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Abstract:
Water Delivery Canals are important structures that contribute to efficient water management. They
are characterized for having several sensors and actuators spread across large areas and by a time-
variant dynamic behaviour influenced by external factors and disturbances. This provides motivation to
distributed adaptive control strategies. The algorithms considered in this study result in the combination
of two main steps: a recursive identification algorithm that estimates the system parameters using
input and output data retrieved from the plant and a distributed control algorithm that relies on
coordination processes based on Game Theory concepts or optimization with augmented Lagrangian.
The identification algorithm considered is the Recursive Least Squares (RLS) whereas the control
algorithms are based in Linear-Quadratic Gaussian (LQG) and Model Predictive Control (MPC) theory.
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1. INTRODUCTION

With the growth in the world population, immediate action is
required to manage water in a sustainable way (FAO [2012]).
The increasing demand of water and the issue of water scarcity
have become critical in several regions worldwide, representing
a severe impact in the economy. Therefore it is important to
address these issues with the efficient resource management.
Water canals play an important role by allowing water manage-
ment and are characterized for their large dimensions and for
their highly dynamic behaviour due to variations in the water
levels and disturbances that can be either related with external
factors (physical problems, mud accumulation and vegetation
growing) or with water consumption (Rijo et al. [2009]). To
address these issues, and to allow the system to respond in a
both stable and robust way it is important to develop appropriate
control strategies.

A water canal may be envisaged as a series of different sub-
systems that are connected and interact among each other,
and due to its characteristics several control algorithms have
been developed throughout the years (Mareels et al. [2005];
Negenborn et al. [2009]; Malaterre and Baume [1998]) with
the main objective concerning the water level regulation to
optimize the resource distribution (Mareels et al. [2005]). These
control techniques range from centralized to decentralized and
distributed approaches (Negenborn et al. [2009]), with several
adaptive strategies being taken into account (Rijo et al. [2009];
Lemos [2009]).

Considering distributed strategies is a possible solution to im-
prove the efficiency of the system and to tackle communication
issues that may occur in centralized and decentralized strategies
(Costa [2013]). The distributed control algorithms take into
account the interactions between subsystems in coordination
processes where the local controllers negotiate with each other
with the objective of reaching a consensus (Costa [2013]; Pinto
[2011]; Sampaio [2012]; Igreja et al. [2011]). The distributed
strategies considered in more detail in this study are defined in
(Costa [2013]; Pinto [2011]; Igreja et al. [2011]; Lemos and
Pinto [2012]) and they are based in optimal control LQG and in

predictive control. In (Pinto [2011]; Igreja et al. [2011]) the co-
ordination procedures rely on Game Theory concepts in which
the local control agents negotiate until reaching a consensus
situation where none of them benefits from changing his ma-
nipulated variable, a Nash equilibrium (Nash [1950]), whereas
in (Costa [2013]) the distributed optimization algorithm uses
augmented Lagrangian. Adding adaptation has the advantage of
increasing the performance of the system, by contributing to its
stability when facing variations in its dynamics due to external
factors or disturbances such as water extraction.

Three adaptive distributed control algorithms are considered
in this study. The first algorithm is a LQG controller whereas
the second and third algorithms are predictive controllers. The
coordination procedures were described above, and are based in
Game Theory concepts or dual optimization. The identification
algorithm considered is the Recursive Least Squares (RLS) that
provides estimates of the system parameters using incremental
input and output data retrieved from the system, that represent
the variations of the gate positions and water levels with respect
to the operating points.

2. SYSTEM IDENTIFICATION

This section is dedicated to the linear model identification, with
a description of the water canal considered in this study fol-
lowed by the definition of the model identification algorithms
used and linear models considered.

2.1 Water Delivery Canal

The water canal considered in this dissertation belongs to
Núcleo de Hidráulica e Controlo de Canais (NuHCC) of Uni-
verisity of Évora, Portugal. In (Lemos et al. [2010]) a more
extensive description of the canal is presented. It consists of a
series of four pools separated by four vertical gates that are ac-
tuated by electrical motors. The first three pools are terminated
by an undershot gate, whereas the fourth pool is terminated by
an overshot gate.

In order to measure the upstream (Mi), centre (Ci) and down-
stream (Ji) water level, three sensors were placed along each



Fig. 1. Schematic representation of the NuHCC automatic
canal.

pool i, as shown in figure 1, although only the last ones are con-
sidered in this study. The variables Qi represent the side flow
of off-take i, controlled by valves placed at the canal bottom,
with control signals denoted by VOi. These variables allow the
generation of disturbances in the system, being associated, in a
practical situation, to water consumption by users.

The dynamics of the water flow in the canal is described by
the non-linear hyperbolic Saint-Venant equations (Malaterre
and Baume [1998]), obtained using the mass and momentum
conservation principles and whose solution is obtained using
numerical methods for solving Partial Differential Equations
(Lemos et al. [2010]). In this study only the undershot gates
are considered, and although the irrigation canal is a non-linear
system with infinite order, in this study it is approximated by a
finite-dimension linear model, and thus the control algorithms
developed will address only linear finite dimensional State-
Space (SS) models.

