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Abstract —Deep brain stimulation, which works with the emission 

of high frequency pulses in specific brain structures, is a procedure 

used for the treatment of Parkinson’s disease. During the planning 

of the surgery of the electrode implants, the stimulation target 

must be located with extreme precision. The target selected for the 

treatment of Parkinson’s disease is usually the subthalamic 

nucleus and its location is normally obtained by iterative methods 

based on the observation of the brain images. The purpose of this 

work is to create a method for its automatic targeting. Two 

approaches are presented in this work. The first one considers a 

collection of anatomical measurements of the brain and uses them 

to predict the location of the implanted electrodes. The second one 

has the same working basis, however it uses a set of extracted 

features from small volumes of the medical image, located around 

the mesencephalon and the diencephalon. The errors obtained for 

both the approaches were very close to those from the surgical 

planning, where predictions were made manually, for the same 

group of patients used in the models, by the medical team from 

Hospital de Santa Maria (1.55 and 2.67 millimeters for the 

component orthogonal to the electrode trajectory and for the 

component within the trajectory, respectively). The minimum 

errors obtained with the predictive models were 1.36 (orthogonal) 

and 2.28 (within trajectory) millimeters.  

 

Keywords—Automatic targeting, subthalamic nucleus, deep brain 

stimulation, Parkinson’s disease, support vector machine, linear 

regression 

I. INTRODUCTION 

EEP brain stimulation (DBS) is a technique used for the 

treatment of some neurologic dysfunctions such as 

Parkinson’s disease (PD) [1]. It works through the emission of 

high frequency pulses in specific areas of the brain which vary 

according the disease being treated  [2].  

For the DBS technique to be applied, it is necessary a surgical 

intervention which consists in the insertion of electrodes on the 

stimulation targets. This surgery must be done with the 

maximum precision possible since the dimensions of those 

stimulation targets are very reduced and the number of safe 

trajectories for the electrodes is limited.  

The most common target for the treatment of PD’s symptoms is 

the subthalamic nucleus (STN) [3]. This structure is found in 

both cerebral hemispheres, therefore, the implantation of the 

electrodes is, generally, bilateral and both subthalamic nucleus 

remain under stimulation after the intervention. 

Due to the similarity between the density of the STN and the 

surrounding structures, it is rarely possible to identify them on 

the conventional medical images [4]. This is the main difficulty 

found during the planning of the electrodes’ implantation. Thus, 

the methods that are most used to locate the STN are based on 

statistical atlas which provide a set of functional coordinates 

relative to the middle commissural point (MCP-based)[5, 6, 7, 

8, 9, 10]. From these coordinates it is obtained a first estimation 

of the STN’s location which will then be adjusted trough 

iterative methods based on the observation of the position of the 

surrounding structures. 

During the surgical procedure, the predicted location of the 

STN, obtained during planning, is adjusted by the micro 

electrophysiological recording and by macro stimulation tests. 

These two procedures are executed with a set of 5 

microelectrodes, which are introduced through the planned 

trajectory. One of the electrodes is central and the remaining are 

separated by 2mm gaps in lateral, medial, anterior and posterior 

directions. After the electrophysiological stimulation tests 

(executed in various spots of the various trajectories that were 

chosen based on the recordings) it is elected the best stimulation 

spot which will be the target of the treatment. The definitive 

electrode is then introduced trough the trajectory of the chosen 

spot and, after the patient recovery, a stimulation test is 

performed to the various poles located on the tip of the 

electrode. The goal of this test is to find which stimulation 

contact provides the best clinical results. The position of the 

D Fig. 1. DBS electrodes visible in X-ray image [17] 
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active contact will be considered as the best location found for 

that patient.  

