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Abstract 

This thesis intends to address a relevant problem of the oil and gas industry related with the modelling 

and characterization of hydrocarbon reservoirs that honour simultaneously existing historical production 

data and seismic reflection data, i.e. the integration of seismic reflection data into history matching. By 

honouring all available data the resulting reservoir models have a better chance to predict the reservoir 

behaviour. The proposed geostatistical history matching with seismic data integration procedure is an 

iterative methodology based on a genetic algorithm, acting as a global optimizer, where the perturbation 

of the models parameters is performed recurring to stochastic sequential simulation and co-simulation. 

The proposed workflow starts with the stochastic simulation of petro-elastic models, forward modelling 

and the comparison against the observed seismic and production data and the simulated ones. The 

definition of areas of influence for each well was tackled by two different approaches. According to a 

geometric criteria and based on the non-linear relationship between the model parameters 

(permeability) and the state variables (production deviations) in terms of correlation coefficients. The 

selection of the conditioning data for the next iterations is based on the petro-elastic ensemble simulated 

at the current iteration with better response in the MDS.  

Keywords: History Matching, Geostatistical modelling, seismic data integration, reservoir 

characterization. 

 
1. Introduction 

Reservoir modelling is by far not a trivial task 

since the resulting reservoir model should 

represent, in a reliable way, the reservoir 

characteristics (internal petrophysical 

properties) in order to be used as input to key 

reservoir management decisions. The input 

data (both static and dynamic) are collected 

under extreme conditions which may lead to 

substantial uncertainty in the measurements 

and interpretation of the data. Hence, stochastic 

approach is a natural solution of the reservoir 

modelling problem. The integration of static 

data (well-log and seismic reflection data) is 

usually performed recurring to geostatistical 

tools but when it comes to the integration of 

dynamic data into reservoir modelling, 

traditionally referred to as history matching, 

some problems comes up due to the highly non-

linear relationship between the static model and 

the fluid production. The history match is an ill-

posed problem, nonlinear and with non-unique 

solution where different models can match the 

observed historic production data. Thus, it is not 

surprising that the predictability of these 

reservoir models are often very poor.  

This work, by integrating the seismic reflection 

data within the geostatistical history matching, 

aims to simultaneously solve both inverse 

problems (history matching and seismic 

inversion) as a result of the simultaneous match 

towards the observed seismic reflection and 

historic production data while the history 

matching is performed, which allows the 

improvement of the reservoir predictions and to 
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quantify and capture the modelling 

uncertainties.  

2. Geostatistical reservoir 

modelling 

Nowadays, the importance of using 

geostatistical tools as part of reservoir geo-

modelling workflow is mainly due to enabling 

the integration within the same framework of 

data with different scale support and volume: 

well-log and seismic reflection data; that in 

early stages of geostatistical modelling provides 

trends of the subsurface geological properties 

by reproducing the highest and lowest values in 

areas near wells locations and the estimation 

through the seismic reflection data of the 

subsurface geological properties in all reservoir 

extension due to its higher spatial coverage. 

The seismic reflection data only contains 

indirect measurements of the subsurface 

geology and its relationship with the subsurface 

petrophysical properties is non-linear and 

approached as an inverse problem. Therefore, 

geostatistical tools are the solution in order to 

obtain resulting inverted models able to 

reproduce the highest and lowest values in all 

reservoir extension, allowing reducing the 

uncertainty in areas far from the wells locations 

and allowing more detailed, heterogenic and 

reliable models when compared with those 

models based exclusively from well-log data.  

The inference of an unknown value,𝑍(𝒖)∗ at a 

certain location 𝒖 given a set of experimental 

data can be achieved through sequential 

stochastic simulation algorithms. Direct 

sequential simulation and co-simulation with 

joint probabilities distributions are sequential 

stochastic simulation algorithms able to 

overcome the other stochastic approaches due 

to the capacity of reproducing all the values 

retrieved from the experimental data, as well as 

to ensure the reproduction of the experimental 

joint probability distribution between the primary 

and the secondary variables on the simulated 

models and the reproduction of the 

experimental bivariate cumulative distribution 

function between the primary and secondary 

variables even when the correlation between 

them is low (Deutsch and Journel 1998; Soares 

2006).  

