
Boosting Energy-Efficiency of Heterogeneous Embedded
Systems via Game Theory

David Manuel Carvalho Pereira

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Doutor Aleksandar Ilic
Doutor Leonel Augusto Pires Seabra de Sousa

Examination Committee

Chairperson: Doutor Gonçalo Nuno Gomes Tavares
Supervisor: Doutor Aleksandar Ilic

Members of the Committee: Doutor João Nuno De Oliveira e Silva

November, 2016

Acknowledgments

I would like to thank Doutor Aleksandar Ilic and Doutor Leonel Sousa for giving me the opportunity to

perform this thesis as well as their guidance throughout its development. Furthermore, I want to thank

all the support and motivation provided by my family and friends during this period. Finally, I want to

thank INESC-ID and IST for all the resources available to perform this work.

Abstract

Nowadays it is possible to observe a change in our lives through the use of mobile devices like

smartphones, tablets, among others. These devices are evolving at a high pace allowing users to have

a more quickly and efficiently user experience. The ever-growing demand of devices with better per-

formance and efficiency led mobile embedded systems to become heterogeneous devices with higher

computational power and energy efficiency levels. However, it seems that these energy limited devices,

are consuming more energy that it is required in order to meet the performance requirements, leading

to discharge the battery more rapidly.

This thesis aims to study and develop a new energy-aware task scheduling approach for heteroge-

neous embedded systems, based on Game Theory, in order to reduce the overall energy consumption

of the device. The proposed energy-aware game-theoretic scheduling approach combines an Auction

based selection and the Nash Equilibrium concept from Non-Cooperative Game Theory. It develops a

game, where players (processor’s cores) compete with each other in order to acquire the tasks/applica-

tions by biding the necessary energy consumption to execute them. Based on this game approach, the

scheduler receives the player’s bids and selects the player that placed the lowest one, which means that

it can execute the task with the lowest energy consumption among all other players.

The dynamic energy-aware game-theoretic scheduling framework herein proposed has been imple-

mented on ARM Versatile Juno r2 Development Platform, experimentally evaluated and compared with

the available ARM big.LITTLE scheduling approaches. The conducted evaluation revealed that the pro-

posed framework can achieve energy savings of up to 36%, 32% and 22% when compared with the

Linaro’s kernel 3.10, Global Task Scheduling and Energy-Aware Scheduling ARM big.LITTLE approa-

ches, respectively.

Keywords

Game Theory; Global Task Scheduling; ARM big.LITTLE; Mobile Devices; Heterogeneous Embed-

ded Systems; Energy-Efficient;

iii

Resumo

Hoje em dia é possı́vel observar uma alteração nas nossas vidas devido à utilização de dispositi-

vos móveis como os smartphones, tablets, entre outros. Estes dispositivos estão a evoluir a um ritmo

elevado, possibilitando aos utilizadores uma experiência de utilização cada vez mais rápida e eficiente.

A procura constante de dispositivos com melhor desempenho e eficiência levou a que os sistemas

embebidos móveis evoluı́ssem para dispositivos heterogéneos com maior capacidade computacional e

nı́veis superiores de eficiência energética. No entanto, verifica-se que estes dispositivos com uma capa-

cidade limitada de energia, consomem mais energia do que a necessária para satisfazer os requisitos

de desempenho, fazendo com que a bateria dos mesmos descarregue mais rapidamente.

Esta tese tem como objetivo o estudo e desenvolvimento de um novo método de agendamento de

tarefas em processadores heterogéneos, baseado na Teoria dos Jogos, de forma a reduzir o consumo

de energia total nos mesmos. O método de agendamento de tarefas proposto combina uma abordagem

de leilão com o conceito fundamental da Teoria de Jogos não cooperativa, o Equilı́brio de Nash, de

forma a desenvolver um jogo onde os jogadores (cores dos processadores) competem entre si para

adquirir tarefas/aplicações através da licitação do valor de consumo de energia necessário para as

executar. Com base neste método, o agendador de tarefas recebe as licitações de cada jogar e atribuı́

a tarefa ao jogador que tiver a menor licitação, o que significa, que esse jogador consegue executar a

tarefa tendo um consumo de energia menor que todos os outros jogadores.

O método de agendamento de tarefas proposto nesta tese foi implementado na plataforma de

desenvolvimento ARM Versatile Juno r2 de forma a avaliar experimentalmente o seu funcionamento,

bem como compará-lo com os métodos de agendamento disponı́veis na tecnologia ARM big.LITTLE. A

avaliação realizada revelou que o método proposto pode alcançar poupanças de energia até 36%, 32%

e 22% quando comparado com os métodos de agendamento da tecnologia ARM big.LITTLE, nomeada-

mente, o método presente no kernel 3.10 da Linaro, o agendamento global de tarefas e o agendamento

com consciência energética, respetivamente.

Palavras Chave

Teoria dos Jogos; Agendamento Global de Tarefas; ARM big.LITTLE; Dispositivos Móveis; Sistemas

Embebidos Heterogéneos; Eficiência Energética;

v

Contents

Abstract . iii

Resumo . v

List of Figures . x

List of Tables . xi

List of Acronyms . xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 2

1.3 Main contributions . 3

1.4 Outline . 3

2 ARM big.LITTLE heterogeneous platform 5

2.1 ARM big.LITTLE Versatile Express Juno r2 Architecture 6

2.1.1 ARMv8-A Instruction Set Architecture (ISA) . 7

2.1.2 Cortex-A72 and Cortex-A53 Microarchitecture . 7

2.2 ARM Juno r2 Performance Measure Unit . 9

2.2.1 APB energy meters registers . 10

2.2.2 PAPI performance counters . 10

2.3 ARM Scheduling approaches . 12

2.3.1 Cluster Migration . 12

2.3.2 In Kernel Switching (Central Processing Unit (CPU) Migration) 13

2.3.3 Global Task Scheduling (Global Task Scheduling (GTS)) 14

2.3.4 Energy-Aware Scheduling (Energy-Aware Scheduling (EAS)) 15

2.3.5 Scheduling in ARM big.LITTLE . 17

2.4 Dynamic Voltage and Frequency Scaling . 17

2.4.1 Linux CPUFreq governors . 18

2.4.2 Linux scheduling policies . 18

2.5 Summary . 19

3 State of the Art: Scheduling based on Game Theory 21

3.1 Game Theory . 22

3.1.1 The Prisoner’s Dilemma . 22

vii

3.1.2 Non-Cooperative Game Theory and Nash Equilibrium Background 23

3.1.3 Cooperative Game Theory and Nash Bargaining Solution Background 24

3.2 State of the Art: Scheduling based on Game Theory . 24

3.2.1 Problem Definition . 25

3.2.2 Game theoretic approaches . 26

3.3 Summary . 31

4 Framework 33

4.1 Framework general overview . 34

4.1.1 Auction based approach . 35

4.1.2 Game theoretic approach . 36

4.2 Framework implementation in ARM Juno r2 board . 43

4.3 Time and Power prediction for several frequencies . 45

4.3.1 Task execution time . 46

4.3.2 Task instantaneous power consumption . 47

4.4 Summary . 49

5 Experimental Evaluation 51

5.1 Experimental setup . 52

5.2 Benchmarks . 54

5.3 Experimental results . 56

5.4 Summary . 64

6 Conclusions 65

6.1 Future work . 67

A PMU events on ARMv8-A architecture 73

B Cortex-A53 PMU events 77

C Cortex-A72 PMU events 81

D Available PAPI events on ARM Juno r2 platform 85

E Description of each successfully compiled benchmark 89

F Benchmark’s experimental values 93

viii

List of Figures

2.1 ARM Juno r2 SoC . 6

2.2 ARM architecture improvements . 7

2.3 Cortex-A53 micro-architecture . 8

2.4 Cortex-A72 micro-architecture . 8

2.5 PMU block diagram . 9

2.6 PAPI architecture . 11

2.7 Cluster Migration diagram . 13

2.8 CPU Migration diagram . 13

2.9 Global Task Scheduling diagram . 14

2.10 Scheduler idle-state awareness . 15

2.11 Current situation with DVFS support in Linux/GTS . 16

2.12 New scheduler-driven DVFS (sched-DVFS) . 16

2.13 EAS energy model . 17

2.14 Linux scheduling policies, execution example . 19

3.1 The Prisoner’s Dilemma . 23

3.2 Auction game environment . 25

3.3 Task Agent’s Algorithm . 26

3.4 Core Agent’s in round K . 27

3.5 Pseudocode of the Non-Cooperative/Cooperative approach algorithm 28

3.6 Pseudocode of DVFS Algorithm part . 29

3.7 NBS-EATA Algorithm . 30

3.8 Unilaterally maximization function . 30

3.9 Kernel iterative process . 31

4.1 General structure of the proposed framework . 34

4.2 Fluxogram of the auction approach and bidding process 35

4.3 Individual utility function, usage example . 37

4.4 Global utility function, usage example . 40

4.5 Other players utility function, usage example . 41

4.6 Player’s pseudocode to compute the task’s bid . 42

4.7 Individual utility function adaptation, usage example . 44

ix

4.8 Pseudocode of the Scheduler’s algorithm . 45

4.9 Comparison and variation of the CPI tendency between MEM bound and CPU bound

applications . 47

5.1 ARM Juno r2 board available connection ports . 53

5.2 Comparison and variation of the CPI tendency between MEM bound and CPU bound

applications . 63

5.3 Comparison of run-time task migrations between the proposed framework and ondemand

governor . 63

x

List of Tables

2.1 APB energy meters registers . 10

2.2 Cortex-A72, Cortex-A53, and MALI-T624 GPU maximum operating frequencies 18

5.1 Available ARM Juno r2 software’s combinations . 53

5.2 Successfully compiled benchmarks and respective configuration 56

5.3 Cycles per instruction tendency on different benchmarks. 56

5.4 Evaluation of power consumption prediction for the Blacksholes benchmark 58

5.5 Evaluation of execution time estimation for MEM bound task 59

5.6 Evaluation of MEM bound CPI prediction. 60

5.7 Evaluation of MEM bound task energy consumption . 60

5.8 Experimental results for each benchmark combination used to evaluate the proposed

framework . 61

A.1 PMU events on ARMv8-A architecture . 75

B.1 Cortex-A53 PMU events . 79

C.1 Cortex-A72 PMU events . 83

D.1 Available PAPI events on ARM Juno r2 platform . 87

E.1 Description of each successfully compiled benchmark . 91

F.1 Benchmark’s solo values for each frequency . 95

xi

xii

List of Acronyms

APB Advanced Peripheral Bus

ATMI Analytical Model of Temperature in Microprocessors

CPI Cycles Per Instruction

CPU Central Processing Unit

DVFS Dynamic Voltage and Frequency Scaling

EAS Energy-Aware Scheduling

EDF Earliest Deadline First

GPU Graphics Processing Unit

GTFTES Generalized Tit-For-Tat Energy-aware Scheduling

GTS Global Task Scheduling

IKS In Kernel Switching

LSK Linaro Stable Kernel

LTK Linaro Tracking Kernel

MP Multi-Processing

NBS Nash Bargaining Solution

NE Nash Equilibrium

OPP Operating Performance Point

PELT Per-Entity Load Tracking

PMU Performance Monitoring Unit

SoC System on a Chip

WCET Worst Case Execution Time

xiii

xiv

1
Introduction

Contents
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Main contributions . 3
1.4 Outline . 3

1

The paradigm of achieving more computational power has led to an evolution in the current computing

systems. The processors began to have multiple cores, which allow tasks to be executed in parallel.

Nowadays, it can be seen systems with dual core, quad core processor or even more. Embedded

systems have became also heterogeneous, with processors or cores with different characteristics.

Heterogeneous embedded systems are being used almost everywhere. An example, is the higher

number of mobile devices (e.g. smartphones, tablets, etc.) produced every year. Those mobile devices

are evolving every year aiming to achieve better performance, speed, power consumption and others

aspects which can lead to better utilization conditions for the user. As it can be seen nowadays, smartp-

hones are being faster and faster in order to execute more complex tasks and their performance are

increasing but they are requiring higher power consumption, which leads to the batteries start to unload

faster and faster.

There is a relation between performance and the power consumption of systems. For achieving

higher performance levels, it is also necessary to increase power consumption. To solve this problem,

it must be found the best way to achieve a good performance level, while at the same time the energy

consumption ir reduced to the minimum. This will lead to reduce the energy consumption of the system

and also to save battery charge.

1.1 Motivation

The challenge to supporting the ever growing demand of performance keeping the energy consump-

tions at low acceptable levels is difficult to solve, but when good results are achieved it has real impact

and can really motivate the development of better solutions in the future. It can be used not only in the

current technology but also to be important for the future embedded systems.

This challenge can be partially solved by scheduling tasks to the several cores of a processor in an

optimal way. In order to do so, an energy-aware scheduler must be developed. The solution herein

proposed is based on game theory concepts. Game theory is ”the study of mathematical models of con-

flict and cooperation between intelligent rational decision-makers” [1], and is mainly used in economics,

political science, as well as logic, computer science, and biology. Nowadays in computer science there

are many researchers that apply game theory to solve problems and challenges on different areas, [2],

[3], [4], [5].

The game theory will allow to develop a solution for dynamic task scheduling based on a game

approach, where the cores are the players that are competing for some resources, which are tasks/ap-

plications. In this game approach the players must have some strategies to play the “game” and the

scheduler must decide the best way to schedule the tasks to the cores in order to reduce the overall

energy consumption of the system.

1.2 Objectives

The first objective of this thesis is to study how game theory can be used to solve the problem of

task scheduling on heterogeneous cores. Then using the concepts of game theory, other main goal

2

is to design an embedded solution capable of exploring all available computational resources simulta-

neously in heterogeneous embedded systems, such as the big.LITTLE from ARM. The solution herein

proposed will be an energy-aware scheduler capable of achieving energy savings as well as accepta-

ble performance levels, which is based on an energy-efficient game-theoretic approach that must use

overall energy consumption as a performance governing metric.

1.3 Main contributions

An energy-aware game-theoretic scheduling approach is proposed in this thesis. The developed

scheduler takes into account performance (event counters) and energy (meter registers) in order to

characterize the task and estimate the necessary energy consumption to execute it on a specific core.

Based on this information, the proposed scheduling approach uses an auction game approach together

with the Nash Equilibrium concept in order to select the best core and frequency to execute the task,

which leads to minimize the overall energy consumption of the device. The developed approach allowed

to achieve energy savings up to 36%, 32% and 22% when compared with the Linaro’s kernel 3.10,

Global Task Scheduling and Energy-Aware Scheduling approaches, respectively, which are the default

ARM’s scheduling approaches available on the ARM Juno r2 heterogeneous embedded system.

1.4 Outline

This thesis is organized in six chapters. Chapter 2 presents the architecture of the ARM Juno r2

big.LITTLE heterogeneous platform, and the available performance monitoring units. It is also presented

the ARM big.LITTLE scheduling approaches, as well as some power-managements techniques.

Chapter 3 explains the two main branches of Game Theory and the respective main concepts behind

them. It is also introduced the state of art scheduling approaches based on Game Theory, and discussed

where the focus must reside to develop each approach.

In Chapter 4 the proposed framework is presented. The chapter starts with a general overview of

how auction approach as well as the utility function from Nash Equilibrium concept are formulated. It

is also presented the necessary adjustments on the framework to be implemented in the ARM Juno r2

platform. Finally, it is explained how the instantaneous power consumption and task execution times are

estimated, as well as how they are predicted to other frequencies in order to avoid exhaustive search.

Chapter 5 presents the experimental setup as well as a description of the benchmarks used to

evaluate the proposed framework. It is also evaluated the power consumption and execution time esti-

mations/predictions when compared with the experimentally measured values. Finally, it is presented a

thorough evaluation of the proposed framework when several benchmark combinations are selected, in

which the spent overall energy consumption of the developed energy-aware scheduler is compared with

the available ARM big.LITTLE scheduling approaches.

The conclusions are then presented in Chapter 6, followed by the proposed future work.

3

4

2
ARM big.LITTLE heterogeneous

platform

Contents
2.1 ARM big.LITTLE Versatile Express Juno r2 Architecture 6

2.1.1 ARMv8-A Instruction Set Architecture (ISA) . 7
2.1.2 Cortex-A72 and Cortex-A53 Microarchitecture . 7

2.2 ARM Juno r2 Performance Measure Unit . 9
2.2.1 APB energy meters registers . 10
2.2.2 PAPI performance counters . 10

2.3 ARM Scheduling approaches . 12
2.3.1 Cluster Migration . 12
2.3.2 In Kernel Switching (Central Processing Unit (CPU) Migration) 13
2.3.3 Global Task Scheduling (Global Task Scheduling (GTS)) 14
2.3.4 Energy-Aware Scheduling (Energy-Aware Scheduling (EAS)) 15
2.3.5 Scheduling in ARM big.LITTLE . 17

2.4 Dynamic Voltage and Frequency Scaling . 17
2.4.1 Linux CPUFreq governors . 18
2.4.2 Linux scheduling policies . 18

2.5 Summary . 19

5

ARM big.LITTLE technology combines high-performance and energy-efficiency in ARM CPU cores

to deliver peak-performance capacity and increased parallel processing performance while having low-

power consumption. The latest big.LITTLE software and platforms can increase performance by 40% in

highly threaded workload and save energy consumption of CPU by 75% in low to moderate performance

scenarios. ARM big.LITTLE technology enables mobile System on a Chip (SoC) to be designed for new

levels of peak performance.

In this section will be presented the architecture of the ARM Versatile Express Juno r2 (V2M-Juno r2)

heterogeneous platform [6] that is used in this work, the architectures of the cores are presented as well

as the available performance monitoring unit. Finally, will be presented the ARM big.LITTLE scheduling

approaches and power-management techniques.

2.1 ARM big.LITTLE Versatile Express Juno r2 Architecture

The compute subsystem of the ARM Versatile Express Juno r2 board is composed mainly by an

high-performance dual-core Cortex-A72 (big) cluster, an energy efficient quad-core Cortex-A53 (LITTLE)

cluster and a quad-core Mali-T624 Graphics Processing Unit (GPU) cluster. Each CPU cluster and GPU

cluster has a Level 2 Cache that is used to share data between each core in the cluster. The integration of

these three clusters is possible through the CoreLink CCI-400 Cache Coherent Interconnect. This board

also has an external user memory with 8GB on-board DDR3L that works at 800MHz, a Performance

Monitoring Unit (PMU), and an Advanced Peripheral Bus (APB) designed for low bandwidth control

accesses to the energy meter registers. In Figure 2.1 is represented the ARM Juno r2 SoC architecture.

© ARM Ltd 0462-2 Juno r2 ARM Dev | 11.15

All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted
or reproduced in any material form except with the prior written permission of the copyright holder. The product described in this document is subject to continuous developments and improvements.
All particulars of the product and its use contained in this document are given in good faith. All warranties implied or expressed, including but not limited to implied warranties of satisfactory quality or
fitness for purpose are excluded. This document is intended only to provide information to the reader about the product. To the extent permitted by local laws ARM shall not be liable for any loss or
damage arising from the use of any information in this document or any error or omission in such information.
Copyright © 2015 ARM Ltd.

Features
• Compute Subsystem

 - Dual Cluster, SMP configuration
 - Cortex-A72 MP2 cluster (r0p0eac)

 - Overdrive 1.2GHz operating
speed

 - Caches: L1 48KB I, 32KB D, L2
2MB

 - Cortex-A53 MP4 cluster (r0p3)
 - Overdrive 950MHz operating

speed
 - Caches: L1 32KB, L2 1MB

 - Quad Core MALI T624 r1p0
 - Nominal 600MHz operating speed
 - Caches: L2 128KB

 - CoreSight ETM/CTI per core
 - DVFS and power gating via SCP
 - 4 energy meters
 - DMC-400 dual channel DDR3L

interface, 8GB 1600MHz DDR
 - Internal CCI-400, 128-bit,

533MHz

• Rest of SoC
 - Internal NIC-400, 64-bit,

400MHz
 - External AXI ports: using Thin-

Links
 - DMAC : PL330, 128-bit
 - Static Memory Bus Interface :

PL354
 - 32bit 50MHz to slow speed

peripheral
 - HDCLCD dual video controllers:

1080p

• Expansion support
 - 4 lane Gen 2.0 PCI-Express slots
 - AXI expansion to FPGA

daughterboard
 - USB 2.0 with 4 port hub

• Debug
 - ARM JTAG : 20-way DIL box

header
 - ARM 32/16 bit parallel trace

https://community.arm.com/groups/arm-development-platforms

Juno r2 Software Overview
• System Control Processor (SCP)

Firmware
 - System initialization, cold boot flow

and controls clocks, voltage, power
gating.

