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Abstract 
 

A study was conducted on an industrial process of resins production to evaluate the impact of raw materials 
quality (analysed by FT-IR spectra) and the manufacturing process in the resins final quality, obtained by near 
infrared spectroscopy (NIR). The objective was to increase the knowledge of the production process in order to 
identify critical aspects for resins quality. 
The first step was multivariate analysis (MVDA) of different datasets (raw materials, resins and process) in order 
to increase the production process knowledge and identify its critical aspects. 
In the second step, chemical and physical properties of the resins were measured in the lab in order to give a 
physical meaning to the NIR spectra. The resins show different properties according to the reactor where they 
are produced.  
The production process analysis showed that the cooling system’s efficiency is a critical aspect for the final 
quality of the resin as well as the reactor where the resin is produced. 
Finally, it was possible to correlate the spectral analysis of the NIR with the lab analyses. This correlation will 
allow in the future to develop a quality control for Trespa to replace the currently installed. 
 
Key words: Resin, MVDA, NIR, FT-IR, quality assurance, production process. 
 
For confidentiality reasons, the raw materials suppliers have been omitted, as well as process values 
and the laboratory analyses have been given arbitrary units. 

 

I. Introduction 

In this project, resins production which is the first step 
that leads to a high pressure laminate (HPL) was 
studied. These resins are synthetic polymers that are 
formed during the reaction between formaldehyde and 
phenol.  
The main objective of this project was to increase the 
understanding of the resin manufacturing process in 
order to identify the main critical aspects for the resin 
quality. 

I.1. - Multivariate Data Analysis 

Industrial processes are very complex to study due to 
the different kinds and/or types of datasets that can be 
generated. 
Multivariate data analysis tools turn possible to observe 
patterns by executing exploratory analysis, to quantify 
given properties and the relations between those 
properties, and to analyse complex process datasets 
like the ones that will be studied in this project. 
Multivariate data analysis techniques are mainly 
influenced by Chemometrics. Nowadays the most 
known definition of Chemometrics is: a chemical science 
that uses statistical and mathematical models to design 
or select optimal measurement procedures and 
experiments, and provide maximum chemical 
information of the studied process with the analysis of 
collected data. [1] [2] 
Chemometrics methods or data evaluation and 
interpretation can be divided in some topics: 

 Signal (pre-)processing; 

 Pattern recognition; 

 Modelling; 

 Calibration. 
All of these methods were applied in this project. In the 
next pages, a basic introduction to the most important 
analysis for the different methods that were studied in 
this project will be given. Principal Component Analysis 
(PCA), Partial Least Squares (PLS), signal processing 
and batch modelling will be more emphasized since they 
were the most used techniques. 
PCA is a simple method to classify data and it is the most 
widespread multivariate Chemometric tool used to 
identify groups or classes without any prior knowledge 
of the data (unsupervised pattern recognition method). 
This method allows to compress the data into three new 
sets of variables: the principal components, the scores, 
and the loadings. [3] [4] The principal components 
ensure an easier interpretation of multivariate processes 
and the other two sets of variables contain valuable 
information for pattern recognition. 
PLS regressions can be applied whenever there is a set 
of X independent variables (cheap and easy 
measurements such as NIR) that can be correlated to a 
set of Y dependent variables (the expensive and labour 
intensive ones like lab analysis). Partial least squares 
regression (PLS) it is of interest because it can analyse 
strongly collinear, noisy or incomplete (both in X and Y 
sets) data. [5] This method condenses the X information 
into a new set of variables, the LVs (LV) in such a way 
that the covariance between X and Y is maximised. This 
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method was used to predict physical and chemical 
properties considering the NIR spectra collected for 
each batch.  
Batch modelling is highly important for batch-wise 
processes as resins production. Batch statistical 
process control methods (BSPC), are used for batch 
modelling and allow to determine which variables 
influence the quality of the final product, how those 
variables are correlated to each other and also to 
distinguish the common batches from the deviating 
batches. However, BSPC will not be a useful tool if the 
variables monitored during the batches are not sensitive 
to variations. Two different levels of batch monitoring are 
performed: the observation and the batch level. 
Observation level monitoring is mainly interesting to (1) 
evaluate individual observations (such as time points), 
(2) predict batch maturity, and (3) understand the typical 
evolution of a common batch. In the observation level a 
PLS model against the maturity variable is developed 
and the fingerprint of the batch is obtained, in the form 
of a multivariate control chart, seen in Figure 1. 