2.1. Geostatistical seismic reflection 

data integration 

The integration of seismic reflection data can be 

achieved through the geostatistical framework 

which starts by inferring the subsurface elastic 

properties (e.g. acoustic and/or elastic 

properties). Transform seismic reflection data 

into petrophysical properties is an inverse 

problem, where is only known the response of a 

particular Earth’s system to a limited set of 

indirect measurements, which tries to infer the 

parameters of the system in study that give rise 

to that solution (Tarantola 2005; Bosch et al. 

2010).  

The indirect geophysical measurements or 

observations (𝒅𝒐𝒃𝒔 ∈ 𝑹𝒔) which are normally 

contaminated by some errors (𝒆) originated 

from different sources and the model parameter 

space of the subsurface properties of interest 

(𝒎 ∈ 𝑹𝒏)  are related by a forward model (𝐹) 

that may be expressed as next (Tarantola 

2005): 

𝑑𝑜𝑏𝑠 = 𝐹(𝑚) + 𝑒 (2.1) 

The forward model, 𝐹, can be written in the 

following form: 

𝐴 = 𝑟 ∗ 𝑤 (2.2) 
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Where 𝐴 are the recorded seismic amplitudes, 

𝑟 are the subsurface reflections coefficients that 

are convolved with a wavelet 𝑤.  

Global Stochastic Inversion (GSI) 

The Global Stochastic Inversion (GSI; Soares et 

al. 2007; Caetano 2009) is an iterative 

geostatistical methodology based on two main 

ideas: the used, at the end of each iteration, of 

a global optimizer based on a genetic algorithm 

with the cross-over principle; and the 

perturbation of the inverted models with 

stochastic sequential simulation (DSS and co-

DSS). The general outline of this iterative 

geostatistical methodology is present in the next 

Figure 1: 

 

Figure 1 - Schematic representation of the Global 
Stochastic Inversion methodology (Azevedo 2013). 

2.2. History Matching 

The integration of dynamic data into 

petrophysical models of petroleum reservoirs is 

traditionally conducted by history matching 

techniques which allows the calibration of the 

static model to a known dynamic data by tuning 

the reservoir model petrophysical properties 

(Mata-Lima 2008). 

The history matching is an inverse problem, 

where the reservoir dynamic response is known 

in terms of flow rates and pressure but the 

conditions that originate such result are 

unknown, such as the parameters spatial 

distribution e.g. permeability and porosity. The 

history matching is also an ill-posed problem, 

very nonlinear and with non-unique solution, 

that can lead to a multiple combinations of the 

model parameters and reproduce equally good 

history matched models which may feature 

different geological and petrophysical 

properties, i.e. different variable combinations 

of reservoir model that generate a good match 

to the production data with the same degree of 

accuracy (Gomes and Alves 2013; Caeiro 

2014). 

Classical approach to history matching 

Traditionally, the main idea behind most history 

matching procedures is to perturb the model 

parameter space within an iterative procedure: 

(i) initially it is characterize the reservoir 

petrophysical properties by taking into account 

the prior knowledge (static model); then (ii) fluid 

flow simulation (dynamic model) is run on the 

previous models to obtain the simulated 

production history; (iii) the comparison between 

the simulated historical production data from 

each model and the real historical production 

data is done according to a mathematical 

expression, the objective function, that 

measures the difference between the observed 

production and the simulated production: 

𝑀𝑓 =
1

2
∑

(𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖)2

𝜎𝑖
2

𝑁

𝑖=0

 (2.3) 

Where, at time=i, 𝑜𝑏𝑠𝑖 is the observed or 

historical data (e.g. rate or pressure) and 𝑠𝑖𝑚𝑖 

is the simulated results. N refers to the number 

of measurements (the amount of time steps 

where the measurement was made) and 𝜎𝑖
  the 

measurement error in the observed data 
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(goodness function); and (iv) create a 

perturbation in the initial model with the 

information obtained from the objective function 

and repeats all the previous steps until a 

minimum value of the objective function is 

achieved. 