2.2 Linear Incremental Models

The target system considered is the SIMULINK non-linear
canal model described in (Lemos et al. [2010]). The objective
is to obtain finite-dimension models that describe the system
dynamics. This requires the establishment of the model orders
and structure. Since previous studies indicate that AutoRegres-
sive with eXogenous input (ARX) models are suitable for this
system (Pinto [2011]; Sampaio [2012]), the linear incremental
model is described by

A(q−1)∆y(t) = B(q−1)∆u(t− nK) + e(t), (1)
in which ∆y(t) ∈ R represents the incremental output of the
system, ∆u(t) ∈ R the incremental input, e(t) ∈ R a Gaussian
white noise sequence, q−1 is the unit delay operator, and
A(q−1) and B(q−1) are polynomials in the unit delay operator,
described by

A(q−1) = 1 + a1q
−1 + ...+ anA

q−nA , (2)

B(q−1) = b0 + b1q
−1 + ...+ bnB

q−nB , (3)
in which positive integers nK , nA and nB represent the pure
delay, and the number of zeros and poles. The identification
of linear incremental models from the non-linear SIMULINK
model requires the definition of an equilibrium point.

2.3 MIMO Model Identification

The multi-variable linear model defined in this section takes
into account the first three pools and corresponding gates of
the water canal, while the fourth gate is kept in its equilibrium
position. The outputs and inputs of each subsystem are defined
as the downstream water levels and gate positions, respectively.
Instead of having A(q−1) and B(q−1) defined as polynomials
that represent the zeros and poles of the system, these are
now matrices with polynomial entries, with the underlying

assumption that the water level in each pool depends only on
the water level in the same pool in previous time instants and
that the inputs only influence the water levels of neighbouring
systems.

The signal chosen to excite the system input is the PRBS, since
it is characterized for being a variable signal that excites the
system along a wide range of frequencies. The function used to
identify the model was pem, which implements the prediction
error algorithm over the simulated data. In order to avoid
the excitation of high-frequency modes and non-linearities,
the data was filtered using a third-order low-pass Butterworth
filter with a cut-off frequency of 0.1rad/s, as described in
(Sampaio [2012]), and the mean and the initial transient of
the signal were also removed. During the simulations that
were conducted it was possible to verify that higher amplitude
variations in the input signal led to poor identification results,
with manifestations of non-linearities and that the period of the
input signal had also influence in those results. The frequency
has to be within a range of values that is sufficiently exciting
to provide good estimates, and suitable to the slow system
response, in order to allow the water level to stabilize. Using
the gate positions as input signals did not produce satisfactory
results, and therefore a different solution proposed in (Sampaio
[2012]) was considered, that consisted in using a variable
proportional to the flow drawn by each gate q(t) as input signal.
This new variable, v(t), is related with the flow across the gate
by the discharge coefficient Cds as

v(t) =
1

Cds
q(t) = u(t) ∗W ∗

√
2g(hu − hd). (4)

The linear MIMO incremental model structure is given by
x(t+ 1) = Ax(t) +Bv(t) + e(t), ∆y(t) = Cx(t) (5)

A =

A11 0 0
0 A22 0
0 0 A33

 , B

B11 B12 0
B21 B22 B23

0 B32 B33

 , (6)

∆y(t) =

C11 0 0
0 C22 0
0 0 C33

x(t), (7)

with v = [v1 v2 v3]
T and x = [x1 x2 x3]

T . The incremental
gate positions ∆ui(t) are computed using the relationship
between ui(t) and the variable proportional to the flow drawn
by each gate vi

∆ui(t) =
vi(t)

W ∗
√

2g(hu − hd)
. (8)

The model structure (5) reflects the assumption that the dif-
ferent canal stretches interact only through the manipulated
variables (gate positions) of the adjacent gates. This assumption
leads to a good fit of the model and allows the application of the
control methods described in subsequent sections.

2.4 The effect of side takes

The D-LQG strategy introduced in section 4 requires a model
composed by several subsystems (pools) connected to their
neighbours that interact with their manipulated variables and
flow of lateral off-takes (Pinto [2011]; Sampaio [2012]). Each
subsystem Σi, with i denoting the i-th pool, is seen as a MISO
linear incremental model in which its output is the water level
yi of the corresponding pool and its manipulated variable is
the position of the respective gate vi. The interactions between



neighbouring subsystems are assumed to be described by the
respective gate positions vi−1, vi+1, considered later in the
feed-forward control term, and the flows of the lateral off-takes
Qi−1, Qi, Qi+1 are handled as accessible disturbances.

The identification procedure was divided into two different
parts, in which in the first half, PRBS signals were applied
simultaneously representing variations in the gate positions and
flows of the lateral off-takes. In the second half of the exper-
iment, gate positions were kept constant at their equilibrium
position while varying the flows of lateral off-takes. It was
assumed that the side off-take valves were open in the equi-
librium, and thus a new operating point was considered.