Batches that do not follow the fingerprint will be 
considered deviating. 
As for batch level, all available data is used for 
developing a PCA model that considers the whole batch 
and eliminates the time dependency. This PCA model 
can be used to identify patterns among the batches or to 
classify new ones. The scores generated can be 
correlated with the quality of the final product or to the 
raw materials supplier, as an example. Batch processes 
can have different phases or stages in which different 
phenomena take place. As such these phases are 
analysed separately since the tools used for this kind of 
analysis (PCA and PLS) are linear and may not work 
well when monitoring the whole batch all together. 
Data pre-treatment is used to filter noisy components, to 
extract features, reduce dimensionality of spectra 
original signals and retain relevant information as much 
as possible [6] [7]. In this project, NIR and Fourier 
Transformed Infrared (FT-IR) spectra were analysed. 
The success of the analysis of these data is dependent 
on an appropriate choice of the signal processing tool. 
Signal processing tools such as derivatives, 
multiplicative scatter correction (MSC) or standard 
normal variate (SNV) were considered for pre-
processing of the spectra analysed.  
The derivatives are used to remove baseline variations 
and overlapping peaks. As for the other two pre-
processing they are used to reduce the effect of 
scattering during the measurements.  
In order to give a physical-chemical meaning to the 
multivariate data analysis, lab analyses were performed:  

 Viscosity; 

 Curing time (B-time); 

 Water tolerance; 

 HPLC; 

 GPC; 

 Phenol and Formaldehyde contents; 

 Percentage of solids; 

 pH. 
 

I.2. - Vibrational Spectroscopies 

The demand for product quality improvement has been 
increasing in many industries like chemical, in the last 
few years. This increase led to a gradual substitution of 
classic analytical techniques (e.g. High Performance 
Liquid Chromatography (HPLC)) and non-specific 
chemical analyses (e.g. pH, temperature) to more 
specific analytical tools such as vibrational 
spectroscopies. 
In this work, NIR and FT-IR spectroscopies were used, 
FT-IR for raw materials quality check (every time a 
loaded truck arrives a FT-IR spectrum is collected) and 
NIR for future final quality release of the final product. 
The physical origin of these two different spectroscopies 
is the same being both NIR and FT-IR based on the 
interaction between molecular systems and 
electromagnetic radiation. A molecular system absorbs 
energy from electromagnetic radiation (infrared region) 
inducing transitions from vibrational levels of energy. In 
Table 1, the main differences between FT-IR and NIR 
are presented. 

Table 1 – Principles of NIR and FT-IR spectroscopies and their main 

differences. [8] [9] 

 FT-IR NIR 

Vibrational levels 

Fundamental Overtones and 
combinations 

Wavenumbers 
range 

4000-500 cm-1 12500-4000 cm-1 

Bonds 

polar bonds 

(C=O) 

Hydrogen bonds 

(C-H) 

Selectivity High Low 

The chosen technique to monitor the resin quality was 

the NIR, whereas for raw materials it was the FT-IR. 

II) Results and Discussion 
 

II.1. - Study of raw materials variability 

The analysis of the variability of raw materials precedes 
the study of resins. Every supply truck that comes to 
Trespa with all raw materials is inspected. A sample of 
each truck is analysed through spectroscopy (FT-IR) 
and the collected spectra are saved in a database. 
In this thesis, multivariate data analysis was performed 
to the collected spectra to investigate variability of the 
raw materials. Some of the raw materials are supplied 
by more than one supplier. Differences among the 
suppliers were also investigated, as the suppliers can 

Figure 1 - Multivariate control chart of three batches. 
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provide different raw materials quality. These variations 
can have further impact on the production process and 
on resin quality, which were investigated. 
To produce a resin, formaldehyde and phenol are the 
main raw materials. For each of those raw materials, 
exploratory analysis was performed from 2013 until mid-
2016. PCA was performed for each of the spectral 
datasets. In order to improve the models results, spectra 
were pre-processed. 
For the studied resins, a less pure form of phenol is 
used. This solution contains 80% of phenolic 
compounds. This raw material is purchased from two 
different suppliers, C and D. The pre-treatment applied 
for this phenolic solution was a Savitsky-Golay first 
derivative was applied (2nd order polynomial and 19 
points window width) followed by mean centre. A first 
PCA model showed that the scores of supplier C 
changed from mid-2015 on. Additionally, supplier C has 
more variability than supplier D. This way, PCA models 
were developed for the suppliers, in separate, in order 
to check for differences in detail.  
The PCA model for supplier C did not show any 
clustering and 76.14% of the variability is explained by 
four PC (PC1: 36%; PC2: 23.7%; PC3: 9.73%; PC4: 
6.69%).  However, for supplier C a change in the first 
principal component scores (Figure 2) is observed in 
2015. As for supplier D five PC account for 81.32% of 
the variability in the original data (PC1: 36.27%; PC2: 
24.91%; PC3: 9.16%; PC4: 6.34%; PC5: 4.63%). For 
supplier D quality is stable over time (Figure 3). 

Impact of this quality change in resins quality will not be 
observed in this analysis since the time frame is already 
in the second half of 2015. Furthermore, a parallel study 
was performed as per the company’s request, that 
showed differences for the resins quality when produced 
with supplier C or D comparing B13 resin batches 
produced in January 2015 with production in January 
2016. 
A similar analysis to the other raw materials was 
performed but did not show any impact in the further 
analysis of the resins quality. 