The methods for the automatic prevision of the STN’s location 

already validated are based on image registration tools to find, 

in a new patient, the analog of the stimulation spots already 

implemented in other patients [4, 11, 12]. For the 

implementation of this method is necessary, at first, to find the 

coordinates of the stimulation spots of a group of patients on 

which the electrodes had already been implanted. The 

coordinates of those stimulation spots are obtained through 

medical images (generally CT) acquired after surgery, on which 

is possible to see the implanted electrodes. The second step is 

the registration of those patients’ MRIs on the new patient. On 

these MRIs, the STN’s location, obtained during the first step, 

was previously marked. This way, the patient will have 

registered on his MRI a cloud of stimulation spots representing 

the results obtained in previous interventions. Thus, the method 

estimation of the STN’s location corresponds to that cloud’s 

centroid. 

The goal of the study presented is to propose and validate an 

automatic method for the location of the STN based on a 

predictive model that uses the information of the patient’s 

encephalic image. The motivation for the creation of a model of 

this kind originated from the conviction that the variability of 

the STN’s positioning is somehow related to the variation in 

size and location of other structures visible in the medical 

images. The proposed models, receive as an input, the 

information related to the encephalic image of a patient and 

provide as an output, the 3 coordinates of STN’s location 

relatively to the mid-commissural point (MCP). The two main 

approaches proposed will be tested with various learning 

methods and various data combinations. The difference 

between these two approaches is the type of information 

acquired from the patient’s MRI. The measurements’ approach 

considers a set of anatomical dimensions obtained in the MRI. 

The second approach considers, starting from a set of small 

cubic volumes located around the ventricular system, 

mesencephalon and diencephalon, a set of image features such 

as the spatial average of the voxels’ intensity values and the 3 

averages of the directional gradients obtained from each voxel. 

This last approach was named features’ approach. These two 

types of approaches were tested considering 2 learning 

methods: linear regression (LR) and nonlinear regression based 

on a support vector machine (SVM). Due to the over 

dimensionality of the entry data considered for both models, 

two kinds of methods were applied to reduce the data 

dimensionality – feature selection and feature extraction – in 

order to obtain more precise models. For the features selection 

a wrapper method was implemented, using a genetic algorithm. 

The feature extraction was implemented trough a principal 

component analysis (PCA). 

Another important aspect considered was the brain shift effect, 

a phenomenon that occurs with the loss of liquor during the 

surgical procedure. That loss translates in a weakening of the 

structural support of the brain which, after some time, starts to 

suffer small deformations. Therefore, due to the bilateralism of 

the implants, that happen sequentially, when the second implant 

is introduced the brain has suffered a more significant 

deformation. Thus, the deviation between the estimated target, 

during the planning, and the final stimulation target is larger for 

the second implant. As such, from the collected data a selection 

of the first implants was preformed, so that some models 

consider only these and other consider both sides of implants. 

II. MATERIALS AND METHODS 

A. Data 

In this study, a set of 18 patients with PD, whose bilateral 

implants were performed from 2006 to 2012, were considered 

(36 implantations). Data form all the surgery plans were 

gathered containing functional coordinates of the estimated 

STN’s location. Information regarding the side order of each 

implant (left or right) was gathered as well. 

T1-weighted magnetic resonances were generally acquired with 

TR 24.9ms, TE 1.6ms, 256 x 256 x 100 voxels, a resolution of 

1.0156 x 1.0156 x 2 mm3 in a 1.5T scanner. The computerized 

tomography exams were mainly acquired at kVp=120, exposure 

315mAs and 512x512 pixels. In-plane resolution and slice 

thickness were, respectively, 0.5391x0.5391 mm2
 and 2mm. 

