertical zones as showed in Figure 12(division by 

zones), Figure 13 (interpreted horizons) and Figure 14 (geometrical modelling in 3D created in Petrel 

program). But this regionalization depends on the study area, the amount of information from the 

wells, the target and the interpretation of the geologist that the methodology applies.  
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Vertically in figure 13 the upper surfaces of the different zones can be observed with a clear east-west 

direction, and delimited by a west-east trending fault system very complex, that makes it difficult to 

interpret the seismic reflection data and other structural arches. The real seismic reflection data is 

highly non-stationary where different seismic units can be easily interpreted. In principle, the 

interpretation of the zones began taking into account the cross-section (Figure 12) that included the 3 

wells and therefore the information necessary to carry out the simulations. 

From here due to the complexity to interpret all the channels individually, it was decided to interpret 

the base and top of the main turbiditic channel (corresponding to zone 3). This zone comprises small 

channels related with different temporal episodes with not continuous values of seismic reflection data 

and without a clear delimitation. For the rest of the zones it is clear a simple vertical grid division 

based on surfaces parallel to top and zone 1, in this case the bottom of the inversion grid is not 

enough to properly describe the geological complexity of the study area.   

Each zone considered for the generation of the regionalization model does not match perfectly the top 

and base of each seismic unit as inferred from traditional seismic interpretation procedure. This 

decision it is important and allows including the non-stationary behaviour as interpreted from the well-

log data.  

The geological interpretation has to be as realistic as possible, since each zone will have the same 

properties in depth and therefore the same probability distribution function, it is important to highlight 

that a high number of zones do not ensure a good inversion. Note that each zone should be 

statistically significant in order to invert for reliable acoustic models. If a zone is too small or thin, there 

will be a lack of experimental data to infer the corresponding distribution and spatial continuity pattern.  

Figure 12 – Cross-section of model definition that will be used in the proposed methodology with a 

regionalization by zones within the seismic grid. 
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Figure 13: Interpreted horizons that represent top surface of the different zones from 2 to 8 (From top to bottom) 

with the contour lines every 100 meters and the range of values.  

 



19 

 

 

 

Figure 14 - Geometrical modeling in 3D created in Petrel program with a seismic resampling within the seismic 

grid to obtain the elastic properties by separation of zones with the location of the cross-section (red line) Figure 
12. 

Cross-section 
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4 Geostatistical seismic inversion applied to the real case study 

4.1 Conventional Global Stochastic Inversion 

4.1.1 Inversion parametrization  

The spatial continuity pattern of AI was inferred by modeling experimental variograms with SGeMs. 

The vertical variogram was computed from the upscaled well-log data and the horizontal direction from 

the real fullstack seismic volume. The horizontal spatial continuity pattern was estimated from the 

seismic due to the large distances between wells. The recorded seismic reflection data is always a a 

smooth representation of the natural high variability of the subsurface geology. Therefore the 

horizontal ranges of the variogram were adjusted manually by dividing the original range of the 

horizontal variograms by 2. (Table1) 

Table 1: Ranges of variogram in Conventional Global Stochastic Inversion 

 

Max Min Vertical 

Ranges 32 27 5 

 

 

Figure 15 - Variograms, max(Left), min(center) and vertical(right). The variograms were computed using 

exclusively the set of conditioning well data. 

Before running the iterative geostatistical seismic inversion, it was necessary to calculate the Acoustic 

impedance (6) from the available well-log data. Notice that the intrinsic characteristics of the prior 

distribution estimated from the well log, mean, variance and extreme values are preserved after the 

upscaling (Figure 15). 

𝑃  𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 =
1

𝐷𝑇𝐶𝑂
 (Feet/us)                                                        (4) 

𝑉𝑝 = 𝑃  𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 ∗ 0,3048(𝑚) ∗ 106(𝑠)                                             (5) 

𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 = 𝑉𝑝 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑘𝑃𝑎. 𝑠
𝑚⁄ )                                         (6) 
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Figure 16 - Acoustic impedance values from wells, the intrinsic characteristic of the prior distribution estimated 

from the well log, mean variance and extreme values are preserved after the upscaling. 

 

4.1.2 Result  

The dataset described in the previous section was successfully inverted with the conventional 

geostatistical seismic GSI inversion algorithm (Section 2.1). The inversion methodology converged 

after six iterations, at each iteration, a set of 32 acoustic model of Ip, were generated recurring to DSS 

geostatistical sequential simulation (Soares 2001).  

