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Abstract

Enhancers and their interactions with specific promoters play an important role in gene transcription
and consequently, phenotype expression. The distal regulation of genes by enhancers has recently been
identified to play a role in diseases such as cancer with almost 80% of disease-associated sequence
variants located within enhancers. With the HiCap method, which combines a 4-cutter restriction
enzyme Hi-C with sequence capture of promoter regions, promoter-anchored enhancer interactions
can be easily identified. Biases inherent in Hi-C may carry over into HiCap but bears investigation
as HiCap has a higher selectivity and resolution. Also, structural and functional interactions are not
differentiated in the HiCap output. In this project, the HiCap output from a line of THP-1 cells with
Lipopolysaccharide stimulation was evaluated for inherent biases. Certain Machine Learning tools
were used to try to differentiate between structural and functional interactions in HiCap output using
datasets from ChIP-Seq studies on enhancers as reference. It was found that the biases in Hi-C were
not carried over to the HiCap output. The results from the machine learning techniques suggest that
more data parameters may be required to definitively distinguish structural and functional interactions.
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1. Introduction

The complete sequencing of the Human genome in
2003 led to an explosion of genomic data and tech-
niques to process and extract information from this
data which ushered in a new era in genetics and
genomics called the genomic era[4]. The advances
in genomics has helped with the rapid identifica-
tion of newly discovered pathogens, gene-expression
profiling to assess risk of disease and guide therapy,
improve understanding of the role of specific genes
in the causation of common conditions and so on.
A part of studies in genomics focuses on the tran-
scriptional control of genes. The type and amount
of ribonucleic acid (RNA) transcribed from genes
control the phenotypic expression of the cell. Tran-
scriptional regulation thus becomes important in
studying disease phenotypes. A kind of regulatory
element is cis-regulatory modules called enhancers.
These short deoxyribonucleic acid(DNA) segments,
which may be situated many thousands of bases
away from the genes they act on, can boost the
transcription from the promoter of the target gene
to a great degree[16]. The number of enhancers in
eukaryotic genomes correlates with the complexity
of the organism.
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HiCap is a technique that has been formulated
recently in[15] which is based on Hi-C and con-
sequently on Chromosome Conformation Capture
(3C), which can be considered as a part of the ad-
vances made in the genomic era. HiCap selects
for promoter sequences and generates genome-wide
maps of chromatin interactions where one of the
interactors is a promoter sequence. It can gen-
erate fragments short enough for single-enhancer
resolution[15]. Due to the novelty of the technique,
a lot of scope in the interpretation of the data gen-
erated by it exists. This thesis explores some of the
facets of the HiCap output including biases which
may be inherited from Hi-C and the question of
classifying different types of chromatin interactions
captured by HiCap.

This paper will investigate how clustering with
gaussian mixture models(GMM) and classification
with One Class Support Vector Machines (SVM)
performs in distinguishing structural and functional
interactions in the HiCap output from a line of
THP-1 cells with LPS stimulation. Different vari-
ables inherent in the HiCap data were used as pa-
rameters in the machine learning techniques. The
variables used are not exhaustive and further vari-



ables could be included in the future. The inves-
tigation is limited by the quality of the enhancer
information in the reference datasets as well as by
the assumptions made about data in HiCap output,
like that it follows a Gaussian distribution. Biases
in Hi-C as evaluated in [21] will also investigated if
they exist in HiCap data generated from the line of
THP-1 cells with LPS stimulation.

