
NOVEMBER 2016 1

Boosting Energy-Efficiency of Heterogeneous Embedded
Systems via Game Theory

David Manuel Carvalho Pereira
Email: david.manuel.carvalho.pereira@ist.utl.pt

Abstract—The ever-growing demand of mobile devices (e.g
smartphones, tablets) with better performance and efficiency led
mobile embedded systems to become heterogeneous devices with
higher computational power and energy efficiency levels. Ho-
wever, it seems that these energy limited devices, are consuming
more energy that it is required in order to meet the performance
requirements, leading to discharge the battery more rapidly.

This paper aims to study and develop a new dynamic energy-
aware task scheduling approach for heterogeneous embedded
systems, based on Game Theory, in order to reduce the overall
energy consumption of the device. The proposed scheduling
approach combines an Auction based selection and the Nash
Equilibrium concept from Non-Cooperative Game Theory. It
develops a game, where players (processors cores) compete with
each other in order to acquire the tasks/applications by biding
the necessary energy consumption to execute them. The dyna-
mic energy-aware game-theoretic scheduling framework herein
proposed has been implemented on ARM Versatile Juno r2
Development Platform, experimentally evaluated and compared
with the available ARM big.LITTLE scheduling approaches. The
conducted evaluation revealed that the proposed framework can
achieve energy savings of up to 36%, 32% and 22% when
compared with the Linaro’s kernel 3.10, Global Task Scheduling
and Energy-Aware Scheduling ARM big.LITTLE approaches,
respectively.

Index Terms—Game Theory; Global Task Scheduling; ARM
big.LITTLE; Mobile Devices; Heterogeneous Embedded Sys-
tems; Energy-Efficient;

I. INTRODUCTION

The paradigm of achieving more computational power has
led to an evolution in the current computing systems. He-
terogeneous embedded systems such as mobile devices (e.g.
smartphones, tablets, etc.) are evolving every year aiming to
achieve better performance, speed, power consumption and
others aspects which can lead to better utilization conditions
for the user. However, they are requiring higher power con-
sumption, which leads to the batteries start to unload faster
and faster. To solve this problem, it must be found the best
way to achieve a good performance level, while at the same
time the energy consumption is reduced to the minimum. In
order to do so, an energy-aware scheduler must be developed
to schedule the tasks to the several cores of a processor in an
optimal way.

Several works, for example [2] and [7], have proposed a
static scheduling approach based on game theory that generate
task-to-machine scheduling maps with the respective executi-
ons frequencies for each task. However, these works are focu-
sed on solving the energy consumption problem for distributed
heterogeneous grids and not for heterogeneous embedded
systems. The static scheduling approaches proposed by the

authors, also takes into consideration tasks with deadline con-
straints, which is not common on user’s applications. In [3],
the authors propose a game-theoretic energy-aware dynamic
scheduling approach for multi-core systems to dynamically
migrate the applications between cores in order to reduce its
temperature and avoid ”hot-spots” in the processor’s chip.
Although considered an energy-aware scheduling approach,
it is mainly focused to reduce temperature and not energy
consumption at all. The approach proposed by [6] uses a
game theoretic concept to adjust at run-time the frequency
of each processing unit on a Multi Processing - System on
a Chip platform. This approach aims to reduce the system’s
temperature while maintaining the synchronization between
tasks of an application graph.

The works [2], [7] and [3] uses an Auction approach combi-
ned with Game Theory concepts such as the Nash Bargaining
Solution, Nash Equilibrium and the Prisoners Dilemma, to
schedule the tasks to cores/machines. These game theoretic
concepts are used to help the players decide the best strategy
to select in order to achieve the proposed goals. On the
other hand, [6] proposed an iterative algorithm based on Nash
Equilibrium to schedule the tasks.

This paper aims to study how game theory can be used to
create a new dynamic energy-aware scheduling approach ca-
pable of exploring all available computational resources simul-
taneously and reduce the overall energy consumption in he-
terogeneous embedded systems. The herein proposed energy-
aware game-theoretic scheduling approach will be based on
an auction method and the Nash Equilibrium game-theoretic
concept, where the processor’s cores will compete with each
other in order to bid and acquire the tasks/applications to
execute. Based on the game-theoretic concept, the cores will
select the best frequency to execute the tasks in order to reduce
the device’s overall energy consumption.

This work is organized as follows. Section II introduces the
Nash Equilibrium concept from non-cooperative Game Theory
and the Dynamic Voltage and Frequency Scaling power-
management technique. Afterwards, Section III presents the
proposed energy-aware game-theoretic scheduling approach.
In Section IV the proposed scheduling algorithms are evalua-
ted and compared with ARM big.LITTLE scheduling appro-
aches. Finally, the conclusions are presented in Section V.

II. BACKGROUND

A. Game Theory
Game theory is ”the study of mathematical models of

conflict and cooperation between intelligent rational decision-
makers” [1], and is used in different areas such as economics,

NOVEMBER 2016 2

computer science or biology. In game theory there are two
main branches: the cooperative and non-cooperative game
theory. The objective of this section is to introduce the
fundamental concept of non-cooperative game theory, the Nash
Equilibrium (NE).

Non-cooperative game theory deals with how individuals
interact with one another to achieve their own goals. The
players make decisions only by themselves seeking always for
the best payoff outcome for themselves. Nash proved that each
non-cooperative n-player game has at least one equilibrium
point, known as Nash Equilibrium.

Considering a n-player strategic game, let ui(s1, ..., sN)
denote the payoff utility of Player i (pi) that is based
on its strategy si and the strategy chosen by the ot-
her players, s−i. Each pi has a set of strategies and
must choose one of them, siε{S0, S1, S2, ..., Sj}. Given
the others players strategies, (s1, ..., s(i−1), s(i+1), ..., sN), pi
will choose always the best strategy, s∗i , which gives the
best payoff for him, ui(s1, ..., s(i−1), s

∗
i , s(i+1), ..., sN) ≥

ui(s1, ..., s(i−1), si, s(i+1), ..., sN).
The strategy set (s∗1, ..., s

∗
i , ..., s

∗
N) is a Nash Equilibrium

when all players have chosen the best strategy for themselves
based on the others players strategies and have no incentive to
change their strategy given what the other players are doing.
So it means that the best individual payoff to all players was
found.