The linear incremental model structure is described by
x(t+ 1) = Ax(t) +Bv(t) + Φvv(t) + ΓdQ(t) + e(t), (9)

A =

A11 0 0
0 A22 0
0 0 A33

 , B =

B11 0 0
0 B22 0
0 0 B33

 , (10)

Φv =

 0 B12 0
B21 0 B23

0 B32 0

 , Γd =

Γ11 Γ12 0
Γ21 Γ22 Γ23

0 Γ32 Γ33

 , (11)

3. RECURSIVE LEAST SQUARES

To identify the system dynamic or, in other words, to estimate
its parameters, the solution needs to take into account that
several observations are required and that memory management
should be efficient. This leads us to a recursive solution, which
in this dissertation will be the RLS algorithm that uses both
incremental input and output data to estimate the parameters
(Franklin et al. [1998]). Considering the generic transfer func-
tion defined for an ARX model in (1), it is possible to write
an equivalent difference equation with delayed samples for an
incremental model

∆y(t) = −
nA∑
i=1

ai∆y(t−i)+

nB∑
i=0

bi∆u(t−nK−i)+e(t) (12)

in which t ≥ 0 is an integer that represents discrete-time,
∆u ∈ R is the incremental manipulated variable, ∆y ∈ R
the incremental system output, with increments defined with
respect to the operating point, e ∈ R represents white Gaussian
noise, nA is the pole order, nB the zero order and nK is the
system delay. Taking into account expression (12), the regressor
ϕ is defined as a vector with the delayed input and output data
and the vector of the parameters to be estimated, Θ, is given by

Θ′ = [a1 a2 ... anA
b0 ... bnB ] . (13)

For each observation, the model is described by
∆y(t) = ϕ′(t− 1)Θ + e(t). (14)

Given N observations, the estimation of the vector of parame-
ters Θ by Θ̂ is made by minimizing the following cost function:

J(Θ) =
1

2N

N∑
t=1

[∆y(t)−Θ′ϕ(t− 1)]2. (15)

To obtain the estimate by combining the previous estimates
with new data, a recursive estimator is required, with the
following elements:

• Vector of estimates Θ̂(t − 1) and previous auxiliary vari-
ables P (t− 1);

• New data ∆y(t), ϕ(t− 1).

With the combination of these elements it is possible to com-
pute the new estimates Θ̂(t) and the new auxiliary variables
P (t), in which P is the covariance matrix, symmetric and pos-
itive semi-definite. One may also consider defining a forgetting
factor, λ, with values between 0 and 1 so that the algorithm
weights less data from past. With smaller values of λ, the
algorithm tracks better changes in the state and the convergence
is faster since it retains less data. With larger values of λ, the
algorithm becomes progressively slower to follow changes in
the system dynamic since it retains more data but with less
variations in the estimates.

With a fixed forgetting factor λ, the results obtained in the
experiments were unsatisfactory and thus an alternative version
of the RLS algorithm with variable forgetting factor, introduced
in (Sanoff and Wellstead [1983]) is considered. The value of
λ depends on the information available and on the current
estimates. In order to do so, one must define a new variable ε
that denotes the prediction error. One of the required parameters
is the mean value of the prediction error, denoted as ε0. In the
experiments conducted with the adaptive control algorithms,
the parameters of the three subsystems were defined as
λ0 = λmin = 0.98, P0 = 0.01× Ip×p, ε0 = 5× 10−3, (16)

in which λ0 and P0 are the initial values of the forgetting factor
and covariance matrix and p is the number of model parameters.

Algorithm 1 Recursive Least Squares (RLS) with variable
exponential forgetting factor

Require: ∆y(t), ε0 P (t− 1), λ(t− 1), and Θ̂(t− 1)

function RLS(∆y, Θ̂, P, ε)
for t=1:T

ε(t) = ∆y(t)− ϕ′(t− 1)Θ̂(t− 1)

K(t) = P (t−1)ϕ(t−1)
λ(t−1)+ϕ′(t−1)P (t−1)ϕ(t−1)

Θ̂(t) = Θ̂(t− 1) +K(t)ε(t)
λ(t) = 1− [1− ϕ′(t− 1)K(t)]ε2(t)/ε0

If λ(t) < λmin → λ(t) = λmin
P (t) = [I −K(t)ϕ′(t− 1)]P (t−1)

λ(t)

return Θ̂(t)

4. ADAPTIVE DISTRIBUTED LQG CONTROL

4.1 LQG Control Law with integral action

The Linear-Quadratic Gaussian (LQG) controller results from
the combination of a Linear-Quadratic Regulator (LQR) and
a Linear-Quadratic Estimator (LQE). This observer-controller
is required because in the system here considered, it is not
possible to access the state for direct measure, and therefore
an estimate of the state is considered in the control law. The
state estimate is defined as
x̂(t|t) = ΦE x̂(t− 1|t− 1) + ΓE∆u(t− 1)−M(e(t)), (17)

with
ΦE = A−MCA, ΓE = B −MCB, e(t) = r(t)−∆y(t),

(18)
in which r(t) is the reference signal, M is the optimal gain
matrix obtained by minimizing a cost function that depends on
the covariance matrices QE and RE related with the process
and measurement noises (Sampaio [2012]). M is given by

M = PCT (CPCT +RE)−1, (19)



with P denoting the positive definite solution of the algebraic
Riccati equation. In order to guarantee that the system response
follows the reference signal, the control design requires the
inclusion of an integrator, defined by

xI(t+ 1) = xI(t) + Tse(t), (20)
with e(t) denoting the output error defined by e(t) = r(t) −
∆y(t), and Ts is the sampling time. The state-space model of
the system is now described by

x̄(t+ 1) = Āx̄(t) + B̄∆u(t), (21)
in which

x̄ =

[
x
xI

]
, Ā =

[
A 0
−TsC I

]
, B̄ =

[
B
0

]
, (22)

with the system output being written as
∆y(t) = C̄x̄(t), C̄ = [C 0] . (23)

Expressions (21) and (23) define the augmented state-space
model of the system with integral action, which is used in
the computation of manipulated variables. The LQR takes into
account the augmented state-space matrices (Ā, B̄, and C̄) to
compute the manipulated variables, that can be written as

∆u(t) = − [K KI ]

[
x̂(t)
xI(t)

]
, (24)

with
[K KI ] = (I + ρ−1B̄T P̄ B̄)−1ρ−1B̄T P̄ B̄, (25)

in which P̄ denotes the algebraic solution of the Riccati equa-
tion using the augmented state-space model.