2. Background

The human genome contains various regulatory se-
quences such as enhancers, promoters and untrans-
lated regions are considered gene associated. The
promoter sequence is where the RNA polymerase
binds to begin transcription of the gene, so by def-
inition is situated close to the transcription start
sites (TSS) of genes. Enhancers, which are also
called activators|[7] or cis-regulatory modules[18] are
a kind of genomic regulatory element which influ-
ences the intensity of genomic expression. They are
distinct regions in the genome which contain bind-
ing site sequences for transcription factors (TFs).
Transcription factors are proteins that bind to
specific DNA sequence motifs. By forming com-
plexes with TFs and gene promoters, enhancers can
up or down regulate the transcription of a target
gene[18]. Enhancers can be located at any dis-
tance from the target gene in the linear DNA se-
quence and come into spatial proximity by the loop-
ing of chromatin[18]. Enhancers can be found both
upstream and downstream of their target genes
and may regulate multiple genes[12]. Multiple en-
hancers may also regulate the same gene. The lo-
cation and spatio-temporal activities of most of the
enhancers are either not known with confidence or
are unknown[11]. Also, predicting enhancers and
their activity states from their DNA sequences is
difficult as the TF binding motifs may be many
and varied[18]. The activity of enhancers are also
influenced by the openness of chromatin, i.e. chro-
matin where nucleosomal histone proteins are mod-
ified (notably by monomethylation of lysine 4 and
acetylation of lysine 27 in histone H3)[16]. As re-
cent studies have confirmed a role of mutations in
distant cis-regulatory elements underlying various
human diseases[12], the importance of identifying
enhancers and their target genes can be understood.
Out of the several computational and experimental
approaches that have been developed to determine
enhancer elements[18], a few of the methods used
capture them by taking a snapshot of the spatial
organization of the chromosomes in the nucleus.

2.1. HiCap

HiCap is an extension of Hi-C, which is based on
Chromosome conformation capture (3C), which is
a technique used to detect the spatial organization
of chromosomal DNA[2]. Tt substituted a 4-cutter

restriction enzyme instead of the 6-cutter usually
used in Hi-C and introduced the sequence capture
of promoter regions[15]. Similar to Hi-C, HiCap
also generates genome-wide maps of chromatin in-
teractions with the added functionality of selecting
for promoter-anchored interactions. The mean frag-
ment size in HiCap is around 699 bp which gives it
close to single-enhancer resolution. By fixing one in-
teraction partner through sequence capture of pro-
moter regions, HiCap has a higher sensitivity than
Hi-C. This means that HiCap gives higher sensitiv-
ity with lower sequencing depth [15]. This method
follows the same steps as Hi-C till ligation and pu-
rification of fragments using the beads. Then la-
belled capture probes are added to further selec-
tively purify the hybridised fragments. The frag-
ments captured by hybridisation are then analysed
and identified. These steps are illustrated in Fig-
ure 1.
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Figure 1: Simplified overview of HiCap.

Studies have found various systematic biases in
Hi-C read counts[21, 5]. These include biases
due to GC content of fragment ends, distance
between restriction enzyme cut sites and unique-
ness/mappability of fragment ends of short se-
quence reads. These results were obtained with a
six-cutter restriction enzyme in the genome cutting
step of Hi-C[21]. It needs to be examined if the same
biases are carried over unchanged into HiCap as it
uses a four cutter restriction enzyme[15]. Another
difference between Hi-C and HiCap is the targeted
capturing of promoter sequences.

An interaction in HiCap output is a ligated pair
of two fragments. One fragment contains the pro-



moter and is selected for by a probe designed for it
and the other fragment contains a sequence which
putatively interacts with the promoter on the first
fragment. A particular pair of fragments ligate
only if they are in spatial proximity at the time of
DNA crosslinking. As this spatial proximity may
not mean that the two fragments actually inter-
act, the interactions called in HiCap can be divided
into 2 cases - Functional and Structural interac-
tions. Functional interactions are those in which
the two fragments on the ligated pair actually in-
teract. Structural interactions are those in which
the two fragments on the ligated pair do not inter-
act and were simply spatially adjacent at the time of
DNA cross linking. Discriminating between struc-
tural and functional interactions based on just the
number of supporting pairs for the interactions, as
is currently done, might lead to the exclusion of
functional interactions which have a low number of
supporting pairs. As the DNA crosslinking captures
a temporal snapshot of the cell(s) in the experiment,
certain structural interaction might have support-
ing pairs higher than an arbitrarily fixed threshold
and lead to the exclusion of functional interactions
which have a low number of supporting pairs.

3. Implementation

The workflow proposed for the processing of data
and subsequent bias evaluation and model genera-
tion using machine learning algorithms is as illus-
trated in Figure 2.
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Figure 2: The proposed workflow for processing
data from HiCap experimental output and subse-
quent bias evaluation and model generation using
machine learning algorithms.