3. Geostatistical history matching 

integrating seismic reflection 

data 

Generating Earth models able to fit both 

recorded seismic reflection and historic 

production data is essential to better 

hydrocarbon reservoir characterization and its 

forecast. Commonly, both processes are 

approached in separate workflows where each 

type of data is matched individually (Azevedo 

2013). 

The petro-elastic models obtained from 

geostatistical seismic inversion algorithms are 

able to match the observed seismic data, 

however in mature fields they may start to show 

some incapacity within the history matching 

process since while is tuning the reservoir 

models to match the observed production data, 

the resulting petro-elastic models starts to 

diverge from the observed seismic reflection 

data. This event is more evident at locations far 

from the wells, where the constraining data is 

fewer. Therefore, it is proposed a geostatistical 

history matching methodology where the 

seismic data is integrated as part of the history 

matching procedure. This integrated 

methodology is based on a genetic algorithm, 

acting as a global optimizer, where the selection 

of the conditioning data for the next iterations is 

based on the petro-elastic ensemble simulated 

at the current iteration with better response in 

the MDS and the perturbation of the models 

parameters is performed recurring to stochastic 

sequential simulation and co-simulation. 

Figure 2 - General framework of the proposed methodology with the integration of seismic data. 
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The proposed methodology can be divided in 

two approaches: the geostatistical history 

matching (Section 3.1) and the geostatistical 

history matching with seismic data integration 

(Section 3.2). 

3.1. Geostatistical history matching 

The implementation of this methodology is 

firstly based on the prior information, and from 

the study of well-log data values and spatial 

continuity allows to assume the properties 

distribution and the spatial continuity pattern 

(imposed by the variogram model) of the 

reservoir at the same time. By taking into 

account the initial study regarding the prior 

information it is performed the stochastic 

sequential simulation algorithm, DSS, by 

generating 𝑁𝑠 equiprobable petrophysical 

models. Then, through the dynamic response 

obtained from the dynamic fluid flow simulation 

of each simulated model is possible to evaluate 

how well the model can reproduce the real 

historic production data by taking into account 

the values of pressure and water production 

from each well for each time, the multi-criteria 

objective function, M: 

𝑀 = ∑ 𝑤𝑒𝑙𝑙𝑠 ∑ 𝑊𝐵𝐻𝑃, 𝑊𝑊𝑃𝑅 ∑ 𝑡𝑖𝑚𝑒
(𝑞𝑖𝑗𝑘

𝑜𝑏𝑠 − 𝑞𝑖𝑗𝑘
𝑠𝑖𝑚)

2

2𝜎𝑖𝑗
2  (3.1) 

Where 𝑞𝑖𝑗𝑘
𝑜𝑏𝑠 are the observed values, 𝑞𝑖𝑗𝑘

𝑠𝑖𝑚 are 

the simulated values, 𝜎𝑖𝑗
2  the data variance, 

WBHP the well bottom hole pressure, and 

WWPR the well water production rate. 

Then by defining areas of influence around 

each well it is performed a local perturbation 

with the objective of using the best composed 

models to define patches around each well 

considering only the ones with the closest 

dynamic response through the previous multi-

criteria objective function. This best composed 

models will be used as secondary variable for 

the co-simulation for the next iteration. While 

perturbing the model parameters space with the 

generation of new reservoir models using the 

previous simulation model as soft data, this 

iterative process aims to achieve a faster 

convergence of the resulting models by 

decreasing the difference between simulated 

and observed historical production data.  

 

Figure 3 - Best composed image representation 
applied to a reservoir were the wells distribution 
comprises a five spot strategy (4 producer wells and 
1 injector well). 

