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Abstract 

In reservoir modelling and characterization different seismic inversion techniques are conditioned by 

the available existing data provided by seismic surveys and the subsurface petro-elastic properties 

obtained by wells, the inversion solution tries to provide a subsurface model that fits equally all the 

existing observed data. A geostatistical framework is a natural solution to integrate both data within 

the same framework while assessing the spatial uncertainty of the inverted property. The main 

objective of this thesis is to assess the performance of a new implementation within a known 

geostatistical seismic inversion methodology to retrieve subsurface elastics models (acoustic 

impedance) to characterize a non-stationary real reservoir. The new implementation of geostatistical 

seismic inversion algorithm consists in a regionalization by zones of the study area as interpreted form 

the existing data and the knowledge about the subsurface geology. The proposed methodology uses 

multi-local distribution functions based on direct sequential simulation algorithms. The case study 

presented in this thesis consists in the inversion of a real and complex partial-stacked seismic data 

where three wells are available. The results obtained by the proposed methodology are compared with 

those obtained by a conventional approach. 
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1 Introduction  

Among the tools to identify potential hydrocarbon reservoir, 3D seismic volumes allow exploring a 

huge volume of area of the subsurface helping oil and gas companies to obtain enough information 

regarding the geological structures and predict the best locations to drill wells. Depending on the 

existing data, there are different ways to build 3D models and different modeling techniques allow 

obtaining models with variable degrees of detail. However, independently of the methodology, all of 

them have some degree of uncertainty. Choosing the right modelling approach allow decreasing the 

risk level and consequently the costs related with a given hydrocarbon reservoir, and consequently 

allowing better management decisions (Doyen 2007; Caers 2011). 

In petroleum applications, stochastic modeling of the reservoirs’ internal properties, such as lithofacies 

and sand bodies, is normally done by using core and log data which locally provide detailed reservoir 

information but lack spatial information, therefore, these models have great level of uncertainly far 

from the wells locations. For this reason the integration of seismic reflection data, take into account the 

properties directly measured at the wells, allow inferring more reliable subsurface models with less 

uncertainty, i.e., better spatially constrained.   

Normally seismic inversion methodologies take into account stacked seismic reflection data allowing 

the inference of acoustic and/or impedance models. Inferring the spatial distribution of impedance 

limits the identification of different litho-fluid facies of interest that could be obtained using pre-stack 

seismic data. The proliferation of high quality pre-stack seismic data allows us to obtain more reliable, 

with less uncertainty, reservoir models when compared with reservoir models derived exclusively from 

post-stack seismic reflection data.  

The main objective of this thesis is the implementation on a real and challenging dataset of a new 

geostatistical seismic inversion that is able to deal with non-stationary geological environments. The 

results obtained are compared against those retrieved from conventional iterative geostatistical 

seismic inversion methodology. 

The development of these algorithms was performed recurring to geostatistical toolboxes from 

CERENA/CMRP research group and Matlab. Petrel® (Schlumberger) was used for visualization of the 

results. 
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2 Methodology 

2.1 Conventional Global Stochastic Inversion 

The methodology used as the basis to develop the new methodology proposed under the scope of this 

thesis was the Global Stochastic Inversion (GSI, Soares 2007). The traditional GSI procedure uses a 

stochastic sequential simulation algorithm based on a single distribution function as estimated from 

the available well-log data and a single spatial continuity pattern as expressed by a variogram model 

for the entire study area. This methodology uses a global approach during the stochastic simulation 

stage and allows the inversion of fullstack seismic data for acoustic impedance (AI).  

This iterative geostatistical methodology is based on two key main ideas: the use, at the end of each 

iteration, of a global optimizer based on cross-over genetic algorithm based on the trace-by-trace 

match between synthetic and the seismic data to ensure the convergence of the inversion procedure 

from iteration to iteration; and the perturbation of the inverted models with stochastic sequential 

simulation, the direct sequential simulation (DSS; Soares et al 2007).  

This methodology generates for an entire seismic grid a set of Ns impedance models using existing 

well-log data as experimental data. Each impedance model is then convolved for the wavelet to create 

Ns synthetic seismic volumes which are compared on a trace-by-trace basis against the observed 

seismic reflection data. With this approach the areas of low signal-to-noise ratio remain poorly 

matched at the end of the inversion process. Contrary to the trace-by-trace approaches, an ensemble 

of best-fit inverted models will always present high uncertainty, for those noisy areas where the signal-

to-noise ratio is low (Figure 1). 

 

Forward 
model 

Figure 1- Schematic representation of GSI (from L.Azevedo 2013) 
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2.2 Global Stochastic Inversion for non-stationary geological environments 

Here is introduces the proposed geostatistical seismic inversion methodology that is able to 

simultaneously integrate a regionalization model based in zones. The regionalization model may be 

created based on the simultaneous interpretation of seismic and well-log data and geological 

constrains from a priori knowledge of the geology. Each zone will be constrained by a given 

distribution function and his corresponding spatial continuity patterns as inferred from the experimental 

data (the available well-log given for each zone and a variogram model by zone).  