4.2 The Distributed Controller Structure

The state model considered in this section is the model defined
by (9), in which v(t) and Q(t) denote the accessible distur-
bances regarding the manipulated variables of neighbouring
subsystems and the flow of the lateral off-takes. By including
an integrator in the multi-variable model defined by (9), its
dynamics becomes described by
x̄(t+ 1) = Āx̄(t) + B̄v(t) + Γ̄d(t), ∆y(t) = C̄x̄(t), (26)

with Γ̄ =
[
[Φv Γd] 0

]T
and the disturbance vector, denoted by

d, defined as

d(t) = [vi−1(t) vi(t) vi+1(t) Qi−1(t) Qi(t) Qi+1(t)]
T
.

(27)
The controller structure is represented in figure 2, in which it
is possible to verify how the local control agents communicate
with each other.

Fig. 2. Schematic representation of the distributed controller
structure.

At each time instant t, each controller has access to the ma-
nipulated variables of its neighbours and to the flow of the
lateral off-takes of the respective pool and of neighbouring

susbsystems. This information exchange between local control
agents is crucial to the coordination procedure. The minimiza-
tion of the LQR quadratic cost function taking into account the
augmented state model is accomplished using the discrete-time
version of the Pontryagin Minimum Principle, as described in
(Pinto [2011]) and (Sampaio [2012]). This solution leads to the
following control law

v(t) = − [K KI ] x̄(t) + vff (t), (28)
in which vff is the vector of feedforward control variables and
the gains [K KI ] are computed using (25).

4.3 The Coordination Procedure

The distributed procedure considered in this study, defined in
(Lemos et al. [2013] and Pinto [2011]), applied to serially
chained systems, is an iterative procedure during which the
local control agents communicate with each other to compute
the corresponding manipulated variables. In order to define the
algorithm, the letter j will be used to define the iterations, i to
identify the subsystem and t is the discrete time. The procedure
begins by initializing the gate positions v with the previous
values, while the flow of the lateral off-takes Q is read directly
from the sensors

di,j=0(t) = [v(t− 1) Q(t)]
T
. (29)

During a number of predefined iterations nI , the expression
(28) is used to compute the new manipulated variables vi,j(t),

vi,j(t) = − [K KI ] x̄(t) +Kffdi,j(t). (30)
Although the disturbance vector d is composed by accessible
disturbances associated with the gate positions v and with the
flows of lateral off-takes Q, the iterative procedure considers
only the gate positions, and thus it can be written as

vi,j(t) = [K KI ] x̄(t) + [Kff,v Kff,Q] di,j(t), (31)

di,j(t) =

[
vj(t)
Q(t)

]
. (32)

Since the local control agents find their optimal manipulated
variables with knowledge of the neighbors decisions, the pro-
cedure converges to the Nash Equilibrium (Lemos and Pinto
[2012], Nash [1950]), a situation where no local controller
benefits by changing only its manipulated variable. In order for
the algorithm to reach convergence, the spectral radius ofKff,v

needs to satisfy the condition
max|λ(Kff,v)| < 1, (33)

where λ(Kff,v) represents the eigenvalues of the matrixKff,v.
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Fig. 3. Spectral radius of Kff,v as a function of the quadratic
cost weights ρi. It is assumed that the cost weights have
the same value.

The condition (33) was verified in experiments conducted with
different values of quadratic weights ρ. In order to simplify the
design it is assumed that the quadratic weights of the three
pools, ρi, have the same value, and nI = 10. The results
of these experiments are represented in figure 3, where it is



possible to see that the condition is valid for ρ between 1
and 1 × 105. However after conducting experiments with the
SIMULINK canal model, with the same value of maximum
iterations and with the observer parameters defined as RE,i =
1 × 103 and QE = I3×3, it was verified that the closed-loop
response of the system was only acceptable for ρi ≥ 5 × 103.
The value defined for the quadratic weight was ρi = 1 × 104

and the closed-loop system response is represented in figures 4
and 5.
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Fig. 4. Closed-loop response of the SIMULINK non-linear
canal model, controlled by the D-LQG controller. (Output
and Reference signals)
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Fig. 5. Closed-loop response of the SIMULINK non-linear
canal model, controlled by the D-LQG controller. (Input
signals and flows of lateral off-takes)

4.4 Adaptive Controller

The adaptive strategy is based in a two-step sequence in which
first the RLS estimates the system parameters using input and
output data obtain from the plant, and after that, a model
defined with those estimates is considered in the controller
step, based on the D-LQG algorithm described above. During
a pre-specified period of time tI , only the identification step
is working, in order to guarantee that the estimates are closer
to convergence by the time the controller is activated. With-
out guaranteeing this, it is possible to occur either stability or
identification issues. During this period of time, the system is
excited by a PRBS signal of amplitude 0.001m around the equi-
librium points, that remains active during the whole experiment
to provide enough excitation to the system, preventing possible
identification issues. The adaptive controller parameters were
defined as tI = 4 × 104s, ρi = 5 × 104, RE,i = 1 × 103 and
QE = I3×3.