B. Dynamic Voltage and Frequency Scaling (DVFS)
DVFS is a commonly-used power-management technique

used to reduce the energy consumption on CPUs. The dynamic
CPU power dissipation, P , can be mathematically represented
as P = C ∗V dd2∗f [7], where C is the switched capacitance,
V dd is the supply voltage and f is the operating frequency.
The supply voltage can be reduced by decreasing the CPU’s
frequency, which leads to reduce the power consumption of
the processor.

In this work, the ARM Juno r2 platform was used to eva-
luate the proposed scheduling approach. This platform has a
dual-core Cortex-A72 (big Cluster) and quad-core Cortex-A53
(LITTLE Cluster), which supports only three different DVFS
Operating Performance Points (OPP) as shown in Table I. The
ARM Juno r2 platform only supports the DVFS technique at
the level of the Clusters.

TABLE I: Cortex-A72 and Cortex-A53 DVFS OPPs [4].

OPP Voltage [V]
Frequency [MHz]

Cortex-A72 Cortex-A53

Underdrive 0.8 600 450

Nominal drive 0.9 1000 800

Overdrive 1.0 1200 950

III. ENERGY-AWARE GAME-THEORETIC SCHEDULING
APPROACH FOR HETEROGENEOUS EMBEDDED SYSTEMS

A. Problem Definition
Based on game theory, to solve the scheduling problem,

an auction system can be developed as a bargaining game.

As already seen, in section I, auctions were used by other
researchers and are considered a simple way to assign tasks
to cores. In an auction, the auctioneer (scheduler) present tasks
to the players (cores) in each round. The player should select
the best strategy (frequency), which is decided based on the
player’s utility function, and must bid on the task in order
to acquire it. In the end of the auction, the task is assigned
to the winner core. An auction n-player game, based on the
Nash Equilibrium concept from game theory, can be formally
defined as:
• N Players, P = {p1, p2, ..., pN};
• Each player owns a set of strategies. S =
{strategy1, ..., strategyN};

• In a round, each player pi has a strategy si. The set of
strategies in a round is s = {s1, s2, ..., sN};

• Each player has a payoff function ui(·) that can be based
on other cores strategies and can be the same (or not) to
every player.

• The game can be composed by multiple rounds, R
rounds.

The most important parts of this game are how the players
may choose their strategy and what must be the bid value. The
scheduling approach herein proposed must focus on develo-
ping an utility function capable to select the best frequency for
the player and also, assure that all players compete with each
other to bid and acquire the tasks. In the following sections
will be explained in detail the proposed auction approach as
well as the non-cooperative game-theoretic game approach.

B. Auction Approach

 Auctioneer / Scheduler

Decision

System Drivers

(e.g. CPUfreq and

Task Migration)

Player s

Bids

Task

Lists

Player

0 ...
Player

1

Player

N

New

Tasks

Present task to all players

Set frequency

Communication

(Shared memory)

Send Bids to Scheduler

Fig. 1: General structure of the proposed framework.

The auction approach assures that players compete with
each other by bidding the tasks in order to acquire them. In
each round of the game, one auction is realized, which means
that one task is scheduled per round. The auction of each task
gives to each player an opportunity to participate and be able
to execute the task.

NOVEMBER 2016 3

In each auction, the auctioneer (scheduler) present the tasks
to the players (cores), which will execute the task for a short
amount of time in order to acquire the necessary information
about the task in order to select the best strategy and bid
the task. The player should also have access to the others
players strategies in order to decide its own best strategy using
the game theoretic approach. Then, when all players have
computed and sent their bids to the scheduler, the winner core
will be selected, which will receive and execute the task.

In Figure 1 is shown the multi-player auction scheduling
environment herein proposed.

C. Non-Cooperative Game-Theoretic Approach

The Nash Equilibrium concept will be used in this game
theoretic approach. As seen in section II-A and in [2], [3]
and [6], the utility function is the principal mechanism used
by the players to select their own strategy. Using the auction
approach together with Nash Equilibrium, it is expected that
the players place a bid, for the task to execute, which is based
on the decision that maximizes the player’s utility function,
and also, on the principal goal, to minimize the overall energy
consumption of the system. Having said that, it is expected that
the player utility function is directly related with the overall
energy consumption of the device, and so, in each auction, the
winner will be the player who bids the lowest value, which
means that it can execute the task with the lowest energy
consumption among all players. By scheduling one task in
each auction to the core that can execute it with the lowest
possible variation in the overall system’s energy consumption,
this scheduling approach is able to find a local sub-optimal
solution.

The scheduling approach herein proposed must consider the
overall energy consumption of a system and not just on the
processors because this work is focused on energy limited
mobile devices, such as smartphones, and thus, the main goal
here is to save their battery as much as possible. On a compute
system exists mainly two subsystems that consume energy,
the processing units (e.g cores of a CPU and GPU) and the
remaining units (e.g. memory, system drivers and peripherals).
Therefore, the overall player utility function (Equation 1)
must be divided in 2 parts: the selected core (uplayer) utility
function, which is divided in two sections to cover the increase
of energy consumption in the selected player and its impact
on other players (uindividual), as well as the impact on the
remaining units (uglobal); and the other cores (uother players)
utility function, which aims to find if it is possible to change
their strategy in order to improve energy savings, taking into
account the new strategy of the selected core. These functions
are shown in equations 2-5.