All individual simulations obtained at the final iteration of the iterative procedure generated synthetic 

seismic highly correlated with the recorded seismic reflection data. We can assess the results of this 

methodology by interpreting the best-fit inverse model and the mean model from the ensemble of 

acoustic models generated during the last iteration.  

The mean model is calculated with an arithmetic mean taken the 32 simulations on a pixel-by-pixel 

approach. This model represents the most probable features present within the set of inverted models. 

Note that all the models resulting from the last iteration produce synthetic seismic very well correlated 

with the real one. In this case study, the resulting mean model is able to reproduce both the small and 

large scale details as interpreted from the real acoustic model.  
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The Figure below shows the best-fit inverse model and the mean model of AI computed from the 

ensemble of acoustic models generated during the last iteration that can be used to interpret the 

inversion result. Notice than the convergence of the inverted acoustic models can be evaluated by the 

retrieve synthetic seismic reflection data (on the right Figure 15) that matches considerably well in 

both model with the real seismic (Figure 9) in term of spatial location, amplitude content and seismic 

reflection continuity.  

 

 

Figure 17 - Comparison between vertical sections extracted from (on the left) acoustic model computed from the 

ensemble of models simulated during the last iteration and (on the right) synthetic seismic reflection data. From 
top to bottom: best AI model, mean AI model. For profile location see Figure 9 

It is also important to highlight that the elastic inverted models from Figure16 reproduce the spatial 

distribution of the original elastic properties but at the same time are able to reproduce its values and 

their relative variation within the areas of interest with amplitude values higher than real seismic 

volume. The small-scale details are extremely important for reliable reservoir characterization. All 

inverted models shows large and small detail of interest and are constrained by the corresponding 

well-log data at their locations.  

The synthetic seismic reflection data presents medium to high amplitude values and continuous and 

low acoustic impedance values as inferred from the well data present on the right in the study area 

close to well A1. On the left part of the section it observed discontinuity seismic reflection with different 
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seismic amplitudes associated with a mix between low and high amplitude values. This zone 

corresponds to a depositional environment with high energy. 

Note that the global correlation coefficient between the recorded and the inverted seismic is more than 

0.9 for both models (mean and best AI model; Figure 17).  

 

Figure 18 - Global correlation coefficient between the recorded and the best inverted poststack seismic with a 

correlation of 0,951 (left) and between the recorded and the mean inverted seismic with a correlation of 0,946 

The next Figure represents the local correlation coefficient volume, calculated on a trace-by-trace 

basis between the real seismic and the synthetic seismic volumes. The interpretation of the local 

correlation cubes allows the identification of those local areas where the inverted seismic did not 

converged and present low correlation coefficients, frequently those areas correspond to zones where 

the estimated wavelet is not representative of the observed seismic reflection data. 

The local correlation coefficient is high for most of the trace locations. But the areas in where the 

synthetic seismic reflection data did not converge properly well toward the real one resulted in low 

local correlation coefficient, and are associated with a high degree of uncertainly.  
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Figure 19 - Local correlation coefficient volume calculated on a trace by trace basis between the best-fit synthetic 

and the real seismic volume 

The spatial uncertainty of the inverted elastic property can be assessed by the interpretation of the 

standard deviation that represents the distribution respect to the mean or the zones with higher and 

lower special uncertainly. As higher is the degree of uncertainly higher will be the variability of result. 

In last sections the importance of this model will be discussed when both methods are compared.  

 

 

Figure 20 - Standard deviation that represents the distribution respect to the mean. 
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4.1 Global Stochastic Inversion for non-stationary geological environments 

4.1.1 Inversion parametrization 

In the proposed methodology the simulation area is subdivided by zones (Figure 12) this zonation may 

be arbitrary, based on a prior knowledge of the natural system taken from seismic facies or taken into 

account the properties from the wells. From the experimental data obtained from each zone is defined 

a spatial continuity pattern given a data distribution function and a regional variogram (one for each 

zone).   