The results obtained during an experiment with algorithm 2
are represented in figures 6 and 7, where it is shown the

Algorithm 2 Adaptive D-LQG

Initialization of parameter estimates (θ1, θ2, θ3) and respec-
tive covariance matrices (P1, P2, P3).
for each time instant t

Computation of θi(t), using algorithm 1
Definition of augmented state models of each subsystem

x̄i(t+ 1) = Āix̄+ B̄ivi(t) + Γ̄idi(t)
∆y(t) = C̄ix̄i(t)

if t > tI then
Regulator and Observer parameters: ρi, RE,i, QE
Number of iterations: nI
Computation of LQR gains: [Ki KI,i]
Computation of LQE gain: Mi

Computation the state estimates x̂i

vfb,i(t) = [Ki KI,i]

[
x̂i(t)
xI,i(t)

]
Initialize manipulated variables: vi,j=0(t) = vi(t−1)
for j = 1 : nI

vff,i,j(t) = [Kff,i,v Kff,i,Q] di,j(t)

end
Computation of manipulated variables:
vi(t) = vfb,i(t) + vff,i,nI

(t)

open-loop and closed-loop response of the system controlled
by the adaptive D-LQG algorithm. It is possible to verify
how the outputs of the three pools converge to the reference
signals. Comparing with the non-adaptive algorithm, the system
response adaptive strategy appears to be a close approximation,
even with an additional small amplitude PRBS signal in the
input of the system. The quadratic cost weights ρi were also
increased to 5 × 104 in order to improve the system response
and prevent stability and oscillation issues.
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Fig. 6. Open-loop and closed-loop response of the SIMULINK
non-linear canal model, controlled by the adaptive D-LQG
controller. (Output and Reference signals)

5. ADAPTIVE DISTRIBUTED MPC

Model Predictive Control is a feedback strategy in which the
manipulated variable is obtained using predictions of the sys-
tem dynamics that take into account its model, with the ad-
vantage of handling both input and state constraints. Its control
law consists in the optimization of a quadratic cost function
that depends on the forecasts of the system behavior during
a predefined finite horizon N . The algorithms developed take
into account the linear incremental models identified around
an equilibrium point of the system, as shown in section 2.
Here, one considers a quadratic cost function associated to a
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Fig. 7. Open-loop and closed-loop response of the SIMULINK
non-linear canal model, controlled by the adaptive D-LQG
controller. (Input signals and flows of lateral off-takes)

predefined horizon N (Rawlings and Mayne [2009]) that slides
alongside with the current state estimates, while taking into ac-
count the constraints, in order to find a sequence of manipulated
variables that minimizes

JN =

N∑
i=1

(y(t+i)−r(t+i))T (y(t+i)−r(t+i))+ρu2(t+i−1).

(34)
In the strategies based on the MPC theory, an integrator was
included in series with the controller, and thus taking into
account (5), the state model of the i-th system, with integral
effect is defined as xi(t+ 1)

zi−1(t+ 1)
zi(t+ 1)
zi+1(t+ 1)

 =

[
Ai Bi
0 I

] xi(t)
zi−1(t)
zi(t)
zi+1(t)

+

[
0
I

]
Vi(t), (35)

Vi(t) = [vi−1(t) vi(t) vi+1(t)]
T
, (36)

∆y(t) = [C 0]

 xi(t)
zi−1(t)
zi(t)
zi+1(t)

 , Bi = [Bi,i−1 Bi,i Bi,i+1] ,

(37)
with

zi(t) = ∆ui(t) + z(t). (38)
The model can be written in a more compact form as
x̄i(t+1) = Āx̄i(t)+B̄i,i−1vi−1(t)+B̄i,ivi(t)+B̄i,i+1vi+1(t),

(39)
∆y(t) = C̄x̄(t). (40)

With the augmented state matrices it is possible to define the
model predictor as

Yi = Πi

 x̂i
zi−1(t)
zi(t)
zi+1(t)

+ [Wi,i−1 Wi,i Wi,i+1]

[
∆U i−1

∆U i
∆U i+1

]
(41)

with

Wi,j =

 C̄iB̄i,j 0 ... 0
C̄iĀiB̄i,j C̄iB̄i,j ... 0

... ... ... ...
C̄iĀ

i−1
i B̄i,j C̄iĀ

i−2
i B̄i,j ... C̄iB̄i,j

 ,Π =

C̄iĀiC̄iĀ
2
i

...
C̄iĀ

i
i

 ,
(42)

Yi =

∆yi(t+ 1)
∆yi(t+ 2)

...
∆yi(t+N)

 , ∆U i =

 ∆ui(t)
∆ui(t+ 1)

...
∆ui(t+N − 1)

 . (43)