 - Delivered as binary via Linaro with
public programmers interface

• Application Processor (AP) Software –
all delivered as source via Linaro
 - ARM Trusted Firmware – supporting

PSCI power controls and trusted
execution environments

 - Choice of UEFI or U-Boot firmware
 - Linux – support for both latest

kernel and Linaro Stable Kernel
which includes Mali GPU drivers and
Android patch-set.
 - Includes big.LITTLE scheduling

and Intelligent Power Allocation
support from ARM

 - Linaro supported Linux filesystems
including:
 - Busybox
 - OpenEmbedded (yocto)
 - Android (Linaro Confectionery

Release) – contains user-space
driver for the Mali GPU

Juno SoC

+

HDMI HDMI USB

USB 2.0

NIC-400

NIC-400

DMC-400

TZC-400

ADB-400 ADB-400 ADB-400

Logic tile

JTAG & Trace

PM
IC

NIC-400

CCI-400

Cortex-A72 Cortex-A53 Mali-T624

CoreSight
Cortex-M3

System Control
Processor

RAM ROM Peripherals

Controller

DDR3
PHY

DDR3
PHY

PCI-Express
RP

NIC-400

HDLCD 0 HDLCD 1 DMA-330 TLX-400

TLX-400

DRAM

Compute Subsystem

Board
peripherals

PCI Express
slots

CPU CPU

CPU CPU

CPU CPU

Shader Shader

Shader Shader

Motherboard Express for Juno r2 architecture

Figure 2.1: ARM Juno r2 SoC, [arm.com, 2015].

6

2.1.1 ARMv8-A Instruction Set Architecture (ISA)

ARMv8-A introduces 64-bit architecture support to the ARM architectures and include 64-bit general

purpose registers, SP (stack pointer), PC (program counter), data processing, extended virtual addres-

sing and NEON technology. ARMv8-A architecture has two main execution states (Figure 2.2), the 64-bit

execution state AArch64 and the 32-bit execution state AArch32 [7]. On one hand, the AArch32 state

supports two instruction sets:

• The A32 (or ARM) is a fixed-length (32-bit) instruction set, enhanced through the different archi-

tecture variants;

• The T32 (Thumb) instruction set provides a subset of the most commonly used 32-bit ARM in-

structions which have been compressed into 16-bit wide opcodes. During execution, these 16-bit

instructions are decompressed to full 32-bit ARM instructions in real time without performance

loss;

On the other hand, the AArch64 state supports the A64 instruction set, which is a 64-bit fixed-length

instruction set that offers similar functionality to the A32 and T32 instruction sets.

2

ARM Architecture roadmap

Figure 2.2: ARM architecture improvements, [arm.com, 2014].

As seen in Figure 2.2, ARM ISAs and architectures are constantly being improved in order to meet

the increasing demands of high end application developers, while retaining the software’s backwards

compatibility.

2.1.2 Cortex-A72 and Cortex-A53 Microarchitecture

In ARM Juno r2 board, both Cortex-A72 and Cortex-A53 have the same ARMv8-A ISA, which means

that applications can be executed in (or migrated to) each core without problems. ARM have develo-

ped the Cortex-A72 to have higher computational power than the Cortex-A53, which is more energy

efficient than the Cortex-A72. These two processors combined provides heterogeneity to the device,

high-performance and energy-efficiency when used the ARM big.LITTLE technology.

7

The Cortex-A53 is an in-order, dual-issue processor with a pipeline of 8 stages and has: 2 Integer

ADDs units, 1 Integer MUL unit, 1 Load/Store units and 1 FP/NEON ALUs. The micro-architecture and

pipeline length of this processor are the same as the Cortex-A7 [8], which is presented in Figure 2.3.

L
1

In
st

ru
ct

io
n

 C
ac

h
e

(2
-w

ay
 s

et
 a

ss
o

ci
at

iv
e)

W
it

h
 P

re
-D

e
co

d
er

In
st

ru
ct

io
n

 F
et

ch

In
st

ru
ct

io
n

 D
ec

o
d

e

Shift

1 Stage3 Stages

B
ra

n
ch

 P
re

d
ic

ti
o

n

G
lo

b
al

 H
is

to
ry

 B
u

ff
er

8-
en

tr
y

B
ra

n
ch

-T
ar

g
et

A

d
d

re
ss

 C
ac

h
e

(B
T

A
C

)

8-
en

tr
y

R
et

u
rn

 S
ta

ck

1s
t

D
ec

o
d

er
2n

d
 D

ec
o

d
er Is

su
e

1 Stage

ALU

Integer

Multiply

Floating Point/NEON(64-bit)

Load/Store
(64-bit path)

B
H

T
 c

o
n

d
it

io
n

al

p
re

d
ic

ti
o

n

L
o

o
p

 e
n

d
 p

re
d

ic
ti

o
n

In
st

ru
ct

io
n

 Q
u

eu
e

In
st

ru
ct

io
n

 Q
u

eu
e

In
st

ru
ct

io
n

 Q
u

eu
e

W
ri

te
B

ac
k

2-4 Stages

Shift ALU

Integer

Figure 2.3: Cortex-A53 micro-architecture [Hiroshige Goto, pc.watch.impress.co.jp, 2013].

The Cortex-A72 is an out-of-order, triple-issue processor with a pipeline of 18 stages and has: 2 In-

teger ADDs units, 1 Integer MUL unit, 2 Load/Store units, 1 Branch unit and 2 Floating-point(FP)/NEON

ALUs [9]. The block diagram of this processor is presented in Figure 2.4.

Simple
Cluster 0

1 Stage

Complex Cluster
(NEON/FPU)

Complex Cluster
(NEON/FPU)

2-6 Stages

(ACP)

L1
 In

st
ru

ct
io

n
C

ac
he

48
K

B
(3

-w
ay

 s
et

-a
ss

oc
ia

tiv
e

/6
4-

B
yt

e
ca

ch
e

lin
e/

Pa
rit

y)

D
is

pa
tc

h
St

at
es

Is
su

e
(8

-e
nt

ry
 Q

ue
ue

 p
er

 Is
su

e
po

rt
)

Co
py

rig
ht

 (c
) 2

01
5

H
iro

sh
ig

e
G

ot
o

A
ll

rig
ht

s r
es

er
ve

d.

In
st

ru
ct

io
n

Fe
tc

h

3-
w

ay
 In

st
ru

ct
io

n
D

ec
od

e

R
eg

is
te

r R
en

am
e

Vi
rt

ua
l t

o
Ph

ys
ic

al
 R

eg
is

te
r P

oo
l

Load/Store

Multiply,MAC
Divide Cluster

Load/Store

R
et

ire
m

en
t B

uf
fe

r

10 Stages

U
p

to
 8

 m
ic

ro
-o

ps
 Is

su
e

4 Stages

5 Stages5 Stages 1 Stage

B
ra

nc
h

Pr
ed

ic
tio

n

G
lo

ba
l H

is
to

ry
 B

uf
fe

r

B
ra

nc
h

Ta
rg

et
 B

uf
fe

r
(B

TB
)(2

k-
4k

)

R
et

ur
n

St
ac

k

M
ic

ro
B

TB
(6

4-
en

tr
y)

In
di

re
ct

 P
re

di
ct

or
w

/p
at

h
hi

st
or

y

C
om

m
it

3-
w

ay
 In

st
ru

ct
io

n
D

ec
od

e
D

ec
od

e
D

ec
od

e
D

ec
od

e

Q
ue

ue
s

Q
ue

ue
s

Q
ue

ue
s

Q
ue

ue
s

Q
ue

ue
s

Q
ue

ue
s

Q
ue

ue
s

U
p

to
 5

 m
ic

ro
-o

ps
 D

is
pa

tc
h

1 Stage 1-6 Stages

Branch

Q
ue

ue
s

Simple
Cluster 1

W
rit

eB
ac

k
12

8
m

ic
ro

-o
ps

 in
-fl

ig
ht

ARM multiply &
Integer divide, MAC

Integer ALU & Shifter
(includes SIMD)

Figure 2.4: Cortex-A72 micro-architecture [Hiroshige Goto, pc.watch.impress.co.jp, 2015].

8

2.2 ARM Juno r2 Performance Measure Unit

Both Cortex-A53 and Cortex-A72, includes logic to gather information about performance of the

processor at runtime, based on the PMUv3 architecture. This information can be used, for example,

to debug or profile the developed code. The user can set up to 6 performance counters to read the

desired events in order to obtain that information. Each counter can count any of the events available in

ARMv8-A architecture, such as the number of correctly executed instructions, miss-predicted branches,

data memory accesses, L1 data cache misses. All available events for ARMv8-A architecture are listed

in Table A.1 presented in Appendix A. However, both Cortex-A53 and Cortex-A72 processors, also

contains other specific events besides the ARMv8-A ones which are listed in Tables B.1 and C.1, in

Appendixes B and C, respectively. Each processors’s PMU also provides a dedicated cycle counter,

besides the 6 performance counters. In Figure 2.5 is presented the PMU block diagram.

Figure 2.5: PMU block diagram.

These performance counters are not accessible directly in the user space. It is only possible to

set and read them through an external debugger, by developing a kernel drive to access the registers

directly or by using already existing Performance APIs such as PAPI [10] or OProfile [11]. Mainly due to

pipeline effects, the event counts recorded might vary, although, this has a negligible effect unless the

counters are enable for a very short period of time. Each processor asserts a signal to the system when

an interruption is generated by the PMU. In this thesis, the PAPI performance event counters and the

sysfs APB energy meter registers interface are used to configure the PMU.

9

2.2.1 APB energy meters registers

The APB energy meters registers are updated every 100µs and measures the instantaneous power

consumption, cumulative energy consumption, instantaneous current consumption, and instantaneous

voltage supply, of the Cortex-A72 cluster, Cortex-A53 cluster, Mali-T624 GPU cluster, and the hardware

of the ARM Juno r2 SoC outside the clusters. Both Linaro Tracking Kernel (LTK) and Linaro Stable

Kernel (LSK), which are available to configure the ARM Juno r2 platform, implement a standardised

Hardware Monitoring (hwmon) Driver interface for reading the APB energy meter registers, which is

exposed through sysfs (/sys system folder). The available interface files with the registers values as well

as their absolute path are shown in Table 2.1. One can read these files by simple fopen() the file and

sscanf() the value.

Table 2.1: APB energy meters registers of the System (Sys), Cortex-A72 (A72), Cortex-A53 (A53) and GPU.

X

Absolute path Sys A72 A53 GPU

Kernel 3.10

Voltage [mV] /sys/class/hmown/hmownX/in1 input 0 1 2 3

Energy [µJ] /sys/class/hmown/hmownX/energy1 input 4 5 6 7

Power [mW] /sys/class/hmown/hmownX/power1 input 8 9 10 11

Current [mA] /sys/class/hmown/hmownX/curr1 input 12 13 14 15

Kernel 3.18

Voltage [mV] /sys/class/hwmon/hwmon0/inX input 3 4 5 6

Energy [µJ] /sys/class/hwmon/hwmon0/powerX input 1 2 3 4

Power [mW] - - - - -

Current [mA] /sys/class/hwmon/hwmon0/currX input 1 2 3 4

In this work, the estimation of the instantaneous power consumption can be done by two ways. First,

one can sample multiple instantaneous power consumptions measures, Powi, during a period of time

and simply compute the average power consumption value. Or, one can read the initial, Eneri, and

final, Enerf , accumulated energy consumption register value during a time period, ∆t, and compute

the average power consumption by normalizing for the time duration. Both ways were implemented,

but it was adopted the second one. The first way has the limitation that to read the instantaneous

power consumption register of Cortex-A53 Cluster it must be used one of the cores of the Cortex-A72.

This must be done in order to be more accurate, because the reading of those registers causes a

small increase of the instantaneous power consumption, and so, the average power consumption would

be increased by that small increase. On the second way, any core can read the cumulative energy

consumption register of each cluster, because the increase of instantaneous power consumption will not

affect significantly the cumulative energy consumption value. And also, the register must just be read

two times.

2.2.2 PAPI performance counters

The Performance API (PAPI) is an open source project for accessing hadware performance counters

available in the processors. These counters are represented as a set of registers that count specific

10

signals related to the processors’s function, which are designated by Events. Generally, these events

are used to do performance analysis, for example for identifying the correlation between the code and

the underlying architecture, as for example, benchmarking, debugging, monitoring and performance

modeling. In high performance computing, this information is useful to detect execution bottlenecks.

PAPI can be divided into two layers of software. The user-space layer, which consists on the API

and its support functions. And the kernel-space layer that directly accesses the event counters registers

of the processors through a kernel extension or assembly functions. In Figure 2.6 is shown the internal

design of the PAPI architecture, in which can be seen explicitly the bridge between the Portable Layer

(user-space) and the Machine Specific Layer (kernel-space).

Tools

PAPI High LevelPAPI Low Level

PAPI Machine Dependent Substrate

Kernel Extension

Operating System

Hardware Performance Counters

Portable
Layer

Machine
Specific
Layer

Figure 2.6: PAPI architecture.

In this work, it was used the latest PAPI 5.4.3 version. This version has support just to the ARM

Cortex-A53, which means that some of the events in the Cortex-A72 may not be accessible. All the

available native events counters on ARM Juno r2 board that are accessible through PAPI are presented

in Table D.1 on the Appendix D.

In order to successfully read the event counters in this board, it is necessary to follow 4 steps: start

PAPI’s library (Algorithm 2.1); set and start the event counters with the desired events (Algorithm 2.2);

read the event values to an array (Algorithm 2.3), and stop the event counters (Algorithm 2.4). In the

following algorithms is present the necessary C code to execute each step.

In Algorithm 2.1 the PAPI library is initialized. The array of chars contains the names of the desired

events, which in the example, are the number of instructions architecturally executed (INST RETIRED)

and the number of clock cycles (CPU CYCLES), as seen in Algorithm 2.2. All PAPI functions used and

present in Algorithms 2.1-2.4 are from the PAPI Low Level. In Algorithm 2.2, these functions are used

to translate the native event names into event codes, which will be used to create the event set and

configure the event counter registers. In Algorithms 2.4 and 2.3 are shown the functions to read the

performance counters to an array with or without stopping the event counter registers, respectively.

Algorithm 2.1 Library initialization

1: #include ”papi.h”
2: #define NUM EVENTS 2
3: char *events[NUM EVENTS];
4: PAPI library init(PAPI VER CURRENT)

11

Algorithm 2.2 Start PAPI

1: int EventSet = PAPI NULL;
2: int native = 0x0;
3: events[0] = ”INST RETIRED”;
4: events[1] = ”CPU CYCLES”;
5: PAPI create eventset(&EventSet);
6: for (i = 0; i < NUM EVENTS; i++){
7: PAPI event name to code(events[i], &native);
8: PAPI add event(EventSet, native);
9: }

10: PAPI start(EventSet);

Algorithm 2.3 Read PAPI

1: long long values[NUM EVENTS];
2: PAPI read(EventSet, values);
3: printf(”INST RETIRED = %lld \n”, values[0]);
4: printf(”CPU CYCLES = %lld \n”, values[1]);

Algorithm 2.4 Stop PAPI

1: PAPI stop(EventSet, values);
2: printf(”INST RETIRED = %lld \n”, values[0]);
3: printf(”CPU CYCLES = %lld \n”, values[1]);

2.3 ARM Scheduling approaches

In the earlier ARM big.LITTLE software, only the Cluster Migration and the In Kernel Switching (IKS)

scheduling approaches were available. These were the first approaches implemented in heterogene-

ous embedded systems. However, they could not use all the available cores at the same time. ARM

have improved the big.LITTLE software and currently there are available the GTS and EAS scheduling

approaches. These approaches will now be explained in detail.

2.3.1 Cluster Migration

The Cluster Migration was the first and simplest developed scheduling approach. In this approach,

the identically-sized ”big” and ”LITTLE” clusters are arranged in a way that only one cluster can operate

at a time, as shown in Figure 2.7.

Depending on the workload’s (tasks/applications) demanding performance, the system can move the

workload from one cluster to another. This will lead to execute the workload in the ”big” Cluster at higher

performance but higher power consumption or in the ”LITTLE” Cluster at lower performance and higher

energy-efficiency. To migrate the workload between clusters, all the relevant data is passed trough the

common L2 cache, the source cluster is powered off and the destination one is activated.

12

Figure 2.7: Cluster Migration diagram, [anandtech.com, 2013].

2.3.2 In Kernel Switching (CPU Migration)

The IKS scheduling approach is an improvement of the Cluster Migration approach. CPU Migration

via in-kernel switcher involves pairing a ”big” core with a ”LITTLE” core as each pair operates as one

”virtual” core. There will exist many ”virtual” cores as many identical pairs in the big.LITTLE processor

as shown in Figure 2.8.

Figure 2.8: CPU Migration diagram, [anandtech.com, 2013].

The system operation in this approach is the same as in the Cluster Migration approach. In each

”virtual” core, only one of the ”big” or ”LITTLE” core is active at a time. Each ”virtual” core has an

individual Dynamic Voltage and Frequency Scaling (DVFS) subsystem (explained in section 2.4), which

selects the supply voltage and frequency level of the core. When the workload’s demanding performance

reaches a threshold value, the destination core is activated, the running state is transfered to it, the

source core is deactivated and the processing continues on the destination core.

The main difference in relation to the Cluster Migration is that each pair big-LITTLE core (”virtual”

13

core) is visible to the scheduler. This approach is mainly used in symmetrical SoC (e.g. 4 ”big” cores and

4 ”LITTLE” cores). However, it can be used in non-symmetrical SoC (e.g. 2 ”big” cores and 4 ”LITTLE”

cores) too, where multiple ”LITTLE” cores can be paired with the same ”big” core, but as it is a more

complex arrangement it is not as precise as the Cluster Migration.

2.3.3 Global Task Scheduling (GTS)

In Cluster and CPU Migration approaches just half the cores can be activated simultaneously at

the same time. The Global Task Scheduling, also known as heterogeneous Multi-Processing (MP)

scheduling approach, was the first approach developed to enable the use of all physical cores at the

same time, and so, it is more powerful than the previous big.LITTLE scheduling approaches. In GTS, all

the ”big” and ”LITTLE” cores are seen as individual cores by the scheduler as shown in Figure 2.9. This

approach can be used either in symmetrical or non-symmetrical SoCs.

Figure 2.9: Global Task Scheduling diagram, [anandtech.com, 2013].

The GTS approach relies on a Per-Entity Load Tracking (PELT) [12] mechanism with two predefined

threshold values (one for each cluster) to perform the task-to-cluster allocations. In GTS, PELT is used

to provide an high-level task classification, where tasks with low computational intensity or less priority,

such as background tasks, can be assign to the ”LITTLE” cores while tasks with high computational

intensity or high priority can be performed by the ”big” cores.

The scheduler has a fine-grained control in task allocation and migration among the available cores,

which leads to reduce kernel overhead, and thus, power savings can be correspondingly increased. The

unused cores are idle by the operating system power management mechanisms.

The Global Task Scheduling is supported in V2M-Juno r2 ARM board and is the latest developed

approach (of all three) to the current standard multi-cores systems.

14

2.3.4 Energy-Aware Scheduling (EAS)

The EAS is the new ARM’s scheduling approach that is being investigated. This approach enables

the use of all physical cores at the same time and is focused on integrating the three separate frame-

works in the Linux kernel that are currently only individual subsystems on the GTS: the Linux scheduler,

Linux cpuidle and Linux cpufreq. These separated subsystems have their own policy mechanisms that

make decisions independently to reduce power and energy consumption. However, these decisions

can conflict with each other and therefore affect drastically the device’s energy consumption. Integrating

them will make the scheduler more consistent with its own decisions in order to increase energy savings.

In this scheduling approach, the cpuidle subsystem has been improved to have energy-awareness.

The scheduler is now aware of the idle state of the CPU’s. There are mainly three idle-states [13]: Wait

for Interrupt (WFI); Core power-down (C1); and Cluster power-down (C2). Each idle-state has different

wake-up times, which have different associated energy consumptions. EAS minimizes the wake-up time

and energy by waking up the CPU in the shallowest idle-state. In Figure 2.10 is presented an example

where Cluster 1 is in idle-state C2 and the Cluster 0 has the CPU 0 in P-state (executing) and CPU 1 in

idle-state C1. In this example, both cores of each Cluster have the same micro-architecture. Following

the example, the scheduler receives a new task and realizes that it will not fit on CPU 0 because the

current operating point is almost fully utilized. The scheduler then compares the idle-states and will

assign the task to CPU 1 since it is in the shallowest idle-state, remaining the other cluster in C2 state.