In these equations, Sij is the strategy set of player i, and j
is one of the Mi available strategies, Sij = {si1, si2, ..., siMi

},
being si1, the lowest frequency available. In this game appro-
ach exists N players, i ∈ {1, 2, ..., N}, and si′ represents the
best strategy selected by player i in the last round/auction; si∗
represents the best strategy of player i, that can be found by
using the selected player utility function (Equation 2).

ui = uplayer(s1′ , s2′ , ..., Sij , ..., sN ′)

+ uother players(S1j , ..., S(i−1)j , S(i+1)j , ..., SNj)
(1)

uplayer = min
j

[(uindividual(sij)

+ uglobal(s1′ , s2′ , ..., sij , ..., sN ′)]
(2)

uindividual = ∆Eplayer(sij , si′) +
N∑

w=1,w 6=i

∆Eplayer(sw′) (3)

uglobal = ∆Esystem(s1′ , s2′ , ..., sij , ..., sN ′) (4)

uother players =
N∑

w,w 6=i

min
j

(∆Eother player(si∗ , swj , sw′)) (5)

1) Individual Utility Function: The player’s utility function,
shown in equation 2, is focused on unilaterally minimize the
variation of energy consumption of the system due to the
selected frequency by player i. To compute the necessary
energy consumption to execute a task on a core, is neces-
sary to estimate the task execution time and its associated
power consumption. In this work, it is assumed that has been
collected some information about the task a priori, such as
the total number of instructions of the task, which is essential
to estimate the task execution time. Each player can use the
performance counters and energy meter registers available on
the platform to characterize the task and measure its power
consumption, which will be further explained in this docu-
ment, in order to estimate the necessary energy consumption
to execute the task.

In systems with many tasks executing at the same time,
to give energy-awareness to the scheduler, it is necessary to
know in which cores are the tasks being executed, as well
as, their actual frequencies and power consumptions. In this
proposed approach, all this information is put together and
stored in memory. To simplify the reading, this structure will
be referenced as ”task execution map”. In Figure 2 is shown
an example of a task execution map in order to describe how
the selected player chooses the best frequency to execute the
received task.

A

B

P0

P2

P1
tA

tB

f0

f2

Bf2
t B

P2

P1

C

B

f1

f2

A

t B

P0

P2

P1

C

B

t A

f2

f2

A

t B

P0

P2

P1

t A

t C
t C t C

Cf0

P0

t A

t C

P0 f0
A

A

P0
A AC A C A C A C A C C

Cf0

P0

t A

A

t C

C

t A

A
P0

f0

tnow tnow tnow

tnow

Old execution map

 New execution maps

Fig. 2: Individual utility function, usage example.

In this example, player (core) 0, P0, and player 2, P2, are
already executing task A and B, which will finish approx-
imately at tA and tB , respectively. P1 is empty, and thus,

NOVEMBER 2016 4

in idle mode. However, when task C is scheduled to any
other core, the execution time of existing tasks A and B, will
increase to tA′ and tB′ , respectively, due to conflicts between
the tasks inside the shared caches and memory (e.g. cache-
miss penalty). Besides that, if task C is scheduled to the same
core that is executing task A, then the execution time of task
A will increase from tA′ to tA′′ due to the round-robin time-
sharing policy, SCHED OTHER, because just one task will
be executed at a time while the remaining ones stay paused,
as shown in the red square present on Figure 2. This example
shows that an energy-aware approach must be aware of the
availability of each core before scheduling the task, because
when task C is scheduled to the same core that is executing
task A, the amount of context switching between tasks is quite
intensive due to the SCHED OTHER policy, and thus, it will
probably be less energy-efficient than if task C was scheduled
to an non occupied core, which in this case is P1.

Following the example, to properly compute the necessary
energy consumption to execute task C on core 0, it must be
first introduced the following ∆Energy and the Energymap

functions:

∆Energy = Enew map − Eold map

Emap =

K∑
i=1

PowTask comb(i) ×∆TTask comb(i)

(6)

In Equation 6, K represents the number of task combina-
tions in the execution map of the selected player. As seen in
Figure 2, K is 1 when core 0 is just executing task A (old
execution map), and is 2 when core 0 is executing task A and
C (new execution map) because there are two time slices with
different combinations, first, the time slice from tnow to tA′′
with the task combination A and C and then from tA′′ to tC′′
with just task C.

Following the example, in the new execution map, the
energy consumption of core 0 is Enew map = PowAC∗(tA′′−
tnow) + PowC ∗ (tC′′ − tA′′), while previous, the energy
consumption of the old execution map was just the energy
consumption of task A solo, Eold map = PowA ∗ (tA− tnow).
In this utility function, it is also taking into account the
increase of energy consumption in the other players due to
the impact of core 0 decisions (increase of task B execution
time), and so, these energy consumption variations must be
also added in the individual utility function, as seen in the
second term of Equation 3. It should be noted that each player
must have the ability to access and read its own instantaneous
power consumption value in order to compute the ∆Energy.

In these calculations, it can be seen that for each task
execution map it must be known several task execution times
and powers consumption values. In this example, PowerAC

can be measured immediately after task C is scheduled to
core 0, while PowerA was already been measured when task
A was scheduled in the previous round. However, PowerC is
not known but can be assumed that its value is already known
from previous executions of task C and is stored on memory
(task history unit) or it can be measured by pausing task A in
order to measure the instantaneous power consumption of task
C solo. The executions times can be approximately estimated

through the cycles per instruction (CPI) ratio, frequency and
total number of instructions as will be explained in section
III-E.

There are as many execution maps as frequency levels
available on the core. The new frequency (new map) that
assures the lowest variation of energy consumption compared
to the old frequency (old map), will be the individual decision
of the player. These new execution maps should be stored on
the memory in order to be used in the next auctions and also
because they are used in the global utility function.

2) Global Utility Function: The energy consumption of a
mobile device is not only due to the processor, as previously
discussed, but also other components that consume energy.
For simplicity, this set of components will be referenced
as ”system”, which refers to the existing hardware outside
the processors (clusters), such as the DRAM memory, bu-
ses, power-management subsystems (e.g. DVFS) and other
peripherals. On some devices the system energy consumption
can be even higher than the processor, and so, it must be
considered to the scheduling decisions.

In ARM Juno r2 platform and generally in mobile devices,
the variation of power consumption in the ”system” is mainly
due to the DRAM memory accesses because it is one of the
components whose usage is more dependent on the executing
tasks. However, this variation can be slightly insignificant
when compared to the static power consumption that the
remaining components in the ”system” have.

The global utility function operates similarly to the indi-
vidual utility function. The difference is that all the players
must now be seen as an unique player. This modification is
required because the overall instantaneous power consumption
of the ”system” is only represented by one power consumption
sensor. And so, the task combinations must be aggregated at
the level of the whole system and not at the level of the player.
In Figure 3 is shown an example to better understand the
global utility function. As mentioned before, for each player,
there exists as many execution maps as available frequencies.
However, to simplify, in this example, it is just shown two new
task execution maps when the received task C is scheduled
to core 1 and core 2 at frequency 0 and 2, respectively. The
∆Energy and the Emap functions used in this utility function
are the same that are used in the individual utility function,
Equation 6. However, in this utility function, the power consi-
dered will be the ”system” instantaneous power consumption
and not the power consumption of each individual player.