The criteria herein used consist into a 

symmetric division of the reservoir space for 

each well constraining all the reservoir to match 

towards the historical production data. One of 

the problems related history matching is the 

loss of prior information by tuning the reservoir 

petrophysical properties, i.e. the loss of the 

properties spatial continuity pattern. As a 

consequence, the consistency between the 

static data and the resulting simulated models 

may not be reproduced. Therefore, in order to 

tackle this problem, it is proposed a new way to 

define the areas of influence, according to: (i) 

geometric criteria and (ii) correlation coefficients 

between the ensemble of the petrophysical 

properties and the deviations between real and 

simulated production responses. Thus, by 

considering different definitions of areas of 

influence and with the seismic data integration 

(Section 3.2) is possible to guarantee a better 

reproduction of the reservoir properties by 

matching not only the historic production data 

but also the observed seismic reflection data.   
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3.2. Geostatistical history matching 

with seismic data integration 

Besides the simplicity of implementation and 

faster convergence in geostatistical history 

matching while the model parameter space is 

tuned to match the observed production data, 

the resulting petro-elastic models may start to 

diverge from the observed seismic data. This is 

more evident at locations far from the wells, 

where the constraining data is fewer, making 

this models less suitable to predict the reservoir 

behaviour since the misfit between observed 

and simulated production data are only known 

at sparse locations (well locations). 

The proposed workflow may be divided in three 

different stages: (i) the stochastic simulation of 

petro-elastic models, forward modelling and the 

comparison against the observed seismic and 

production data; (ii) the definition of areas of 

influence according to geometric criteria (radius 

of influence) and the definition of influence 

areas according to correlation coefficients 

between the ensemble of the petrophysical 

properties and the deviations between real and 

simulated production responses; (iii) the 

selection of the conditioning data for the next 

iterations based on the petro-elastic ensemble 

simulated at the current iteration with better 

response in the MDS by taking into account a 

multi-objective function:  

𝑀𝑓 = 𝑊𝑠𝑦 × √ ∑
1 − (𝜌𝑖𝑟 + 𝜌𝑗𝑟)

2

𝑁𝑠

𝑖,𝑗=1

+ 𝑊𝑑𝑦 × ∑
(𝑥𝑖𝑟 − 𝑥𝑗𝑟)

2

2𝜎𝑖
2

𝑁𝑠

𝑖,𝑗=1

, 𝑟 = 1, … , 𝑅 (3.2) 

Where 𝑅 is the total number of wells, the 

𝜌𝑖𝑟  and 𝜌𝑗𝑟, and the 𝑥𝑖𝑟 and 𝑥𝑗𝑟 are both 

responses of the ensemble of models 

comprising the 𝑁𝑠 simulated seismic and 

production models with the real seismic 

reflection data and the historical production data 

respectively for a given well (𝑟); 𝜎𝑖
  is the 

deviation assumed for the historical production 

data; 𝑊𝑠𝑦 and 𝑊𝑑𝑦 are user-defined weights 

defined for seismic and dynamic data 

respectively. These models are patchwork 

models created through the selection of best-fit 

regions from the set of simulated models which 

ensure the lowest misfit between observed and 

synthetic data for both, recorded seismic 

reflection and observed historical production 

data.  

4. Case study 

The proposed methodology was developed and 

implemented in a synthetic reservoir, the 

Stanford VI reservoir (SVI; Castro et al. 2005), 

where only Layer 2 was considered. 

The reservoir is an asymmetric anticline 

comprising meandering channels of variable 

sizes with four facies types: floodplain, point 

bar, channel and boundaries; and no faulting, 

composed by 90 thousand cells (60 × 75 × 20) 

where each cell as the dimension of 50 × 50 ×

2 meters in the i, j, k directions, respectively. 

The dataset comprises, along with the well set, 

the true three-dimensional models of acoustic 

impedance, porosity and permeability as well as 

a noise-free full-stack seismic volume. 