 

 

II.2. - Assessment of the quality for B13 resin 
 

In this second part, all kinds of available data analyses 
were performed for B13 resin. This is a standard resin 
that does not need any special additives, only 
formaldehyde, phenol and the diluent. The quality of this 
resin was checked using the NIR spectra. Differences in 
resins quality due to the phenolic suppliers were 
searched. Thereafter, the process path of the resin 
production was studied in detail, with the available 
variables and parameters. Those variables were 
measured during the batches and stored in a database 
for further use. In this case differences among the 
reactors were highlighted due to their design 
differences.  Lab analyses were executed in order to 
give a physical/chemical meaning to the NIR spectral 
analysis. The third point had the purpose of integrating 
all data from the multivariate data analysis and the lab 
analysis. Patterns and correlations were identified. The 
time frame for these analyses was six months 
(November 2015-April 2016). 
 

II.2.1. - Variability of resin quality by NIR 

In the time frame studied, 1197 spectra were collected 
and analysed. After elimination of noisy and useless 
spectral zones multiple pre-treatments were applied to 
the collected spectra. Since the NIR spectra from the 
produced resins are very complex it is not possible to 
have a clear idea of which pre-treatment should be 
applied. For this resin, the pre-treatments applied were: 
SNV; MSC; and Savitsky-Golay first derivatives (2nd 
order polynomial with 17 points of window width). The 
pre-treatment for further analysis was chosen based on 
the predictive ability of the PCA model developed with 
the pre-treatment. The predictive ability is measured 
with the Q2 (fraction of the total variation of the X’s that 
can be predicted by a component, as estimated by 
cross-validation). [10] 

Figure 5 - Values of Q2 (cumulative) with the number of PC. 

With  it is possible to conclude that MSC and SNV pre-
treatments are the ones with higher predictive abilities 
(Q2(cumulative) =0.939 for both). According to [11] SNV 
is preferred over MSC since SNV corrects each 
spectrum individually. The chosen pre-treatment for the 
spectra was the SNV method, taking into account what 
was previously referred. The pre-processed spectra can 
be seen in Figure 5. 

Band 1 

Band 2 

Band 3 

Figure 3 - Pre-processed spectra, with SNV method, for B13 
resin. 

Figure 2 - Scores plot for the first principal component for supplier C 
according to the sampling, coloured by year. 

Figure 4 - Scores plot for the first principal component for supplier D 
according to the sampling, coloured by year. 
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A PCA model for the pre-processed spectra dataset was 
developed to observe trends and/or clusters. The PCA 
model developed has three PC with 94.2% of the 
variance of the X-dataset explained by the model and 
93.9% represents the fraction of total variance of the X-
dataset that can be predicted by the model. The PCA 
model showed that there are some differences whether 

the resin is produced in reactor 3, 4 or 5 (Figure 6). 
Those discrepancies can be due to the different stirring 
of the reactors or the fact that reactor 5 has a vacuum 
system, led to the conclusion that a PCA model for the 
reactors, separately, should be performed. 
Three different bands can be identified in the spectra 
(Figure 5):  

 Band 1: sharp and strong absorbance with the 
wavenumbers between 5600 cm-1 and 6400 cm-1 
(exclusive); 

 Band 2: broad band including the wavenumbers 
between 6400 cm-1 and 7500 cm-1; 

 Band 3: weak band with the wavenumbers between 
8000 cm-1 and 9000 cm-1. 

PCA models for each spectral zone, were individually 
developed. These models will allow to see possible 
differences that cannot be identified when the whole 
spectrum is considered. 
With the development of PCA models for the bands, 

both the variance of the X-dataset that is explained (𝑅𝑥
2) 

and the fraction of the total variance that can be 
predicted (Q2) by the model increased (Table 2). 

Table 2 - Spectra PCA models indicators. Number of PC (PC), explained 

variance (𝑅𝑥
2), and variance predicted by the model (Q2). 

 PC 𝑹𝒙
𝟐 Q2 

WHOLE 
SPECTRA 

3 0.942 0.939 

BAND 1 2 0.950 0.948 
BAND 2 2 0.988 0.987 
BAND 3 3 0.946 0.945 

As for the contributions, the usual loadings plot of the 
first PC (p[1]) versus loadings of the second principal 

component (p[2]) is complex to analyse when the 
analysis is for spectral information. The contributions 
plot should then be analysed with p[1] versus 
wavenumber, that will show which variables 
(wavenumber) dominate the model. After this analysis, 
for the individual models for each spectral zone, it was 
possible to find out which wavenumber dominated the 
different models. The maximum of the plot (the largest 
absolute value of p[n]) will correspond to the 
wavenumber that dominates the model. Table 3 
summarizes the values of these wavenumbers for each 
band. 

 

Table 3 - Wavenumbers that dominate the PCA models. 

BAND WAVENUMBER (CM-1) 

1 5970 
2 6707 
3 8775 

With the wavenumbers information from Table 3, it was 
possible to infer that there is a pattern in the scores plot. 
For band 1, the intensity of this wavenumber increases 
from the right to the left in the scores plot (Figure 7). 