AP0

P2
P1 tA

f1

BP3
tB

f2

AP0

P2
P1

f1

BP3 f2

C

t A

tC

t B t system

f0

AP0

P2
P1

f1

BP3 f2

C

t A

tC

t B

f2

t system t systemtnow tnow tnow

Old execution map
 New execution maps

...

Fig. 3: Global utility function, usage example.

Following the example, the ”system” energy consumption
of the new execution map when the task C is scheduled to
core 1 with the lowest frequency is Enew map = PowABC ∗

NOVEMBER 2016 5

(tB′ − tnow) + PowAC ∗ (tA′ − tB′) + PowC ∗ (tC − tA′),
while the energy consumption of old execution map was,
Eold map = PowAB ∗ (tB − tnow) + PowA ∗ (tA − tB). As
already mentioned in this document, some of these instantane-
ous power consumptions are unknown and must be measured.
In order to overcome this problem in future auctions, these
measure must be stored in the task history unit. However,
as already discussed, the ”system” power consumption can
be approximately constant, and this would let the PowAC

be approximately equal to PowABC and not needed to be
measured. However, this would be a pessimistic approach and
the respective associated errors could influence the overall
decision. It should be also noted that if task C was scheduled
to core 2 at frequency 2, the only unknown task combination
power consumption value is the new ABC, because AB and
A were already been measured on previous auctions.

As seen in Figure 2 and 3, different frequencies lead to
different execution maps, and hence, different energy con-
sumptions. The relevant information of each execution map
should be stored on the memory in order to be used in the
next auctions. In this example (Figure 3), it should be noted
that depending on the frequency and core selected to schedule
the task, the tsystem varies, and so, in some execution maps,
the energy consumption of the ”system” can be more relevant
than in other execution maps.

Joining the individual utility function with the global (sy-
stem) utility function it is possible to predict the increase of
energy consumption inside the processor and in the ”system”
when scheduling a task to a specific core. For each frequency
available on the core, the one which implies lower variation
of the overall (core + system) energy consumption will be
selected as the best decision for that player. However, it must
be also seen if the remaining players should change (or not) its
previous decisions based on the actual selected player decision,
which is taken into account in the other players utility function.

3) Other Players Utility Function: As seen in the last two
utility functions, the selected core choses the best frequency
based on the variation of energy consumption on the processor
as well as on the ”system”. This is done because the scheduler
should have an overall device’s energy-awareness and not
only at the level of the processor. However, the approximately
constant power consumption of the ”system” can be so higher
when compared with the processor/core, that this last can be
irrelevant, which can lead to select higher frequencies on the
core in order to reduce the task execution time and hence
reduce the dominant ”system” energy consumption. Having
said that, once we have taken into consideration the overall
energy consumption of the device, we can then look if it is
possible to save energy consumption in the remaining cores
by selecting their best frequencies from the individual utility
function, as illustrated in Figure 4.

As already seen in the selected core utility function
(uplayer), the best frequency for that player is chosen and the
corresponding execution map is stored on memory. This new
execution map will be the base for this utility function. The
highest execution time of all players is designated the time
system, tsystem, which is marked red on the example. The
goal of this approach is to see if the other players can lower

AP0

P2
P1 tA

f1

BP3
tB

f2

AP0

P2
P1

f1

BP3 f2

C

t A

tC

t B t system

f0

t system

f0

f1 f0
t B t B

t A

f0 f1 f2 f0 f1 f2 f0 f1 f2
ECluster ESystemECluster+System

Task B decisions on last auctionOld execution map New execution map

Fig. 4: Other players utility function, usage example.

their frequency in order to achieve energy savings while they
are just allowed to select frequencies whose execution time is
lower than the tsystem.

Following the example, task B was scheduled in the last
auction to core 3 with the highest frequency, which was not
the one that corresponds to the best individual energy saving as
can be seen in the energy values represented in the red square.
It should be noted that when each task is scheduled to a core,
its individually values of necessary energy consumption to
execute on that core for all available frequencies are stored on
memory in order to be used in this utility function. For task B,
the best individually energy consumption would be achieved
when selecting the lowest frequency available. However, f0
was not selected in the last auction because the ”system”
has higher energy consumption at that frequency, and thus,
the selected frequency was f2, which provides lower overall
energy consumption in the device. By using the selected
core utility function (uplayer), the best frequency selected
to schedule task C to core 1 was the lowest one, which
corresponds to a change from tsystem to t

′

system. Looking to
each execution time for each frequency, one can see that the
core 3 can achieve energy savings by selecting the frequency 0,
which corresponds to an execution time t

′′′

B . However, for task
A, frequency 0 will not be selected because the task execution
time will be higher than the t

′

system.

D. The Proposed Algorithm

By using these three utility function, one can conclude that,
in each auction, the new task can be scheduled to the core
that offers the lowest variation of energy consumption on the
device. With this game approach, each player will place a bid
regarding its own decisions and the other players decisions,
which will lead to find local sub-optimal energy savings. In
Figure 5 is shown the pseudocode of the player’s algorithm
based on the proposed game theoretic approach.

As can be seen in the player’s algorithm, the player starts to
gather information about the new task (Steps 0-2). Afterwards,
the player uses this information to estimate the tasks execution
times and instantaneous power consumptions (Steps 3-4).
These estimations are based just on the current operating
frequency, however it is possible to predict them to other
frequencies without changing it, which will be explained in
sections III-E and III-F. Then, the player selects the best
frequency that contributes with the lowest variation of energy
consumption to the overall device, and communicate it to the
other players. These will see if it is possible to improve their
strategies, and communicate them back to the selected player
(Step 5-6). Finally, based on all these energy consumption

NOVEMBER 2016 6

Player’s pseudocode to compute the task’s bid
Input: Task ti
Output: Bid of player j to task i, Bij

0. Read the performance counters and energy meter registers for all existing tasks on player j before executing task ti.
1. Execute task ti for a short amount of time.
2. Read the performance counters and energy meter registers again for all existing tasks on player j.
3. For each task executing in player j do:

3.1 Estimate the task execution time for the actual frequency.
3.2 Predict the task execution time for the remaining frequency levels.