The local cost functions associated with each subsystem i are
defined as

Ji = (Yi −Ri)T (Yi −Ri) + ρi∆U
T
i ∆U i, (44)

in which Ri is the reference vector, and Y can be written in a
more compact notation as

Yi = Πi

 x̂i
zi−1(t)
zi(t)
zi+1(t)

+ Wi∆̄U i, (45)

Wi = [Wi,i−1 Wi,i Wi,i+1] , ∆̄U i =

[
∆U i−1

∆U i
∆U i+1

]
. (46)

5.1 Distributed Model Predictive Control based on D-ADMM

This first strategy is based on a distributed optimization al-
gorithm named Distributed Alternating Direction Method of
Multipliers (D-ADMM) that solves problems in networks of
interconnected nodes, that represent the subsystems and that
have a local cost function Ji associated with them (Mota et al.
[2013]). The global cost function J is the sum of all local cost
functions Ji. The network structure considered in the problem
formulation of D-ADMM is represented in figure 2 in which a
series of interconnected subsystems (nodes) Σi is associated
to a local controller Ci with a local cost function that de-
pends on the manipulated variable of the corresponding node
and on copies of the manipulated variables of its neighbours
Ji(∆U i−1, ∆U i, ∆U i+1).

The implementation of the D-ADMM considered in this study
was introduced in (Costa [2013]), where dual variables are
associated to the edges (γ1 and γ2) and a cost weight ρA is
required for the cooperation part of the algorithm.

With this being said, the D-ADMM cost functions associated
with each subsystem i, in a compact notation, are defined as

Ji,A = ∆̄U
T
i Ψi∆̄U i + ∆̄U

T
i Φi + Υi, (47)

where Υi represents the terms that do not depend on the
respective manipulated variable, and Ψi and Φi are defined
in detail in algorithm 3. The analytical minimization of cost
functions Ji,A is accomplished by computing the derivative in
order to the respective manipulated variable and finding the
value for which ∂Ji,A

∂∆̄Ui
is equal to 0. The derivative of the D-

ADMM cost function Ji,A (47) in order to ∆̄U i is given by
∂Ji,A
∂∆̄U i

= 2∆̄U iΨi + Φi. (48)

The values of the manipulated variables ∆̄U∗i that minimize the
cost functions are given by expression

∂Ji,A
∂∆̄U i

= 0 ⇔ ∆̄U
∗
i = −1

2
Ψ−1
i Φi. (49)

In the distributed strategies here considered, no constraints were
taken into account in the optimization problem. In this case, the
introduction of constraints would made impossible to use the
analytical solution. The D-MPC strategy based on D-ADMM is
introduced in algorithm 3. There are two parameters regarding
the D-ADMM algorithm, that need to be pre-defined before
conducting experiments: the cost weight ρA, and the maximum
number of iterations nI . The values defined for the quadratic
cost weights associated with each subsystem ρi were defined
in previous experiments conducted with the centralized MPC
controller.



Algorithm 3 D-MPC based on D-ADMM with edge-associated
dual variables

Initialization of manipulated and dual variables: γ1 =
0; γ2 = 0; ∆̄U1 = 0; ∆̄U2 = 0; ∆̄U3 = 0.
repeat

Φ1 = 2WT
1 (Π1x̄1 −R1)− γ1 − ρA∆̄U2

Ψ1 = WT
1 W1 + ρ̄1 + ρA

2 I

∆̄U1 = − 1
2Ψ−1

1 Φ1

Φ3 = 2WT
3 (Π3x̄3 −R3) + γ2 − ρA∆̄U2

Ψ3 = WT
3 W3 + ρ̄3 + ρA

2 I

∆̄U3 = − 1
2Ψ−1

3 Φ3

Φ2 = 2WT
2 (Π2x̄2−R2)−(γ1−γ2)−ρA(∆̄U1 +∆̄U3)

Ψ2 = WT
2 W2 + ρ̄2 + 2ρAI

∆̄U2 = − 1
2Ψ−1

2 Φ2

γ1 = γ1 − ρA(∆̄U1 − ∆̄U2)
γ2 = γ2 − ρA(∆̄U2 − ∆̄U3)

until pre-defined maximum number of iterations nI reached
or stopping criteria is met

In order to select values for the D-ADMM parameters several
experiments were conducted with different combinations of
values and the results are shown in figure 8. It is possible to
verify that initially, with less iterations and with a lower weight
ρA, the output error is higher. The value tends to decrease with
more iterations, and with a higher value for ρA. From figure 8,
the combination of values defined to be used in the experiments
is ρA = 80 and nI = 20, since the associated output error
is close to the minimum and a smaller maximum number of
iterations is better in terms of computational time.
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Fig. 8. Variation of the total output error et with different
combinations of cost weight ρA and the maximum number
of iterations nI . The value of the quadratic cost weights
were ρ1 = 200, ρ2 = 600, ρ3 = 400 and N = 35.