Fig. 3. 5 Microelectrode configuration [14] 

Fig. 2. Zoom in the DBS electrode tip. The four contacts are responsible for 

the stimulation. Each contact has the diameter of 1mm and 1.5mm of height 
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B. Measurements Model 

The information used in the first model proposed was a set of 

10 anatomical dimensions that were measured from the T1-

weighted MRI of each patient. To create this model, it was 

required to gather this dimensions from a set of implanted 

patients. These anatomical measurements were suggested by 

the neurosurgery team from Hospital de Santa Maria. The 10 

measurements were (see numbers in figure 4 bellow): 

 Distance between anterior and posterior commissures (1) 

 Left and right bi-ventricular axis (2 and 3, respectively) – 

It is the distance between the 3rd ventricle floor and the 

lateral side of the frontal horn of the respective lateral 

ventricle. This distance is measured in the coronal plane 

that contains the mid-commissural point (MCP). 

 Inter insular lobe distance (4) – It is the distance that 

goes from the left to the right insular lobe measured over 

a horizontal line that intersects the MCP, in the coronal 

plane that also contains it. 

 Third ventricle width (5) – Distance between the lateral 

walls of the third ventricle measured in the axial plane 

that contains the MCP over a lateral-medial line that also 

crosses the MCP.  

 Third ventricle height (6) – Distance between the floor 

and the roof of the third ventricle, measured in the 

coronal plane that contains the MCP over a vertical line 

that also intersects it. 

 Corpus Callosum’s chord (7) – The longest distance, 

measured in the sagittal plane that contains the MCP, that 

separates the posterior side of the genu of the corpus 

callosum and the anterior side of the splenium. 

 Corpus Callosum’s vertical axis (8) – Distance between 

the MCP and the inferior side of the Corpus Callosum 

trunk, measured over a vertical line in the sagittal plane 

that contains the MCP. 

 Distance between the outermost portions of the frontal 

horns of the lateral ventricles, measured in the coronal 

plane that contains the MCP (9). 

 Distance between the innermost portions of the temporal 

horns of the lateral ventricles, measured in the coronal 

plane containing the MCP (10). 

This set of dimensions were accounted as the most 

representative of the brain morphology and spatial distribution 

for each patient. That is, for example, if a set of dimensions in 

the lateral direction is found to be above the average, it is 

expected that the STN location is also more shifted laterally 

than normal. 

C. Features model 

With the features approach, it is assumed that the information 

extracted from the medical image doesn’t have to be necessarily 

quantified by anatomical principles. As such, this second model 

considers information regarding voxel intensity averages and 

the 3 directional image gradients from a set of small cubic 

volumes located around the MCP. The adoption of this kind of 

features was inspired by a study which was focused on the 

identification of the human hand configuration using an 

ultrasound image of a sectional plane of the forearm [11].  

Figure 5 shows a scheme representing the brain ventricular 

system and the interest volume, chosen for the image features 

extraction. That volume was then subdivided into 18 smaller 

volumes (fig. 6). As the main volume position and size was 

defined using the posterior and anterior commissure points, the 

same position and orientation were assured for all the patients 

from whom the information was acquired. The volume 

dimensions were 40mm in the lateral direction, 50mm in the 

vertical direction and 2 times de AC-PC distance in the anterior-

posterior direction. The division was made the same way for all 

the patients, 2 divisions over the lateral-medial direction, and 3 

divisions over the vertical and anterior-posterior directions. 

From these 18 smaller volumes were extracted a total of 72 

features for each patient. 

D. Linear Regression 

The linear regression method consists of finding the optimal 

regression coefficients represented as 𝛽 in the following 

expression: 

𝑦𝑖 = 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖 = 𝐱𝑖
T𝜷 + 𝜀𝑖 (1) 

In this expression, 𝑦𝑖  stands for the response variable or 

measured variable, 𝜷 is the vector of regression coefficients, of 

𝑝 dimention,  𝐱𝑖
T represents the vector of input or predictor 

variables for a given data observation 𝑖 (in the study context, 

each observation is given by a patient) and finally 𝜀𝑖 stands for 

the estimation error for the observation 𝑖. The 𝑝 dimension is 

equal to the number of input variables for each model. 