The input is the experimental output that is ob-
tained from the HiCap method. This HiCap output
is then passed to the HiCap Software Suite modules
which call the interactions, parse and store them in
the data repository. The various further paramaters

needed for bias evaluation and model generation
are then generated using the requisite modules of
the HiCap Software Suite and stored in the data
repository. The plots and models are then gener-
ated using MATLAB and scikit-learn by drawing
the data from the repository. The various parts of
the workflow are explained below.

3.1. Data and Database Design

There are two different kind of datasets used in
this project. First is the input dataset obtained
from the HiCap procedure on a THP-1 cell line and
calling the resulting interactions using the HiCap
interaction-calling developed in association to [15].
The second dataset is a combined reference dataset
of ChIP-Seq results of the enhancer landscape from
various published studies in [14, 13, 6, 3, 19, 20].

THP-1 is a human leukemia monocytic cell line,
and is a common model to estimate modulation of
monocyte and macrophage activities[1]. The input
dataset contains data from two experiments with
THP-1 cell lines - one in which the cells were stim-
ulated with inflammatory lipopolysaccarides(LPS)
and the other which was not stimulated with LPS.
LPS evokes strong immune responses in animal cells
and is usually found in the outer membrane of gram-
negative bacteria.

In each experiment, a number of interactions are
"called’(or taken to be true interactions) depending
on whether the interaction had at least three sup-
porting read pairs in each biological replicate[15].
An interaction is a ligated pair of probe-selected
promoter fragment and a distal interacting frag-
ment. Each interaction has different measured pa-
rameters which are as given below.

1. Probe related data: A unique identifier for each
probe designed against promoters in the exper-
iment. Each probe would therefore have an as-
sociated gene, chromosome number and other
chromosome related information.

2. Interactor Chromosome related data: Data on
which chromosome the interacting distal re-
gion(the putative enhancer) is situated and the
start and end positions of the fragment on the
chromosome.

3. Interactor Expression data: Data related to in-
teractor expression which are as below

FPKM: FPKM (or Fragments per kilobase of
exon per million fragments mapped) value for
the interaction.

Distance: The distance between the restriction
enzyme fragments involved in the interaction
which is the distance from the promoter with
which the distal region is interacting. The dis-
tance can be a positive or negative value de-



pending on whether the distal region is situ-
ated upstream or downstream of the promoter.
Number of Supporting Pairs: The number of
supporting pairs in the which support that par-
ticular interaction.

p-value: The p-value based on background fre-
quency of the observed interaction.

Strand Combination: The number of supp-
porting pairs for each combination in which
ligation of the two fragments in the interac-
tion can take place. Ligation can occur in
the forward-forward, forward-reverse, reverse-
forward or reverse-reverse manner. This pa-
rameter is presented in the 'z_y_z_a’ format
where x, y, z and a represent the number of
supporting pairs for each combination respec-
tively. This parameter gives a measure of en-
tropy in the interaction.

The reference dataset contains called peak infor-
mation from ChIP-Seq, which includes the chromo-
some number, start and end positions on the chro-
mosome in the BED format.

The total number of interactions in the HiCap
output for THP-1 with LPS stimulation dataset
number a total of 9,264,115. This dataset was
then filtered using the number of supporting pairs
higher than 3 and the p-value for the interactions
lesser than 0.05 as filters down to 809,520 interac-
tions. Out of these filtered interactions, 593,781
overlapped with ChIP-Seq peaks in the reference
dataset, which are all assumed to be functional in-
teractions. The rest of the non-overlapping interac-
tions numbering 215,739 may contain a mixture of
structural and functional interactions. The train-
ing and test set each contain 269,840 interactions
which is composed of 197,927 reference overlapping
interactions and 71,913 interactions which do not.

The database schema was designed as shown in
Figure 3 to store the data used in the work. The
Probe table includes all the Probe related infor-
mation. A unique integer identifier for each probe
called probelD was used as index to the table.