The results obtained by applying the D-MPC algorithm based
on D-ADMM with the parameters defined above are repre-
sented in figures 9 and 10. The system outputs converge to-
wards the respective reference signals, but with a small am-
plitude output error even with integral action, that appears to
be related with the interactions between pools, with the current
water levels on each pool or with the position of the integrator.
The effects of the interactions between subsystems are visible
whenever occur variations in the water levels.
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Fig. 9. Closed-loop response of the system of the SIMULINK
non-linear canal model controlled by the D-MPC con-
troller based on D-ADMM. (Output and Reference sig-
nals)
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Fig. 10. Closed-loop response of the system of the SIMULINK
non-linear canal model controlled by the D-MPC con-
troller based on D-ADMM. (Input signals)

5.2 Adaptive Controller

Similar to the adaptive D-LQG strategy, the adaptive D-MPC
controller based on D-ADMM is also divided into a two step
identification/control sequential procedure. The identification
step is accomplished with the RLS algorithm and during an
initial period of time t < tI , the control step is switched
off. When t ≥ tI , the D-MPC algorithm is activated and the
control strategy becomes a sequence of two main steps: an
identification step and a control step. At each time instant t,
after estimating the values of the parameters, a system model is
defined followed the computation of the manipulated variables
using algorithm 4. The D-ADMM parameters considered in the
adaptive controller were defined in the previous section and the
quadratic cost weights considered are ρ1 = 2000, ρ2 = 1000,
and ρ3 = 2000.

In this adaptive D-MPC approach, in order to guarantee that
the parameters estimates are closer to convergence to prevent
stability issues, the value defined for the time instant in which
the controller is switched on is tI = 2 × 105s. In figures
11 and 12 it is represented the system closed-loop response
with the adaptive distributed controller. The higher value for
the quadratic cost weights was again the considered solution



Algorithm 4 Adaptive D-MPC based on D-ADMM with edge-
associated dual variables

Initialization of manipulated and dual variables: γ1 =
0; γ2 = 0; ∆̄U1 = 0; ∆̄U2 = 0; ∆̄U3 = 0.
Initialization of parameter estimates (θ1, θ2, θ3) and respec-
tive covariance matrices (P1, P2, P3).
for each time instant t

Computation of parameters θi(t), using algorithm 1
Define the augmented models of each subsystem

x̄i(t) = Āx̄i(t− 1) + B̄i∆U i
∆y(t) = C̄x̄(t)

if t > tI then
Predictor model:

Computation of Πi and Wi

Yi = Πix̄+ Wi∆̄U i
Iterative procedure described in algorithm 3.

to handle with existing high-frequency oscillations, and despite
the existing output error, mostly visible in the second pool
response, the water levels converged to the reference signals.
By the time instant the controller step is switched on, the
parameter estimates are close to convergence.
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Fig. 11. System response of the SIMULINK non-linear canal
model controlled by the adaptive D-MPC controller based
on D-ADMM. (Output and Reference signals)
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Fig. 12. System response of the SIMULINK non-linear canal
model controlled by the adaptive D-MPC controller based
on D-ADMM. (Input signals)

5.3 Distributed Model Predictive Control based on Game
Theory concepts

In this approach, the D-MPC algorithm to be considered is
based on Game Theory concepts, in the sense that each con-
troller must optimize its control variable, taking into account
the knowledge of the manipulated variables computed by its
neighbours, similarly as the D-LQG algorithm in section 4. If
each controller computes its manipulated variable with knowl-
edge of the control inputs of the neighbouring subsystems,
the goal is to reach a situation in which no controller benefits
from changing the manipulated variable, the Nash equilibrium
(Lemos and Pinto [2012]). This coordination process, similar to
control strategies introduced in (Igreja et al. [2011]), is defined
in this study as an alternative to the D-MPC algorithm based on
D-ADMM. The model of each subsystem, with integral effect,
is written as xi(t+ 1)
di−1(t+ 1)
zi(t+ 1)
di+1(t+ 1)

 =

[
Ai [Γi,i−1 Bi Γi,i+1]
0 I

] xi(t)
di−1(t)
zi(t)
di+1(t)

+

[
0
I

]
Vi(t),

(50)
Vi(t) = [vi−1(t) vi(t) vi+1(t)]

T
, (51)

∆y(t) = [C 0]

 xi(t)
di−1(t)
zi(t)
di+1(t)

 , (52)

with d denoting the manipulated variables of the neighbouring
subsystems, treated as accessible disturbances. The model can
be written in a more compact notation as

x̄i(t+ 1) = Āx̄i(t) +
[
Γ̄i,i−1 B̄i Γ̄i,i+1

]
Vi(t), (53)

∆y(t) = C̄x̄(t). (54)

The predictor model is given by (41) and the local cost func-
tions by (44). The Markov parameters matrices Wi,j for j 6= i
are similar to (42), but with B̄i,j replaced by Γ̄i,j . The remain-
ing predictor model matrices remain equal. The minimum of
each local cost function is solved by computing its derivative in
order to the corresponding manipulated variable and finding the
solution of ∂Ji

∂∆̄Ui
= 0, which results in an iterative procedure

described by

∆̄U = −1

2
M−1Ψ− 1

2
M−1Φ∆̄U, (55)

with
Mi = WT

i,iWi,i + ρiI, (56)

M =

[
M1 0 0
0 M2 0
0 0 M3

]
, (57)

Φ =

 0 2WT
1,1W1,2 0

2WT
2,2W2,1 0 2WT

2,2W2,3

0 2WT
3,3W3,2 0

 , (58)

ψi = 2WT
i,iΠix̄i, (59)

Ψ = [ψ1 ψ2 ψ3]
T
. (60)

The procedure will converge if the spectral radius
λmax := maxλ(M−1Φ) (61)

verifies |λmax| < 1 (Igreja et al. [2011]). As it is possible
to verify in figure 13, where it is represented the influence of
the quadratic cost weights ρi in the spectral radius, by fixating
ρ1 = 200, λmax tends to decrease when the quadratic cost



weights increase, which influences the rate of convergence of
the iterative procedure. The selected values of the quadratic cost
weights are ρ1 = 200, ρ2 = 800, and ρ3 = 100, with the same
value of maximum iterations nI = 20.
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Fig. 13. Spectral radius λmax.