The goal of the learning process in a linear regression is, 

therefore, to obtain the combination of estimation parameters 𝛽 

that minimizes the estimation error 𝜀𝑖 for all the observations 

from the learning dataset. The most widely used method for this 

minimization is the least squares method. This method, defines 

the learning goal as the minimization of the function (in the case 

of a linear regression):  

𝑆 = ∑(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖1 −⋯− 𝛽𝑝𝑥𝑖𝑝)
2

𝑁

𝑖=1

(2) 

Which is described as the sum of squared estimation errors for 

all the learning dataset observations. This function is quadratic 

with the regression parameters, therefore, an analytical solution 
Fig. 4. Set of selected measurements 
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for this minimization problem is easily obtained. The 

minimization problem unique solution is obtained by solving 

the following matrix equation: 

�̂� = (𝐗T𝐗)−1𝐗T𝒚 (3) 

Where �̂� stands for the optimal vector of regression parameters. 

E. Support Vector Machine  

The learning method that uses a SVM may be more precisely 

described as a nonlinear regression using a support vector 

machine. Therefore, it can be divided in the search for a solution 

for the optimization problem and the application of a nonlinear 

mathematical function (known as the kernel function) which 

shapes the original problem into a nonlinear problem. For a best 

understanding of the details of the nonlinear regression method 

it is required to first introduce the simpler linear regression 

using an SVM problem. This problem takes the linear model 

given by the function:   

𝑓(𝐱) = 𝜷𝐱𝑇 + 𝒃 (4) 

The purpose of the support vector machine is to find the 

function 𝑓(𝐱) that deviates from the response vector 𝐲𝑛 by 

value smaller than 𝜀 for each training observation form 𝐱 

(predictor variables). The optimization problem is more easily 

solved in its Lagrange formulation given by the minimization 

of the function [12]: 

𝐿(𝛼) =
1

2
∑∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)x𝑖

Tx𝑗

𝑁

𝑗=1

𝑁

𝑖=1

+

𝜀∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑁

𝑖=1

+∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑁

𝑖=1

(5)

 

Subject to: 

∑(𝛼𝑛 − 𝛼𝑛
∗)

𝑁

𝑛=1

= 0 (6) 

∀𝑛 ∶ 0 ≤ 𝛼𝑛 ≤ 𝐶 (7) 

∀𝑛 ∶ 0 ≤ 𝛼𝑛
∗ ≤ 𝐶 (8) 

In which 𝛼𝑛 and 𝛼𝑛
∗  are the Lagrange multipliers and 𝐶 is real 

positive number that controls the penalty over the observations 

that deviate by a value bigger than the boundary value (𝜀). The 

𝛽 parameters vector can be described as a linear combination of 

the training dataset: 

𝛽 = ∑(𝛼𝑛 − 𝛼𝑛
∗)x𝑛

𝑁

𝑛=1

(9) 

Hence, the function 𝑓(𝑥) is given by: 

𝑓(𝑥) = ∑(𝛼𝑛 − 𝛼𝑛
∗)(x𝑛

Tx)

𝑁

𝑛=1

+ 𝑏 (10) 

 

For the regression to be nonlinear, it is introduced a small 

modification of the Lagrange formulation by the replacing the 

dot product x1
Tx2 by some nonlinear kernel function 

𝐺(x1, x2) = 〈𝜙(x1), 𝜙(x2)〉, where 𝜙(x) represents a 

transformation that maps x into a high-dimensional space [13]. 