This is the fastest response option and the lowest energy consumption necessary.

Figure 2.10: Scheduler idle-state awareness, [linaro.org, 2015].

In GTS, the core’s utilization is computed based on the existing cpufreq framework, which uses a

sampling-based approach to consider cpu time in idle state along with some heuristics to control the

CPU Operating Performance Point (OPP). However, there are some disadvantages with this approach,

which are illustrated in Figure 2.11. On one hand, in Example 1, the sampling rate is too long which

leads to a slow reaction. The OPP is just actualized on the third sample. On the other hand, in Example

2, the average cpu utilization is too low that there is no reaction at all. Also, if sampling is too fast, leads

OPP to change for small utilization spikes, and hence increasing the energy consumption.

This sampling-based approach was improved in EAS by using the history of the task, which is stored

15

(a) Example 1. (b) Example 2.

Figure 2.11: Current situation with DVFS support in Linux/GTS scheduling approach, [linaro.org, 2015].

internally as part of the scheduler in the kernel. This stored tracked load of the task is used to immedia-

tely switch to the required OPP. With the improved cpufreq subsystem, the new task is scheduled to one

core and its capacity is changed immediately, as illustrated in Figure 2.12.

Figure 2.12: New scheduler-driven DVFS (sched-DVFS), [linaro.org, 2015].

Finally, EAS integrates an energy-aware task scheduling policy with the Complete Fair Scheduler

(CFS), allowing the kernel to decide at run-time which scheduling decisions leads to lower energy con-

sumption. This Energy-Aware policy select always the CPU that has sufficient spare capacity and pro-

vides the smallest energy impact. An example of a run-time decision is shown in Figure 2.13. Following

the example, the scheduler has two possible CPUs to schedule the task, CPU 1 and CPU 3. If the task

is scheduled to CPU 1, the performance state (P-state) will be moved up for both CPU 0 and CPU 1

(since both CPUs are in the same frequency domain in this example - LITTLE cluster). If the task is

scheduled to CPU 3 there is no P-state change but, higher power is used than if scheduled to CPU 1.

Based on this, EAS will choose the CPU that will contribute with the small energy increase. Probably,

EAS will choose to schedule the task to CPU 1 because, although the small increase of power in CPU

0, it still has better power efficiency than CPU 3.

This Energy-Aware Scheduling approach is not yet released as final product on the market, however,

it has been already released for users to test it on the ARM V2M-Juno r2 development platform since

July of 2016.

16

Figure 2.13: EAS energy model, [linaro.org, 2015].

2.3.5 Scheduling in ARM big.LITTLE

Among all presented approaches in this section, the Cluster Migration and IKS are the only offici-

ally accepted and main solutions [14]. The major drawback of GTS and earlier approaches is the use

of separate subsystems to decide the adequate frequency and voltage levels to execute the tasks wit-

hout any coordination with the scheduler. Due to this lack of energy-awareness, which may impact the

quality of scheduling decisions, the GTS approach was discontinued in favor of the new EAS scheduling

approach [14]. Although GTS is discontinued, many researchers work on developing new scheduling ap-

proaches based on it. For example, Muthukaruppan et al. [15] developed a methodology based on Price

Theory to address energy-efficient task management in an ARM big.LITTLE heterogeneous platform.

Other authors have also proposed different scheduling approaches for non-ARM architectures. Ishfaq

Ahmad et al. proposed an energy-efficient scheduling approach based on Game Theory to reduce the

energy consumption on distributed heterogeneous computational grids [3], and in heterogeneous and

homogeneous multi-core processor architectures [2]. Guowei Wu et al. [4] proposed a game theoretic

energy-aware scheduling algorithm for multi-core systems to schedule tasks in a way that the overall

temperature of the processor is reduced. Some of these approaches will be studied in Chapter 3.

2.4 Dynamic Voltage and Frequency Scaling

DVFS is a commonly-used power-management technique where the processor’s clock frequency

can be changed, as well as the supply voltage. DVFS is used to reduce the energy consumption on

processors when applied to each core (if they support it). The dynamic CPU power dissipation, P , can

be mathematically represented as P = C ∗ V dd2 ∗ f , where C is the switched capacitance, V dd is the

supply voltage and f is the operating frequency. Reducing the core’s frequency, the supply voltage

can be reduced too, which leads to power consumption savings on the processor. This technique is

commonly used in laptops and other mobile devices, where energy comes from a battery and thus is

limited as well as in scheduling approaches that has into account applications with deadline constraints.

17

Using the DVFS technique on these applications, it is possible to execute them with the lowest power

consumption possible while respecting its deadline, and thus, achieving energy savings.

In ARM Juno r2 platform the DVFS technique is only supported at the level of the cluster. Both

Cortex-A72 and Cortex-A53 supports 3 different DVFS Operating Performance Point (OPP), while the

MALI-T624 GPU only supports 2 different DVFS OPP as shown in Table 2.2.

Table 2.2: Cortex-A72, Cortex-A53, and MALI-T624 GPU maximum operating frequencies [6].

OPP Voltage [V]
Frequency [MHz]

Cortex-A72 Cortex-A53 MALI-T624 GPU

Underdrive 0.8 600 450 450

Nominal drive 0.9 1000 800 600

Overdrive 1.0 1200 950 Not supported

As seen in the EAS approach, the reduction of energy consumption can be achieved through the

DVFS subsystems, which will select the best core and frequency OPP to execute the task. In ARM Juno

r2 platform these scheduling approaches can be used by selecting the CPUFreq governors.

2.4.1 Linux CPUFreq governors

In ARM Juno r2 board there are available four CPUFreq governors: ”userspace”; ”ondemand”; ”inte-

ractive” and ”performance”. On one hand, the governors ”ondemand”, ”interactive” and ”performance”

are the ones who use the ARM big.LITTLE scheduling approaches, although each one decides diffe-

rently how to choose the frequency that should be used. On the other hand, the governor ”userspace”

allows the user to change the frequency of the clusters as well as to migrate the task between the cores.

The ”ondemand” governor is one of the original and oldest governors available on the Linux kernel.

Ondemand is commonly chosen by smartphones manufacturers because it provides a smooth perfor-

mance for the phone by setting the cluster OPP depending on the current CPU usage. By sampling,

when the CPU usage reaches the set threshold, the governor will scale the CPU frequency correspon-

dingly.

The CPUfreq governor ”interactive” sets the CPU OPP depending on its usage, similar to ”onde-

mand”. However, it is more aggressive about scaling the CPU frequency up in response to CPU-intensive

activity. This governor checks the CPU load immediately after coming out of idle state, instead of doing

the sampling at a specified rate.

The ”performance” governor, as the name says, statically sets the cluster to the highest frequency

level independently the CPU usage.

2.4.2 Linux scheduling policies

In section 2.4.1 and 2.3 were presented the scheduling approaches and CPUFreq governors that are

responsible to decide in which core should be scheduled a task and how is decided the frequency to

execute it. However, in each core there are also scheduling policies that could influence these decisions.

If more than one task is scheduled to the same core, just one task will be executed at a time while the

18

remaining ones stay paused. These scheduling policies are used to choose which task should be

executed and which ones should stay paused. The three main scheduling policies in ARM Juno r2

platform are: SCHED OTHER, the standard round-robin time-sharing policy; SCHED FIFO, a first-in

first-out policy, and SCHED RR, a round-robin policy. In Figure 2.14 are shown some examples of how

these policies work, which will now be explained. In these examples, the priority of each task is shown

inside the correspondingly parenthesis, i.e. A(5) means that task A has priority 5.

A

B arrives

C

A

A

A

B A B

C arrives

B

B

A C B A C B ... CA B C B C ... CB

A C

C A B

B C ... B C AC

0- SCHED_OTHER : A(0), B(0), C(0)

1- SCHED_FIFO : A(1), B(2), C(1)

2- SCHED_FIFO : A(2), B(1), C(3)

3- SCHED_RR : A(1), B(2), C(2)

Figure 2.14: Linux scheduling policies, execution example.

SCHED FIFO and SCHED RR are ”real-time” policies used for special time-critical applications.

Tasks with these policies preempt every other task with lower priority, occupying the core until the task

has been executed. Using SCHED FIFO policy, the task with higher priority will preempt the already

running task with lower priority. If both tasks have the same priority, then the new arriving task needs to

wait until the previous task is finished (Examples 1 and 2). SCHED FIFO priority value is always higher

then 0, and thus it preempts always the tasks with SCHED OTHER policy (e.g. SSH communications).

SCHED RR policy is similar to SCHED FIFO, although when multiple tasks have the same priority, each

task will run for a specific time-slice, which can be modified by the user (Example 3).

SCHED OTHER uses a round-robin time-sharing policy. Every task with this policy have priority

0 and ideally should have approximately the same time period to be executed. If exists more than

two tasks, the one to be executed is chosen based on the nice level, which is increased for each time

quantum that the task is ready to run but is denied by the scheduler. Using this policy, tasks are executed

in a equally-fair time-slices (Example 0).

2.5 Summary

In this chapter, the ARM big.LITTLE platform that are used in this thesis was presented. The ARM

Juno r2 was analyzed as the ARMv8-A instruction set architecture and the Cortex-A72 (big Cluster)

and Cortex-A53 (LITTLE Cluster) architectures. Both Clusters have the same ARMv8-A ISA, which me-

19

ans that applications can be executed in (or migrated to) each core without problem. The Performance

Monitoring Unit present in each cluster was then presented as well as the available performance coun-

ters and energy meter registers, which could be read through the PAPI software and the hwmon driver,

respectively.

It was also presented the four existing ARM big.LITTLE scheduling approaches, with a main focus

on the Global Task Scheduling which, although discontinued it is being used by many researchers in

their works. The new Energy-Aware Scheduling approach, which is not currently available in the market

as a final product but is already available to be tested on ARM Juno r2 development platform, was also

discussed.

Finally, the Dynamic Voltage and Frequency Scaling power-management technique was presented

as well as the available Operating Performance Points of each cluster. It was also studied the available

Linux CPUFreq governors and scheduling policies available in the ARM Juno r2 platform.

20

3
State of the Art: Scheduling based on

Game Theory

Contents
3.1 Game Theory . 22

3.1.1 The Prisoner’s Dilemma . 22
3.1.2 Non-Cooperative Game Theory and Nash Equilibrium Background 23
3.1.3 Cooperative Game Theory and Nash Bargaining Solution Background 24

3.2 State of the Art: Scheduling based on Game Theory 24
3.2.1 Problem Definition . 25
3.2.2 Game theoretic approaches . 26

3.3 Summary . 31

21

To develop an energy-aware scheduler based on game theoretic approaches is necessary to start

by studying the main concepts presented in Game Theory. In this chapter will be explained the two main

branches of game theory as well as the main concepts behind them. Some of these concepts were

already used by other researchers to developed their scheduling approaches. The study of these works

is not only an important background on the state of the art game theoretic scheduling approaches, but

also provides better understanding about the concepts and what are the principal points that must be

focus to develop the proposed energy-aware game-theoretic scheduling approach.

3.1 Game Theory

Game theory is ”the study of mathematical models of conflict and cooperation between intelligent

rational decision-makers” [1], and is mainly used in economics, political science, as well as in logic,

computer science, and biology. There are two main branches of game theory: cooperative and non-

cooperative game theory.

On one hand, non-cooperative game theory deals with how individuals interact with one another to

achieve their own goals. The players make decisions only by themselves seeking always for the best

payoff outcome for themselves. On the other hand, cooperative game theory studies how groups of

people cooperate and interact with each other to find the optimum strategy to achieve a social goal. This

social goal can be maximizing the gains, minimizing losses, maximizing the probability that a specific

goal can be reached, etc.

In this section will be presented some fundamental game theory concepts that can be applied to

make decisions in task scheduling.

3.1.1 The Prisoner’s Dilemma

The Prisoner’s Dilemma is a standard example for application of game theory, which shows why two

completely ”rational” individuals might not cooperate, even if it appears that it is in their best interests to

do so. The example consists in two persons that have done some crime and got arrested. Each prisoner

is in solitary confinement with no means of speaking to or exchanging messages with the other. The

two prisoners will be sentenced but the prosecutors lack sufficient evidence to convict the pair on the

principal charge. They plan to sentence both to a year in prison on a lesser charge. Simultaneously, the

prosecutors offer each prisoner a bargain. Each prisoner is given the opportunity either:

• to testify that his partner had committed the crime. If he do that he will go free while the partner

will get 3 years in prison on the main charge;

• or to cooperate with the other by remaining silent.

If both prisoners betray each other, each of them will be sentenced with 2 years in prison. If both

cooperate and remain silent each of them will be sentenced with 1 year in prison. These values are

not known by the prisoners but as rational persons they already know that can exists an higher penalty

22

if both testify against each other than both remaining silent. To better view the problem, the prisoner’s

strategies as well as the sentences are represented in Figure 3.1.

Figure 3.1: The Prisoner’s Dilemma [youtube.com/ThisPlaceChannel, 2015]

As much rational as the prisoners are, by analyzing the problem they will choose to betray and testify

against each other because they don’t know what is the other’s choice. They can just see what is best

for themselves and by choosing to betray the other they will have always less penalty. This problem has

a strict dominant strategy that is to betray and testify against each other but it can be seen that they can

achieve just one year of penalty if they had cooperated. It must be recalled that this game is just played

once.

3.1.2 Non-Cooperative Game Theory and Nash Equilibrium Background

In a non-cooperative game, the players make decisions independently based on the best payoff

outcome for themselves. They do not communicate with other players in order to cooperate. The

Prisoner’s Dilemma already seen is an example of a non-cooperative game.

Many other examples of non-cooperative games can be seen in real world. The assigning property

rights games like the rock-paper-scissors is a good example of them. These non-cooperative games are

analyzed in game theory in order to understand or predict the decisions of the players. This can benefit

the player decision because given what the other players have decided he can choose the best strategy

which gives the best payoff to him given that specific scenario.

The Nash Equilibrium (NE) is the most fundamental concept in game theory used to analyze non-

cooperative games. Considering a n-player strategic game, let ui(s1, . . . , sN) denote the payoff utility of

Player i that is based on its strategy si and the strategy chosen by the other players, (s1, . . . , sN). The

Player i has a set of strategies and must choose one of them, siε{S0, S1, S2. . . , Sj}.

A strategy s∗i is the best strategy for Player i based on the others players strategies (s1, . . . , s(i−1),

s(i+1), . . . , sN) if the utility function is the best comparing with the other possible strategies of Player i,

ui(s1, . . . , s(i−1), s
∗
i , s(i+1), . . . , sN) ≥ ui(s1, . . . , s(i−1), si, s(i+1), . . . , sN). Given the others players strate-

gies, Player i will choose always the best strategy which gives the best payoff for him.

The strategy set (s∗1, . . . , s
∗
i , . . . , s

∗
N) is a Nash Equilibrium when all players have chosen the best

23

strategy for themselves based on the others players strategies and have no incentive to change their

strategy given what the other players are doing. So it means that the best individual payoff to all players

was found.

3.1.3 Cooperative Game Theory and Nash Bargaining Solution Background

Cooperative games are built on top of non-cooperative games by rewriting the communication bet-

ween the players. In this approach the players share the strategies and the player’s attributes between

them.

The bargaining problem is a problem of understanding how two players should cooperate when non-

cooperation leads to inefficient results. Formally, bargaining problems represent situations in which

multiple players with specific objectives search for a mutually agreed outcome (agreement) in order to

achieve better results, although disagreements can occur.

The Nash Bargaining game is a game where two players demand a portion of some good (e.g. me-

mory space). If the total amount requested by the players is greater than the available, each player

receives nothing. If the total request is less than the available then they receive what they had deman-

ded. These players can reject and present counteroffer when they are negotiating between them.

The Nash Bargaining Solution (NBS) was proposed by John Nash [16]. He proved that the so-

lutions satisfying four proposed axioms are exactly the points (v1, v2) which maximize the function

(v1 − d1) × (v2 − d2), where v1 and v2 represent the utility functions of Player 1 and 2, respectively.

These utility functions must be greater than d1 and d2, respectively, which represents the minimum

acceptable amount demanded of each player from the negotiations.

3.2 State of the Art: Scheduling based on Game Theory

Temperature, energy, and performance are now at the heart of issues pertaining to sustainable com-

puting. In multicore systems, high temperature in cores near each other can produce an ”HotSpot” on

the processor, which can cause instability of the processor and even hardware damage. In [4] a Ge-

neralized Tit-For-Tat Cooperative Game scheduling approach was proposed, based on a cooperative

game theory concept, capable of minimize power density of the processor by achieving a more uniform

thermal status on it. On a MP-SoC, [17] has proposed an approach based on Game Theory using Nash

Equilibrium to adjust the frequency of each Processing Element (PE) at runtime, aiming to avoid the

hot-spots and control the temperature of each PEs while maintaining the synchronization between the

tasks of an application.

In a large-scale computer system, such as a computational grid, energy consumption can outweigh

the procurement costs. In [18] and [3] were proposed energy-aware static scheduling algorithms for

distributed heterogeneous computational grids. Those algorithms were based in cooperative ([18],[3])

and non-cooperative game theory([3]) and both are capable to perform a task-to-core mapping, including

the required voltage level to execute each task by a machine, such that the entire system as a whole

can benefit in terms of energy consumption.

24

3.2.1 Problem Definition

In [4] the proposed cooperative game approach was based on Tit-For-Tat game concept, which is

a type of strategy usually applied to the repeated Prisoner’s Dilemma (section 3.1.1). The Tit-For-Tat

Cooperative Game is a multi-round version of the Prisoner’s Dilemma where the player responds in one

round with the same action that its opponent had used in the last round to achieve better results by

cooperating [19]. Nash Equilibrium was used in [17] and [3] for the non-cooperative approach and Nash

Bargaining Solution was used in [18] and [3] for the cooperative approach. These game scheduling

approaches were developed to solve different problems but they are very similar with each other.

Based on game theory, to solve the scheduling problem, an auction system can be developed as

a bargaining game. Auctions are a good way to assign tasks to cores. In an auction, the auctioneer

(scheduler) present tasks to the players (cores/machines of the computational grid) in each round. The

player must set a strategy and bid on the task in order to acquire it. At the end of a round, the auctioneer

receives all the bids from the players and assign the task to the winner. In Figure 3.2 is represented the

scheduling environment used in [4], where the Task Agent is the scheduler (auctioneer) and the Core

Agent is responsible to calculate the bid and forward it to the auctioneer.

Figure 3.2: Auction game environment (GTFTES [4]).

An auction n-player game should meet the concepts of game theory and is formally defined as:

• N Players. P = {p1, p2, ..., pN};

• Each Player owns a set of strategies. S = {strategy1, ..., strategyN};

• In a round, each player pi has a strategy Si. The set of strategies in a round is s = {S1, S2, ..., SN};

• Each player has a payoff function ui(·) that can be based on other core’s strategies and can be the

same (or not) to every player.

25

• The game can be composed by multiple rounds, R rounds.

The most important parts of this game are how the players may choose their strategy and what must

be the bid value. Regarding the temperature problem [4], cores (players) must choose as strategy to

cooperate or not to achieve the social goal, which is to avoid the “Hot Spot”. This strategy is chosen

according with the strategies of the other players in the previous round by definition of Tit-For-Tat game.

However, as defined, Tit-For-Tat make senses only for a two-player game but it can be generalized to

an extended n-player version where players can decide their strategy according to their observations

from every other players in the previous round. The bid value is related with the strategy, if the core

cooperates it must place an higher bid to avoid being selected to execute the task, which will reduce its

temperature. In [17], the players (processing units) choose the best frequency as strategy. This strategy

is also chosen according to the other processors frequencies on the previous round. In [3], the machines

of the computational grid (players) can choose as strategy, to bid or not on tasks and the value of the

bid is related with the energy consumption needed to execute the task on that machine. Naturally, the

machine that bids the lower value will be the winner because is the one which executes the task with the

minimum energy consumption.

3.2.2 Game theoretic approaches

The authors in [4] proposed a scheduling approach based on a cooperative multi-round version of the

Prisoner’s Dilemma to reduce the processor’s temperature. An auction approach is also used on top of

this game-theoretic approach, where the player’s bid is directly related with the core’s actual temperature

status. The proposed algorithm in [4] is divided in two parts: the Task Agent’s Algorithm and the Core

Agent’s Algorithm, which are represented in Figure 3.3 and 3.4, respectively. The authors had assumed

the scheduling environment as resource-rich, which means that the number of tasks to be executed in

the processor is always lower than the number of cores, and so, the number of cores needed to execute

the tasks is at least the same as the number of existing tasks (T).