4. For each available frequency do:
4.1 Generate the task execution map based on the tasks execution times.
4.2 Estimate the instantaneous power consumption for each task combination existing in the execution map.
4.3 Estimate the player and ”system” overall energy consumption based on the created execution map.
4.4 Compute the variation of energy consumption between the new created task execution map and the previous task execution

map (without task ti).
5. Choose the frequency that leads to lower variation of energy consumption when executing task ti on player j.
6. Optimize the other players decisions through communication of the selected frequency.
7. Compute bid Bij based on all utility functions and send it to the scheduler.

Fig. 5: Player’s pseudocode to compute the task’s bid.

values, the selected player computes the final bid and sends
it to the scheduler (Step 7). Once all players have sent their
bids to the scheduler, the player with the lowest bid will be
the winner, the task will be schedule to it and the respective
operating frequency will be changed.

The players in this approach will be the ”big” and
”LITTLE” Clusters and not the individual cores because the
ARM Juno r2 platform have energy meters only at the level
of the Cluster, which means that it can be just known the
sum of instantaneous power consumption of all cores on
that cluster, and not each one individually. This limitation
leads to adopt the notion of ”players’ representative”, which
are the clusters and the ”sub-players”, which are the cores.
Basically, the idea is that the player represents a coalition of
sub-players, where the player must adopt an non-cooperative
game approach in relation with the other clusters, but at the
same time, it must exists some cooperation between the cores
inside that cluster, because when the frequency is changed in
the cluster, all the core’s frequency are also changed. That said,
in this approach, is now assured cooperation between the sub-
players by selecting the new best frequency for all cores that
corresponds to the lowest energy consumption on the cluster,
and then, is also assured a non-cooperative approach between
the players, by using the auction approach in order to compete
individually against each other.

To evaluate this approach, real benchmark applications were
used. These tasks can have different execution phases until
they finish. First, they can start to behave like a memory
bounded task, which means that they are mainly dependent on
the memory’s frequency and not on the processor’s frequency,
because they do many memory accesses and must wait many
cycles to obtain the stored data. And then, they can behave
like compute bound tasks, where they just use the caches of
the processor, which are much faster than the general DRAM
memory. This unpredictable behavior, i.e. different phases
(different CPI ratios), can affect the estimation of the task
execution time, as it will be explained in section III-E. To
overcome this problem, the scheduler must do the estimations
frequently in order to detect the task phases. In this approach,

when a new task needs to be scheduled, it is done a new
estimation of all task’s execution times in order to compute the
energy consumption accurately. It is also done a reschedule of
the already executing tasks when one of the tasks has finished.
This contributes to actualize the estimations of execution times
as well as to give other opportunity for other cores to acquire
those tasks. The pseudocode for the proposed scheduler is
shown in Figure 6. The detection of when some task have
finished is done through a flag, corresponding to Step 6 of the
algorithm.

In the developed algorithm three task lists are maintained:
the task running list, the task waiting list and the task paused
list. In the task running list are present the tasks that were
scheduled and are being executed on the cores. In the
task waiting list are present the new tasks that arrived to
the scheduler and were not yet scheduled. The scheduler
starts by picking one task from the task waiting list and uses
the proposed scheduling approach to schedule it. First, the
scheduler opts to schedule only to the cores that are empty in
order to avoid exhaustive search on all existing cores (Steps
2.3-2.5). However, if there is no available cores, the scheduler
has no choice but finding the best of all existing cores (Steps
4). There is also the option to not schedule the task and wait
until some task finishes, which could lead to lower energy
consumption than scheduling the task to an occupied core
(Step 3). If eventually this could be the decision, then the task
will be transfered from the task waiting list to the paused list
and will stay there until some core becomes available (Step
5). As already mentioned, once one task finishes, it is done a
reschedule of all executing tasks. To do so, the tasks in the
running list are inserted in the top of the waiting list followed
by the tasks in the paused list and the remaining tasks already
present in the waiting list. And then, the scheduler executes
the tasks reschedule (Step 6.).

E. Execution time estimation and prediction

In order to estimate the task execution time, it will be
necessary to know the task actual cycles per instruction (CPI)

NOVEMBER 2016 7

Pseudocode of the Scheduler’s algorithm.
Input: Task ti
Output: Schedule of task ti to core cj with freq fw

0. Scheduler waits until new tasks appear.
1. Scheduler enqueues the new tasks in the waiting list.
2. If there are tasks on waiting list, proceed, otherwise go to Step 0.

2.1. Check all players available, i.e., the ones with at least one core unoccupied.
2.2. If there are no available players then go to Step 3.
2.3. Send the task for each available player and wait to receive all player’s bids.
2.4. Select the player with the lowest bid and schedule the task ti to it.
2.5. Change the players’ frequencies according to the bid of the winning player. Go to Step 2.

3. Send the task to the player who will be available sooner and compute the bid as scheduling the task just when the player
becomes available, i.e., to not scheduling the task now and wait until some player is available.

4. Send the task and compute the bid for each core in each player.
5. If it is better to not schedule the task now, then send the task to the pause list and wait until some player becomes available.

Otherwise, schedule the task to the winner core. Proceed to Step 2.
6. If some task finishes, insert the already executing tasks on the top of the waiting list followed by the tasks in the paused list

and proceed to Step 2 (reschedule).

Fig. 6: Pseudocode of the Scheduler’s algorithm.

0

2

4

6

8

10

12

14

0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2

C
P

I

Freq [GHz]

MEM_bound solo MEM_bound & Tracking

Big

Little

Little

Big

(a) MEM bound task

0

0,5

1

1,5

2

2,5

3

3,5

0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2

C
P

I

Freq [GHz]

Tracking solo Tracking & MEM_bound

BigLittle

Little

Big

(b) CPU bound task

Fig. 7: Comparison and variation of the CPI tendency between
MEM bound and CPU bound applications.

ratio, frequency and number of total instructions, as shown in
Equation 7. The task CPI ratio can be measured by reading
the number of cycles and instructions executed, during a time
duration, which can be obtained through PAPI [5] or by
directly setting and reading the event counter registers. In this
work, the task’s total number of instructions is assumed that
is already known and is stored in the task history unit.