This kernel function can be arbitrarily chosen as any nonlinear 

function and, with its application, it will never be required to 

compute that high-dimensional transformation as it is only 

necessary to calculate the dot product of predictor variables 

transformed by 𝜙 to obtain the optimal solution. This solution 

is, however, given in the variable space transformed by 𝜙(x). 
This method if often referred as kernel trick 

Fig. 7. Kernel trick visualization[16] 

Fig. 5. Positioning of the main volume inside which the smaller ones are 
contained [15] 

Fig. 6. Main volume partition in 18 smaller volumes 
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F. Models validation 

For the quantification of the errors obtained with the different 

models, the Euclidian distance between the estimation and real 

stimulation target was decomposed in the error orthogonal to 

the trajectory of the electrode and the remaining error within the 

trajectory. This decomposition is due to the different 

implications that this two forms of error have in the problem 

context. As mentioned above, 5 micro electrodes, used to 

correct the targeting estimation made in the planning, are 

introduced in the planned trajectory during the surgery. These 

electrodes are only spaced by 2.5mm (2mm plus the electrode 

diameter) in directions orthogonal to the trajectory, on the other 

hand, the explored depth of the trajectory has an average size of 

7mm. Therefore, errors within the trajectory of the electrode are 

easily more tolerated than the errors on the plane orthogonal to 

the electrode. Hence, for the conceptualization of a total error 

of a model, it is desirable that the orthogonal error suffers from 

a bigger penalty than the error within the trajectory. The 

proposed total error of a model is calculated as:  

𝐸 = √𝐸𝑂
2 + 0.16𝐸𝑇

2 (11) 

Where 𝐸𝑂 stands for the orthogonal error and 𝐸𝑇 the error 

within the trajectory. Using the above expression to calculate 

the total error of a model, the 𝐸𝑂 is weighted as 1 and 𝐸𝑇 as 0.4. 

Consequently, for the decomposition of the Euclidian error in 

this two components, additionally to the active contacts 

location, the electrode trajectory directions were also acquired 

for all the patients considered in this study. 

To obtain the two components of the error for a given model, a 

cross-validation method was implemented with a group of test 

with 20% of the total observations. This observations division 

into training group and test group is done randomly and the 

process is repeated 1000 times for statistical validity assurance 

(see fig. 9). From each patient of the test group, both the 

orthogonal and within the trajectory errors are computed. In the 

test group, mean and standard deviation are obtained for the two 

components of the error. Hence, the mean errors, and 

corresponding standard deviations for a given model, are 

obtained calculating the means of these two parameters for all 

the 1000 test groups. 

G. Feature extraction 

With a principal component analysis, the dimensionality 

reduction is achieved by a statistical procedure that obtains an 

orthogonal transformation which takes the original (possibly) 

correlated variables, and returns a set of new variables without 

correlation between each other. These new variables are also all 

intrinsically orthogonal with each other and are arranged by a 

score. The variable with the highest score is the one whose 

direction has the highest variance in the population, since this 

score is the percentage of information that each variable 

explains. The dimensionality reduction is done by the rejection 

of the variables that have the lower scores, and therefore, are 

negligible. The method applied in this study, rejected all 

variables with a score lower than 2%. 

H. Feature selection 

For reducing the dimensionality of the data using feature 

selection, a genetic algorithm was implemented. This solution, 

in contrast to the solution applied in feature extraction, depends 

of the model that is under consideration. This genetic algorithm 

searches for solutions in all the combinatory space of variables, 

evaluating the effect of each combination on each model and 

learning method by the computation of the total error of the 

model. 

Fig. 9 – Schematization of the cross-validation method used 

Fig. 8. Auxiliary vector necessary to the computation of the two error 

components 
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The algorithm implementation considers that each 

solution/subject stands for a combination of variables, and 

associated with it, a score is calculated corresponding to the 

quality of the model given by the total error. In order to 

accelerate the process, this error is obtained using a leave-one-

out approach (special case of the cross-validation method where 

just one patient is considered for the test group and the number 

of repetitions is equal to the number of patients considered). The 

first generation of the algorithm is created randomly with a size 

of each solution also determined randomly. This way, solutions 

with the minimum number of variables can be obtained. After 

that, the scores are computed for all subjects of the generation, 

then a selection of the best fitted subjects is done. The new 

generation subjects are created from the selected members. The 

crossover is done considering that both solutions created may 

have different dimensions than the two that originated them. 