Figure 7 - Intensity of the 5970 cm-1 wavenumber in the scores plot of 
the PCA model for band 1. 

Finally, for the third band the pattern is different, the 
increase of intensity is from the third quadrant in 
direction of the first quadrant, indicating that in this case 
the first and the second PC dominate. 

II.2.2. - Production Process Path 

To study the process path of B13 production it was 
crucial to evaluate which variables/parameters are 
important. The time dependent variables and 
parameters were collected within a time lapse of one 
minute. As for the parameters that are not time 
dependent, a value is known for each produced batch. 
For the six months, 1504 batches were analysed.  
Five process variables were considered for the analysis: 

 Temperature inside the reactor (controlled 
variable); 

 Cooling coil flow rate (manipulated variable); 

 Cooling coil water temperature (in- and outlet); 

 Returning vapour temperature. 
All variables mentioned before are a response of the 
system to the parameters that are imposed at the 
beginning of each batch. There are some parameters 
that can be mentioned: 

 Stirring of the reactors; 

 Water flow of the condenser (bypass system); 

 Reaction time; 

 Raw materials amount. 
Most parameters did not show differences that would 
influence the process quality except for the water 
condenser flow since it changed in reactors 3 and 4 with 
time. This change was due to the interdependency of the 
cooling system of these reactors. They share a cooling 
tower and there is an adjustment between the two 
reactors in order to maintain a certain safety value. 
The process path of the reaction is divided in three main 
phases. Phase 1 corresponds to the warm-up phase; 
the second phase is the reaction and finally the third 
phase corresponds to the cooling of the resin until a 
temperature at which the reactor can be unloaded. The 
typical temperature inside the reactor is shown in Figure 
8. Although the temperature set-points for all reactors 
are the same for all phases, there are some differences 

Figure 6 - Scores plot of the PCA model developed for B13 resin, 
coloured by reactors. 



5 
 

in the profiles due to the differences in the reactors 
designs. 

Figure 8 – Typical temperature profiles inside the reactors. 

The heating phase of reactor 4 is the shortest whereas 
the cooling phase of reactor 5 is the fastest due to the 
vacuum system installed in it. 
In order to analyse an unknown dataset, exploratory 
analysis is the most useful tool to perform. To start with 
the analysis, the reactors were studied together, with all 
batches produced split into the three phases. For each 
phase an independent PLS model versus time was 
developed. As already stated, the reactors design is 
different influencing the final quality of the batch. This 
way, to corroborate this knowledge, a batch level PCA 
model was developed that condensates the whole 
batch, with no time dependency. There was a clear 
difference between the reactors, each reactor gives a 
different quality of the final product (Figure 9). 

With this analysis it was concluded that the process path 
is somehow different according to the reactor where the 
resin is produced. In order to eliminate this influence, 
PLS models versus time and batch level modelling were 
performed for each reactor, separately. 
In terms of phenolic compounds, differences between 
suppliers in the manufacturing process were not 
observed. 
For phases 1 and 2 the scores plots for all reactors are 
similar, evolving along the first LV axis.  Figure 10 shows 
the time trajectory for reactor 5 of phase 1. For this 
reactor the majority of the scores are inside the 
Hotelling’s T2 ellipse. For all reactors, in phase 1 the 
scores that are located outside the ellipse correspond to 
higher values of enthalpy. 
For phase 3, unlike the first phases the similarities 
cannot be observed for all reactors, since in this phase 
the vacuum system of reactor 5 is used. In this third 
phase the main purpose is to cool down the resin with 
the cooling system ability, without any control. This 
phase is the critical phase of the whole process, which 
will be seen next with the batch level modelling. 

For reactors 3 and 4 the trajectory of the third phase is 
the same seen for phases 1 and 2 (Figure 10) however, 
for reactor 5 the time evolves along the second LV axis 
(Figure 11). 
 

For all reactors, detailed batch modelling was performed 
and differences were seen. Those differences will be 
evidenced in the batch level modelling presented next 
for reactor 3. 
 
Reactor 3 – Batch level modelling 

The PLS models scores of each phase and the duration 
of each phase were combined and unfolded batch wise. 

Then a PCA model that condenses the whole batch 
eliminating the time dependency is developed for each 
reactor. This model will allow to identify certain patterns 
among the batches. With the scores plot of the 
developed model (Figure 12) it is possible to see some 
batches lying outside the Hotelling’s T2 limits. The third 
phase of the process is the one with the most relevance 
for the process path. In this way, only the study of the 
third phase will be performed since the other phases do 
not show significant importance/variations for the study. 
In batch level modelling some patterns were observed 
according to the weeks of batches production when 
analysing the outliers. It could be seen that batches 

Figure 12 - Batch level modelling for reactor 3: Scores plot in which 
each dot corresponds to one whole batch, coloured by week. 

Figure 10 - Batch level modelling: Scores plot for the PCA model with 
the three reactors. 

Figure 11 - Scores plots for phase 1 of the process in reactor 5 coloured 
according to time maturity (batch starts in blue and ends in red). 