The methodology can be summarized in the following sequence of steps (Azevedo et al. 2016): 

- The first step comprises the generation of a geological model and the division of the entire 

study area into smaller zones which should be geologically consistent 

 

- For each zone a histogram (one for each elastic property of interest) is assigned for each 

zone, the spatial continuity pattern of the property to be simulated is conditioned by the 

imposed variogram model for each zone individually. 

 

- Taking into account the regionalization model, the available dataset is extracted from wells as 

a function of the zones thus obtaining each model for each zone.    

- Generated of a random seed to define a random path over the entire simulation grid, 𝑢 = 1, … 

, 𝑁, where N is the total number of nodes that compose the simulation grid and “u ” is the 

current node location where the simulation is being performed. 

-  Estimation of the local mean and variance at 𝑥𝑢 with simple kriging estimate [Z(𝑥𝑢)∗] (2) and 

the corresponding kriging variance (𝜎
2
(𝑥𝑢)) (3) to sample directly from the global conditional 

distribution function as estimated from the experimental data (𝑧(𝑥𝛼)) located within a specific 

zone and the previously simulated data (𝑧(𝑥𝛼 )∗) within a neighborhood around u. 

                                                              (2) 

                                                    (3) 

These global conditional distribution functions are going to be conditioned by the zones, 

however it is important nothing that, the simple kriging estimate and variance are computed 

taking into account point data that belong to different regions. The simple kriging estimate and 

variance are computed with all the point data within a given neighborhood that may cross 
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different sub-regions. This is an important feature of the proposed approach since it avoids the 

generation of discontinuities at the boundaries of each region in the simulated models. 

-  Definition the interval of the 𝐹𝑧 (𝑧) (conditional distribution) to be sampled based on the simple 

kriging estimate and variance computed from the previous step 𝐹𝑧 (𝑧) corresponds to the 

probability distribution function of the variable to be simulated and estimated from the available 

experimental data that is located within that specific zone. 

 

Figure 2 - Example of global cdf obtained from one zone with the conditional distribution centered by simple 

kriging and variance 

-  The simulated values 𝑧𝑠 (𝑥0) are drawn from an auxiliary Gaussian probability distribution 

function Fz’(z) which is built from the global cdf 𝐹𝑧 (𝑧), Fz’(z) is defined by selecting and interval 

over  𝐹𝑧 (𝑧) centered on the simple kriging estimate [Z(𝑥𝑢)∗] value with an interval range 

proportional to the kriging variance (𝜎
2
(𝑥𝑢)). Generate a value 𝑦𝒔 from a Gaussian distributions 

((𝑥0)∗, 𝜎 2𝑆𝐾 (𝑥𝑢)) Return the simulated value 𝑧𝑠(𝑥0) = 𝜑−1(𝑦𝑠) 

-   Add the simulated value as conditioning for the simulation of the next location.  

-  Loop until all the N nodes of the simulated grid have been simulated. 

In term of inverse procedure this work proposes replacing the traditional stochastic sequential 

simulation in the methodology summarized in (Figure 1) with the stochastic sequential simulation with 

multi-local distributions. 

 

3 Results 

The study area is an offshore turbidities environment. The available data set comprised partial seismic 

volumes of 794 inline by 1194 crossline with a sampling rate of 4 ms. The inversion grid was defined 

such as 398 x 598 x 200 and vertically delimited by within the interval of interest from 1100 ms to 1700 

ms (Figure 3).  A set of 3 wells with Vp, Vs and density logs was also available. A wavelet extracted 

from each partial angle stack individually was also made available. The simultaneous interpretation of 



 

5 

 

the available properties logs for the different wells along with the seismic reflection data was used to 

divide the study area in eight vertical zones as showed the next figure. 

Figure 3 - Cross-section of model definition that will be used in the proposed methodology with a 

regionalization by zones within the seismic grid 

 

3.1 Conventional Global Stochastic Inversion 

In the methodology the spatial continuity pattern of AI property was inferred by modeling experimental 

variograms with SGeMs, the vertical variogram is computed from the upscaled well-log data and the 

horizontal direction from the real fullstack. (Table1) 

Table 1: Ranges of variogram in Conventional Global Stochastic Inversion 

 

For this method was necessary to calculate the Acoustic impedance which one was used in the GSI to 

obtain the seismic inverted. This dataset described was successfully inverted with the geostatistical 

seismic GSI inversion algorithm (Section 2). The inversion methodology converged after six iterations, 

at each iteration, a set of 32 elastic models of Ip, were generated recurring to DSS (Soares 2001). The 

next models represent the best and mean model of AI computed from the ensemble of elastic models 

generated during the last iteration.  
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Figure 4 - Comparison between vertical sections extracted from (on the left) elastic models computed from the 

ensemble of models simulated during the last iteration and (on the right) synthetic seismic data. From top to 
bottom: best AI model, mean AI model. For profile location see Figure 3. 