The information equal in the two original solutions is replicated 

into both the new solutions, as for the remaining information, it 

is divided randomly between the two new solutions. The 

mutation process is done by adding a new variable, randomly 

selected from the set of variables that aren´t part of the solution. 

The stopping criteria used, was that the best solution of each 

generation has not improved for over a given number of 

generations. 

I. Developed software 

For the construction of the models described previously, it was 

necessary to find a software tool that was able to provide all the 

functionalities demanded by this study, which were: reading 

files in the DICOM format, image registration, volume 

orientation with the identification of specific image references, 

dimension measurement and feature extraction from specific 

volumes. It wasn´t possible to find such a software, so it had to 

be developed one which allowed the use of all the necessary 

tools, inside the same neuro-navigation environment. All this 

tools were developed over a graphical user interface with the 

MATLAB® v. R2016a software. The created software is 

divided in 3 parts: 

 Active contacts localization module – Using an image 

registration algorithm, T1-weighted MRI and post-surgery 

CT are presented simultaneously, which enables to see the 

electrodes location relative to the brain structures. The 

next step is the acquisition of the location of active 

contacts relative to the MCP and the directions of the 

electrodes trajectories; 

 Anatomical measurements module – Using T1-weighted 

MRI, measurements might be extracted directly from the 

visualization planes; 

 Features extraction module – Once more, using the T1-

weighted MRI, an interest volume is selected and 

subdivided. From each volume resulting from the division, 

4 features, defined previously, are automatically obtained.  

The graphical environment is very similar in each of the 

modules. The three visualization planes (axial, sagittal and 

coronal) are presented side-by-side. The navigation is allowed 

by moving each intersection plane over his normal direction.   

III. RESULTS 

For the comparison of the obtained results with some kind of 

reference, planning errors were computed for all the patients 

using the STN location estimations, produced by the 

neurosurgery team form the hospital and recorded in the 

planning sheets. Another model was developed using only the 

information relative to the location of all the active contacts for 

all the patients. The model was obtained as a statistical atlas – a 

mean of the location of various patients active contacts was 

projected onto a new patient, consisting of an estimation for that 

same patient. From that estimation, both error components are 

obtained. For this test model, the same cross-validation method 

used for computing all the models errors, was applied. 

The set of tested models has two variations on the approaches 

side, the measurements approach and the features approach, 

plus two different learning methods, and first or both implants 

are considered. Finally, there are the three dimensionality 

reduction variants, data without reduction, data obtained from 

feature selection and data obtained after feature extraction. Due 

to the large extension of models tested, some code names were 

endorsed for each model for an easy identification during 

results presentation (see Table I). Models were also divided in 

two groups, for results presentation. The first one includes all 

the models without dimensionality reduction (WR) and the 

second one incorporates the models from the two kinds of 

dimensionality reduced models. 

TABLE I 

SET OF TESTED MODELS 

Models 
Measurements Features 

Group 
RL SVM RL SVM 

WR 
1st Side Med_RL1 Med_SVM1 Fea_RL1 Fea_SVM1 

1 
Both Med_RL2 Med_SVM2 Fea_RL2 Fea_SVM2 

FE 
1st Side EMed_RL1 EMed_SVM1 EFea_RL1 EFea_SVM1 

2 
Both EMed_RL2 EMed_SVM2 EFea_RL2 EFea_SVM2 

FS 
1st Side SMed_RL1 SMed_SVM1 SFea_RL1 SFea_SVM1 

Both SMed_RL2 SMed_SVM2 SFea_RL2 SFea_SVM2 

 

J. Models without dimensionality reduction 

From the first group, the 2 best models were selected by the 

comparison of the total error for all the 8 models of this group. 

The results are presented in Table II, where the results for the 

planning errors and the test model were also included for 

comparison. 