The Interactor table stores all the information
related to the distal interacting fragments that is
common to both experiments - with LPS and with-
out. The probelD from the Probe table is used to
connect which Probe is connected to which distal
fragment. The InteractWLPS and InteractNLPS
tables stores the interacting fragment information
specific to the experiments with LPS and with-
out respectively. The unique interactID identifier
is used to connect these tables to the main Inter-
actor table. The ChipseqOverlap table stores the
information about the distal interacting fragments
which overlap with ChIP-Seq peaks from the refer-
ence dataset. The flags isTraining, isTest and is-
Valid indicate whether the data is used in Training

Probe table s Interactor table .
*probelD INT ] interactorId INT
*probeStart INT F—T{'probeld  INT
*probeEnd INT *interactorStart INT ChipsegOverlap table
*probeChr VARCHAR(6) interactorEnd INT vinteractorID INT
“probetargetID VARCHAR(40) "interactorChr  VARCHAR(6) isTraining INT
“geneName VARCHAR (20) -GCContent DECIMAL(6,6) isTest INT
"GCContent DECIMAL(6,6) ARECOUNY LN isvalid INT
"RECount T *mappability FLOAT
‘mappability  FLOAT *repeatOverlaps INT
repeatOverlaps INT distance INT —
p val FLOAT 1 il il

H+interactorIn INT
“isTraining  INT
“isTest INT

isvalid INT

InteractNLPS table
*interactorID INT
suppPair INT
[‘meanFPKM FLOAT
strandCombination VARCHAR (20)
|'p val FLOAT

InteractWLPS table
'—I"interacturID INT
suppPair INT
‘meanFPKM FLOAT
“strandCombination VARCHAR(20)
p val

Figure 3: Database Schema implemented in a rela-
tional database system used to store the Probe and
Interactor information to be used in this project.

sets, Test Sets or Validation sets respectively. The
FilteredInteract table stores the information about
the distal interacting fragments which do not over-
lap with ChIP-Seq peaks from the reference dataset.
The flags isTraining, isTest and isValid indicate
whether the data is used in Training sets, Test Sets
or Validation sets respectively. The information in
the fields GCContent, RECount, mappability and
repeatOverlaps in the Probe and Interactor tables
were generated from the respective start and end
positions of the chromosomes as part of this project.

3.2. Methodology
The objectives of this paper were two-fold:

1. to check whether the biases from the Hi-C
method, on which HiCap is based, is carried
over to HiCap.

2. to find a way to improve the calling of interac-
tions and see if structural interactions can be
differentiated from functional interactions.

3.2.1. Objective 1: Discovering Biases

Hi-C has number of documented systematic biases
including biases due to GC Content, distance be-
tween restriction enzyme cut sites, mappability of
fragments. The repeat overlap bias of fragments is a
measure similar to mappability that was evaluated
in the HiCap output data. The repeat overlap is
something that arises when a sequence pattern re-
peats in two different distal fragments which do not
interact with the same promoter sequence. This
means that there is an ambiguity in mapping the
fragments uniquely to a promoter.

For finding the GC content bias, a normalisation
process was undertaken. The percentage GC con-
tent of probe fragments was binned, normalised by
dividing with the total number of probes and then
plotted. The probes themselves are only 120 bp
long, so the restriction fragments which the probes
select for were chosen. The number of interactions



with a certain number of supporting pairs falling
into specific percentage GC bins divided by the to-
tal number of interactions with that number of sup-
porting pairs was also plotted. The equation used
in the normalisation process is as shown in Equa-
tion 1.

x=a/b
y=-c/d

where n is a percentage GC bin range, a denotes
the number of probes with GC,,, b the total num-
ber of probes, c¢ is the number of interactions with
Supporting pair =(1, 2, 3, 4, ...) and GC,, and d
is the total number of Interactions with Supporting
pair =(1, 2, 3, 4, ...).

For the Restriction enzyme cut sites, the chromo-
some sequence around a 10 kilobase region of the
distal interacting fragments were searched for the
recognition site of the 4-cutter restriction enzyme
used in HiCap(DpnlI).

(1)

3.2.2. Objective 2:

Calling
A way to discriminate between structural and func-
tional interactions could be to use more parameters
than just the number of supporting pairs of each
interaction. From the experiment, the distance,
FPKM, p value and strand combination can also
be included as parameters to decide whether an in-
teraction is structural or functional.