The vertical variogram is computed from the upscaled well-log data zone-by-zone and the horizontal 

variograms from the real fullstack in a zone-by-zone approach as well. The horizontal spatial continuity 

pattern was estimated from the seismic due to the large distances between wells and the lack of data 

from well-log. In this case due to the lack of well data and limited data in certain zones it was imposed 

for each zone a variogram with the same ranges as in the traditional methodology (Table 1 and Figure 

14) except for Zone 3 where continuity is very limited due to large amount of turbidite channels 

characteristic of the area and prevents a detailed characterization of its structure, in this case the 

variogram used was:  

Table 2: Ranges of variogram for non-stationary geological environments 

 

Max Min Vertical 

Ranges 10 10 5 

 

For the application example with the proposed methodology due to the lack of well-log data in each 

zone individually, in this case, in the zones 1 and 7 (Figure 20), it was introduced the entire original 

distribution of acoustic impedance as conditioning distribution (Figure 15). Moreover in the zones 6 

and 8 there are some experimental data but not enough samples to infer a distribution used to 

simulate. Therefore, the distribution as inferred form the entire dataset of acoustic impedance was 

used. For areas where there was few experimental data (zones 6 and 8) the global distribution of 

acoustic impedance was considered.  
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Figure 21 - Histograms of Ip dataset of all zones 1 to 8 

 

In the proposed methodology there is the ability to integrate data from other well or taking as in this 

case the entire data values of some property to incorporate in the different zones is an advantage of 

the proposed methodology since the Ip values used to populate the conditioning distribution are 

assigned to each seismic unit individually (Azevedo et al.2016).   

 

4.1.2 Result 

The iterative geostatistical seismic inversion GSI data regionalized by zones was concluded after 6 

iteration where set of 32 acoustic model, were generated recurring to DSS geostatistical sequential 

simulation (Soares 2001). 

From all individual simulations obtained at the end of the methodology, the best-fit and the mean 

model from the ensemble of acoustic model generated during the last iteration. The mean model is 

calculated with arithmetic mean taken the 32 simulations. Here again all the models resulting from the 

last iteration produce synthetic seismic very well correlated with the real one, notice that the synthetic 

seismic data resulting is a bit better conditioned in term of amplitude content compared with the 

traditional method, as the location of the main reflectors retrieve by both methodologies  is similar. To 

Zone 1                                      Zone 2                                       Zone 3                                     Zone 4 

Zone 5                                      Zone 6                                       Zone 7                                     Zone 8 
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each zone the models shows coherent and continuous layers as interpreted from the real seismic 

reflection data (Figure 9). 

The next models represents the best and mean model of AI computed by zones from the ensemble of 

acoustic models generated during the last iteration that can be used to interpret the inversion result.  

 

 

Figure 22 - Comparison between vertical sections extracted from (on the left) acoustic model computed from the 

ensemble of models simulated during the last iteration and (on the right) synthetic seismic reflection data. From 
top to bottom: best AI model, mean AI model. For profile location see Figure 9 

The synthetic seismic section computed from the best-fit inverse model and mean (on the left Figure 

21) matches considerably well the real seismic (Figure 9) in term of seismic reflectors continuity, 

spatial location and amplitude content due to the similitude among the acoustic models generated 

during the last iteration.  

Note that the global correlation coefficient between the recorded and the inverted poststack seismic is 

around 0.9 for both model (mean and best AI model). It is clear that the geostatistical seismic 

inversion with a regionalization model in this case is not able to reach higher global correlation 

coefficient between real and synthetic fullstack volume compared with the traditional GSI method 

(Figure 17) but enough to get reliable models of the study area.  
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Figure 23 - Global correlation coefficient between the recorded and the best inverted poststack seismic with a 

correlation of 0,91 (left) and between the recorded and the mean inverted seismic with a correlation of 0,89 

Next model represent the local correlation coefficient calculated trace by trace basis between the real 

seismic and the synthetic seismic volumes. The local correlation coefficient is high for most of the 

trace locations although a little bit lower that the traditional method without zones.  

 

Figure 24 - Local correlation coefficient volume of the proposed methodology by zones calculated on a trace by 

trace basis between the best-fit synthetic and the real seismic volume 

As in another method the convergence of the inverse methodology can also be assessed by the 

interpretation of the standard deviation that represents the distribution respect to the mean or the 

zones with higher and lower special uncertainly. In last sections the importance of this model will be 

discussed when both methods are compared.  
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Figure 25 - Standard deviation of the proposed methodology by zones that represent the distribution respect to 

the mean 
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5 Discussion 

As interpreted from the available well-log data the best fit inverse Ip model retrieved from the 

proposed inversion technique by zones shows that for example in the zone 1 there are highs AI values 

that agrees better with the available seismic reflection data. 