Execution time =
CPI

freq
×#Total instructions (7)

The use of the actual CPI ratio on this function, assumes
that the task have always the same behavior when it is
being executed. However, as mentioned before, tasks can have
different execution phases, and thus, CPI measures must be
actualized when a new task is about to be scheduled or when
the scheduler effectuates a reschedule when one task finishes.

Generally, memory bounded tasks have higher CPI ratio
than compute bounded tasks, because in average it must wait
more cycles to load or store data then to compute. Based on
two tasks tested on ARM Juno r2 platform, one developed
memory bound task and one compute bound benchmark
(Tracking), it could be possible to see the CPI variation, of
each task, for different frequencies when they are executed
solo and together in the same core (Figure 7).

This example shows that the compute bounded task has
the same CPI in each frequency, which is true because CPU

bounded tasks are mainly dependent on the frequency of the
core. And it is also seen, that memory bounded tasks have
different CPI values on different frequencies; they are more
dependent on the memory’s frequency than the frequency of
the core, and so, they wait more cycles to get the data from
the memory, which is operating at a constant and different
frequency than the cores. It can also be seen that when the
tasks are executing together in the same core, the CPI tendency
tends to be the same, which suggests that this tendency must
be preserved when it is necessary to predict the CPI ratio to
other frequencies. To do so, it will be assumed that the relation
between the new CPI measured and the CPI solo value is
the same in each different frequency. And so, based on the
CPI measure for the actual frequency and the CPI solo values
stored for the same frequency and other frequency to predict,
it can be possible to predict the CPI value for that frequency,
as shown in Equation 8.

CPIfx =
CPIfy

CPIsolofy
× CPIsolofx (8)

In the task history unit, it is assumed to be stored the
solo CPI value of each task for each available frequency,
which were obtained by executing the task solo previously.
By predicting the task CPI value for the remaining available
frequencies, it is possible to estimate the task execution
times for each frequency level without physically changing
it (exhaustive search).

F. Power consumption estimation and prediction

The cumulative energy consumption meter register present
in the ARM Juno r2 Performance Measure Unit will be used
to measure the instantaneous power consumption of a task
combination executing on a Cluster at the actual frequency.
This register can be accessed, when using an Linaro kernel,
through the Hardware Monitoring Driver interface, which is
exposed through sysfs (/sys system folder). The instantaneous
power consumption estimation can be obtained by dividing

NOVEMBER 2016 8

the difference between two cumulative energy measures by
the time duration between measures, as shown in Equation 9.

Power consumption =
Energy after − Energy before

∆Time
(9)

Power dissipation in CMOS circuits can be defined by the
processing (dynamic) power dissipation and the transistors
static power leakage. However, as referenced in [7], the
dynamic power consumption accounts for more than 60-70%
of the total power dissipation of a processor, and therefore,
it seems reasonable to ignore the static power consumption
of the processor. The approximated power consumption of the
processor can be now estimated based on the power consuming
transitions of all the transistors when the processor is executing
tasks, which is shown in equation 10.

Power consumption = αC × fclk × V 2
dd (10)

In this equation, α represents the activity factor, i.e., the
fraction of the circuit that is switching, C is the switched
capacitance, fclk is the frequency of the cluster and Vdd is the
supply voltage of the cluster. However, the existing processors
on the market, generally don’t have available the data needed
to accurately compute the activity factor of the processor,
and so, in this work, it will be also assumed that the power
consumption can be approximated by using the equation 11
[7]. In this equation is also shown, how it can be predicted
the power consumption for frequency 0 by knowing the actual
power consumption for frequency 1 and the voltage supply
values for each frequency.

P ∝ fclk × V 2
dd

Pf0

Pf1

=
f0 × V 2

f0

f1 × V 2
f1

(11)

As already mentioned, when one task finishes it is done a
reschedule of the executing tasks. When this occurs, the tasks
must be paused in order for the cluster power consumption
return to the value when no task was scheduled. This must
be done because the reading of power consumption for the
first task to be rescheduled must be only its own power
consumption and not the overall cluster power consumption
of all executing tasks. That said, the tasks used to evaluate
the proposed framework must be modified in order to pause
whenever the scheduler sends a reschedule signal.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed energy-aware scheduling approach was ex-
perimentally tested on ARM Juno r2 platform. This board
can run different software stacks developed by both ARM
and Linaro, which include an EDK2-based UEFI environment
or a Flash with a Linaro kernel, combined with a filesystem
(Android / BusyBox / OpenEmbedded (OE)) booted via U-
Boot.

To evaluate the proposed scheduler, ARM Juno r2 board was
configured with the software combinations present in Table

II, by following the instructions present in ARM’s ”Using
Linaro’s deliverables on Juno” web document [8]. As already
mentioned, this platform have a out-of-order dual-core Cortex-
A72 and an in-order quad-core Cortex-53, which have the
same instruction set architecture.

TABLE II: Available ARM Juno r2 software’s combinations.

Flash Kernel PAPI Energy meters
UEFI 16.04 3.10.0-1-linaro-lt-vexpress64 Yes Yes
LSK 16.05 3.18.31 (GTS) No Yes
LSK 16.06 3.18.34 (EAS) No Yes

The Linaro Stable Kernel (LSK) incorporates the
big.LITTLE MP patchset produced to support scheduling on
heterogeneous multi processor systems. And so, the LSK
is the one that supports the Global Task Scheduling (GTS)
and the Energy-Aware Scheduling (EAS) ARM big.LITTLE
approaches. The available filesystem chosen to configure the
board was the OE LAMP 15.09, which is the recommended
filesystem by Linaro to use. Each version of the available
OE filesystems contains a /boot folder, in which is present
the kernel that has the same kernel headers as the filesystem.
However, this kernel is not used by the board when it is used
the LSK in the Juno’s Flash, but it can be loaded when an
Unified Extensible Firmware Interface (UEFI) Flash is used.
The UEFI Flash contains no kernel and it can be used to load
the kernel from the filesystem boot folder, which is inserted
in the USB port.