The original synthetic dataset, assumed as real 

data within this thesis, is composed by a set of 

23 wells from where only 12 were used to 

constraint the geological history matching with 

seismic data integration, while the rest of the 

wells were not used in any part of the 

procedure. The reservoir production start due to 

the existent pressure supported by the aquifer 

and it was in production during approximately 3 

years, from February 1st, 1975 until December 

15th, 1977. The 12 production wells were 

located preferentially in the Western part of the 

model.  
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5. Results 

The results presented in this section may be 

divided into two parts, depending on the 

influence well criteria used: geometric criteria 

(Section 5.1) and according to the correlation 

coefficients between permeability in each grid 

point and deviation in each well (Section 5.2). 

Those areas, surrounding or far away from the 

wells location can have a huge impact within the 

proposed methodology, and each criteria is 

performed differently within the geostatistical 

history matching with seismic data integration in 

order to assess the stability of the proposed 

methodology to the regionalization model. 

5.1. Geometric criteria 

By considering the definition of areas of 

influence according to a radius of influence, the 

areas outside the areas of influence of each well 

are only conditioned to the seismic inversion, 

i.e. the convergence of those areas are only 

conditioned to the seismic inversion 

convergence and the areas inside those areas 

are simultaneously conditioned to both seismic 

and historic production data. The convergence 

was reached after 10 iterations with 16 

ensembles of petro-elastic models: acoustic 

impedance, porosity and permeability; which 

were simulated and co-simulated per iteration.  

Different sizes of the area of influence of each 

well has different impact on the resulting 

inverted petro-elastic models: smaller influence 

areas allow the reproduction with more 

accuracy and detail of the high variability of the 

real petro-elastic models, i.e. the small and 

large scale non-stationary patterns; while in 

other hand, (on the top of the figures) higher 

well size influence definition are only able to 

reproduce the main features, the large scale 

non-stationary patterns (Figure 4). Therefore 

reflecting the importance of the seismic as part 

of the iterative geostatistical procedure.  

 

 

 

 

 

 

Figure 4 - Horizontal sections extracted from left to 
right: the real petro-elastic models and the inverted 
petro-elastic models. (On the top) for the larger area 
of influence and (on the bottom) the small area of 
influence. 
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The resulting synthetic seismic volume are able 
to reproduce approximately the non-stationary 
patterns related with the meandering channels 
reproducing its high variability in terms of shape 
and thickness (Figure 5). 

 

Figure 5 - Horizontal sections extracted from (left) the 
real seismic data, (middle) the synthetic seismic with 
less area of influence and (right) the synthetic 
seismic with higher area of influence at the end of the 
iterative geostatistical process. 

Since this thesis aims to solve simultaneously 

two different non-linear inverse problems, 

through the best local correlation cube created 

at the end of each iteration it is possible to 

interpret the evolution of the convergence 

methodology by visually inspecting the best 

local correlation coefficients volumes computed 

at the end of each iteration (Figure 6). 

 

Figure 6 - Horizontal sections extracted from the best 
local correlation volume (top) for the smaller well size 
influence and (bottom) for the higher well size 
influence at the end of: (from left to right) iteration 1 
and iteration10. On the right, the correlation 
coefficient evolution for each one, were the green 
curve refers to the higher well size influence and the 
orange curve to the smaller well size influence. 

The convergence in terms of WBHP and 

WWPR are also very good for both cases, 

reflecting that the match towards the historic 

production data has been achieved. 

 

5.2. According to correlation 

coefficients between permeability in 

each grid point and deviation in 

each well 

Due to the non-uniqueness nature of the history 

matching problems ensuring a small deviation 

over the production profiles, it does not ensure 

how the retrieved petrophysical models are 

close to the real solution. The definition of well 

influence according to correlation coefficients 

between permeability in each grid point and the 

deviations over the simulated and real historic 

production data in each one of the wells allows 

to constrain all grid cells to the match towards 

the historic production and the seismic data 

simultaneously. 