Figure 9 - Scores plots for reactor 5 in the 3rd phase of the process. 
The scores are coloured according to batch maturity time (batch starts 
in blue, evolves to green and ends in red). 
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produced in week 9 are located on the lower side of the 
scores plot (lower values of t[2]) whereas batches 
produced in week 15 are located on the upper side of 
the scores plot (higher values of t[2]).  
Looking back to the batch modelling and the original 
variables, the batch control chart for the water flow of the 
condenser shows differences in these weeks, showed in 
Figure 13 (a). In week 9 (blue coloured) this flow is 
higher when compared to week 15 (purple coloured). 
Additionally, differences in the vapour temperature were 
detected (Figure 13 (b)), in week 15 the vapour 
temperature is higher than in week 9 as expected 
because these two variables are directly related to the 
cooling system of the reactors. Higher values of the 
water flow of the condenser lead to lower temperature of 
the vapours, since there is more heat transfer in the 
condenser that leads to less hot vapours. 

As for the outliers of week 9 that are located on the 4th 
quarter of the scores plot, these batches showed values 
of the water flow in the condenser 107% higher than the 
average for the time frame studied. In this way, the 
separation of the batches per the second LV axis is due 
to the water flow of the condenser which has an impact 
on the final quality of the process. 
For weeks 3 and 6 outliers could also be highlighted. 
These two weeks have a similar behaviour as weeks 9 
and 15 but across the first LV axis. For week 6, the vapor 
temperatures were lower than average when compared 
to week 3 that were higher. In these two weeks the same 
was observed as for weeks 9 and 15, where the 
variables directly related to the cooling system leads the 
batches distribution.  
After this analysis, it was possible to conclude that 
phase 3 is the one with more influence in the whole 
process for reactor 3. Concomitantly it was possible to 
conclude that the cooling system of this reactor is what 
decides the final quality of the process, since all batches 
lying outside the Hotelling’s T2 ellipse (outliers) account 
for significant variations in this system. For reactor 4 the 
cooling system of the reactor is also the one that 
commands the process path.  
Reactors 3 and 4 share the cooling system, in fact for 
both reactors it was seen that this system decides the 
quality of the process. 

Reactor 5 – Batch level modelling 

Reactor 5 did not show any significant variability, or 
evident outliers. This was expected since this reactor, 
with the vacuum system, is the one that has a consistent 
manufacturing process, meaning that there are no 
relevant sources of variation in this reactor. 

II.2.3. -  Process versus resin quality (data 
integration) 

The purpose of this part is to identify common patterns 
among the analysis of the NIR spectra to the produced 
resins, process data and resin lab analyses. It was 
possible to establish correlations amongst the different 
types of data. Twenty-six resin batches were analysed 
in the lab. These analyses allowed to give a 
physical/chemical meaning to the NIR spectra. Apart 
from this, consistency of these properties in the different 
reactors were also identified with the resin batches 
analyses.  
Properties such as the molecular weight proved to be 
highly correlated to the NIR spectra. A more detailed 
approach will be given next to the lab analyses. This 
section of the chapter was divided in three parts: 

 Process versus resin quality (given by NIR spectral 
analysis) to identify common patterns between 
these two types of data;  

 Lab versus NIR spectral analysis in order to give a 
meaning to the NIR spectra and quantify 
correlations between the properties measured and 
NIR spectral zones; 

 Process versus lab analyses to perceive if the 
process variability can be identified in the lab 
analyses. 

Process versus Resin quality  

Considerable variability of the production process was 
detected in this chapter, especially due to the cooling 
system. 
Due to inherent variability, it was not possible to link the 
resin quality to a specific critical variable in the process. 
However, a pattern between the outliers in the NIR PCA 
models and the process quality for each reactor was 
observed. As an example, for reactor 3, all spectra 
batches lying outside the Hotelling’s T2 ellipse (see 
Figure 6) are in the lower part of the scores plot of the 
PCA model obtained for reactor 3, in batch level (see 
Figure 12). 
As it was seen, the lower part of the scores plot 
corresponds to higher values of flow of the condenser in 
phase 3.  

Lab versus NIR spectral analysis 

The lab analyses were performed to give some 
physical/chemical meaning to the scores plot of the NIR 
spectral analysis. Combining the information from the 
lab analyses and the NIR spectral analysis correlations 
could be established. For band 1, higher intensities of 
the characteristic band (Figure 7) correspond, in terms 
of physical/chemical properties, to higher values of free-
phenol, lower values of molecular weight and lower 
values of viscosity. 
It can be inferred that this first band might correspond to 
a characteristic band of the polymer. In fact, as stated in  
[12] organic polymers feature sharp and strong 
absorbance bands. A larger polymer will present a 
higher molecular weight and, consequently less phenol 
content. As for the intensity of the band, a broader band 
(less intense) corresponds to more rotational vibrations 
and a larger polymer has more of these vibrations. 
It was seen according to the location of batches 
produced in reactor 5 in the scores plot of the NIR 
models and the molecular weight that this reactor gives 
smaller polymers. The univariate statistical process 
control (USPC) chart (Figure 14) for the molecular 