The results of the experiment conducted in the SIMULINK
non-linear canal model, after defining the controller parameters,
in figures 14 and 15 are similar to the results obtained with
the D-MPC algorithm based on D-ADMM, with the output
tracking the reference with the same issue regarding the output
error, even with integral action, and a similar system response.
In terms of performance, the D-MPC algorithm based on Game
Theory concepts, at least with an equal number of maximum
iterations, appears to have a similar computational time and
load when compared with the D-ADMM approach.
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Fig. 14. Closed-loop response of the system of the SIMULINK
non-linear canal model controlled by the D-MPC con-
troller based on Game Theory concepts. (Output and Ref-
erence signals)

5.4 Adaptive Controller

Following the design of a D-MPC algorithm based on Game
Theory concepts, comes the definition of a corresponding adap-
tive control strategy, similar to the one defined in section 4.4,
with the only relevant change being the control algorithm con-
sidered, by using the iterative procedure introduced described
in the section above. Regarding the parameters of the controller,
the number of iterations and the finite-time horizon remain the
same, whereas the quadratic weight costs considered were the
ones used in section 4.4 (ρ1 = 2000, ρ2 = 1000, ρ3 = 2000).
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Fig. 15. Closed-loop response of the system of the SIMULINK
non-linear canal model controlled by the D-MPC con-
troller based on Game Theory concepts. (Input signals)

Algorithm 5 Adaptive D-MPC with neighbouring agent coor-
dination

Initialization of manipulated variables: ∆̄U1 = 0; ∆̄U2 =
0; ∆̄U3 = 0.

∆̄U =
[
∆̄U1 ∆̄U2 ∆̄U3

]T
Initialization of parameter estimates (θ1, θ2, θ3) and respec-
tive covariance matrices (P1, P2, P3).
for each time instant t

Computation of parameters θi(t), using algorithm 1
Define the augmented models of each subsystem

x̄i(t+ 1) = Āx̄i(t) +
[
Γ̄i,i−1 B̄i Γ̄i,i+1

]
Vi(t)

∆y(t) = C̄x̄(t)

if t > tI then
repeat

∆̄U = − 1
2M

−1Ψ− 1
2M

−1Φ∆̄U
until pre-defined maximum number of iterations nI

reached or stopping criteria is met

The time instant the control step is switched on remains as
tI = 2× 105s.

The results of the experiment conducted in the SIMULINK
non-linear canal model are represented in figures 16 and 16.
Despite the output error and the oscillatory behavior, the results
are practically similar to the ones obtained with the adaptive
D-MPC algorithm based on D-ADMM, with a higher output
error in the second pool, that appears to be related with the
interactions between subsystems. As for the first and third
pools, the outputs converge to the reference and appear to
be less sensitive to variations in neighbouring subsystems.
Regarding the parameter estimates, by the time the controller
step is switched on, these are close to convergence.

6. CONCLUSIONS

It would be interesting to define adaptive strategies with a
different identification algorithm such as the Recursive LASSO,
and to define strategies that allow the parameter estimates
initialization with a larger uncertainty. Comparing the adaptive
and non-adaptive control strategies, the first ones resulted, in
general, in more oscillatory system responses, but since the
outputs followed the respective reference signals, the results
were satisfactory. The higher computational load and time of
the adaptive strategies is compensated by the adaptability to
changes in the system dynamic.
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Fig. 16. System response of the system of the SIMULINK
non-linear canal model controlled by the adaptive D-MPC
controller based on Game Theory concepts. (Output and
Reference signals)
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Fig. 17. System response of the system of the SIMULINK
non-linear canal model controlled by the adaptive D-MPC
controller based on Game Theory concepts. (Input signals)

It was interesting to see how the performance of the distributed
techniques was close to the corresponding centralized solu-
tions, with less computational load and communication steps
required. In general, the adaptive distributed algorithms here
considered have similar performances, with the D-LQG re-
quiring less time for the RLS algorithm to work isolated. The
algorithms based on Game Theory concepts have simpler ne-
gotiation/coordination strategies, with iterative procedures that
require less operations and auxiliary variables. Since there is
the possibility of the Nash equilibrium being far from the
global minimum, an alternative strategy is considered based
on Lagrangian optimization (Costa et al. [2014], Lemos and
Pinto [2012]). The results obtained with the adaptive D-MPC
algorithms are also similar, with a more oscillatory response
than the one obtained with the adaptive D-LQG algorithm.

Although there is still work to be done with new ideas and
solutions to explore regarding adaptive and distributed algo-
rithms applied to water canals, three different algorithms were
developed and studied with satisfactory results, complementing
the work already developed and creating new challenges for
future research.
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