An affinity of the core is considered in the Task Agent’s Algorithm, as presented in Figure 3.3. The

task preferentially choose its previous execution core if it is on the top |T | winners of the auction and is

not already occupied. If the core is not in the Top |T | winners, the task will be assigned to the core which

had placed the lower bid (the real winner, the Top 1).

Pseudocode of Task Agent’s Algorithm
Input: Bids set Bi = {bi} , ready set of tasks T
Output: The task allocation relation

1. Rank the bids in increasing order. The winners are the top |T | cores.
2. If the previous execution core of that task is in the winner set and it is currently

not ocupied. Allocate the task to its previous core.
3. Else, allocate the tasks whose previous execution core is not in the set of

winners according to the tasks contribution. Specifically, the tasks with lower
thermal/power contribution will be allocated to a core with lower bid.

Figure 3.3: Task Agent’s Algorithm.

In the Cores Agent’s Algorithm (Figure 3.4), the core must first decide whether to cooperate or not.

26

This decision is based on the core’s hardness factor (hk), which can be considered the payoff function.

This factor is the proportion of players who cooperate in the last round, calculated by each core. If hk

is higher than a predefined value (hith) the player will decide to cooperate in the actual game round,

otherwise, it will choose to not cooperate to achieve the global goal.

If the core choose to cooperate, the bid is based on the power status of that core (Pi) and a weighting

coefficient (γ). Otherwise, the bid is based on the average execution time of the task in T (Lavg) and

a weighting coefficient (φ). If the temperature of the core (Si) is higher than a threshold (Sth) it will be

forced to carry out a much higher bid in order to avoid being selected to execute the task. This will force

the core to reduce its temperature.

To calculate the temperature of the core/processor, the authors used a temperature calculation met-

hod based on an Analytical Model of Temperature in Microprocessors (ATMI) [20]. This model needs

the power consumption estimation of the core, which can be easily estimated in many processors be-

cause, as already seen, they have hardware performance counters for debugging and evaluating the

performance as well as to measure power consumption.

Pseudocode of Core Agent’s Algorithm
Input: The core’s hardness threshold hith, temperature threshold Sth

and the set of tasks T
Output: The core’s bid vector bi.

1. Carry out the valuation of itself and calculate its thermal status Si

2. if Si > Sth , the core is forced to cooperate in this round of auction. And,
calculate its bid by its thermal status, that is, bi = γ ×Pi . Then jump to step 6

3. Calculate the hardness hk in the previous round of the auction, which aims to
decide whether to cooperate or not.

4. if hk > hith , the core will choose to cooperate in this round of auction. And,
calculate its bid by its power status, that is, bi = γ × Pi.

5. if hk < hith , the core will choose to retaliate. And, calculate its bid by the
average execution time of the tasks in T , that is, bi = φ× Lavg.

6. Send the bid to auctioneer (Task Agent).

Figure 3.4: Core Agent’s in round K.

In [3], the auction approach was also implemented on two different proposed scheduling approa-

ches. On one hand, the first scheduling approach uses a non-cooperative approach based on Nash

Equilibrium , while on the other hand, the second proposed scheduling approach uses a cooperative

game based on Nash Bargaining Solution. In both scheduling approaches, each task has a deadline

and the entire workload is rejected if a deadline constraint is failed. The Earliest Deadline First (EDF)

method was used to assign the tasks. In this method, tasks are sorted by its deadline value in ascending

order, with tasks with lower deadline being the first to be scheduled. In each round of the game a single

task is presented to the computational grid.

First, the machines choose their strategy, to bid the task with a value based on the necessary energy

consumption to execute the task and be rewarded, or not to bid, resulting in a punishment by not parti-

cipating in the auction. These outcomes enforce players to behave rationally and bid on tasks whenever

possible. To properly compute the bid value, the machines (players) must know information about the

27

task (e.g. number of floating points operations, integer operations) and the specifications of the re-

spective processor (i.e. DVFS interval, number of cores, etc). For this, a static Worst Case Execution

Time (WCET) analysis can be performed in order to estimate the task execution time and its energy

consumption.

Following the concept of auction, the auctioneer receives all the respective machine bids and will

assign the task to the winner machine that has placed the lowest bid, meaning that the machine can

execute that task with the lowest energy consumption among all.

In the non-cooperative approach the winning player in each round is forced to wait out of the game a

constant number of rounds (F) until it can enter again in the game. This measure is used not to let the

same player get all the tasks sequentially. The pseudocode of the non-cooperative approach algorithm

is represented in Figure 3.5.

Pseudocode of Non-Cooperative/Cooperative Algorithm
Input: Workload
Output Task-to-machine schedule mapping.

1. Sort the workload (EDF).
2. For every Mj (task) do:

a. Load the bidding pool for Mj : bidders (Nc (players)).
b. Compute each Nc bid for Mj .
c. If no Nc bids: Exit the game.
d1. Sort M (Task set) in EDF order. (Non-Cooperative Only)
d2. Sort M in descending order: |secondary – primary bid| (Cooperative Only)

3. Assign each Mj to Nc
a. Assign Mj to the lowest Nc when all constraints are met.
b. If no Nc acquires Mj : Exit Game.
c1. If Nc acquires Mj , Nc sits out F rounds. (Non-Cooperative Only)
c2. If Nc mets Qc (Quota): Remove Nc from the remaining game and resort. (Coop. Only)

Figure 3.5: Pseudocode of the Non-Cooperative/Cooperative approach algorithm

For the cooperative approach there are two main changes in the pseudocode (on Step 2.d and 3.c)

regarding the non-cooperative approach. In cooperative approach exists a quota mechanism where the

players agree to acquire only a certain number of tasks (the quota constant) and a player must exit the

game if it acquires that amount of tasks (Step 3.c).

In each round there are players who communicate (i.e. bid) and players who cannot communicate

(i.e. not bid). The players who communicate in a round can bid on behalf of a player that cannot

communicate as long as they do not deviate from that player’s strategy and bidding power.

The order of assignment of tasks in this approach is different from the non-cooperative approach.

It is based on a cooperative preference list where tasks are sorted in descending order of comparison

between secondary and primary bids, |secondary bid – primary bid| (Step 2.d). The secondary bid is

the second lowest bid of all bids and the primary bid is the lowest of all. This preference lists sorts the

tasks by the highest difference between bids, which means that exists an obvious winner just by looking

for the difference between the bid’s values. If the difference is near zero it means that the winner is not

obvious and so those tasks will be the last to be assigned. If don’t exists a secondary bid, which means

28

that, just one machine have bid on that task, this task will have an higher priority and its value to sort will

be the highest bid plus one, which means that it will be one of the first tasks to get assigned.

Once all the tasks are assigned to the respective winning machines, the authors go further, regarding

energy-savings, and use the DVFS technique to reduce the overall power consumption as presented on

the pseudocode in Figure 3.6. The scheduler asks to the machines the lowest DVFS interval needed

to execute the specific task on a core. Iterations are made in order to lower the DVFS interval on

each task while checking if the respective deadlines constraints are respected. When the minimum

power consumption mapping task-to-core is found the game is finished and the tasks are sent to the

computational grid to be executed on the respective cores with the respective voltages.

Pseudocode of DVFS Algorithm part
Input: Task-to-machine schedule mapping.
Output: Task-to-machine schedule mapping with corresponding frequencies and voltages.
After all the Mj ’s are assigned to each Nc do:

4. For all Nc (players) do:
a. For each Mj (task) on Nc (Mjc) lower the DVFS by 1 interval (EDF).
b. Check for constraint violations. If violation set to previous DVFS.
c. Proceed to next task in 4.
d. Repeat 4.a till no Mjc on Nc can scale down their DVFS.
e. Calculate Nc’s energy consumption and makespan.

5. Print off the M to Nc schedule mapping.

Figure 3.6: Pseudocode of DVFS Algorithm part.

In [18], the proposed algorithm was based on the concept of Nash Bargaining Solution (NBS) from

cooperative game theory. The authors, through rigorous mathematical analysis proved that the proposed

algorithm converge to the bargaining point. In similarity to [3], this approach also produces a task-to-

machine scheduling map ensuring energy consumption and makespan optimization. The pseudocode

of the algorithm is presented in Figure 3.7.

Each machine must decide as strategy, to select the lowest frequency possible to execute the task

while fulfilling its deadline. The cooperation between machines is done through the centralized scheduler

by using the average instantaneous power of all machines in the grid as one of the main decisions to

schedule the tasks.

The scheduler starts to sort the tasks from the workload in decreasing order of their deadlines, sche-

duling first the tasks with higher deadlines. The machines are also sorted in decreasing order of their

current instantaneous power. Then, the scheduler selects the machine that is just right above average

instantaneous power of all machines in the system and with the necessary architectural requirements

to execute the task (e.g. available memory space), leaving the high-powered machines for larger tasks

and low-powered machines for smaller tasks. Although, if the selected machine is not capable of execu-

ting the task then the next high-powered machine will be chosen and so on until the task is scheduled.

In each round, one task is scheduled, the values of each machine current instantaneous power are

actualized and the machines are sorted again in decreasing order.

29

Pseudocode of NBS-EATA Algorithm
Input: Machines each initialized to its maximum instantaneous power using DVFS =

{dvS1, dvS2, ...dvSj}
Output: A mapping that consumes minimum instantaneous power and has the minimum pos-

sible makespan.
0. Sort all tasks in drecreasing order of their deadlines: d1 ≥ d2 ≥ ... ≥ dn
1. For every task:

2. Sort the machines in decreasing order of their current power consumption:
p1 ≥ p2 ≥ ... ≥ pm

3. Compute the average power consumption of the system: pav = (
∑
pj)/m

4. Select the machine right above pav. While pav ≥ pm do:
4a. m = m− 1

4b. pav = (pav − (pm+1/m+ 1))(m+ 1/m)

5. If machine meets the architecture requeriments the goto Step 5a else goto Step 5c.
5a. If found the smallest DVFS that satisfies the deadline of the task then goto

Step 5b else goto Step 5c.
5b. Assign the task ti to machine mm with the found DVFS, update pm and goto

Step2.
5c. If it is not the last machine then m = m− 1 and goto Step4 else goto Step6.

6. Initialize all machines to maximum power and goto Step2.

Figure 3.7: NBS-EATA Algorithm.

In [17], to control the temperature of each homogeneous processing elements (player) and maintain

the synchronization between each task running in the system, a non-cooperative approach based on

Nash Equilibrium was developed. This approach, in similarity with the others works, is also focused in a

utility function. However, it is based on a two optimization objective. The first part of the utility function

takes into account a temperature model that is based on power consumption and thermal resistance of

each PE in the system, while the second part takes into account a synchronization model based on the

difference between two player’s clock frequency.

The strategy of each player is to decide the best frequency to run the task, knowing that it can

affect the synchronization with the others players and also their temperatures, which is decided by

unilaterally finding the frequency that maximizes the player’s utility function. This procedure is shown in

the pseudocode presented in the Figure 3.8.

Pseudocode to find the best strategy for player i
Input: Utility function (Ui), Player’s old strategy (MyStgy),

Others players strategies (OthrStgy).
Output: Player’s new strategy (NewStgy).
for all Player’s strategy (Stgy)

if Ui (Stgy, OtherStgy) > Ui (NewStgy, OtherStgy)
NewStgy← Stgy

otherwise
NewStgy← MyStgy

end
end

Figure 3.8: Unilaterally maximization function.

30

In order to arrive to a Nash Equilibrium, an iterative process was developed where in each round

every player choose its best frequency. At the end of the round the system broadcasts the strategies

taken between the players in order for them to see in the next round if they want to change the decision

or not. The iterative process proceeds until there are no changes in the players decisions between two

consecutive rounds. However, the authors have seen that the proposed approach did not converge to a

solution in 6% of the evaluated scenarios. The system iterative process is presented in Figure 3.9.

Pseudocode of a game cycle
for each round of the game

for each player i
NewStgy[i]← UnilaterallyMax(MyStgy[i])

end
MyStgy vector← NewStgy vector

end

Figure 3.9: Kernel iterative process.

As seen in this chapter, the auction approach was used in several works due to its simplicity, low

complexity and revealed to be an interesting method to schedule the tasks iteratively, but the main focus

must reside on how the bid is computed, i.e., how the player’s utility function must be developed and

directly related with the necessary energy consumption to execute a specific task on a specific core. It

should also be noted that some presented works were focused on static scheduling approach, however

this thesis will focus on creating a new dynamic scheduling approach.

3.3 Summary

This chapter introduced the main branches of game theory, the non-cooperative and cooperative

game theory, as well as the most used concepts in each of them, the Nash Equilibrium and Nash

Bargaining Solution, respectively. It was also presented the scheduling approaches based on game

theory, in which some of them have low complexity and very intuitively to use.

The works [3] and [18] addressed the scheduling of tasks with deadline constraints, which is not

common on user’s applications. Both works proposed a static scheduling approach that generate task-

to-machine maps with the respective executions frequencies for each task. However, this thesis will

focus on developing a dynamic run-time scheduler approach.

The approach proposed in [3] focus more on the necessary energy consumption of the task to exe-

cute in a specific machine to decide in which machine the task should be scheduled. It uses an auction

based approach, which is more intuitively compared to a game, where players bid the tasks against

each other to obtain and execute the task. However, the use of the DVFS technique to reduce the po-

wer consumption could lead to higher energy consumption in the system, just because of the fact that

lowering the frequency will increase the execution time, and thus, the product between a lower power

consumption and an higher execution time can be sometimes higher than the opposite scenario. This

thesis is focused on having lower energy consumption, what does not necessarily means lower power

31

consumption, and so, this should be taken into account.

The approach in [18] focus more on the actual instantaneous power consumption of the machines

and DVFS as the principal decision points. It is used an iterative process to schedule the tasks sorted by

their deadlines to the machine that is just right above the average instantaneous power of all machines

in the system.

In [4], an approach based on a repeated Prisoner’s Dilemma game and auction approach has been

proposed. Based on previous rounds values and defined thresholds, the cores can decide if they must

avoid being selected to run a task or not, leading to reduce its temperature and avoid ”hot-spots” in the

processor’s chip. Although being an energy-aware approach, it is mainly focused in temperature and not

energy consumption at all.

Relatively to [17], the definition of an utility function, based on the contributions of all players in the

system, to be used in order for the player to decide the best strategy, is a good approach. However, the

iterative process to select the player’s decisions could not converge to the solution as the authors have

seen in 6% of tested scenarios.

32

4
Framework

Contents
4.1 Framework general overview . 34

4.1.1 Auction based approach . 35
4.1.2 Game theoretic approach . 36

4.2 Framework implementation in ARM Juno r2 board . 43
4.3 Time and Power prediction for several frequencies 45

4.3.1 Task execution time . 46
4.3.2 Task instantaneous power consumption . 47

4.4 Summary . 49

33

In this chapter, the proposed framework is presented. Firstly, a general overview of the framework will

be made, where the concepts behind the proposed auction and game theoretic approaches are explai-

ned. As seen in section 2.3, these approaches must be developed in a way that integrate the separated

decision subsystems with the scheduler, in order to provide energy-aware decisions, and improve the

energy-efficiency of the whole system. Afterwards, it will be presented the necessary modifications on

the proposed framework to be implemented in the ARM Juno r2 board. Finally, a detailed description of

how the performance measures are taken as well as how the cores of the processor, as players, com-

pute their bids, will be made. It should be noted that, this work is focused in saving energy consumption

in mobile devices (e.g. smartphones), and so, it must be focused on saving energy in the whole system

and not just the processors of that system.

4.1 Framework general overview

The proposed framework consists in combining an auction approach and a game theoretic approach.

On one hand, the auction approach will assure a base game structure in which the players can compete

with each other by bidding the tasks in order to acquire them. Basically, when a new task arrives to

the scheduling queue, the scheduler must present that task to all existing players, and then is up to

each player to decide its own strategy, bid the task and send its value back to the scheduler. On the

other hand, it is necessary to minimize the global energy consumption in a system composed by many

players. To accomplish that, Nash Equilibrium, the most fundamental concept in non-cooperative game

theory, will be used. Each player will use this concept to decide its best strategy and to compute the bid.

The general framework structure is shown in Figure 4.1.

 Auctioneer / Scheduler

Decision

System Drivers

(e.g. CPUfreq and

Task Migration)

Player s

Bids

Task

Lists

Player

0 ...
Player

1

Player

N

New

Tasks

 Player

Processing

Unit

Taks History

Unit

Performance

Measure Unit

Comunicate

decision with

other players

Send Bid to

Scheduler

Execute the task

to compute bid

Set

Frequency

Measure CPI and

power consumption

Use already

acquired

measures

Communication

(Shared memory)

Send Bids to Scheduler

Present task to all players

Set frequency

Figure 4.1: General structure of the proposed framework.

In order to minimize the overall energy consumption of the system, each player’s decision/bid must

be related with the necessary energy consumption to execute the task. Knowing that each task may

have different characteristics, each player must use the performance measure unit to characterize the

34

tasks through the performance event counters and to get instantaneous power consumption measures

from the energy meters registers to have energy-awareness. Other relevant information about the task,

acquired from previous measures, can also be stored or accessed through the task history unit.

Taking into account the energy-awareness of the proposed scheduler and the game theoretic appro-

aches, sub-optimal solutions can be found by individually selecting the best frequency to execute the

task in each core and then globally selecting the best core to execute that task.

4.1.1 Auction based approach

The auction approach, as seen in section 3.2.2, was used in some researchers’ works [3][4]. This

approach assures that players compete with each other by bidding the tasks in order to acquire them. In

each round of the game, one auction is realized, which means that one task is scheduled per round. The

auction of each task gives to each player an opportunity to participate and be able to execute the task.

In Figure 4.2 is shown the flow diagram of the auction approach implemented by the scheduler. It should

be noted that the players’ bidding process shown in the right side of the figure can be controlled by the

scheduler in a serialized or parallel way. It will be the architecture of the system that will fix the way how

the bidding process should be implemented. Once the player receives the task, it will execute the task

for a short amount of time in order to acquire the necessary performance and energy measures. The

player should also have access to the others players information in order to decide its own best strategy

using the game theoretic approach. Then, when all players have computed and sent their bids to the

scheduler, the winner core will be selected, which will receive and execute the task.

Start

Scheduler waits

for new tasks

All tasks

scheduled ?

Present the task to all

players and receive

their bids

Select the winner player

and schedule the task to it

Yes

No

Task is scheduled to all

players

Each player uses the

performance measure

unit to estimate the

necessary energy

consumption

Each player

communicate its own

decision with the other

players

Each Player computes

the bid based on its own

decision and the other

players improvements.

All player s bid are sent

to the scheduler

Figure 4.2: Fluxogram of the auction approach and bidding process.

35

4.1.2 Game theoretic approach

The Nash Equilibrium concept will be used in this game theoretic approach. As seen in section 3.1.2

and in some works [3][4][17], the utility function is the principal mechanism used by the players to select

their own strategy. Using the auction approach together with Nash Equilibrium, it is expected that the

players place a bid, for the task to execute, which is based on the decision that maximizes the player’s

utility function, and also, on the principal goal, to minimize the overall energy consumption of the system.

Having said that, it is expected that the player utility function is directly related with the overall energy

consumption of the device, and so, in each auction, the winner will be the player who bids the lowest

value, which means that it can execute the task with the lowest energy consumption among all players.

By scheduling one task in each auction to the core that can execute it with the lowest possible variation

in the overall system’s energy consumption, this scheduling approach is able to find a local sub-optimal

solution.

As already mentioned in this chapter, the proposed approach must consider the energy consumption

of the whole system and not just of the processors. This must be present because this work is focused

on mobile devices, such as smartphones, which have a lot of hardware that could have higher energy

consumption than just the processors. Mobile devices are energy limited devices, and thus, the main

goal herein is to save energy of their battery as much as possible. On a compute system exists mainly

two subsystems that consume energy, the processing units (e.g cores of a CPU and GPU) and the

remaining units (e.g. memory, system drivers and peripherals). Therefore, the overall player utility

function (equation 4.1) must be divided in 2 parts: the selected core (uplayer) utility function, which

is divided in two sections to cover the increase of energy consumption in the selected player and its

impact on other players (uindividual), as well as the impact on the remaining units (uglobal); and the other

cores (uother players) utility function, which aims to find if it is possible to change their strategy in order

to improve energy savings having into account the strategy of the selected core. All these functions are

shown in equations 4.2 - 4.5 and will be explained in the next sections.