Improving Interaction

A way to find patterns in the interactions is to
use machine learning techniques. From the nature
of the data, two approaches can be used. As a
sample of what structural or functional interactions
does not exist, the first approach is to use an unsu-
pervised clustering technique that uses all the pa-
rameters as input. The second approach is to use
the reference dataset of enhancers identified from
ChIP-Seq peak studies as a model to verify what ac-
tual functional interactions look like. The reference
dataset is intersected with the input dataset which
yields a subset of interactions in the input dataset
which are assumed to be functional interactions. As
the rest of the interactions may be of either type,
a negative class of structural interactions can not
be defined. This means that the conventional su-
pervised binary classification techniques can not be
used. In this case, a one class classification tech-
nique can be used in which a model is constructed
where only the target class is defined. The rest of
the data is classified as either of the target class or
not.

Strand Combination to interaction entropy
As the parameter ’strand combination’ cannot be
used as such in the input of algorithms of either of

the approaches, a new derived parameter called ’in-
teraction entropy’ was defined. This was based on
the ’tissue specificity index’ as defined in [22] and
expanded in [9]. The value of interaction entropy
must give a sense of whether an interaction prefers
a specific strand combination. The equation for in-
teraction entropy is defined as given in Equation 2

o Tl () )

where j is the specific value of strand combination,
c; denotes the number of supporting pairs of the
j*" strand combination and ¢4, is the maximum

value of supporting pairs in a strand combination.

Thus the value of interaction entropy ranges be-
tween 0 and 1. The closer the entropy value of
an interaction is to 1, the likelier is it to favour
a particular strand combination. If the value is 1,
the interaction has supporting pairs of only one of
forward-forward, forward-reverse, reverse-forward
or reverse-reverse combinations. If the value of en-
tropy is 0, the number of supporting pairs for all
the four combinations are equal.

Tools Used A modified version of the software
used in [15] implemented in C++ was compiled on
gece version 4.8.4 and run on Ubuntu 14.04. The re-
sults were stored on and retrieved from a relational
database implemented on mysql Version 14.14 Dis-
tribution 5.7.15 for Linux. Matlab(R2016a) was
used to aggregate data and generate plots to visu-
alise the results for bias discovery. For clustering,
a gaussian mixture model was used. The Matlab
implementation *fitgmdist’[10] was used to model a
gaussian mixture with two components. The ref-
erence dataset was intersected with the input data
using the ’intersect’ option of bedtools v2.17.0. For
one class classification, the implementation of The
One-Class SVM (as in[17]) of scikit-learn was used
with the RBF kernel.

4. Results
4.1. Bias Discovery

4.1.1. Repeat Overlap Bias

The distribution of repeat overlaps around the dis-
tal interacting regions(interactors) is as shown in
Figure 4. The interactors were grouped on the num-
ber of supporting pairs its corresponding interaction
had in HiCap output. Most of the interacting re-
gions map to very low numbers of repeat overlaps.
This means that the distal interacting regions can
be uniquely mapped to the promoter regions and no
bias with respect to repeat overlaps could be seen
in the HiCap output data.



Figure 4: Plot of Repeat Overlaps around distal in-
teracting regions for different counts of supporting
pairs. From the top, the plots show repeat over-
laps against interactions with 1 supporting pair, 2
supporting pairs, 3 supporting pairs, 4 supporting
pairs, 5 supporting pairs, and more than 5 support-
ing pairs.

4.1.2. Restriction Enzyme Site Bias

The distribution of the cut site counts of the re-
striction enzyme used in HiCap(Dpnll) in a 10kb
region around the distal interacting regions is as
shown in Figure 5. As in the case in section 77,
the interactors were grouped on their number of
supporting pairs. The plots show an enrichment
in the number of supporting pairs around 20 to 35
restriction enzyme cut sites. The recognition se-
quence of the four-cutter Dpnll is ’'GATC’. Assum-
ing that the bases in the genome are uniformly dis-
tributed, the expected number of occurences of the
4-mer 'GATC’ in a 10kb region is approximately
39. This shows that the enrichment found could be
due to the normal density of restriction cut sites in
the genome and no significant bias selecting for or
against restriction enzyme cut sites in the HiCap
method could be found.