TABLE II   

MEAN ERRORS, STANDARD DEVIATIONS AND TOTAL ERROR FROM THE 2 BEST 

MODELS FROM GROUP 1, PLANNING AND TEST MODEL 

Errors (mm) 
Orthogonal Trajectory Total 

Error Mean ± Std Mean ± Std 

Planning 1,55 ± 1,16 2,67 ± 1,84 1,88 

Test Model 1,62 ± 0,73 2,48 ± 1,67 1,90 

Med_SVM2 1,52 ± 0,79 2,22 ± 1,42 1,76 

Fea_SVM1 1,59 ± 0,77 2,30 ± 1,58 1,84 
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K. Models from data with dimensionality reduced 

For the second group, the 4 best models were selected form the 

total 16 by the comparison of the total errors. These models 

results are shown in Table III  

TABLE III 

MEAN ERRORS, STANDARD DEVIATIONS AND TOTAL ERROR FROM THE 4 BEST 

MODELS FROM GROUP 2, PLANNING AND TEST MODEL 

Errors (mm) 
Orthogonal Trajectory Total 

Error Mean ± Std Mean ± Std 

Planning 1,55 ± 1,16 2,67 ± 1,84 1,88 

Test Model 1,62 ± 0,73 2,48 ± 1,67 1,90 

SMed_RL2 1,36 ± 0,75 2,28 ± 1,54 1,63 

SMed_SVM2 1,41 ± 0,75 2,19 ± 1,38 1,66 

SFea_SVM2 1,41 ± 0,73 2,25 ± 1,48 1,67 

EMed_RL2 1,44 ± 0,85 2,52 ± 1,40 1,76 

 

L. Comparison of all the models obtained 

To facilitate the comparison between the results obtained with 

the different models, a box plot graph was created with the total 

errors obtained for the 6 best models (fig. 10). Additionally, a 

statistical t-Test and a statistical F-Test were performed, with a 

5% significance level, in order to test the hypothesis of equality 

of means and variances of the total errors, respectively, of the 6 

models and the test model. Tables IV and V show the results 

obtained from these tests. 

TABLE IV 

T-TEST OF THE HYPOTHESIS OF EQUAL MEAN. R MEANS THAT THE HYPOTHESIS 

WAS REJECTED 

t-Test (5%) H p-value CI 

Test Model vs SMed_RL2 R 4,88e-61 [0,25 0,31] 

Test Model vs SMed_SVM2 R 3,53e-64 [0,25 0,32] 

Test Model vs SFea_SVM2 R 3,88e-45 [0,20 0,27] 

Test Model vs Fea_SVM1 R 3,50e-21 [0,14 0,21] 

Test Model vs Med_SVM2 R 1,25e-23 [0,14 0,21] 

Test Model vs EMed_RL2 R 4,57e-16 [0,11 0,18] 

 

TABLE V 

F-TEST OF THE HYPOTHESIS OF EQUAL VARIANCE. R MEANS THAT THE 

HYPOTHESIS WAS REJECTED 

F-Test (5%) H p-value CI 

Test Model vs SMed_RL2 - 0,296 [0,97 1,10] 

Test Model vs SMed_SVM2 - 0,199 [0,98 1,11] 

Test Model vs SFea_SVM2 R 0,0013 [1,04 1,18] 

Test Model vs Fea_SVM1 R 1,11e-25 [0,67 0,76] 

Test Model vs Med_SVM2 - 0,276 [0,91 1,03] 

Test Model vs EMed_RL2 R 0,018 [0,87 0,98] 

 

 

 

Fig. 10. Box plot graph of the total errors distributions from all the models presented in this study  
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The first conclusion that can be drawn for the results obtained 

from the t-Test is that all the presented models obtained total 

errors with mean significantly different from the mean of the 

total error obtained with the test model. From the F-Test, one 

can conclude that only the models SFea_SVM2, Fea_SVM1 

and EMed_RL2 obtained total errors with variance significantly 

different from the variance of the total errors from the test 

models. On the other hand, the variances of the total errors 

obtained for the models SMed_RL2, SMed_SVM2 and 

Med_SVM2 weren’t significantly different from the variance 

of the total errors obtained with the test model. 