In these equations, Sij is the strategy set of player i, and j is one of the Mi available strategies,

Sij = {si1, si2, ..., siMi
}. In this game approach exists N players, i ∈ {1, 2, ..., N}, and si′ represents the

best strategy selected by player i in the last round/auction; si∗ represents the best strategy of player i,

which is found through the selected player utility function (Equation 4.2).

ui = uplayer(s1′ , s2′ , ..., Sij , ..., sN ′) + uother players(S1j , ..., S(i−1)j , S(i+1)j , ..., SNj) (4.1)

uplayer(s1′ , s2′ , ..., Sij , ..., sN ′) = min
j

[(uindividual(sij) + uglobal(s1′ , s2′ , ..., sij , ..., sN ′)] (4.2)

uindividual(sij) = ∆Energyplayer(sij , si′) +

N∑
w=1,w 6=i

∆Energyplayer(sw′) (4.3)

uglobal(s1′ , s2′ , ..., sij , ..., sN ′) = ∆Energysystem(s1′ , s2′ , ..., sij , ..., sN ′) (4.4)

36

uother players(S1j , ..., S(i−1)j , S(i+1)j , ..., SNj) =

N∑
w,w 6=i

min
j

(∆Energyother player(si∗ , swj , sw′)) (4.5)

Individual utility function

Equation 4.2 represents the utility function of the player i that will compute the bid for the received

task. In this case, the set of actions or strategies of player i, Sij , will be the set of available frequencies in

the DVFS subsystem, Sij = {si1, si2, ..., siMi
}, being si1 the lowest frequency available. This individual

player utility function is focused on unilaterally minimizing the variation of energy consumption on player

i, when it is selected to execute the task, by selecting the best frequency to achieve that.

Energy consumption is the product between execution time and power consumption, so, it is ne-

cessary to compute an estimation of the tasks execution times and the player (core) current power

consumption. In this work, it is assumed that is already known or has been collected some informa-

tion about the task a priori, mainly the total number of instructions of the task, in order to estimate the

task execution time. By measuring the task performance trough the performance counters is possible

to know its current Cycles Per Instruction (CPI) ratio. Knowing the current CPI ratio, frequency and the

total number instruction it is possible to estimate the task execution time, as it will be further explained in

section 4.3.1. To obtain the current instantaneous power consumption value, it will be necessary to read

the APB energy meters registers of each processing unit, which will also be further explained in section

2.2.

In systems with many tasks, executing at the same time, it is necessary to know in which cores are

the tasks being executed, as well as, their actual frequencies and power consumptions. In this proposed

approach, all this information is put together and stored in memory. To simplify the reading, this structure

will be referenced as ”task execution map”. In Figure 4.3 is shown an example of a task execution map

in order to describe how the selected player chooses the best frequency to execute the received task.

A

B

P0

P2

P1 tA

tB

f0

f2

Bf2
t ’B

P2

P1

C

B

f1

f2

A

t ’B

P0

P2

P1

C

B

t ’’A

f2

f2

A

t ’B

P0

P2

P1

t ’’A

t ’’C t ’’C t ’’C

Cf0

P0

t ’A

t ’’C

P0 f0
A

A

P0 A AC A C A C A C A C C

Cf0

P0

t ’’A

A

t ’’C

C

t ’’A

A
P0

f0

tnow tnow tnow

tnow

Old execution map

 New execution maps

Figure 4.3: Individual utility function, usage example.

37

In this example, player (core) 0, P0, and player 2, P2, are already executing task A and B, which will

finish approximately at tA and tB , respectively. P1 is empty, and thus, in idle mode. However, when

task C is scheduled to an occupied or empty core, the execution time of existing tasks A and B, will

increase to tA′ and tB′ , respectively, due to conflicts between the tasks inside the shared caches and

memory, i.e. cache-misses that originate data fetch from memory to the cache, which overwrites the

data used by the other task. Besides that, if task C is scheduled to the same core that is executing task

A then the execution time of task A will increase from tA′ to tA′′ due to the round-robin time-sharing

policy, SCHED OTHER, as already seen in 2.4.1. This increase is shown in the red square present

on Figure 4.3. This is a good example to show that an energy-aware approach must be aware of the

availability of each core before scheduling the task, because when task C is scheduled to the same core

that is executing task A, the amount of context switching between tasks is quite intensive due to the

SCHED OTHER policy, and thus, it will probably be less energy-efficient than if task C was scheduled

to an empty core, which in this case is P1.

Following the example, to properly compute the necessary energy consumption to execute task C on

core 0, it must be first introduced the following ∆Energy and the Energymap functions:

∆Energy = Energynew map − Energyold map

Energymap =

K∑
i=1

PowerTask combination(i) ×∆TimeTask combination(i)

(4.6)

In Equation 4.6, K represents the number of task combinations in the execution map of the selected

player. As seen in Figure 4.3, K is 1 when core 0 is just executing task A (old execution map), and is

2 when core 0 is executing task A and C (new execution map) because there are two time slices with

different combinations, first, the time slice from tnow to tA′′ with the task combination A and C and then

from tA′′ to tC′′ with just task C.

Following the example, the energy consumption of the new execution map of core 0 isEnergynew map =

PowerAC ∗ (tA′′− tnow)+PowerC ∗ (tC′′− tA′′), while previous, the energy consumption of old execution

map was just the energy consumption of task A solo, Energyold map = PowerA ∗ (tA − tnow). In this

utility function, it is also taking into account the increase of energy consumption in the other players due

to the impact of core 0 decisions, and so, these energy consumption variations must be also added in

the individual utility function, as seen in the second term of Equation 4.3. It should be noted that each

player must have the ability to access and read its own instantaneous power consumption value in order

to compute the ∆Energy.

In these calculations, it can be seen that for each task execution map it must be known several

task execution times and powers consumption values. In this example, PowerAC can be measured

immediately after task C is scheduled to core 0, while PowerA was already been measured when task

A was scheduled in the previous round. However, PowerC is not known but can be assumed that its

value is already known from previous executions of task C and is stored on the task history unit or

it can be measured by pausing task A in order to measure the instantaneous power consumption of

task C solo. PowerC can also be measured when task C is being executed in its own time slice on

38

the SCHED OTHER policy. The executions times can be approximately estimated through the CPI,

frequency and total number of instructions as will be explained in section 4.3.1. The new execution

maps should be stored on the memory in order to be used in the next auctions and also because they

will be used in the global utility function.

With these functions is possible to compute the variation of energy consumption of the core when a

new task is scheduled on it. Although, the energy consumption depends on the core’s frequency, there

will be as many execution maps as frequency levels available on the core. The new frequency (new

map) that assures the lowest variation of energy consumption compared to the old frequency (old map),

will be the individual decision of the player.

Global utility function

The energy consumption of the mobile device is not only due to the processor, as previously discus-

sed, but also other components consume energy consumption. For simplicity, this set of components

will be referenced as ”system”, which refers to the existing hardware of the ARM Juno r2 SoC out-

side the processors (clusters), mainly the DRAM memory, buses, power-management subsystems (e.g.

DVFS) and other peripherals. On some devices this energy consumption can be even higher than the

processor, and so, it must be considered to the scheduling decisions.

It would be interesting to expand the meaning of ”system” to all components in the mobile device,

as for example the device’s display or sound speakers, and to establish a connection between the

task, for example ”play music”, and its respective power consumption in the processor as well as in the

audio speakers. This should give full energy-awareness to the scheduler, but unfortunately, is far for

being done because it would imply the manufacturers to integrate more power sensors hardware in their

components and also to establish compatibility with the existing SoC.

In ARM Juno r2 board and generally in mobile devices, the variation of power consumption in the

”system” is mainly due to the DRAM memory accesses, because it is one of the components whose

usage is more dependent on the executing tasks. However, this variation can be slightly insignificant

when compared to the static power consumption that the remaining components in the ”system” have.

The global utility function operates similarly to the individual utility function. The difference is that all

the players must now be seen as an unique player. This modification is required because the overall in-

stantaneous power consumption of the ”system” is only represented by one power consumption sensor.

And so, the task combinations must be aggregated at the level of the whole system and not at the level

of the player. In Figure 4.4 is shown an example to better understand the global utility function. As men-

tioned before, for each player, there exists as many execution maps as available frequencies. However,

for simplify, in this example, it is just shown two new task execution maps when the received task C is

scheduled to core 1 and core 2 at frequency 0 and 2, respectively. The ∆Energy and the Energymap

functions used in this utility function are the same that are used in the individual utility function, Equation

4.6. However, in this utility function, the power considered will be the ”system” instantaneous power

consumption and not the power consumption of each individual player.

39

AP0

P2

P1
t
A

f
1

BP3
t
B

f
2

AP0

P2

P1

f
1

BP3 f
2

C

t
A

t
C

t
B

t
 system

f
0

AP0

P2

P1

f
1

BP3 f
2

C

t
A

t
C

t
B

f
2

t
 system

t
 systemt

now
t
now

t
now

Old execution map

 New execution maps

...

Figure 4.4: Global utility function, usage example.

Following the example, the ”system” energy consumption of the new execution map when the task

C is scheduled to core 1 with the lowest frequency is Energynew map = PowerABC ∗ (tB′ − tnow) +

PowerAC ∗ (tA′ − tB′) + PowerC ∗ (tC − tA′), while previously, the energy consumption of old execution

map was, Energyold map = PowerAB ∗ (tB − tnow) + PowerA ∗ (tA − tB). In this example, PowerABC is

measured immediately after task C is scheduled to core 1. PowerAC is not known but can be measured

by pausing the other tasks for a short amount of time. PowerC is also not known but it can be used

the same approach used for PowerAC or assume that the value is already known, it was stored in

the task history unit. To overcome this problem in future auctions, the unknown instantaneous powers

consumptions must be stored in the task history unit. However, as already discussed, the ”system”

power consumption can be approximately constant, and this would let the PowerAC be approximately

equal to PowerABC and not needed to be measured. However, this would be a pessimistic approach

and the respective associated errors could influence the overall decision. It should be also noted that if

task C was scheduled to core 2 at frequency 2, the only unknown task combination power consumption

is the new ABC, because AB and A were already been measured on previous auctions.

As seen in Figure 4.3 and 4.4, different frequencies lead to different execution maps, and hence,

different energy consumptions. The relevant information of each execution map should be stored on the

memory in order to be used in the next auctions. In this example, it should be noted that depending

on the frequency and core selected to schedule the task, the tsystem varies, and so, in some execution

maps, the energy consumption of the ”system” can be more relevant than in other execution maps.

Joining the individual utility function with the global (system) utility function it is possible to predict

the increase of energy consumption inside the processor and in the ”system” when scheduling a task

to a specific core. For each frequency available on the core, the one which implies lower variation of

the overall (core + system) energy consumption will be selected as the best decision for that player.

However, it must be also seen if the remaining players should change (or not) its previous decisions

based on the actual selected player decision, which is taken into account in the Other players utility

function that will be presented in the following section.

Other players utility function

As seen in the last two utility functions, the selected core choses the best frequency based on the

variation of energy consumption on the processor as well as on the ”system”.This is done because the

40

scheduler should have an overall energy-awareness and not only at the level of the processor. However,

the approximately constant power consumption of the ”system” can be so higher when compared with

the processor/core, that this last can be irrelevant when compared to the ”system”, which can lead to

select higher frequencies on the core in order to reduce the task execution time and hence reduce the

dominant ”system” energy consumption. Having said that, once we have taken into consideration this

overall energy consumption of the device, we can then look if it is possible to save energy consumption

in the remaining cores by selecting their best frequencies from the individual utility function, as illustrated

in Figure 4.5.

AP0

P2

P1
t
A

f
1

BP3
t
B

f
2

AP0

P2

P1

f
1

BP3 f
2

C

t
A

t
C

t
B

t
 system

f
0

t
 system

f
0

f
1

f
0

t
B

t
B

t
A

f
0

f
1

f
2

f
0

f
1

f
2

f
0

f
1

f
2

E
Cluster

E
System

E
Cluster+System

Task B decisions on last auctionOld execution map New execution map

Figure 4.5: Other players utility function, usage example.

As already seen, in the selected core utility function (uplayer) the best frequency for that player is

chosen and the corresponding execution map is stored on memory. This new execution map will be the

base for this utility function. The highest execution time of all players, is designated the time system,

tsystem, which is marked red on the example. The goal of this approach is to see if the other players can

lower their frequency in order to achieve energy savings while they are just allowed to select frequencies

whose execution time is lower than the tsystem.

Following the example, task B was scheduled in the last auction to the core 3 with the highest fre-

quency (see ECluster+System), which was not the one that corresponds to best individual energy savings

(see ECluster) as can be seen in the energy values represented in the red square (Figure 4.5). It should

be noted that when each task is scheduled to a core, its individually values of necessary energy con-

sumption to execute on that core for all available frequencies are stored in memory in order to be used

in this utility function. For task B, the best individually energy consumption would be achieved when

selecting the lowest frequency. However, f0 was not selected in the last auction because the ”system”

has higher energy consumption at that frequency, and thus, the selected frequency was f2, which provi-

des lower overall energy consumption in the device. By using the selected core utility function (uplayer),

the best frequency selected to schedule task C to core 1 was the lowest one, which corresponds to a

change from tsystem to t
′

system. Looking to each execution time for each frequency, one can see that

the core 3 can achieve energy savings by selecting the frequency 0, which corresponds to an execution

time t
′′′

B . However, for task A, frequency 0 will not be selected because the task execution time will be

higher than the t
′

system.

By using these three utility function, one can conclude that, in each auction, the new task can be

scheduled to the core that offers the lowest variation of energy consumption on the device. With this

41

game approach, each player will place a bid regarding its own decisions and the other players decisions,

which will lead to find local sub-optimal energy savings. In Figure 4.6 is shown the pseudocode of the

player algorithm based on the proposed game theoretic approach.

Player’s pseudocode to compute the task’s bid
Input: Task ti
Output: Bid of player j to task i, Bij

0. Read the performance counters and energy meter registers for all existing tasks on player j
before executing task ti.

1. Execute task ti for a short amount of time.
2. Read the performance counters and energy meter registers again for all existing tasks on

player j
3. For each task executing in player j do:

3.1 Estimate the task execution time for the actual frequency.
3.2 Predict the task execution time for the remaining frequency levels.

4. For each available frequency do:
4.1 Generate the task execution map based on the tasks execution times.
4.2 Estimate the instantaneous power consumption for each task combination existing

in the execution map
4.3 Estimate the player and ”system” overall energy consumption based on the created

execution map.
4.4 Compute the variation of energy consumption between the new created task execu-

tion map and the previous task execution map (without task ti).
5. Choose the frequency that leads to lower variation of energy consumption when executing task

ti on player j.
6. Optimize the other players decisions through communication of the selected frequency.
7. Compute bid Bij based on all utility functions and send it to the scheduler.

Figure 4.6: Player’s pseudocode to compute the task’s bid.

As can be seen in the player algorithm (Steps 0-2), the player starts by receiving the task and charac-

terize it through the performance counters, which will be explained in section 2.2. The player afterwards,

uses this information to estimate the tasks execution times and instantaneous power consumptions

(Steps 3-4). However, this estimation is done just for the current operating frequency and not to all

the available frequencies, which would turn this scheduling approach to be similar to exhaustive search

and to have higher energy consumption due to excessive utilization of the DVFS drivers. To overcome

this problem, we can predict the instantaneous power consumption and execution time values without

changing the frequency, as it will be explained in section 4.3. Returning to the algorithm, the player then

selects its best strategy that contributes with the lowest variation of energy consumption to the overall

device, and communicate it to the other players. These will see if it is possible to improve their strate-

gies to achieve energy savings, and communicate back to the selected player (Step 5-6). Finally, based

on all these energy consumption values, the selected player computes the final bid and sends it to the

scheduler (Step 7). Once all players have sent their bids to the scheduler, the player with the lowest bid

will be the winner and the task will be schedule to it as well as the respective frequency changes.

42

4.2 Framework implementation in ARM Juno r2 board

As already seen in section 2.1, the compute subsystem of ARM Juno r2 board is composed mainly

by a dual-core Cortex-A72 cluster, a quad-core Cortex-A53 and a quad-core Mali-T624 GPU cluster.

This board only has energy meters at the level of the cluster and not at the level of the individual core,

therefore, the players in this game approach will be the clusters and not the individual cores, because

it can be just known the sum of instantaneous power consumption of all cores on the cluster, and not

on each individually one. However, one of the clusters, the GPU, was not been used because the

Mali Drivers and OpenGL ES (OpenGL for Embedded Systems) are not supported in the current Linaro

OpenEmbedded filesystem (see section 5.3). And so, the players presented in this approach are: the big

cluster composed by two core and the LITTLE cluster composed by four cores. In this implementation,

it will be adopted the notion of ”players’ representative”, which are the clusters and the ”sub-players”,

which are the cores. Basically, the idea is that the player represents a coalition of sub-players. This

player must adopt an non-cooperative game approach in its relation with the other clusters, but, at the

same time, it must exists some cooperation between the cores inside that cluster, because when the

frequency is changed in the cluster it will change the frequency of all cores of that cluster. This limitation

will lead to a modification in the uindividual utility function in the way of how the task execution map is

used.

To better describe this modification, it will be shown in Figure 4.7 an example of how the execution

map will be used to be computed the energy consumption. Following the example, it can be seen that

before the modification it exists 6 cores, which corresponds to 6 players, and after the modification it

exists 2 players, one that has 2 cores and the other that has 4 cores. Before the modification, one

can see that only the selected core 3 changes its frequency to compute all the possible task execution

maps, while in the other cores just have to be considered the increase of energy consumption due to the

conflicts with the new task E. After the modification, all possible frequency changes in the selected core

3 of the LITTLE cluster will change the whole execution map of that cluster. In this approach it is assured

cooperation between the sub-players by selecting the new best frequency for all cores that corresponds

to the lowest energy consumption on the cluster, and then it is also assured a non-cooperative approach

between the players, by using the auction approach in order to compete individually against each other.

The tasks to use in this approach are real benchmark applications, as it will be explained in section

5.2. These tasks can have different execution phases until they finish. For example, they can start to

behave like a memory bounded task, which means that they are mainly dependent on the memory’s

frequency and not on the processor’s frequency, because they do many memory accesses and they

must wait many cycles to obtain the stored data. And then, they can behave like compute bound tasks,

where they just use the caches of the processor, which are much faster than the general DRAM memory.

This unpredictable behavior, i.e. different phases, can affect the estimation of the task execution time,

as it will be explained in section 4.3.1. To overcome this problem, the scheduler must do the estimations

frequently in order to detect the different task phases. In this approach, when a new task needs to

be scheduled, it is done a new estimation of all tasks execution times in order to compute the energy

43

AP0

P2

P1

f
2

P3

f
0

Bf
1

C

New task E

Power measures and frequency

scale at the core level (before)

Power measures and frequency

scale at the cluster level (after)

AP0

P2

P1

f
2

P3

f
0

Bf
1

C

Ef
0

P0

P2

P1

f
2

P3

f
0

Bf
1

C

Ef
2

P0

P2

P1

f
2

P3

f
0

Bf
1

C

Ef
1

A

P0

f
0

f
0

Bf
0

C

Ef
0

P0

f
2

f
2

Bf
2

C

Ef
2

A

P0

f
1

f
1

Bf
1

C

Ef
1

AA

AP5

P6

f
0

D

P5

P6

f
0

D
P1

f
0

D

f
0

f
1

f
2

 New execution maps

Old execution map

Cortex-A53

Cortex-A72

Figure 4.7: Individual utility function adaptation, usage example.

consumption more accurately. It is also done a reschedule of the already executing tasks when one

of the tasks has finished. This contributes to actualize the estimations of executions times as well as

to give other opportunity for other cores to acquire those tasks. The pseudocode for the proposed

scheduler is shown in Figure 4.8. The detection of when some task have finished is done through a flag,

corresponding to Step 6 of the algorithm.

In the developed algorithm three task lists are maintained: the task running list, the task waiting list

and the task paused list. In the task running list are present the tasks that were scheduled and are being

executed on the cores. In the task waiting list are present the new tasks that arrived to the scheduler

and were not yet scheduled. The scheduler starts by picking one task from the task waiting list and uses

the proposed scheduling approach to schedule it. First, the scheduler opts to schedule only to the cores

that are empty in order to avoid exhaustive search on all existing cores (Steps 2.3-2.5). However, if there

is no available cores, the scheduler has no choice but finding the best of all existing cores (Steps 4).