Figure 5: Plot of Restriction Enzyme sites 10 Kb
around distal interacting regions for different counts
of supporting pairs. From the top, the plots show
restriction enzyme sites against interactions with 1
supporting pair, 2 supporting pairs, 3 supporting
pairs, 4 supporting pairs, 5 supporting pairs, and
more than 5 supporting pairs.

4.1.3. GC Content Bias

A normalized mapping of GC content of interac-
tors for each grouping of support pairs and of GC
content of probe containing restriction enzyme frag-
ments was done with respect to the Equation 1
and can be seen in Figure 6. The GC content was
binned with bin size corresponding to 10 % GC con-
tent. As the probes themselves are only 120 bp in
length, the GC content of the restriction enzyme
fragment which the probe would select for was used
instead. These fragments are variable sized. The
figure shows a shift of the peak of the GC con-
tent of the distal interacting regions with respect
to Probe fragment GC content to regions of lower
GC. This could be a result of promoter regions hav-
ing a higher GC content compared to the rest of the
genome. As the probes select for promoters, con-
sequently the probe containing regions have higher
GC as well. In the case of the interactors, HiCap
seems to pick fragments with GC content that is
in the normal range of the human genome except
for the fragments that have more than 5 supporting
pairs which have a slight enrichment of GC content.
This may be a natural consequence of the fact that
cis-regulatory elements were found to be enriched
in GC nucleotides[8].

Figure 6: Normalized GC Content measure binned
into ten equal sized bins. The first subplot shows
the plot of normalized GC content of all interac-
tors against the GC content bins and the plots of
normalized GC content interactors with 1 and more
than 5 supporting pairs against the GC content bins

The GC content of probes and interacting distal
regions also showed very low correlation with Spear-
man’s p = 0.1948 and Pearson’s r = 0.1989. This
also seems to indicate that the GC content of the
probes may not affect the selection of distal inter-
acting regions.

4.2. Improving Interaction Calling

4.2.1. Approach 1: Modeling with Gaussian
Mixtures
The input dataset was labeled with ’ChipSeqOver-

lapSet’ or 'NegSet’ depending on whether a partic-



ular interaction intersected with ChIP-Seq peaks in
the reference dataset or not. It was assumed that
the interactions overlapping with ChIP-Seq peaks
are true functional interactions. The 'NegSet’ may
include structural and functional interactions. All
parameters were normalised to the range [0, 1] if it
did not include negative values or to the range [-1,
1] if it did. The normalisation is required as the val-
ues for certain parameters had very big ranges; for
instance, ’distance’ had a range of approximately
[-28, 28] which skews the fitted distribution if used
without normalisation.

As there were five parameters in the input data,
the ’fitgmdist” MATLAB procedure was run once
with all five parameters and a second time after us-
ing Principal Component Analysis (PCA) to con-
vert the five parameters to two with the added ad-
vantage that the clusters can also be visualised. In
each run of the 'fitgmdist’ procedure, the EM algo-
rithm was repeated 20 times, and the largest log-
likelihood is chosen from all the repeats. The runs
were also repeated with different values of regular-
ization. The regularization term controls for the
complexity of the fitted model and is a means to
reduce overfitting in case of noisy data.

The results of clustering will be presented in the
format as in Table 1. The table does not correspond
to a traditional confusion matrix for classifiers, nor
do the calculated values correspond to sensitivity of
the classification. This is because a properly defined
example negative class to exemplify structural in-
teractions does not exist. The variable 'n’ indicates
the number of interactions clustered into a specific
cluster given by the superscript which is either C1
for Cluster 1 and C2 for Cluster 2.

The variable "N’ indicates the total number of in-
teractions in various cases as given by the subscript
- CS gives total number of ChIP-Seq overlapping
interactions in the procedure input, NCS gives the
total number of non-ChIP-Seq overlapping interac-
tions in the procedure input, C1 and C2 gives the
total number of interactions clustered into Cluster
1 and Cluster 2. It is important to note that the
clustering of interactions into clusters 1 and 2 are
not connected with the labels in any manner.