IV. DISCUSSIONS AND CONCLUSIONS 

The linear regression model, obtained from the anatomical 

measurements and that considers both sides of the implants was 

the model that obtained the best results in this study. This 

suggests that there might exist a linear relation between some 

dimensions of encephalic structures and the coordinates of the 

location of the STN, relative to the MCP. Generally speaking, 

the feature selection procedure was the one that originated the 

best results. 

The most important aspect to have in mind, for all the models 

variations, is the number of parameters that has to be estimated 

for each model construction. This parameter number is deeply 

related with the number of variables (or dimensionality) of the 

entry data for each model. A correct learning should be 

provided with a sufficiently big number of observations relative 

to the number of estimation parameters of each model. 

However, it is known that, in the case of this study, the 

observations number (36 implantations considering both sides, 

18 considering only the first side) is relatively small. Therefore, 

it becomes really hard to have a statistical validity for the 

estimation of all the parameters. Considering a normal 

distribution of the input data, for a statistically valid estimation 

of a model with just one estimation parameter, it would require, 

at least, 30 data observations. Therefore, good training 

conditions are not met, as the input data has dimensionality 

superior to one variable. Thus, the obtained models are not that 

good at finding the relation between the variability in the input 

data and the variability of the STN coordinates (which is the 

assumption considered to be true for the implementation of the 

predictive model with the structure proposed). Even so, for 

some models, improvement was achieved relative to the test 

model, indicating that these models could, somehow, use the 

information in the measurements/features, obtained from the 

image of each patient, to give a better estimation of the STN 

location than simpler methods. Models that obtained the best 

results are from the group where feature selection was 

performed. That could be related with the high degree of 

dimensionality reduction of this method. Hence, for these 

models, parameter estimation was preformed more accurately. 

Another important aspect is that both the measurements and 

features approaches originated models with quality comparable 

to the manual predictions produced by the surgical planning. 

The SVM learning method was responsible for a larger amount 

of models with satisfactory results, however, the model with the 

lowest total estimation error was obtained by a linear regression 

method. 

Finally, one can say that a big limitation of the quality of the 

obtained results was the small number of observations in the 

data considered for this study. Nevertheless, by the observation 

of the obtained results, it is reasonable to say that a predictive 

model implementation for the STN targeting based on the 

information extracted from the patient MRI is possible, and it is 

likely to obtain results with a superior quality than the manual 

estimations produced in the surgical planning. Another way of 

validating the models developed is by looking at the orthogonal 

errors obtained for the best models presented. These mean 

errors are smaller than the 2.5mm limit dictated by the 

microelectrodes spacing. Even if the standard deviation is 

added to the normal error, in most cases, it is still inside the 

prospection volume of the microelectrodes. 

A. Future work 
For the continuity of the work developed, with the purpose of 

still improving the quality of the implemented models, the 

following suggestions are made: 

 Collecting more observations in order to increase the 

dataset considered in the learning methods; 

 Implementation of an automatic segmentation procedure 

to extract the measurements automatically; 

 Optimization of the dimensions, positions and division of 

the main volume from which are extracted the features. It 

would also be important to test another type of features 

besides means and directional gradients; 

 Implementation of an automatic segmentation method for 

the segmentation of the complete ventricular system, 

from which is possible to obtain more concrete 

information about the morphology and spatial 

distribution of each patient brain; 

 Include, in the predictive model, an estimation of the 

electrode trajectory direction using the information from 

previous implanted electrodes and having as input 

information from the image collected from a volume 

around the electrode trajectory; 

 Direct comparison, for the same group of patients, of the 

predictive model for the automatic targeting of the STN 

and the non-rigid registration methods widely used by 

the medical community. 
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