There is also the option to not schedule the task and wait until some task finishes, which could lead to

lower energy consumption than scheduling the task to an occupied core (Step 3). If eventually this could

be the decision, then the task will be transfered from the task waiting list to the paused list and will stay

there until some core becomes available (Step 5). As already mentioned, once one task finishes it is

done a reschedule of all executing tasks. To do so, the tasks in the running list are inserted in the top

of the waiting list followed by the tasks in the paused list and the remaining tasks already present in the

44

waiting list. And then, the scheduler executes the tasks reschedule (Step 6.).

Pseudocode of the Scheduler’s algorithm.
Input: Task ti
Output: Schedule of task ti to core cj with freq fw

0. Scheduler waits until new tasks appear.
1. Scheduler enqueues the new tasks in the waiting list.
2. If there are tasks on waiting list, proceed, otherwise go to Step 0.

2.1. Check all players available, i.e., the ones with at least one core unoccupied.
2.2. If there are no available players then go to Step 3.
2.3. Send the task for each available player and wait to receive all player’s bids.
2.4. Select the player with the lowest bid and schedule the task ti to it.
2.5. Change the players’ frequencies according to the bid of the winning player. Go

to Step 2.
3. Send the task to the player who will be available sooner and compute the bid as scheduling

the task just when the player becomes available, i.e., to not scheduling the task now and wait
until some player is available.

4. Send the task and compute the bid for each core in each player.
5. If it is better to not schedule the task now, then send the task to the pause list and wait until

some player becomes available. Otherwise, schedule the task to the winner core and proceed
to Step 2.

6. If some task finishes, insert the already executing tasks on the top of the waiting list followed
by the tasks in the paused list and proceed to Step 2 (reschedule).

Figure 4.8: Pseudocode of the Scheduler’s algorithm.

It also should be noted that the bid process could be parallelized, however, that would let to increase

the energy consumption. In order to do that, it would be necessary to schedule copies of the new task

to each core and let them to compute the bids. This is doable, but it must be taking into account that the

current instantaneous power consumption instead of be increased proportionately to one task, it will be

increase by the number of copies, and also, there will be more stress and conflicts on the caches and

the system. For those reasons it was opted to do the bidding process in a serialized mode.

4.3 Time and Power prediction for several frequencies

In the proposed approach it is necessary to compute the energy consumption for the different exe-

cution maps. Each frequency will lead to a different execution map due to different execution times of

each task. There are two ways to compute the bid for each frequency. On one hand, it is possible

to measure the power consumption and performance counters for one frequency, and then, wait until

the DVFS driver changes the frequency and proceed the readings again. This way is called exhaustive

search because one must change and wait for each frequency scaling and respective readings and

becomes impractical when there are many available frequencies. On the other hand, it would be inte-

resting to pass this physically exhaustive search to the compute domain by making predictions based

on previous measures. In the following sections will be explained how to predict an execution time or an

instantaneous power consumption value for other frequencies without physically changing it.

45

4.3.1 Task execution time

In order to estimate the task execution time, it will be necessary two performance event counters for

each task. The necessary performance events are the number of instructions architecturally executed

and the number of CPU cycles, which can be obtained through PAPI, as already seen in the section

2.2.2. However, the total number of instruction of the respective task must be already known. This

value must be stored in the task history unit in order to be possible to make an estimation of the task

execution time. Starting by knowing the time to execute just one instruction, ∆tinstruction, and then by

multiplying that time with the total number of instructions, #Total instructions, it is possible to estimate

the task execution time for the current frequency. As show in equation 4.7, the ∆tinstruction can be

calculated by knowing the time duration of the necessary number of cycles to execute, in average, one

instruction, which is the time correspondent of one cycle, 1/frequency, multiplied by the number cycles

per instruction ratio, CPI. Once known all the values, is then used the Equation 4.8 to estimate the task

execution time.

Execution time = ∆tinstruction ×#Total instructions

∆tinstruction =
#cycles

#instructions
×∆tcycle = CPI ×∆tcycle

∆tcycle =
1

frequency

(4.7)

Execution time =
CPI

frequency
×#Total instructions (4.8)

This estimation assumes that the task has always the same behavior when it is being executed. Ho-

wever, as mentioned in section 4.2, tasks can have different execution phases and can be more compute

bound in one phase and more memory bound in another. In this estimation, the current measure of the

CPI is what represents the tendency of task phases, and for that reason, it must be measured always

when a new execution map is created to compute a bid, which occurs when a new task is about to be

scheduled or when the scheduler effectuates a reschedule when one task finishes. Generally, memory

bounded tasks have higher CPI than compute bounded tasks, because in average it must wait more

cycles to load or store data then to compute.

To predict the CPI for other frequencies it will be used the reference CPI values measured when the

task is running solo on the device (CPI solo value) and also the actual CPI measured value. In the task

history unit, it is assumed to be saved one CPI solo value of that task for each available frequency.

Based on two developed tasks, that will be presented in the experimental results, section 5.3, it was

seen that in this board, the compute bounded tasks have the same CPI in each frequency, which is

true because CPU bounded tasks are mainly dependent on the frequency of the core. And it was also

seen, that memory bounded tasks have different CPI values on different frequencies; they are more

dependent on the memory’s frequency than the frequency of the core, and so, they wait more cycles to

get the data from the memory, which is operating at a constant and different frequency than the cores.

The tendency in the variation of CPI values are used to characterize the behavior of the task, and so

it must be preserved when it is necessary to predict the CPI to other frequencies. To do so, it will be

46

assumed that the relation between the new CPI measure and the CPI solo value is the same in each

different frequency, and so based on the CPI measure for the actual frequency and the CPI solo values

stored for the same frequency and the other frequency to predict, it will be possible to predict the CPI

value to that frequency, as shown in Equation 4.9.

CPIf0
CPIsolof0

=
CPIf1

CPIsolof1
=

CPIf2
CPIsolof2

CPIfx =
CPIfy

CPIsolofy
× CPIsolofx

(4.9)

Figure 4.9 shows an example of the CPI value variation in a memory bounded and a compute boun-

ded tasks for different frequencies when they are being executed solo and with the other on the same

core.

0,45 2,923286 1,439839

0,6 1,400588 0,663675

0,8 2,928814 1,439418

0,95 2,932735 1,439397

1 1,400044 0,667056

1,2 1,403007 0,667132 2,923286

1,400588

2,928814

2,932735

1,400044

0,45 7,574926 3,792625 1,403007

0,6 5,417346 2,686212

0,8 10,40085 5,191284

0,95 11,59267 5,791827

1 7,16838 3,552395

1,2 8,112873 4,009374

0

2

4

6

8

10

12

14

0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2

C
P

I

Freq [GHz]

MEM_bound solo MEM_bound & Tracking

Big

BigLittle

Little

(a) MEM bound task

2,686212 3,552395 4,009374 3,792625 5,191284 5,791827

0,663675 0,667056 0,667132 1,439839 1,439418 1,439397

5,417346 7,16838 8,112873 7,574926 10,40085 11,59267

1,400588 1,400044 1,403007 2,923286 2,928814 2,932735

0

0,5

1

1,5

2

2,5

3

3,5

0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2

C
P

I

Freq [GHz]

Tracking solo Tracking & MEM_bound

Big

Little

Little Big

(b) CPU bound task (Tracking Benchmark)

Figure 4.9: Comparison and variation of the CPI tendency between MEM bound and CPU bound applications.

As seen in the example, the blue and red lines represent the CPI tendency when the task is being

executed solo and together, respectively, on the same core. It can be seen that the CPI increases when

the two tasks are executed in the same core. This impact is mainly due to the ”equal” time-sharing

SCHED OTHER policy but also due to the contex-switching/conflicts between each other in the shared

L1 and L2 caches. If other task was also scheduled to another core in the same cluster, we would also

see a CPI increase, but just due to the conflicts in the shared L2 cache. It can be seen that the CPI

tendency is approximately preserved when the task is being executed solo or with another tasks. And

so, by predicting the task CPI value for the remaining available frequencies, it is possible to estimate the

task execution times without physically doing exhaustive search.

4.3.2 Task instantaneous power consumption

The cumulative energy consumption meter register present in the performance measure unit will be

used to predict the instantaneous power consumption of one task to different frequencies. As already

mentioned in section 2.2.1, the instantaneous power consumption of the cluster can be obtained by

dividing the difference between two cumulative energy measures by the time that passed, as shown in

Equation 4.10. The time duration can be obtained by computing the difference between the two time

readings obtained through a PAPI function (PAPI get real usec).

47

Power consumption =
Energy after − Energy before

∆Time
(4.10)

Powerdissipation = PowerDynamic + PowerStatic

= Power Processing + Power Leakage
(4.11)

Power dissipation in CMOS circuits can be defined by the processing power dissipation and the

transistors static power leakage (Equation 4.11). Static power leakage is present at a micro-level in

the transistors and is based on the small currents that are flowing between the differently doped parts

of the transistor. This leakage currents tends to relatively increase when the size of the transistors is

reduced and also when the temperature increases. However, it still represents the minor part of the

power dissipation. Power Processing represents the switching power dissipation due to charging and

discharging the output capacitances when the processor is executing tasks. As referenced in [21],

this dynamic power consumption accounts for more than 60-70% of the total power dissipation of a

processor, and therefore, it seems reasonable to ignore the static power consumption of the processor.

The approximated power consumption of the processor can be now estimated based on the power

consuming transitions of all the transistors when the processor is executing tasks (PowerDynamic), which

is shown in equation 4.12.

Power consumption = αC × fclk × V 2
dd (4.12)

In this equation, α represents the activity factor, i.e., the fraction of the circuit that is switching, C

is the switched capacitance, fclk is the frequency of the cluster and Vdd is the supply voltage of the

cluster. In the switching transition, if the capacitance C is charged and discharged by fclk frequency

and peak supply voltage Vdd, then the charge moved per cycle is C × Vdd and the charge moved per

second is C × fclk × Vdd. Since the charge is delivered at voltage Vdd, then the power consumption is

C × fclk×V 2
dd. However, the existing processors on the market, generally do not have available the data

needed to accurately compute the activity factor of the processor, and so, in this work, it will be also

assumed that the power consumption can be computed by using the equation 4.13 [21]. In this equation

is also shown, how it can be predicted the power consumption for frequency 0 by knowing the actual

power consumption for frequency 1 and the voltage supply values for each frequency.

P ∝ fclk × V 2
dd

Pf0

Pf1

=
f0 × V 2

f0

f1 × V 2
f1

(4.13)

It should be noted that these power estimations have errors associated due to the approximations.

However, these power estimations are just used if there is no previous ”real” measures for that task

combination, saved in the task history unit. This unit stores both ”real” power measures and power

predictions of each task combination. The unit is composed by three lists: one for the power estimation

of task combinations in the Cortex A-72; another for the Cortex A-53, and other for the ”system”. The

power consumption of the system is not dependent on the frequency of the CPU and hence there is no

need to predict to the other frequencies, because it is approximately constant. As already mentioned,

48

when one task finishes it is done a reschedule of the executing tasks. When this occurs, the tasks must

be paused in order for the cluster power consumption return to the value when no task was scheduled.

This must be done because the reading of power consumption for the first task to be rescheduled must

be only its own power consumption and not the overall cluster power consumption of all executing tasks.

The tasks must have integrate code to pause it whenever the scheduler sends the reschedule signal,

which will be explained in section 5.2.

4.4 Summary

In this chapter the proposed framework was presented. First, a general overview of the framework

was made, where the concepts behind the proposed auction and game theoretic approaches where

presented. It was seen that the Auction approach assures a non-cooperative game between the players

and Nash Equilibrium approach assures that the player selects the frequency that leads to the best

outcome for that player based on its utility function.

Afterwards, some adaptations of the general framework to the ARM Juno r2 board were made. The

limitation of that the power consumption measures were available just at the level of the cluster, has

imposed cooperation between the cores (sub-player) inside the cluster (player) and non-cooperation

between the clusters through the auction approach.

Finally, was explained how the task execution time as well as the task instantaneous power con-

sumption are estimated and predicted by using the performance measure unit.

49

50

5
Experimental Evaluation

Contents
5.1 Experimental setup . 52
5.2 Benchmarks . 54
5.3 Experimental results . 56
5.4 Summary . 64

51

In order to evaluate the proposed energy-aware game-theoretic scheduling approach on mobiles

devices, it was used the ARM Juno r2 board. It is a heterogeneous processing unit composed by a

dual-core Cortex-A72 and quad-core Cortex-A53. These ARM processor architectures are dominating

the market of embedded systems and are now being used on the new high-end smartphones. The

ARM Juno r2 board supports the ARM’s big.LITTLE technology which provides power-consumption

optimization and high computational performance.

In this chapter will be presented the necessary experimental setup to evaluate the proposed frame-

work against the Linux kernel, the discontinued ARM’s GTS and the new EAS scheduling approaches.

Furthermore, it will be presented the benchmarks used to evaluate the proposed framework. As it will

be seen, these benchmarks will need to be slightly modified in order to be used by the framework.

Afterwards, the task power consumption and execution time predictions for different frequencies are

experimentally evaluated. And finally, the proposed framework is evaluated with different benchmark

workloads and the obtained experimental energy savings are presented.

5.1 Experimental setup

The proposed energy-aware scheduling approach was experimentally tested on the ARM Juno r2

board, which has already been introduced in section 2.1. This board can run different software stacks

developed by both ARM and Linaro, which include the board firmware, system control processor firm-

ware, ARM Trusted Firmware, OP-TEE Trusted Execution Environment, and then either an EDK2-based

UEFI environment, or a Linaro kernel and filesystem (Android / BusyBox / OpenEmbedded (OE)) booted

via U-Boot. To evaluate the proposed scheduler, the ARM Juno r2 board will be configured with a Li-

naro kernel and a OpenEmbedded filesystem following the instructions present in ARM’s ”Using Linaro’s

deliverables on Juno” web document [22].

The configuration is based on two main softwares, the Juno’s Flash and the Filesystem. The Juno’s

Flash is the software that contains the Linaro’s kernel and must be inserted on Juno’s Multi Media Card

(MMC) in order for the board to boot and load that kernel. The MMC is accessed through the usb

configuration port (see Figure 5.1). When it is booting up, the board will search for a filesystem. This,

must be burnt on a USB stick with a minimum capacity of 4GB, and must be inserted in one of the USB

2.0 ports. In this work it was used a Samsung 850 Pro SSD that was already available for that board.

Once the board’s boot is done, it reaches a prompt, where you can start using the system.

There are two available Linaro kernels, the Linaro Stable Kernel (LSK) and the Linaro Tracking Kernel

(LTK). However, only the LSK incorporates the big.LITTLE MP patchset produced to support scheduling

on heterogeneous multi processor systems. And so, the LSK is the one that supports the GTS and EAS

scheduling approaches.

The filesystem chosen to configure the board was the OE LAMP, because it is a complete filesystem

and has more available tools/drivers than the OE Minimal, Android or Busybox filesystems. The Ope-

nEmbedded filesystem is composed by the files and folders of a Linux operating system, and thus, it

is very similar to Ubuntu, for example. Each version of the available OE filesystems contains a /boot

52

folder, in which is present the kernel that has the same kernel headers as the filesystem. However, this

kernel is not used by the board when it is used the LSK in the Juno’s Flash, but it can be loaded when

an Unified Extensible Firmware Interface (UEFI) Flash is used. The UEFI Flash contains no kernel and

it can be used to load the kernel from the USB boot folder. The software stack combinations used to

setup the board and to evaluate the proposed framework are shown in Table 5.1.

Table 5.1: Available ARM Juno r2 software’s combinations.

Flash Filesystem Kernel PAPI Energy meters

UEFI 16.04 OE LAMP 15.09 3.10.0-1-linaro-lt-vexpress64 Yes Yes

LSK 16.05 OE LAMP 15.09 3.18.31 (GTS) No Yes

LSK 16.06 OE LAMP 15.09 3.18.34 (EAS) No Yes

The fact that the filesystem do not contain the correct kernel headers for the LSK 16.05 and 16.06

kernels, some of the modules are not loaded when the board is booting up. Due to this, it was seen

that PAPI could not be sucessuflly installed on those LSK configurations. In ARMConnected Community

[23] is referenced that the LSK kernels have no support to read the energy meters registers, which is

only supported in the LTK kernels. However, some basic experiments were done in both LSK and LTK

kernels and it was seen that the instantaneous power consumption values obtained were the same,

which reveals that LSK also supports the reading of energy meters registers. This was communicated

to support@arm.com and was later confirmed that in fact the LSK also supports the energy readings.

The proposed framework will be tested in the Linaro kernel present in the /boot folder of the OE

LAMP 15.09 filesystem by using the UEFI 16.04 flash and will be compared with the GTS and EAS

scheduling approaches present in LSK 16.05 and LSK 16.06 kernels respectively. It should be noted

that each configuration has a different kernel.

In Figure 5.1 is present the ARM Juno r2 board where are shown the used ports. When the ARM

Juno r2 board is working with the UEFI 16.04 flash, the Ethernet port that must be used is the one at the

front panel. The rear panel Ethernet port is used by the LSK flashes.

Figure 5.1: ARM Juno r2 board available connection ports.

53

5.2 Benchmarks

Benchmark applications are used to test and evaluate the proposed scheduling approach. The

selection of these benchmarks must be done based on following existing limitations:

• In order for the benchmark to be scheduled, it must be visible by the scheduler as a thread. This

can be done by inserting the benchmark C code inside the proposed scheduler code, as a function,

and compile it, or by using a system call to execute an already compiled binary of that benchmark;

• PAPI only supports performance measurements at the level of the thread. When a thread is cre-

ated, it inherits no PAPI events or information from the calling thread. Each thread must create,

manipulate and read its own counters [10];

• When some executing benchmark finishes, the scheduler sends a signal to pause the remaining

executing threads, as seen in section 4.3.2, in order to reschedule them. The benchmarks must

include a C code to be paused when detected the reschedule signal. This code is shown in

Algorithm 5.2 and must be inserted within a main loop of the benchmark so that it can have a quick

response. The scheduler’s algorithms to pause and unpause the threads are shown in Algorithm

5.1 and 5.3 respectively.

Algorithm 5.1 Scheduler pause thread function

1: void pause thread X(int thread number){
2: printf(”pausing thread %d\n”, thread number);
3: pthread mutex lock(&threads array[thread number].mutexe t);
4: threads array[thread number].pause flag = 1;
5: pthread mutex unlock(&threads array[thread number].mutexe t);
6: }

Algorithm 5.2 Thread pause code

1: (Benchmark code ...)
2: pthread mutex lock(&this thread→mutexe t);
3: while this thread→pause flag == 1 do
4: pthread cond wait(&this thread→cond t, &this Thread→ mutexe t);
5: end while
6: pthread mutex unlock(&this thread→mutexe t);
7: (Benchmark code ...)

Algorithm 5.3 Scheduler unpause thread function

1: void unpause thread X(int thread number){
2: pthread mutex lock(&threads array[thread number].mutexe t);
3: threads array[thread number].pause flag = 0;
4: pthread cond signal(&threads array[thread number].cond t);
5: pthread mutex unlock(&threads array[thread number].mutexe t);
6: }

Having said that, it must be implemented in the source code of each benchmark the necessary PAPI

functions to create an event set and start the reading of counters as well as the code to pause the thread

when the scheduler sends the reschedule signal.

54

Multi-threaded benchmarks require in-depth knowledge of the algorithm in order to know where must

be inserted the C code modifications, specifically where the threads are being created. Each benchmark

can be composed by many C code files and some of them requires installation of additional libraries,

which became impractical to find where the C code must be inserted. For those reasons, the developed

framework will just focus on single-threaded benchmarks.

These however, also requires some knowledge of the algorithm, specially to know where must be

inserted the C code to pause the thread. The benchmarks must have a quick response to the scheduler

pause signal, and to accomplish that, the C code must be inserted within a main short loop. The PAPI

functions to create an event set and start the reading of counters can be easily inserted at the beginning

of the benchmark main function.

To evaluate the developed scheduling approach, the following benchmark suites were considered:

the Princeton Application Repository for Shared-Memory Computers (PARSEC) [24], which contains

10 applications from many different areas such as computer vision, video encoding, financial analytics,

animation physics and image processing; the Standard Performance Evaluation Corporation (SPEC)

CPU 2006 [25], which contains 13 CPU-intensive applications, and The San Diego Vision Benchmark

Suite (SD-VBS) [26], which contains 9 diverse vision applications, such as image processing, image

analysis, motion and tracking, with the respective input sets. It was also used the OpenBlas library [27],

which contains linear algebra functions.