In the real seismic volume (on the top Figure 25) we cannot distinguish any geological layers, 

amplitude content or any structure within the first seismic unit. However, the best-fit inverse model 

from the traditional GSI shows low and high values of AI and a fine layering. The model resulting from 

the proposed methodology shows higher Ip values and more homogenous distributions. In fact, the 

standard deviation model obtained for the proposed methodology (right at the bottom Figure 25) 

shows smaller values of standard deviation, meaning a lower spatial uncertainty.  

When considering the rest of the zones, note that in the real seismic volume there is strong amplitude 

content and all zones present certain homogeneity and continuity. In the next case the zone 4 in the 

acoustic model retrieve is observed (Figure 26) 

In this case the result in both methodologies is different with less degree of continuity and lower values 

of AI per zones in the proposed methodology. Observing the available well log data in well A1 allows 

distinguishing low Ip values in almost all that zone that not matches considerably well in term of 

amplitude content, and does not make sense with the final model retrieve with the traditional GSI 

without zones for this specific area, where it is observed continuity and higher values of AI. 

Interpreting the standard deviation in Figure 27 the proposed methodology by zones achieves a lower 

variance, this means that the model is closer to the real seismic volume and therefore reach the final 

target of this methodology since the methodology generates models as close as possible in zones 

where the real seismic volume is good and therefore with lower degree of standard deviation.  

Besides notice that due of the separation in the distribution of Ip values for each area there are not 

unreliable discontinuities between zones within the simulated models generated by the proposed 

methodology. The method is very flexible, allowing complex spatial regionalization to be reproduced 

and simple enough to use and allow high numbers of scenarios to be tested. 

With the used of the traditional GSI (Soares 2007) it is get one solution with low degree of uncertainly 

but with the proposed methodology allow better uncertainly characterization.  
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Figure 26 – Real seismic volume (on the top) and comparison between the results obtained for zone 1 in the 

traditional GSI with the best seismic model and standard deviation (left) and the results obtained with the 
methodology proposed by zones with the best seismic model and the standard deviation (right) 
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Figure 27 - Real seismic volume (on the top) and more in detail (above right) and comparison between the results 

obtained for zone 4 in the traditional GSI with the best seismic model(left) and the results obtained with the 
methodology proposed by zones with the best seismic model(centre). 
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Figure 28 - Standard deviation of the traditional GSI result (left) and of the proposed methodology by zones 

(right) that represent the distribution respect to the mean.  
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6 Conclusion 

As conclusion the proposed technique was successfully applied to evaluate the implementation of 

multi-local distribution function to a real case study within a geostatistical framework. The acoustic 

model was computed over the entire ensemble of simulated AI models resulting from the dataset. The 

result showed that the retrieve inverse impedance model are able to reproduce synthetic seismic 

reflection data more correlated with the observed one and the synthetic volume have better amplitude 

content when compared with the real seismic and model are reliable and converged toward the global 

solution real AI model. 

Also the integration of the proposed technique by zones within the inversion procedure allows that the 

constrained distribution function may be populated with nearby data or as in this case the total dataset 

in concordance with the expected geology. The proposed methodology of stochastic sequential 

simulation by zones has the benefit of smoothing the zone transition between zones preventing the 

creation of discontinuities.   

Besides, the proposed technique may also be used within other different seismic inversion algorithms 

in order to improve the uncertainly characterization and flexibility allowing complex spatial 

regionalization and more number of scenarios to be tested as the AVO methodology (Azevedo. 2013) 

base in a global iterative geostatistical inverse procedure that allow the inversion of pre-stack seismic, 

sorted by angle gathers, simultaneously for density, P-wave and S-wave velocities and facies model. 

In this case the facies model is part of the inverse solution obtained from available well-log and pre-

stack seismic data and not derived afterward from the best-fit acoustic model, using a Bayesian 

classification (Avseth et al,2005) from simulated and co-simulated acoustic model of the density, as 

well as Vp/Vp ratio.  

By changing the AVO methodology by the proposed stochastic sequential simulation methodology as 

the model perturbation technique of the novel approach, it will be able to integrate within the inversion 

procedure the regionalization model and facies definition based on the simultaneous interpretation of 

seismic and well-log data and geological constrains from a priori knowledge. Each zone will be 

constrained by a given distribution function and his corresponding spatial continuity patterns as 

inferred from the experimental data.  

At the end the retrieved inverse models should be more geologically realistic, since they will 

incorporate more knowledge of the subsurface geology. 
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