Case 1: No Regularization The results ob-
tained are as shown in Table 2. The visualisation
of the clustering after the five parameter input was
converted to 2 parameters with PCA is as shown in
Figure 7.The green region contains the datapoints
clustered into Cluster 1 and the red region those
clustered into Cluster 2. The contour curves of one
of the fitted gaussians can also be seen as dashed
lines. The datapoints of the interactions that in-
tersect with ChIP-Seq peaks are shown as red dots
and the datapoints of the interactions that do not

intersect with ChIP-Seq peaks are shown as blue
dots. It can be seen from the Table 1 that without
PCA approximately 68% of the ChIP-Seq overlap-
ping interactions are clustered into one cluster and
with PCA, it rises to 75%. As can be seen from the
figure, the dataset is very grainy.

20 data and fitted GMM

Figure 7: Visualisation of GMM clusters with no
regularization of the with PCA run as in Table 2.
The green region contains Cluster 1 datapoints and
the red region contains Cluster 2 datapoints

Case 2: With Regularization=0.0001 The
results are as shown in Table 3.The visualisation
of the clustering after the five parameter input was
converted to 2 parameters with PCA is as shown
in Figure 8. The green region contains the data-
points clustered into Cluster 1 and the red region
those clustered into Cluster 2. The contour curves
of both of the fitted gaussians can also be seen as
dashed lines, one fully and the other partially. It
can be seen from the Table 3 that without PCA ap-
proximately 82% of the ChIP-Seq overlapping in-
teractions are clustered into one cluster and with
PCA, it rises to 83%. This seems to indicate that
the regularization is effective to smoothen out the
noisy data. The corresponding values for the non
ChIP-Seq overlapping set seems to rise as well.

20 data and fitted GMM
. t

Figure 8: Visualisation of GMM clusters with reg-
ularization=0.0001 of the with PCA run as in Ta-
ble 3. The green region contains Cluster 1 data-
points and the red region contains Cluster 2 data-
points.



Label No PCA with PCA
Cluster I Cluster II Cluster I Cluster IT
Training data
C1 c2 c1 C2
ChIP-Seq overlap nes nes nes nes
Nes Nes Nes Nes
No overlap n§es n§es n§es n§es
Nncs Nncs Nncs Nncs
Test Data
C1 Cc2 c1 C2
ChIP-Seq overlap nes nes nes nes
Ncs Ncs Ncs Ncs
No overlap nfes nfes n§es n§es
Nncs Nncs Nncs Nncs
Table 1: Format of presentation of results of clustering and classification.
Label No PCA with PCA
Cluster I  Cluster II Cluster I  Cluster 1T
Training Data
ChIP-Seq overlap 0.6774 0.3226 0.7585 0.2415
No overlap 0.6534 0.3466 0.7047 0.2953
Test Data
ChIP-Seq overlap 0.6756 0.3244 0.7561 0.2439
No overlap 0.6527 0.3473 0.7052 0.2948
Table 2: Gaussian Mixture Model fitted for training data with no regularization
No PCA ith PCA
Label o PC with PC
Cluster I  Cluster II Cluster I Cluster 1T
Training Data
ChIP-Seq overlap 0.1798 0.8202 0.1617 0.8383
No overlap 0.2208 0.7792 0.2000 0.8000
Test Data
ChIP-Seq overlap 0.1829 0.8171 0.1646 0.8354
No overlap 0.2199 0.7801 0.1988 0.8012

Table 3: Gaussian Mixture Model fitted for training data with regularization=0.0001

Case 3: With Regularization=0.001 The vi-
sualisation of the clustering after the five parame-
ter input was converted to 2 parameters with PCA
is as shown in Figure 9. The green region con-
tains the datapoints clustered into Cluster 1 and
the red region those clustered into Cluster 2. The
contour curves of both of the fitted gaussians can
also be seen as dashed lines, one fully and the other
partially. It was found that without PCA approx-

imately 86% of the ChIP-Seq overlapping interac-
tions are clustered into one cluster and with PCA, it
rises to 89%. As a very high percentage of ChIP-Seq
overlapping interactions seem to be in a single clus-
ter and assuming that these are all functional inter-
actions, it can be seen that a high percentage of the
non-overlapping interactions are clustered into the
same cluster. This seems to indicate that the num-
ber of structural interactions in the dataset may be



low.