(b) (a) 

Figure 13 - Variable batch control chart: Water flow of the condenser (a) 
and vapour temperature (b) during the third phase for reactor 3. Batches 
are coloured per week: Week 9 blue coloured and week 15 purple 
coloured. 
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weight of the resin batches analysed in the lab 
corroborates this indication. All resin batches produced 
in reactor 5 have molecular weights below the average. 
None of the resin batches analysed is out of control, 
since they are all inside the control limits.  
For the phenol content of the resin batches analysed it 
was seen that resin batches from reactor 5 have 

amounts of phenol above the average. In fact smaller 
polymers will have higher amounts of raw materials 
(phenol). 
A quantitative approach, to the correlation established 
was performed. A PLS model was developed in which 
the X-dataset is the NIR spectra for band 1 (with SNV 
pre-treatment) and Y-dataset corresponds to the 
molecular weight (Figure 15). The developed model has 
4 latent variables and accounts for high variance in both 
X- (99.8%) and Y-datasets (79.6%). The external 
validation was performed using 20% of the available 
dataset. 
Figure 15 shows the experimental values of molecular 

weight versus model predictions. The relative error of 

calibration was 3.02% and the relative prediction error 
2.21% (Error/Max(MW)).  

These results show that there is a good agreement 
between the NIR spectra and the molecular weight. The 
developed model shows that the NIR spectra are highly 
correlated to the properties measured in the lab. Further 
development of an NIR library with more lab 
measurements should be done. Then it could be used 
as a quality control fo the resin after the batch is finished. 
For the other two bands, a similar study was performed. 
Band 3 (with SNV pre-treatment) showed a high 
correlation to the free-phenol content (Error of cross-
validation of 6.30%, with a PLS model developed like the 
one for the molecular weight on band 1). Everything 
indicates that this band corresponds to the phenol 

content, since in NIR spectra, natural products have 
lower and broader absorbance bands, according to [12]. 

Process versus lab analyses 

As mentioned before, reactor 5 is the one with more 
consistency in the manufacturing process, meaning that 
there are no relevant sources of variations in this 
reactor. 
The cooling phase of reactor 5 is 20% faster than the 
other two due to the vacuum system. A faster cooling 
limits the extent of the reaction during phase 3, leading 
to smaller polymers. The lab analyses performed 
showed that besides the molecular weight and phenol 
content mentioned before, the curing speed time was 
longer and had a lower viscosity for reactor 5 resin 
batches. These analyses feature a small polymer. 
For all other properties measured in the lab, no 
conclusion could be made. 
 

II.3. - Assessment of the quality for B52 resin 

In this third chapter of II)II)Results and Discussion an 
equivalent analysis performed for B13 was done for B52 
resin. The study performed is the same for both resins 
however, since they are different and might have a 
dissimilar behaviour, the critical aspects for the final 
quality can be different. The time frame for these 
analyses was six months (January 2016-June 2016). 

II.3.1. - Variability of resin quality by NIR 

For the time frame analysed, 182 spectra were 
collected. For this resin only reactor 5 will be presented 
since 56% of B52 production B52 is in reactor 5. 
The spectra for B13 and B52 are similar, with the same 
characteristic bands, which makes sense since the only 
difference is the existence of the plasticizer in B52 resin. 
The chosen pre-treatment for B52 was SNV with a 
Q2=0.959 for the PCA model developed. The criteria to 
choose the pre-treatment was the same as for B13 resin. 
For this resin, differences between the phenolic 
compounds supplier (Figure 16) could be seen with the 
PCA model developed (Three PC with 94.7% explained 
variability). 

The resins produced by using supplier D are mainly 
located on the upper part of the scores plot.  
With the loadings plot for the developed model, it was 
checked which wavenumbers have more importance 
along the second PC (34% of explained variability for 
PC2). It was concluded that the wavenumber with the 
most importance for PC 2 is 5978 cm-1. As concluded for 
B13, given the lab properties with more correlation to 
this wavenumber, this band might be the absorption 
band of the polymer. This way, with this first exploratory 
analysis it could be inferred that the resin might have 

Reactors 
 

3 4 5 

Figure 14 - Univariate statistical process control chart for the molecular 
weight of the 26 resin batches analysed in the lab. The values of the 
molecular weights have arbitrary units due to confidentiality purposes. 

y=0.95x+21.16 

R2=0.81 

Figure 15 - PLS model: correlation between NIR spectra and 
molecular weight. Green: external validation; Blue: calibration dataset. 

Figure 16 - Scores plot for B52 resin produced on reactor 5. 
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different molecular weights when produced with supplier 
C or supplier D.  
The developed model does not show any strong outliers 
as could be expected for reactor 5. For this resin, 
differences between the spectra of resins produced with 
supplier C or D were checked. 
Given the similarities between both resins spectra, also 
for B52, models for each of the bands observed were 
developed. Patterns in the developed PCA models per 
the suppliers were observed for bands 1 and 3 as it can 
be seen in Figure 17 with the scores plot for those 
developed models, respectively. 