The fact that the filesystem do not contain the correct kernel
headers for the LSK 16.05 and 16.06 kernels, some of the
modules are not loaded when the board is booting up. Due to
this, it was seen that PAPI could not be sucessuflly installed
on those LSK configurations. The proposed framework was
tested in the Linaro kernel present in the /boot folder of the OE
LAMP 15.09 filesystem by using the UEFI 16.04 flash and will
be compared with the GTS and EAS scheduling approaches
present in LSK 16.05 and LSK 16.06 kernels respectively. It
should be noted that each configuration have a different kernel.

B. Benchmarks

To evaluate the developed energy-aware game-theoretic
scheduling approach with different applications, the following
benchmark suites were considered: the Princeton Application
Repository for Shared-Memory Computers (PARSEC) [9]; the
Standard Performance Evaluation Corporation (SPEC) CPU
2006 [10]; the San Diego Vision Benchmark Suite (SD-VBS)
[11] and the OpenBlas library [12]. These benchmarks were
modified to use the necessary PAPI functions to create an
event set and start the reading of counters as well as the code
to pause the thread when the scheduler sends the reschedule
signal. In Table III is shown the single-threaded benchmark
applications used to evaluate the proposed framework as well
as their respective input sets.

The most delay on the response to the pause signal in all
successfully compiled benchmarks, was 10ms, which occurs
when the application is being executed at the lowest frequency

NOVEMBER 2016 9

TABLE III: Used benchmarks and respective configuration.

SD-VBS OpenBLAS
Benchmark name Input set Repetitions Benchmark name Input set Repetitions

Disparity test 8000 Sgemm random values 2000

Mser test 3400 Sgemv random values 2000

Stitch test 5000 Sscal random values 200000

Texture Synthesis test 2000 Saxpy random values 80000

Tracking test 500 Sdot random values 80000

PARSEC SPEC CPU2006
Benchmark name Input set Repetitions Benchmark name Input set Repetitions

Blacksholes in 4.txt 5000 Bzip2 sample4.ref 2500

on the Cortex-A53. Therefore, the scheduler must wait ap-
proximately 10ms after sending the signal to start reading the
power consumptions correctly.

C. Experimental Results

The developed MEM bound and Tracking benchmark were
used to evaluate the associated errors of the task execution
time and CPI prediction functions. This evaluation revealed a
maximum error of 2% between the measured values and the
predictions. Afterwards, the Blacksholes benchmark was used
to evaluate the power consumption predictions, which revealed
a maximum error of 15% when compared with the measured
values. These results suggest that future improvements can be
done, especially to take into consideration the static power
consumption of the processing units on the power predictions.

The proposed scheduler was also evaluated for different
benchmark combinations. In Table IV are shown the energy
consumption as well as the execution time for different ben-
chmark combinations. It is also presented the achieved energy
savings between the proposed scheduling approach and the
Linaro’s kernel 3.10, GTS and EAS scheduling approaches
present in different kernels.

The proposed scheduler controls the frequency scaling and
task migrations from the user-space through an algorithm
programmed in C language. It also uses the APB interface and
PAPI to read the energy meter registers and the performance
counters, respectively, from the user-space, which have higher
associated overheads than if could be possible to access them
directly through the kernel. In order for the proposed scheduler
algorithm to have no influence in the task executions, and
also, to be as fast as possible like a kernel, the scheduler
algorithm was executed in a dedicated Cortex-A53 core. In the
experimental results, there are only three Cortex-A53 cores
and two Cortex-A72 cores available to execute tasks. The
remaining Cortex-A53 core is used to execute the scheduler
algorithm of the proposed framework and is shut down in
the remaining scheduling approaches of the other kernels. By
adopting this, it is achieved fairness in the experimental results
between the different evaluated scheduling approaches.

As can be see in Table IV, the proposed framework can
achieve energy savings up to 36%, 32% and 22% when
compared with the ARM’s Linaro, GTS and EAS scheduling
approaches. However, it can be unfair to compare the propo-
sed scheduler, evaluated in the Linaro’s kernel version 3.10,
with the GTS and EAS scheduling approaches, which were
evaluated in different kernels versions, 3.18.31 and 3.18.34,
respectively. These kernels can have such improvements that

are not present in the 3.10 kernel, and so, if one task is selected
to be executed on both Linaro’s and EAS approaches it can
have different energy consumptions. This can be proved by
looking at the MEM bound task experimental results when
the interactive governor was selected in both Linaro’s and
EAS kernel. During these experimental evaluations it could
be seen that both kernels execute the MEM bound task on
one Cortex-A72 core at the highest frequency until it finishes.

In order to better understand the scheduling decisions of the
proposed scheduler, Figure 8 shows the overall instantaneous
power consumption (Cortex-A53 + Cortex-A72 + system)
and frequency levels obtained during the execution of the
benchmark combination number 4 (see Table IV) for the
proposed scheduler as well as for the ondemand governor
selected on Linaro’s kernel 3.10.

On one hand, the ondemand governor uses the Cortex-A72
during more time and at higher frequencies than the proposed
scheduler, which leads to higher power consumption. The
ondemand governor also migrates tasks more often than the
proposed scheduler, which executes the tasks on the same core
until that task (or some other) finishes, in order to perform
the task rescheduling. The proposed scheduler tends to select
the best frequency for every task combination executing at
the time. It should be noted that the ondemand governor took
bad migrations decisions between 3-4s. During that time, it
executed more than one task at the same core, which increased
the frequency level and the power consumption.

V. CONCLUSION

The energy-aware game-theoretic scheduling approach he-
rein proposed revealed to be capable of use the performance
counters and energy meter registers of the system to gather
information about the task in order to characterize it, and
hence, by following the game-theoretic concepts, to select
the best frequency and core to schedule the task, which
corresponds to the minimum variation of the overall energy
consumption in the device. The conducted evaluation of the
proposed framework on ARM Juno r2 platform revealed that
both power consumption and execution time predictions have
approximated associated errors of 15% and 2%, respectively,
and also, that can achieve energy savings of up to 36%,
32% and 22% when compared with the Linaro’s kernel 3.10,
GTS and EAS ARM big.LITTLE scheduling approaches,
respectively.

REFERENCES

[1] Roger B. Myerson. Game Theory: Analysis of Conflict. Harvard
University Press, 1nd edition, 1997. ISBN:0-674-34115-5.