2D data and fitted GMM

Figure 9: Visualisation of GMM clusters with regu-
larization=0.001 of the 'with PCA’ run. The green
region contains Cluster 1 datapoints and the red
region contains Cluster 2 datapoints

Case 4: With Regularization=0.01 The re-
sults are as shown in Table 4. The visualisation
of the clustering after the five parameter input was
converted to 2 parameters with PCA is as shown
in Figure 10. The green region contains the data-
points clustered into Cluster 1 and the red region
those clustered into Cluster 2. The contour curves
of both of the fitted gaussians can also be seen as
dashed lines, one fully and the other partially.It can
be seen from the Table 4 that without PCA approx-
imately 94% of the ChIP-Seq overlapping interac-
tions are clustered into one cluster and with PCA,
it is also around 94%. As only very low number
of non overlapping interactions are clustered into
the second cluster, it may not be clear if the model
becomes too simplified with this value of regular-
ization.

2D data and fitted GMM
T

Figure 10: Visualisation of GMM clusters with reg-
ularization=0.01 of the ’with PCA’ run as in Ta-
ble 4. The green region contains Cluster 1 data-
points and the red region contains Cluster 2 data-
points

4.2.2. Approach 2: Classification with One
Class SVM

The OneClassSVM procedure of sklearn was run
with the rbf kernel with a gamma of 0.1. The re-
sults are as shown in Table 5. The visualisation
of the clustering after the five parameter input was
converted to 2 parameters with PCA is as shown
in Figure 11. The thick red line indicates the class
boundary learned by the algorithm. The yellow re-
gion inside the boundary contains the datapoints
clustered into the Class and the region outside the
boundary contains the datapoints rejected as being
dissimilar to and not belonging with the datapoints
in the learned class. From the Table 5, it can be
seen that for both ChIP-Seq overlapping and non-
overlapping interactions around 90% of the data-
points are accepted by the classifier as part of the
learned class. From the figure 11, it can be seen
that the data is very grainy and the datapoints of
the ChIP-Seq overlapping interactions are widely
distributed when compared to the non-overlapping
set.

One class Detection

Figure 11: Visualisation of learning boundary with
training and test data of the 'with PCA’ run as in
Table 5. The datapoints inside the learning bound-
ary are accepted by the One class SVM, while the
ones outside are rejected.

5. Conclusions
In the evaluation of biases in HiCap, It was found
that most of the biases in Hi-C data may not be
carried over into HiCap. It is hypothesized that
this may be due to the higher selectivity and reso-
lution inherent in the HiCap method. This does not
discount the fact that this selectivity of HiCap may
dispose it towards biases that are not found in Hi-C
data. This is an area that bears more investigation.
In the case of differentiating between structural
and functional interactions in HiCap output, it was
found that although the techniques separated the
interactions into two, more work may be needed to
increase the confidence in the classification. This
may include filtering the reference datasets for high
confidence enhancer peaks, increasing the number
of clusters with cross-validation and using binary



Label No PCA with PCA
Cluster I  Cluster 11 Cluster I  Cluster 1T

Training Data

ChIP-Seq overlap 0.9418 0.0582 0.9441 0.0559

No overlap 0.9366 0.0634 0.9326 0.0674
Test Data

ChIP-Seq overlap 0.9403 0.0597 0.9428 0.0572

No overlap 0.9353 0.0647 0.9312 0.0688

Table 4: Gaussian Mixture Model fitted for training data with regularization=0.01

Label No PCA with PCA
Learned Class Rejected Learned Class Rejected
Test Data
ChIP-Seq overlap 0.8995 0.1006 0.9002 0.0998
No overlap 0.9005 0.0994 0.9024 0.0976

Table 5: One Class SVM fitted for training data with the rbf kernel

classification methods for comparison against the
results of the one-class classification.
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