It is important to highlight that the elastic inverted models from Figure 4 reproduce the spatial 

distribution of the original elastic properties but at the same time are able to reproduce its values and 

their relative variation within the areas of interest with amplitude values higher than real seismic 

volume. The small-scale details are extremely important for reliable reservoir characterization. All 

inverted models shows large and small detail of interest and are constrained by the corresponding 

well-log data at their locations 

The convergence of the inverse methodology can also be assessed by the interpretation of the 

standard deviation (Figure 5) that represents the distribution respect to the mean. The next model 

represent also the local correlation coefficient volume, calculated on a trace-by-trace basis between 

the real seismic and the synthetic seismic volumes.  
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Figure 5 - Local correlation coefficient volume (left) and Standar deviation (right) 

 

3.2 GSI by zones  

In the proposed methodology the simulation area is subdivided by zones (Figure 3). From the 

experimental data obtained from each zone is defined a spatial continuity pattern given a data 

distribution function and a regional variogram (one for each zone).  In this case due to the lack of well 

data and limited data in certain zones it was imposed for each zone a variogram with the same ranges 

as in the traditional methodology (Table 1). 

For the application example with the proposed methodology due to the lack of well-log data in each 

zone individually, in this case, in the zones 1 and 7 it was introduced the entire original distribution of 

acoustic impedance as conditioning distribution. Moreover in the zones 6 and 8 there are some 

experimental data but not enough samples to infer a distribution used to simulate. Therefore, the 

distribution as inferred form the entire dataset of acoustic impedance was used.  

The integration of the proposed technique by zones within the inversion procedure allows that the 

constrained distribution function may be populated with nearby data in concordance with the expected 

geology. The proposed methodology of stochastic sequential simulation by zones has the benefit of 

smoothing the zone transition between zones preventing the creation of discontinuities.   

The iterative geostatistical seismic inversion GSI data regionalized by zones was concluded after 6 

iteration where set of 32 elastic models of Ip, were generated recurring to DSS geostatistical 

sequential simulation (Soares 2001). 

From all individual simulations obtained at the end of the methodology, the best-fit and the mean 

model from the ensemble of elastic models generated during the last iteration. Here again all the 

models resulting from the last iteration produce synthetic seismic very well correlated with the real 

one, notice that the synthetic seismic data resulting is a bit better conditioned in term of amplitude 

content compared with the traditional method, as the location of the main reflectors retrieve by both 
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methodologies  is similar. To each zone the models shows coherent and continuous layers as 

interpreted from the real seismic reflection data (Figure 7). 

 

 

Figure 7 - Comparison between vertical sections extracted from (on the left) elastic models computed from the 

ensemble of models simulated during the last iteration and (on the right) synthetic seismic data. From top to 
bottom: best AI model, mean AI model. For profile location see Figure 3 

Next model represent the standard deviation and local correlation coefficient calculated trace by trace 

basis between the real seismic and the synthetic seismic volumes. The local correlation coefficient is 

high for most of the trace locations although a little bit lower that the traditional method without zones.  

 

Figure 8 - Local correlation coefficient volume (left) and Standar deviation (right) 
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4 Discussion and Conclusion  

As interpreted from the available well-log data the best fit inverse Ip model retrieved from the 

proposed inversion technique by zones shows that for example in the zone 1 there are highs AI values 

that agrees better with the available seismic reflection data.  

In the real seismic volume (Figure 3) we cannot distinguish any geological layers, amplitude content or 

any structure within the first seismic unit. However, the best-fit inverse model from the traditional GSI 

shows low and high values of AI and a fine layering. The model resulting from the proposed 

methodology shows higher Ip values and more homogenous distributions. In fact, the standard 

deviation model obtained for the proposed methodology (Figure 8) shows smaller values of standard 

deviation, meaning a lower spatial uncertainty. When considering the rest of the zones, note that in the 

real seismic volume there is strong amplitude content and all zones present certain homogeneity and 

continuity. 

Now if zone 4 in the elastic model retrieve is observed, the result in both methodologies is different 

with less degree of continuity and lower values of AI per zones in the proposed methodology. 

Observing the available well log data in well A1 allows distinguishing low Ip values in almost all that 

zone that not matches considerably well in term of amplitude content, and does not make sense with 

the final model retrieve with the traditional GSI without zones for this specific area, where it is 

observed continuity and higher values of AI. 

Interpreting the standard deviation in Figure 8 the proposed methodology by zones achieves a lower 

variance, this means that the model is closer to the real seismic volume and therefore reach the final 

target of this methodology since the methodology generates models as close as possible in zones 

where the real seismic volume is good and therefore with lower degree of standard deviation 

As conclusion the proposed technique was successfully applied to evaluate the implementation of 

multi-local distribution function to a real case study within a geostatistical framework. The elastic 

model was computed over the entire ensemble of simulated AI models resulting from the dataset. The 

results showed that the retrieve inverse impedance model are able to reproduce synthetic seismic 

reflection data more correlated with the observed one and the synthetic volume have better amplitude 

content when compared with the real seismic and model are reliable and converged toward the global 

solution real AI model. 

Besides, the proposed technique may also be used within other different seismic inversion algorithms 

in order to improve the uncertainly characterization and flexibility allowing complex spatial 

regionalization and more number of scenarios to be tested. 
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