[2] Nickolas Bielik and Ishfaq Ahmad. Cooperative versus non-cooperative
game theoretical techniques for Energy Aware Task scheduling. 2012
International Green Computing Conference (IGCC), pages 1–6, 2012.

[3] Guowei Wu, Zichuan Xu, Qiufen Xia, and Jiankang Ren. An energy-
aware multi-core scheduler based on generalized tit-for-tat cooperative
Game. Journal of Computers, 7(1):106–115, 2012.

[4] ARM. ARM Versatile Express Juno r2 Development Platform (V2M-Juno
r2) Technical Reference Manual, November 2015.

[5] Performance Application Programming Interface (PAPI),
https://icl.cs.utk.edu/projects/papi/wiki/ Threads, Web accessed: 17
of April of 2016.

NOVEMBER 2016 10

TABLE IV: Experimental results for each benchmark combination used to evaluate the proposed framework. The energy
consumption values represents the overall energy consumed by the ARM Juno r2 platform until all tasks have completed their
execution.

Energy
Consumption

[mJ]

Execution
Time [s]

Energy
Consumption

[mJ]

Execution
Time [s]

Savings
(%)

Energy
Consumption

[mJ]

Execution
Time [s]

Savings
(%)

Energy
Consumption

[mJ]

Execution
Time [s]

Savings
(%)

ondemand 3116 3,463 8,955 2983 3,428 4,904 3004 3,391 5,568

interactive 3196 3,128 11,243 2747 2,942 -3,246 2711 2,948 -4,623

ondemand 3496 4,514 36,004 3319 4,308 32,582 2447 3,018 8,570

interactive 2290 2,542 2,282 2206 2,484 -1,429 2198 2,488 -1,772

ondemand 7560 5,43 23,27 7034 5,104 17,535 5646 4,392 -2,747

interactive 7986 4,93 27,37 7103 4,624 18,330 5384 3,757 -7,733

ondemand 7505 5,026 14,579 6650 4,597 3,604 6998 4,589 8,391

interactive 7429 4,313 13,711 6727 3,868 4,706 7058 4,137 9,173

ondemand 16133 9,976 26,016 13017 7,907 8,301 15448 8,857 22,733

interactive 16591 8,952 28,058 12000 6,528 0,532 14083 7,584 15,244

ondemand 19969 12,250 35,836 15899 9,837 19,409 16491 9,829 22,302

interactive 16133 8,606 20,582 14837 8,003 13,646 15595 8,514 17,841

ondemand 17790 13,957 20,777 15928 9,955 11,513 15923 10,435 11,485

interactive 17828 9,251 20,945 16582 8,527 15,005 16482 8,511 14,490

userspace 11936 9,270

5 - Blacksholes, Sdot, Bzip2, Saxpy, Texture_Systhesis

Proposed Scheduler

userspace 2837 3,213

userspace 2237 2,503

userspace 5801 5,202

userspace

Linaro Kernel 3.10 - UEFI 16.04 LSK 16.05 (GTS) LSK 16.06 (EAS)

Benchmarks

6411 5,000

1 - MEM_bound

2 - Tracking

3 - MEM_bound, MEM_bound, and CPU_bound

4 - MEM_bound, Tracking, Mser, Sgemm

userspace 14094 9,202

6 - Saxpy, Blacksholes, Texture_Synthesis, Stitch, Sscal, Disparity

userspace 12813 8,671

7 - Bzip2, Blacksholes, Sgemm, Stitch, Mser, Disparity, Tracking, Texture Synthesis, Sgemv

−
× 100

−
× 100

−
× 100

0 1 2 3 4 5 6 7
500

1000

1500

2000

2500

3000

Time [s]

P
o

w
e

r
[m

W
]

Proposed framework

0 1 2 3 4 5 6 7
500

1000

1500

2000

2500

3000
Ondemand governor

Time [s]

P
o

w
e

r
[m

W
]

(a) Instantaneous power consumption variation.

0 1 2 3 4 5 6 7

400

600

800

1000

1200

Time [s]

F
re

q
u

e
n

cy
 [M

H
z]

Proposed framework

0 1 2 3 4 5 6 7

400

600

800

1000

1200

Ondemand governor

Time [s]

F
re

q
u

e
n

cy
 [M

H
z]

(b) Frequency variation on Cortex-A72 (red) and
Cortex-A53 (blue).

0 1 2 3 4 5 6 7

0

1

2

3

4

5

0 1 2 3 4 5 6 7

0

1

2

3

4

5

MEM_bound
Tracking
Mser
Sgemm

MEM_bound
Tracking
Mser
Sgemm

C
P

U
 n

um
be

r
C

P
U

 n
um

be
r

Ondemand governor

Time [s]

Time [s]

Proposed framework

(c) Task migrations.

Fig. 8: Run-time power consumption, frequency and task migrations comparison between the Linaro’s kernel 3.10 with
ondemand governor selected and the proposed energy-aware scheduling approach. Cortex-A72 (cores 1 and 2), Cortex-A53
(cores 0, 3 and 4)

[6] Diego Puschini, Fabien Clermidy, C E A Leti Minatec, Pascal Benoit,
Gilles Sassatelli, and Lionel Torres. Temperature-Aware Distributed Run-
Time Optimization on MP-SoC using Game Theory. pages 375–380,
2008.

[7] Joel Wilkins, Ishfaq Ahmad, Hafiz Fahad Sheikh, Shujaat Faheem Khan,
and Saeed Rajput. Optimizing Performance and Energy in Computational
Grids using Non- Cooperative Game Theory. 2010.

[8] Using Linaro’s deliverables on Juno,
https://community.arm.com/docs/DOC-10804, Web accessed: 02 of
March of 2016.

[9] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[10] Standard Performance Evaluation Corporation (SPEC) CPU 2006,
https://www.spec.org/cpu2006/, Web accessed: 3 of August of 2016.

[11] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta,
Christopher Louie, Saturnino Garcia, Serge Belongie, and Michael Bed-
ford Taylor. SD-VBS : The San Diego Vision Benchmark Suite.

[12] Opensource Basic Linear Algebra Subprograms (OpenBLAS),
http://www.openblas.net/, Web accessed: 21 of April of 2016.