It has been tried to individually compile and configure each one of these benchmark applications to

execute with an adequate input set. In order to simulate user applications with a duration between 7

to 10 seconds in the lowest frequency of Cortex-A53, and also, with a quick response to the scheduler

pause signal, the benchmarks can be configured in two ways. On one hand, it can be selected the

smallest input set for the benchmark and execute it many times or, on the other hand, the benchmark

can be executed with a large input set just once. The second way requires in-depth knowledge of the

application because it must be seen which is the main loop of the application or where it takes most of

the time executing in order to insert the pause code there to achieve a quick response when the signal

is received. The first way is more appealing because the benchmark response to the pause signal will

be related with the time duration to execute the smallest input set. For some benchmarks that were

successfully compiled, the pause code was inserted in the main loop as well as inside other functions

of the benchmark. In Table 5.2 are presented the benchmarks that were successfully compiled and that

met the requirement of having a quick response to the pause signal, as well as their respective input

set and the number of repetitions. A brief description of each one of these benchmark applications is

presented in Table E.1 on the Appendix E. The most delay on the response to the pause signal in all

successfully compiled benchmarks was 10ms and occurs when that application is being executed at

the lowest frequency on the Cortex-A53. Therefore, the scheduler must wait approximately 10ms after

sending the signal to start reading the power consumptions correctly.

55

Table 5.2: Successfully compiled benchmarks and respective configuration.

SD-VBS OpenBLAS

Benchmark name Input set Repetitions Benchmark name Input set Repetitions

Disparity test 8000 Sgemm random values 2000

Mser test 3400 Sgemv random values 2000

Stitch test 5000 Sscal random values 200000

Texture Synthesis test 2000 Saxpy random values 80000

Tracking test 500 Sdot random values 80000

PARSEC SPEC CPU2006

Benchmark name Input set Repetitions Benchmark name Input set Repetitions

Blacksholes in 4.txt 5000 Bzip2 sample4.ref 2500

5.3 Experimental results

Different benchmark applications were selected to evaluate experimentally the proposed framework.

Each benchmark was executed individually to evaluate the average number of cycles per instruction,

total number of instructions and the average power consumption of each cluster and of the system.

These values will be referenced as the ”task solo values” and were obtained for each one of the three

available frequencies in each cluster. The solo values were stored in the task history unit and are used

to predict the power consumption and execution time of the task to other frequencies without changing it,

as already mentioned in section 4.3. The experimentally measured solo values for each benchmark are

present in Table F.1 on the Appendix F. In table 5.3 are just shown the CPI solo values of some selected

benchmarks for both clusters. The remaining benchmarks in each respective suite have similar CPI

values to the selected ones as can be seen on the Appendix F. All the values obtained experimentally in

this chapter were obtained by computing the median for 10 measures in order to have consistent results.

To simplify the reading, the frequencies f0, f1 and f2 shown in Table 5.3 for Cortex-A53 corresponds to

450 MHz, 800 MHz and 950 MHz, respectively, and for Cortex-A72 corresponds to 600 MHz, 1 GHz and

1.2 GHz, respectively.

Table 5.3: Cycles per instruction tendency on different benchmarks.

Cortex-A72 (big) Cortex-A53 (LITTLE)

Benchmark f0 f1 f2 f0 f1 f2

Disparity 0.898 0.897 0.897 1.337 1.336 1.337

Tracking 0.664 0.667 0.667 1.440 1.439 1.439

Blacksholes 1.206 1.028 1.207 1.515 1.523 1.523

Sgemm 0.624 0.624 0.624 1.340 1.344 1.343

Sgemv 1.011 1.009 1.012 1.301 1.301 1.301

Bzip2 0.538 0.539 0.538 1.109 1.109 1.109

CPU bound 1.169 1.169 1.169 1.124 1.124 1.124

MEM bound 2.686 3.552 4.009 3.793 5.191 5.792

As can be seen in Table 5.3, the CPI value of one task executing on a LITTLE core is always higher

56

than 1, which is due to the fact that the Cortex-A53 is an in-order processor. On the other hand, the CPI

values in a big cluster core can be lower than 1 because the Cortex-A72 is an out-of-order processor,

as already mentioned in section 2.1.2, and so, the execution of task instructions can be more parallel on

Cortex-A72 than on Cortex-A53.

It is possible to see in Table 5.3 that each benchmark from the available benchmark suites has an

approximated constant CPI value for each frequency, which allows to conclude that those benchmarks

have a compute bound behavior, as already explained in section 4.3.1. To prove this, it was created

one pure compute bound task, CPU bound, as well as one memory bound task, MEM bound, which C

codes are shown in Algorithm 5.4 and 5.5 respectively.

Algorithm 5.4 CPU bound task C code to ARMv8 architecture

1: int i;
2: int add = 0;
3: int arg1 = 100;
4: for (i = 0; i < 25000000; i++) do
5: asm (
6: ”ADD %[result], %[a], %[b]”
7: : [result] ”=r” (add)
8: : [a] ”r” (arg1), [b] ”r” (add)
9:);

10: end for

Algorithm 5.5 MEM bound task

1: int loop = 2500000;
2: int rand val, i;
3: srand(21);
4:
5: int *num1 = (int *)malloc(20000000 * sizeof(int));
6: ...
7: int *num8 = (int *)malloc(20000000 * sizeof(int));
8:
9: for (i = 0; i < 20000000; i++) do

10: num1[i] = rand();
11: ...
12: num8[i] = rand();
13: end for
14:
15: while loop != 0 do
16: num6[rand val] = num1[rand val];
17: num3[rand val] = num2[rand val];
18: num5[rand val] = num7[rand val];
19: num4[rand val] = num8[rand val];
20:
21: num6[rand val+100000] = num1[rand val+100000];
22: num3[rand val+100000] = num2[rand val+100000];
23: num5[rand val+100000] = num7[rand val+100000];
24: num4[rand val+100000] = num8[rand val+100000];
25:
26: loop - -;
27: end while
28:
29: free(num1);
30: ...
31: free(num8);

57

On one hand, the CPU bound task represents a loop composed by an ADD assembly function, where

one value, add, is accumulating the other, arg1. During the loop execution, the task only needs to access

the registers, L1 and L2 cache because once the two values are read from the DRAM memory and

stored to the cache, it is not needed to do more memory accesses, and so, the task is mainly dependent

on the CPU frequency than the DRAM memory frequency. On the other hand, the MEM bound task

needs much memory space to save all its values. The overall necessary memory allocation for the 8

× 20.000.000 integers is approximately 610 Megabytes, assuming that an integer is represented by 4

bytes. Knowing that the Cortex-A72 has a 2 MB L2 cache and Cortex-A53 has a 1 MB L2 cache, one

can conclude that in each loop iteration the task will need to access the DRAM memory to read and

store the values, which represents a pure memory bound behavior. The solo CPI values obtained for

the CPU bound and MEM bound tasks are also shown in Table 5.3 and prove that these two types of

tasks assume different CPI tendencies when the frequency is changed. In the MEM bound task, the CPI

increases with the CPU frequency because it takes more CPU cycles to execute the same instruction,

once the DRAM memory frequency does not change.

Based on the solo values present in the Table F.1 on the Appendix F, it is possible to see how

the power consumption and execution time predictions are calculated. First, the prediction of power

consumption is based on equation 5.1.

Pf0

Pf1

=
f0 × V 2

f0

f1 × V 2
f1

(5.1)

The measured supply voltages of each cluster are 0.833 V, 0.914 V and 1.014 V, which represents

Vf0 , Vf1 and Vf2 respectively. These values are similar to the ones referenced in the manual, as seen in

section 2.3.5.

Given the measure of the task power consumption at the current frequency, it is expected that the

equation 5.1 could estimate approximately the power consumption of the same task for other frequen-

cies. In Table 5.4 are shown the errors between the predictions and the solo power consumption mea-

sured value of Blacksholes benchmark for each frequency.

Table 5.4: Evaluation of power consumption prediction for the Blacksholes benchmark.

Cortex-A72 (big) Cortex-A53 (LITTLE)

f0 f1 f2 f0 f1 f2

Power [mW]
f0 220,74 442,93 654,19 83,84 179,45 262,28

f1 207,41 416,19 614,69 73,41 157,13 229,65

f2 210,71 422,80 624,45 74,27 158,97 232,35

Relative errors (%)
f0 0,00 6,43 4,76 0,00 14,21 12,88

f1 -6,04 0,00 -1,56 -12,44 0,00 -1,16

f2 -4,55 1,59 0,00 -11,41 1,17 0,00

In each row of the table it is marked as gray the solo power consumption value for that frequency and

the other two values on that row are the estimated predictions for the other frequencies. One can see

that depending on the actual frequency, the predictions have associated errors between 2% and 15%

58

when compared with the measured values. However, this is a simple technique to predict the power

consumption, which can be improved in future work in order to reduce the estimation errors.

To estimate the task execution time it is used the equation 5.2.

Execution time =
CPI

frequency
× (#Total instructions−#Instructions already executed) (5.2)

This equation uses the CPI measured value for the current frequency as well as the total number of

instructions of a task, which is stored in the task history unit, and the measured number of instructions

already executed. The equation estimates the remaining execution time of that task. To evaluate this, it

was used the solo CPI values of MEM bound task to estimate the execution times for each frequency,

which were then compared with the real execution time measured. In Table 5.5 are shown the relative

errors between the execution times estimations and the measured execution times for the MEM bound

task. As shown in Table 5.5, one can see that the associated errors between the estimated and measu-

red execution times are approximated 1%.

Table 5.5: Evaluation of execution time estimation for MEM bound task.

Cortex-A72 (big) Cortex-A53 (LITTLE)

f0 f1 f2 f0 f1 f2

CPI measured 2,686 3,552 4,009 3,793 5,191 5,792

Execution time estimated [ms] 2,843 2,256 2,122 5,353 4,121 3,872

Execution time measured [ms] 2,872 2,278 2,142 5,408 4,159 3,906

Relative error (%) 1,010 0,975 0,943 1,027 0,922 0,878

As already seen in section 4.3.1, the CPI solo values are used to predict the CPI value for other

frequencies while preserving the CPI tendency between different frequencies. The CPI solo values of

MEM bound task were already presented in Table 5.3, and will now be used to predict its CPI values

for other frequencies when both MEM bound task and Tracking benchmark are executed in the same

core. When this happens, it is expected a CPI increase in both tasks since just one can be executed at

the same time slice due to the SCHED OTHER policy. To predict the CPI values for other frequencies it

must be computed first the relation between the MEM bound CPI measure when the two task are being

executed at current frequency and the respective MEM bound CPI solo value for that frequency. Based

on this relation, and assuming that it is the same to others frequencies (see Equation 4.9), it is possible

to predict the CPI value for one frequency by already knowing the CPI solo value for that frequency. In

Table 5.6 are shown the relative errors between the CPI value predictions and the measured CPI values

for each frequency.

Similarly to Table 5.4, in each row of the table it is marked as gray the measured MEM bound CPI

value for that frequency when both MEM bound and Tracking tasks are executing in the same core. The

other two values on that row are the estimated predictions for the other frequencies. One can see that

the CPI relations between the CPI measured and solo for one frequency is approximately equal to the

other frequencies, which proves that the CPI tendency is preserved. And it can also be seen that the

59

Table 5.6: Evaluation of MEM bound CPI prediction.

Cortex-A72 (big) Cortex-A53 (LITTLE)

f0 f1 f2 f0 f1 f2

MEM bound CPI solo (1) 2,686 3,552 4,009 3,793 5,191 5,792

MEM bound CPI (MEM+Tracking) (2)

f0 5,417 7,164 8,086 7,575 10,368 11,568

f1 5,421 7,168 8,091 7,599 10,401 11,604

f2 5,435 7,188 8,113 7,591 10,391 11,593

CPI Relation ((2)
(1)) 2,017 2,018 2,024 1,997 2,004 2,001

Relative errors (%)
f0 0,000 -0,058 -0,334 0,000 -0,312 -0,214

f1 0,058 0,000 -0,276 0,313 0,000 0,098

f2 0,335 0,276 0,000 0,214 -0,098 0,000

observed predictions errors are lower than 1% when both MEM bound and Tracking benchmarks are

executing in the same core.

Once evaluated the tasks power consumption and execution time predictions functions, it will now

be used combinations of benchmark applications to evaluated the proposed scheduling approach. The

MEM bound task is the first task used to evaluate the decision of the proposed scheduler and to compare

it with the Linaro’s kernel 3.10 decision. In Table 5.7 are shown some of the MEM bound solo values

used to estimate the overall energy consumption on the board when executing the MEM bound task.

Table 5.7: Evaluation of MEM bound task energy consumption.

Cortex-A72 (big) Cortex-A53 (LITTLE)

f0 f1 f2 f0 f1 f2

Cluster power consumption [mW] 228,9 404,4 589,3 78,5 139,4 202,7

System power consumption [mW] 833,2 844,8 848,5 805,9 819,2 816,4

Execution time [ms] 2,9 2,3 2,1 5,4 4,2 3,9

Cluster energy consumption (1) [mJ] 657,5 921,2 1262,0 424,3 579,6 791,8

System energy consumption (2) [mJ] 2392,7 1924,4 1817,1 4358,5 3406,9 3188,8

(1) + (2) energy consumption [mJ] 3050,2 2845,6 3079,0 4782,8 3986,5 3980,7

As can be seen in Table 5.7, the best frequency to execute the MEM bound task, having just into

account the energy consumption of the cluster, is the lowest frequency of Cortex-A53, which makes

sense because the task is not mainly dependent on the CPU frequency, and so, it can be reduced to

achieve lower power consumption in the CPU during its execution. However, it can be seen that the

lowest energy consumption by the system is achieved by selecting the highest frequency of Cortex-A72.

In this case the system power is much higher than the core power, and so, it will be dominant in the

decision. Although is known the best individually frequencies to select at the cluster level and at the

system level, it must be selected the frequency that minimizes the overall energy consumption in the

device. In this case, to achieve that, the MEM bound task must be scheduled to a Cortex-A72 core

and the frequency f1, 1 GHz, must be selected. As already mentioned in section 4.2, the GPU was not

used. During the task executions, the GPU stays in Idle mode with a constant power consumption of

approximately 78 mW, and for those reasons, it was not taken into account in the decisions.

60

In the experimental results, it could be seen that the proposed scheduler decide to execute the

MEM bound task on a Cortex-A72 core with the frequency f1. The Linaro’s kernel 3.10, with the onde-

mand governor selected, decides to execute the task at f0 for half the execution time and at f2 for the

remaining time in the same core. And, with the interactive governor selected the scheduler decides to

execute the task at f2 during the total execution time, also in the same core. One can see that neither

the ondemand and interactive governors selected the best frequency. As can be seen in Table 5.8, the

proposed scheduler achieves 8% and 11% energy savings, when compared it with the ondemand and

interactive governors, respectively.

The proposed scheduler was also evaluated for different benchmark combinations. In Table 5.8 are

shown the energy consumption as well as the execution time for different benchmark combinations. It is

also presented the achieved energy savings between the proposed approach and the Linaro, GTS and

EAS scheduling approaches present in different kernels. To provide a good evaluation of the proposed

framework, it will be tested different scenarios, where the number of tasks to schedule is higher, equal

and lower than the number of available cores. The MEM bound task will be inserted in some benchmark

combinations in order to not have only CPU bounded tasks on the workload.

Table 5.8: Experimental results for each benchmark combination used to evaluate the proposed framework. The
energy consumption values represents the overall energy consumed by the ARM Juno r2 board until all
tasks completes their execution.

Energy
Consumption

[mJ]

Execution
Time [s]

Energy
Consumption

[mJ]

Execution
Time [s]

Savings
(%)

Energy
Consumption

[mJ]

Execution
Time [s]

Savings
(%)

Energy
Consumption

[mJ]

Execution
Time [s]

Savings
(%)

ondemand 3116 3,463 8,955 2983 3,428 4,904 3004 3,391 5,568

interactive 3196 3,128 11,243 2747 2,942 -3,246 2711 2,948 -4,623

ondemand 3496 4,514 36,004 3319 4,308 32,582 2447 3,018 8,570

interactive 2290 2,542 2,282 2206 2,484 -1,429 2198 2,488 -1,772

ondemand 7560 5,43 23,27 7034 5,104 17,535 5646 4,392 -2,747

interactive 7986 4,93 27,37 7103 4,624 18,330 5384 3,757 -7,733

ondemand 7505 5,026 14,579 6650 4,597 3,604 6998 4,589 8,391

interactive 7429 4,313 13,711 6727 3,868 4,706 7058 4,137 9,173

ondemand 16133 9,976 26,016 13017 7,907 8,301 15448 8,857 22,733

interactive 16591 8,952 28,058 12000 6,528 0,532 14083 7,584 15,244

ondemand 19969 12,250 35,836 15899 9,837 19,409 16491 9,829 22,302

interactive 16133 8,606 20,582 14837 8,003 13,646 15595 8,514 17,841

ondemand 17790 13,957 20,777 15928 9,955 11,513 15923 10,435 11,485

interactive 17828 9,251 20,945 16582 8,527 15,005 16482 8,511 14,490

userspace 11936 9,270

5 - Blacksholes, Sdot, Bzip2, Saxpy, Texture_Systhesis

Proposed Scheduler

userspace 2837 3,213

userspace 2237 2,503

userspace 5801 5,202

userspace

Linaro Kernel 3.10 - UEFI 16.04 LSK 16.05 (GTS) LSK 16.06 (EAS)

Benchmarks

6411 5,000

1 - MEM_bound

2 - Tracking

3 - MEM_bound, MEM_bound, and CPU_bound

4 - MEM_bound, Tracking, Mser, Sgemm

userspace 14094 9,202

6 - Saxpy, Blacksholes, Texture_Synthesis, Stitch, Sscal, Disparity

userspace 12813 8,671

7 - Bzip2, Blacksholes, Sgemm, Stitch, Mser, Disparity, Tracking, Texture Synthesis, Sgemv

−
× 100

−
× 100

−
× 100

The proposed scheduler controls the frequency scaling and task migration from the user-space

through an algorithm programmed in C language. It also uses the APB interface and PAPI to read

the energy meter registers and the performance counters, respectively, from the user-space. All these

user-space driven procedures, used to gather the necessary performance information in order for the

scheduler to decide, have higher associated overheads than if it was possible to access these registers

directly trough the kernel. And so, the user-space proposed scheduler have higher overheads than the

other scheduling approaches. In order for the proposed scheduler algorithm to have no influence in the

61

task executions, and also, to be as fast as possible like a kernel, the scheduler algorithm was executed

in a dedicated Cortex-A53 core. In the experimental results, there are only three Cortex-A53 cores and

two Cortex-A72 cores available to execute tasks. The remaining Cortex-A53 core is used to execute the

scheduler algorithm on the proposed framework and is shut down in the remaining scheduling approa-

ches of the other kernels. By adopting this, it is achieved fairness in the experimental results between

the different scheduling approaches. However, it should be noted that the proposed framework will ac-

count with the power consumption of that dedicated core to run the proposed scheduler, which does not

happen in other approaches. This can be improved in future work by passing the proposed scheduling

functions to inside the kernel, and thus, using all the available cores to execute the tasks.

As can be see in Table 5.8, the proposed framework can achieve energy savings up to 36%, 32%

and 22% when compared with the ARM’s Linaro, GTS and EAS scheduling approaches. However, it

can be unfair to compare the proposed scheduler, evaluated in the Linaro’s kernel version 3.10, with the

GTS and EAS scheduling approaches, which were evaluated in different kernels versions, 3.18.31 and

3.18.34, respectively. These kernels can have such improvements that are not present in the 3.10 kernel,

and so, if one task is selected to be executed on both Linaro’s and EAS approaches it can have different

energy consumptions. This can be proved by looking at the MEM bound task experimental results

when the interactive governor was selected in both Linaro’s and EAS kernel. As already mentioned in

section 2.4.1, the interactive governor is more aggressive than the ondemand governor when is up to

scaling the CPU frequency up in response to intensive computational activity. And it was seen, during

the experimental evaluation, that in both Linaro’s and EAS kernels when the same interactive governor

is selected, the MEM bound tasks is always being executed on one Cortex-A72 core at the highest

frequency until it finishes. And so, in this case, the 15% energy savings observed between the Linaro’s

and EAS scheduling approaches suggests that other subsystems rather than the frequency scaling and

task migration were improved, and thus, it can be unfair to compare the experimental results obtained

for the proposed framework with the EAS and GTS scheduling approaches. Future work can focus on

developing an performance unit framework to set and access directly the performance counters in order

to not use PAPI and execute the developed scheduler on the same kernel of each respective scheduling

approaches.