Using the loadings plot and analysing the intensity of the 
characteristic wavenumber for each of the bands it was 
possible to conclude that: for band 1, the resins 
produced with phenol from supplier D have higher 
intensities when compared with supplier C; for band 3, 
the resins have lower intensities of the characteristic 
wavenumber with supplier D (Figure 18). 

II.3.2. - Production Process Path 

The process paths for B52 and B13 resins are very 
similar, with the difference that since B52 is a post-
forming resin there is an intermediary step of reaction at 
lower temperatures. This intermediary step is important 
to manipulate the final properties of the resin. The 
variables and parameters studied for B52 were the 
same as for B13 resin, since this difference does not add 
any variables or parameters that are collected. For the 
six months, 251 batches were produced out of which 
141 were produced on reactor 5 (56.2% of B52 
production). Due to the intermediary step for B52 resin, 
the phase separation of the process is slightly different: 
Phase 1 corresponds to the warm up and intermediary 
reaction, phase 2 corresponds to the reaction and phase 
3 is the same, cooling phase. In this resin the reaction 
phase is around 30% shorter compared to B13 resin due 
to the intermediary reaction at lower temperatures. 
The analysis was performed for all reactors, 
nevertheless reactor 5 will be shown next, since more 
than 50% of this resin is produced in this reactor. Figure 
19 shows the temperature profile inside reactor 5. 
A PLS model versus time and batch level modelling 
were performed for reactor 5. 
 
 

 
The batch level modelling, shows clustering. The 
observed clusters were divided: 

 Cluster 1 corresponds to batches with negative t[1] 
and t[2] lying near or outside the Hotelling’s T2 
ellipse; 

 Cluster 2 corresponds to batches with negative t[1] 
and positive t[2] lying near or outside the Hotelling’s 
T2 ellipse; 

 Cluster 3 corresponds to all other batches. 
Figure 20 shows those clusters in the scores plot for the 
PCA model coloured by phenol supplier.  

In batch level it was possible to see a pattern according 
to the supplier of phenol as seen for the NIR spectral 
analysis. 
All batches produced in June are included in cluster 1 
whereas cluster 2 corresponds to batches produced in 
week 15 (April). These batches are mainly similar in the 
second PC, with similar values of t[2] scores. 
Comparing cluster 1 with cluster 2 according to the 
second PC, both phases 1 and 3 have influence in the 
clustering. As for the variables in each of these phases, 
for the second PC, the flow of the condenser is the most 
important variable in both phases 1 and 3 together with 
pressure. As it can be seen in Figure 21, the flow of the 
condenser for cluster 2 is lower than for cluster 1 in both 
phases 1 and 3.  

As a matter of fact, the loadings plot for both these 
phases show that the flow of the condenser has the most 
influence in the separation along the second PC axis, 

Band 1 Band 3 

Figure 17 - Scores plot of the PCA model developed for band 1 (left 
side) and band 3 (right side) for B52 resin, coloured by supplier. 

Band 1 Band 3 

Figure 18 - Spectra of band 1 (left side) and band 3 (right side) for B52 
resin, coloured by supplier. 

Figure 19 - Temperature profile inside reactor 5 for B52 resin. 

Figure 20 - Batch level modelling for reactor 5: Scores plot coloured by 
supplier with the clusters identified. 

Figure 21 - Variable batch control charts: Flow of the condenser for the 
clusters: Phase 1 (left side) and Phase 3 (right side). Batches are 
coloured per month: April orange coloured and June blue coloured. 
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since it is the variable with largest p[2] values. It is then 
possible to conclude that as it was seen for B13 resin, 
for B52 the cooling system also has influence in the 
quality of the process. 
Regarding the influence of the phenol supplier on the 
process path, differences could not be identified. 
Apparently, the more consistent quality of phenol 
supplied by D leads to less variability in the process, 
compared to supplier C. However, the number of 
batches corresponding to supplier D is much less than 
for supplier C, so more batches produced with supplier 
D should be taken into account to take a valid 
conclusion. 

II.3.3. - Process versus resin quality (data 
integration) 

The purpose of this chapter’s part is again to identify 
common patterns among the analysis of the NIR spectra 
to the produced resins, process data and resin lab 
analyses. It was possible to establish correlations 
amongst the different types of data. Eighteen resin 
batches were analysed in the lab for which twelve in 
reactor 5. These analyses allowed to give a 
physical/chemical meaning to the NIR spectra and 
highlight the critical aspects for resin quality. 
Properties such as phenol content proved to be highly 
correlated to the NIR spectra. A more detailed approach 
will be given next to the lab analyses. This section of the 
chapter was divided in two parts: 

 Lab versus NIR spectral analyses in order to give a 

meaning to the NIR spectra and quantify 
correlations between the properties measured and 
NIR spectral zones; 

 Process versus lab analyses to perceive if the 

process variability can be identified in the lab 
analyses. 