The proposed methodology is highly dependent 

on the convergence of both, however this does 

not guarantee the reproduction of the main 

geological features of the inverted petro-elastic 

models, acoustic impedance, porosity and 

permeability. Therefore, different dynamic and 

seismic weights were considered, i.e. more or 

less seismic influence within the iterative 

geostatistical procedure. 

The convergence was reached after 6 iterations 

with 32 ensembles of petro-elastic models: 

acoustic impedance, porosity and permeability; 

which were simulated and co-simulated per 

iteration. By considering higher seismic 

influence, as the iterative geostatistical 

procedure gradually increases its convergence 

the reproduction of the large and some of small 

scale non-stationary patterns is clearly (Figure 

7). At the end the iterative geostatistical 

procedure, the synthetic seismic volume were it 

was considered the seismic higher weight is 

able to reproduce more approximately the non-

stationary patterns related with the meandering 
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channels and its high variability in terms of 

shape and thickness (on the right of the Figure 

8). 

 

 

 

 

 

 

Figure 7 - Horizontal sections extracted from left to 
right: the real petro-elastic models and the inverted 
petro-elastic models. (On the top) with less seismic 
influence and (on the bottom) with higher seismic 
influence. 

At the end the iterative geostatistical procedure, 

the synthetic seismic volume were it was 

considered the seismic higher weight is able to 

reproduce more approximately the non-

stationary patterns related with the meandering 

channels and its high variability in terms of 

shape and thickness (on the right of the Figure 

8). In the other hand, when is lower the synthetic 

seismic volume cannot reproduce accurately 

the non-stationary patterns but only some 

proportions without continuity (on the middle of 

the Figure 8). 

 

Figure 8 - Horizontal sections extracted from (left) the 
real seismic data, (middle) the synthetic seismic with 
less seismic weight and (right) the synthetic seismic 
with higher seismic weight at the end of the iterative 
geostatistical process at different depths. 

The convergence in terms of WBHP and 

WWPR is different for different seismic 

influence in the multi-objective function as 

expected, since with less seismic influence and 

consequently higher dynamic influence the 

match towards the historic production is better. 

The impact of higher or less seismic influence 

within the iterative geostatistical procedure may 

be assesses through the convergence in terms 

of the objective function as the Figure 9 shows. 

 

Figure 9 - Multi-objective function evolution at the 

end of each iteration for the geostatistical history 
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matching with seismic data integration: (the red line) 
with less seismic influence and (the blue line) with 
more dynamic influence. 

 Another way to recognize that the parameter 

model space is considerably well explored by all 

the models computed during the iterative 

geostatistical procedure, is by plotting all the 

models of each well from the first and the last 

iteration. This reduced space was created by 

retaining the first 2 eigenvalues that explain 

about 70% variance of the original model space. 

By plotting the dimension 1 versus dimension 2 

it is easily recognizable that the algorithm is 

converging towards the real model response 

along the iterative procedure. It was considered 

only the well P3 from the 12 wells in Figure 10. 

 

Figure 10 – MDS plot for all models produced in the 
first iteration (green circles) and the last iteration 
(black circles) well P3: (on the left) the case were it is 
considered higher seismic influence and (on the 
right) the case were it is considered less seismic 
influence. The true models are represented by the 
red circle 

6. Summary and Conclusions 

The implementation of the geostatistical history 

matching with seismic data integration is very 

promising since the results from different areas 

of influence are consistent with the real petro-

elastic models. In the inverted petro-elastic 

model, the major patterns are reproduce even 

though it is difficult to represent reservoir 

models with non-stationary patterns associated 

with meandering channels. 

It was studied two different criteria’s in order to 

define the areas of influence of each well, and 

the areas constrained to the radius influence 

besides reproducing better the properties 

spatial distribution does not constrain all the 

reservoir extension to both inverse problems, 

while the other criteria constrain and are able to 

solve both inverse problems in all reservoir 

extension as well as to reproduce the major 

properties spatial distributions when it is taken 

into account higher seismic influence in the 

multi-objective function. 
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