Regarding the process path apparently batches 
produced with phenol from supplier D phenol show a 
more consistent process quality.  

Lab versus NIR spectral analyses 

For the NIR spectral analysis, as seen in Figure 18 it was 
seen that resins produced from supplier D have a more 
intense band 1 and lower intensities for band 3. By this 
there is a strong indication that those bands correspond 
to given properties that vary inversely. 
In this way it is interesting to correlate the NIR spectral 
information with the lab analysis to check if a possible 
explanation for the differences found between the 
phenol suppliers can be made. Bands 1 and 3 evidenced 
those differences. A summary of the correlations 
established is presented in Table 4.Once again for band 
1 the lab properties that are correlated to this band are 
directly related to the polymer size as seen for B13 resin, 
corroborating that this spectral zone corresponds to the 
polymer absorption band. Regarding the phenol 
suppliers there is a strong possibility that batches 
produced with phenol from supplier D lead to smaller 
polymers, with lower molecular weights and higher 
phenol and formaldehyde contents. In fact, it is known 
from the company that supplier D provides a more 
consistent phenol quality than supplier C as it was seen 
in Study of raw materials variability. It is also known that 
supplier D provides a purer phenol, with less secondary 
products than supplier C. These secondary products 

may influence the final quality of the resin since they 
may interfere with the reaction.  
Table 4 - Summary of the correlations between NIR spectra and lab 
analysis. 

Once again a PLS model was developed in order to 
quantify the correlations mentioned above. An internal 
validation for this model was performed instead of 
external, as there were not that many samples available. 
The X-dataset is band 1 of the NIR spectra (with SNV 
treatment) and Y-dataset corresponds to free-phenol 
amount. The developed model has 2 LV and accounts 
for high variance in both X- (99.8%) and Y-datasets 
(96.0%). 
Figure 22 shows the experimental values of free-phenol 
content versus model predictions. The error of 
calibration was 1.986% and the error of cross-validation 
3.408%. These results show that there is a good 
agreement between the NIR spectra and the free-
phenol. 

Process vs Lab analyses 

It has been seen that the process production of B52 
resin is more complex than for B13. Due to this, B52 is 
mainly produced in reactor 5 as this is the most robust 
one. For this resin, there are more strict specifications 
than for B13. Lab analyses were also performed for B52 
(eighteen resin batches were analysed). With the USPC 
charts plotted for the lab analyses it was possible to 
conclude that the specifications should be revised. As 
an example, in Figure 23, the specifications for the 
curing speed time the maximum specification 
corresponds to the average of the values measured in 
the lab. 

Supplier C in comparison with Supplier D 

Band Intensity 
Lab properties 

correlations 
Polymer 

size 

1 Higher 

 Free-Phenol (smaller 

amount); 

 Molecular Weight 

(Higher); 

 B-time (Shorter). 

Larger 

y=1.00x+1.45×10-7 
R2=0.96 

 

Figure 22 - PLS model: correlation between NIR spectra and free-phenol 
property for band 1. 

Reactors 
 

3      4  5 

Figure 23 - Univariate statistical process control chart for curing time of 
the 18 resin batches analysed in the lab. The values shown were 
normalized due to confidentiality purposes. 
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Besides the evaluation of the specifications, patterns 
were identified: around 70% of the resin batches 
produced in reactor 5 have a molecular weight below the 
average, as seen for the same reactor for B13 resin. 

III) Conclusions 

A contribution for the process knowledge of resins 
production and a possible change of the quality control 
was presented in this thesis.  

 With the analysis of the existing historical data 
(process data stored but not used for process 
improvement) with MVDA techniques, the process 
knowledge increased reasonably; 

 The variability of the process, the raw materials, the 
final quality of the resin measured by NIR and lab 
analyses could be assessed, as well as their 
correlations; 

 This analysis allowed to find critical aspects for the 
final quality of the resin, such as the performance of 
the cooling system for both resins and phenol 
supplier for B52 resin. 

 The critical aspects found were the cooling system 
for both resins and the phenol supplier was 
highlighted as a critical aspect for B52 resin; 

 The lack of control in the cooling phase showed to 
be a considerable source of variability for the 
process quality and also for the resin quality given 
by NIR spectra. The reactors where the resins are 
produced can also have an impact on the final 
quality of the resins. Reactor 5 leads to smaller 
polymers due to the faster cooling phase with its 
vacuum system; 

 A qualitative conclusion for the differences between 
the phenol suppliers could be done: Supplier D 
leads to smaller polymers when compared to 
supplier C; 

 With the lab analyses physical meaning to the NIR 
spectra was given. Some of the properties (water 
tolerance, free-formaldehyde, viscosity) did not 
show any correlation to the NIR spectra. On the 
other hand, molecular weight and free-phenol 
content could be related to the NIR spectra, and 
calibrations could be developed for these two 
properties. An alternative quality control for the final 
resin quality could be implemented, based on NIR 
spectra. 
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