In benchmark combination number 7, the number of benchmarks is higher than the number of cores

(9 > 5). In this case, the proposed scheduler consumes more energy to decide to which core the task

must be scheduled than when the number of tasks is lower or equal than the number of cores, because

every core of each player must receive the task to evaluate and bid the necessary energy consumption

to execute it, as already seen in section 4.2.

In order to better understand the scheduling decisions of the proposed scheduler, Figure 5.2 shows

the overall instantaneous power consumption (Cortex-A53 + Cortex-A72 + system) and frequency levels

obtained during the execution of the benchmark combination MEM bound, Tracking, Mser and Sgemm

(benchmark combination number 4 on Table 5.8), for the proposed scheduler as well as for the onde-

mand governor selected on Linaro’s kernel 3.10.

62

0 1 2 3 4 5 6 7
500

1000

1500

2000

2500

3000

Time [s]

P
o

w
e

r
[m

W
]

Proposed framework

0 1 2 3 4 5 6 7
500

1000

1500

2000

2500

3000
Ondemand governor

Time [s]

P
o

w
e

r
[m

W
]

(a) Instantaneous power consumption variation (Cortex-
A53 + Cortex-A72 + system).

0 1 2 3 4 5 6 7

400

600

800

1000

1200

Time [s]

F
re

q
u

e
n

cy
 [M

H
z]

Proposed framework

0 1 2 3 4 5 6 7

400

600

800

1000

1200

Ondemand governor

Time [s]
F

re
q

u
e

n
cy

 [M
H

z]

(b) Frequency variation on Cortex-A72 (red) and Cortex-
A53 (blue).

Figure 5.2: Comparison and variation of the CPI tendency between MEM bound and CPU bound applications.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

0 1 2 3 4 5 6 7

0

1

2

3

4

5

MEM_bound
Tracking
Mser
Sgemm

MEM_bound
Tracking
Mser
Sgemm

C
P

U
 n

um
be

r
C

P
U

 n
um

be
r

Ondemand governor

Time [s]

Time [s]

Proposed framework

(a) Proposed framework - Task migrations.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

0 1 2 3 4 5 6 7

0

1

2

3

4

5

MEM_bound
Tracking
Mser
Sgemm

MEM_bound
Tracking
Mser
Sgemm

C
P

U
 n

um
be

r
C

P
U

 n
um

be
r

Ondemand governor

Time [s]

Time [s]

Proposed framework

(b) Ondemand governor - Task migrations.

Figure 5.3: Comparison of run-time task migrations between the proposed framework and ondemand governor.
Cortex-A72 CPUs: 1, 2; Cortex-A53 CPUs: 0, 3, 4 and 5.

On one hand, in this case, it can be seen that the Linaro’s scheduling approach does more frequency

scaling than the proposed scheduler. This approach uses the Cortex-A72 during more time and at higher

frequencies than the proposed scheduler, which leads to higher power consumption as shown in Figure

5.2.a. The Linaro’s scheduling approach, with the ondemand governor selected, takes more time to

execute the same workload than the proposed scheduler, which can be related with the bad decisions

of task migrations as can be seen in Figure 5.3.b. It can be seen that around the 3 seconds, there are

more than one task being executed in the same core, which could triggered the frequency scaling and

respective power consumption peak. On the other hand, the developed energy-aware game-theoretic

scheduling approach executes the tasks on the same core until that task, or some other finishes, in order

to perform the task rescheduling, which can be seen in the 4.5 seconds, when the Mser and Tracking

63

benchmarks were finished. The proposed scheduler tends to select the best frequency for every task

combination executing at the time.

According to the experimental results presented in Table 5.8, the proposed framework was able to

reduce the energy consumption when compared with the actual scheduling approaches developed by

Linaro and ARM, which is based on the ARM big.LITTLE technology. It can be seen in the experimental

results that when the interactive governor is selected, especially in the benchmark combinations number

1 and 2, which have just one task, the energy savings obtained are much lower than when the ondemand

governor is selected. This is due to the interactive governor select the highest CPU frequency more often

during the execution, which can be beneficent in those cases because the system power consumption is

much higher than the Clusters power consumption, and so, by reducing the execution time, the dominant

power consumption is also reduced. However, this does not mean that for all possible scenarios, the

energy consumption of the system will be always the dominant one. It should be noted that in this

proposed energy-aware game-theoretic scheduling approach some issues were left open, which can be

improved in future work.

5.4 Summary

In this chapter the proposed energy-aware game-theoretic scheduling approach was experimentally

evaluated. First, the available kernels and filesystems combinations used to setup the ARM Juno r2

board were presented, as well as their respective scheduling approaches, i.e., Linux, GTS and EAS.

Then, the benchmarks used to evaluate the proposed framework were also discussed. These bench-

marks were modified in order to overcome the limitations faced, such as the necessity of a fast response

to pause the benchmark when some other thread finishes, and also the initialization of PAPI counters in

the beginning of each benchmark. It was presented the C language code for some of these modificati-

ons.

Afterwards, the custom developed MEM bound and CPU bound tasks were introduced in order to

prove and explain the CPI tendency. It was also presented the solo values measured for each bench-

mark. Furthermore, it was experimentally evaluated the power consumption and execution time esti-

mations, as well as, the respective relative errors between the estimated predictions and the measured

values. It was observed that the execution time prediction have associated errors of 2% while power

consumption predictions have higher associated errors of 15%.

Finally, the proposed framework was evaluated with the MEM bound task in order to see how it deci-

des the best frequency to use. Other benchmark combinations were then used to evaluate the proposed

scheduler and the energy savings obtained for each benchmark configuration were presented. It was

also shown in detail, the instantaneous power consumption, frequency scaling and the task migrations

observed during the execution of one benchmark configuration, where could be compared the behavior

between the Linaro’s ondemand governor approach and the proposed scheduler.

64

6
Conclusions

Contents
6.1 Future work . 67

65

Nowadays, there is an increasing demand of higher performance and low energy consumption mobile

devices. Such devices have a battery, and hence, they are energy limited. In order to achieve lower

energy consumption, these devices must have an energy-aware scheduler to decide in which processing

unit should the tasks be scheduled. The main objective of this thesis was to develop an energy-aware

game-theoretic scheduling approach for heterogeneous embedded systems such as the big.LITTLE

from ARM, in which the overall energy consumption is the governing metric. The proposed framework

uses an auction game approach as well as the Nash Equilibrium concept, from non-cooperative game

theory, in order to design an energy-aware scheduler.

The existing ARM scheduling approaches were introduced in this thesis, a study focused on the

discontinued Global Task Scheduling (GTS) approach and the new Energy-Aware Scheduling (EAS)

approach that is currently being developed by ARM. On one hand, it was seen that the GTS approach

was the first ARM’s scheduling technique to use all ”big” and ”LITTLE” cores available in the system at

the same time. However, this approach was discontinued because it relies on separated subsystems,

such as the DFVS and CPUidle, that decide the adequate frequency and voltage levels to execute

the tasks without any coordination with the scheduler. On the other hand, the new EAS approach, is

focused on integrating these subsystems with the scheduler to give the necessary energy-awareness to

the system.

Afterwards, the most fundamental concepts of game theory were introduced as well as some diffe-

rent game-theoretic approaches developed by other researchers. The state of the art study of game

theory scheduling approaches led to understand the main advantages of each approach, and where the

development should focus, in order to achieve the proposed objectives. Based on this study, it was seen

that, in the low complexity and intuitively auction game based approach, the focus must be on how the

bid is composed and computed, while in the Nash Equilibrium approach, the focus must reside on the

formulation of the player’s utility function that must be related to energy consumption.

The developed energy-aware framework was then presented. The player’s bid is computed based

on the utility function, which takes into account the system overall variation of energy consumption

when the task is scheduled to a specific core at selected frequency. In order to compute this variation

of energy consumption, two tasks execution maps were created, which are computed based on the

power consumption and execution time estimations for each task that is being executed. Based on the

difference of the overall energy consumption between the ”before” and ”after inserting the task on the

core” task execution map, it is decided to which core the task must be scheduled and which should be

the selected frequency that imposes the minimum variation of energy consumption in the system. It was

also developed a way to predict the task instantaneous power consumption and execution time for each

available frequency without physically changing it, in order to compute the bids of each task execution

map.

Furthermore, the developed framework was then experimentally evaluated on the ARM Juno r2 de-

velopment platform. It was conducted an evaluation of the task power consumption and execution time

predictions, which revealed that both predictions are able to estimate approximated values with asso-

ciated errors of 15% and 2%, respectively, which reveals that they should be improved in future work

66

in order to reduce the associated errors. The proposed framework was then evaluated with different

benchmark workloads. The conducted evaluation revealed that the proposed framework can achieve

energy savings of up to 36%, 32% and 22% when compared with the Linaro’s kernel 3.10, GTS and

EAS scheduling approaches, respectively.

In summary, the proposed energy-aware game-theoretic scheduling approach is capable of exploiting

the performance counters and energy meter registers of the system to gather information about the task

in order to characterize it, and hence, by following the game-theoretic concepts, to select the best

frequency and core to schedule the task, which corresponds to the minimum variation of the overall

energy consumption in the device.

6.1 Future work

In this thesis, there were several issues left open that suggests possible improvements. In order to

create an energy-aware game-theoretic scheduling approach, which uses the overall energy consump-

tion as a performance governing metric, it is necessary that the player’s bid must be related with energy

consumption. However, it is difficult to know the necessary energy consumption to execute a task when

it is not known a priori information about the task, as for example the number of total instructions in order

to estimate the task execution time. Another seen issue was the lack of task behavior/phase-awareness,

which has to be taken into account when some task is scheduled or finishes by re-measuring the current

CPI value. Future work can focus on improve task characterizations in order to detect the task phases

and reschedule them. To tackle this two issues, it could be assumed that the task will execute in the next

predicted short amount of time (number of total instructions not need to be known a priori) and with that

it would be possible to estimate the energy consumption of that small portion of the task (which has the

same task phase) with lower associated errors.

Further studies should also focus on a better characterization of the task through the performance

counters as well as the board’s static and dynamic power consumption in order to improve the task

power consumption predictions for other frequencies. It would be interesting to have energy-awareness

at the level of the instructions and each processing unit (e.g. Integer ALU, Floating point and multiply

unit) to then predict more accurately the power consumption for other frequencies. It should be also

develop a framework to read directly the performance counter registers through the kernel. This would

provide lower overheads than PAPI software, and would let to evaluate the developed scheduler on every

Linaro’s kernel used on ARM Juno r2 board, in which PAPI has not to be installed.

Furthermore, the proposed user-space scheduling approach functions could be implemented inside

the kernel in order to reduce the associated overheads to pause the threads as well as to measure the

CPI and instantaneous power consumption values. As the proposed scheduler has been developed,

each benchmark is one thread of the scheduler process, and after sending the pause signal, it must

wait a fixed time of 10 ms in order for all threads to detect the signal and pause. This wait time can

be removed when using the kernel because the benchmarks will be considered as threads in different

processes and each one can then be easily paused.

67

Finally, it can be expected that new architectures will allow frequency scaling and energy meter

measures at the level of the core, which could increase the individual energy-awareness for each core

and achieve lower energy consumption by scaling just the frequency of the individual core and not at the

whole cluster.

68

References

[1] Roger B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1nd edition, 1997.

ISBN:0-674-34115-5.

[2] I. Ahmad, S. Ranka, and S.U. Khan. Using game theory for scheduling tasks on multi-core proces-

sors for simultaneous optimization of performance and energy. IEEE International Symposium on

Parallel and Distributed Processing, pages 1–6, 2008.

[3] Nickolas Bielik and Ishfaq Ahmad. Cooperative versus non-cooperative game theoretical techni-

ques for Energy Aware Task scheduling. 2012 International Green Computing Conference (IGCC),

pages 1–6, 2012.

[4] Guowei Wu, Zichuan Xu, Qiufen Xia, and Jiankang Ren. An energy-aware multi-core scheduler

based on generalized tit-for-tat cooperative Game. Journal of Computers, 7(1):106–115, 2012.

[5] Muhammad Shafique, Lars Bauer, Waheed Ahmed, and Jörg Henkel. Minority-Game-based Re-

source Allocation for Run-Time Reconfigurable Multi-Core Processors. pages 1–6, 2011.

[6] ARM. ARM Versatile Express Juno r2 Development Platform (V2M-Juno r2) Technical Reference

Manual, November 2015.

[7] ARM. ARM Architecture Reference Manual. ARMv8, for ARMv8-A architecture profile, 2013.

[8] ARM Cortex-A53 Architecture, http://www.anandtech.com/show/8718/the-samsung-galaxy-note-

4-exynos-review/3, Web accessed: 22 of September of 2016.

[9] ARM Cortex-A72 CPU, http://pc.watch.impress.co.jp/docs/column/kaigai/699491.html, Web acces-

sed: 22 of September of 2016.

[10] Performance Application Programming Interface (PAPI), https://icl.cs.utk.edu/projects/papi/wiki/

Threads, Web accessed: 17 of April of 2016.

[11] OProfile - A System Profiler for Linux, http://oprofile.sourceforge.net/news/, Web accessed: 17 of

April of 2016.

[12] Morten Rasmussen. Using task load tracking to improve kernel scheduler load balancing. linux

foundation collaboration summit. 2013.

[13] BKK16-317: How to generate power models for EAS and IPA,

http://connect.linaro.org/resource/bkk16/bkk16-317/, Web accessed: 15 of September of 2016.

69

[14] Francisco Gaspar et al. A Framework for Application Guided Task Management on Heterogeneous

Embedded Systems. ACM Transactions on Architecture and Code Optimization (TACO), Vol. 12,

Article 42, 2015.

[15] Thannirmalai Somu Muthukaruppan, Anuj Pathania, and Tulika Mitra. Price Theory Based Power

Management for Heterogeneous Multi-Cores. In Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 161–

176, 2014.

[16] John Nash. In ”The Bargaining Problem”, volume 18, pages 155–162. Econometrica, 1950. JSTOR

1907266.

[17] Diego Puschini, Fabien Clermidy, C E A Leti Minatec, Pascal Benoit, Gilles Sassatelli, and Lionel

Torres. Temperature-Aware Distributed Run-Time Optimization on MP-SoC using Game Theory.

pages 375–380, 2008.

[18] Samee Ullah Khan and Ishfaq Ahmad. A Cooperative Game Theoretical Technique for Joint Op-

timization of Energy Consumption and Response Time in Computational Grids. 20(3):346–360,

2009.

[19] Mikhael Shor. Tit for Tat, Dictionary of Game Theory Terms, Game Theory .net,

http://www.gametheory.net/dictionary/TitforTat.html, Web accessed: 06 of December of 2015.

[20] P Michaud. (2009, ATMI manual. Available: http://www.irisa.fr/alf/.

[21] Joel Wilkins, Ishfaq Ahmad, Hafiz Fahad Sheikh, Shujaat Faheem Khan, and Saeed Rajput. Op-

timizing Performance and Energy in Computational Grids using Non- Cooperative Game Theory.

2010.

[22] Using Linaro’s deliverables on Juno, https://community.arm.com/docs/DOC-10804, Web accessed:

02 of March of 2016.

[23] Tutorial: Energy monitoring on the Juno (Revision 6), https://community.arm.com/docs/DOC-9321,

Web accessed: 28 of September of 2016.

[24] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University, January

2011.

[25] Standard Performance Evaluation Corporation (SPEC) CPU™ 2006,

https://www.spec.org/cpu2006/, Web accessed: 3 of August of 2016.

[26] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christopher Louie, Sa-

turnino Garcia, Serge Belongie, and Michael Bedford Taylor. SD-VBS : The San Diego Vision

Benchmark Suite.

[27] Opensource Basic Linear Algebra Subprograms (OpenBLAS), http://www.openblas.net/, Web

accessed: 21 of April of 2016.

70

[28] ARM Cortex-A53 MPCore Processor Technical Reference Manual,

https://developer.arm.com/products/processors/cortex-a/cortex-a53, Web accessed: 02 of

March of 2016.

[29] ARM Cortex-A72 MPCore Processor Technical Reference Manual,

https://developer.arm.com/products/processors/cortex-a/cortex-a72, Web accessed: 02 of

March of 2016.

71

72

A
PMU events on ARMv8-A architecture

73

74

Table A.1: PMU events on ARMv8-A architecture [6].

Event Number Event mnemonic Event name

0x00 SW INCR Instruction architecturally executed, software incre-
ment

0x01 L1I CACHE REFILL Level 1 instruction cache refill

0x02 L1I TLB REFILL Level 1 instruction TLB refill

0x03 L1D CACHE REFILL Level 1 data cache refill

0x04 L1D CACHE Level 1 data cache access

0x05 L1D TLB REFILL Level 1 data TLB refill

0x06 LD RETIRED Instruction architecturally executed, load

0x07 ST RETIRED Instruction architecturally executed, store

0x08 INST RETIRED Instruction architecturally executed

0x09 EXC TAKEN Exception taken

0x0A EXC RETURN Instruction architecturally executed, exception re-
turn

0x0B CID WRITE RETIRED Instruction architecturally executed, write to CON-
TEXTIDR

0x0C PC WRITE RETIRED Instruction architecturally executed, software
change of the PC

0x0D BR IMMED RETIRED Instruction architecturally executed, immediate
branch

0x0E BR RETURN RETIRED Instruction architecturally executed, procedure re-
turn

0x0F UNALIGNED LDST RETIRED Instruction architecturally executed, unaligned load
or store

0x10 BR MIS PRED Mispredicted or not predicted branch speculatively
executed

0x11 CPU CYCLES Cycle

0x12 BR PRED Predictable branch speculatively executed

0x13 MEM ACCESS Data memory access

0x14 L1I CACHE Level 1 instruction cache access

0x15 L1D CACHE WB Level 1 data cache write-back

0x16 L2D CACHE Level 2 data cache access

0x17 L2D CACHE REFILL Level 2 data cache refill

0x18 L2D CACHE WB Level 2 data cache write-back

0x19 BUS ACCESS Bus access

0x1A MEMORY ERROR Local memory error

0x1B INST SPEC Operation speculatively executed

0x1C TTBR WRITE RETIRED Instruction architecturally executed, write to TTBR

0x1D BUS CYCLES Bus cycle

0x1E CHAIN For odd-numbered counters, increments the count
by one for each overflow of the preceding even-
numbered counter. For even-numbered counters
there is no increment.

0x1F L1D CACHE ALLOCATE Level 1 data cache allocation without refill

0x20 L2D CACHE ALLOCATE Level 2 data cache allocation without refill

75

76

B
Cortex-A53 PMU events

77

78

Table B.1: Cortex-A53 PMU events [28].

Event Number Event mnemonic Event name

0x60 BUS ACCESS LD Bus access - Read.

0x61 BUS ACCESS ST Bus access - Write.

0x7A BR INDIRECT SPEC Branch speculatively executed - Indirect branch.

0x86 EXC IRQ Exception taken, IRQ.

0x87 EXC FIQ Exception taken, FIQ.

0xC0 - External memory request.

0xC1 - Non-cacheable external memory request.

0xC2 - Linefill because of prefetch.

0xC3 - Instruction Cache Throttle occurred.

0xC4 - Entering read allocate mode.

0xC5 - Read allocate mode.

0xC6 - Pre-decode error.

0xC7 - Data Write operation that stalls the pipeline because
the store buffer is full.

0xC8 - SCU Snooped data from another CPU for this CPU.

0xC9 - Conditional branch executed.

0xCA - Indirect branch mispredicted.

0xCB - Indirect branch mispredicted because of address
miscompare.

0xCC - Conditional branch mispredicted.

0xD0 - L1 Instruction Cache (data or tag) memory error.

0xD1 - L1 Data Cache (data, tag or dirty) memory error,
correctable or non-correctable.

0xD2 - TLB memory error.

0xE0 - Attributable Performance Impact Event. Counts
every cycle that the DPU IQ is empty and that is
not because of a recent micro-TLB miss, instruction
cache miss or pre-decode error.

0xE1 - Attributable Performance Impact Event. Counts
every cycle the DPU IQ is empty and there is an
instruction cache miss being processed.

0xE2 - Attributable Performance Impact Event. Counts
every cycle the DPU IQ is empty and there is an
instruction micro-TLB miss being processed.

0xE3 - Attributable Performance Impact Event. Counts
every cycle the DPU IQ is empty and there is a pre-
decode error being processed.

79

Table B.2: Cortex-A53 PMU events (continued) [28].

Event Number Event mnemonic Event name

0xE4 - Attributable Performance Impact Event. Counts
every cycle there is an interlock that is not because
of an Advanced SIMD or Floating-point instruction,
and not because of a load/store instruction waiting
for data to calculate the address in the AGU. Stall
cycles because of a stall in Wr, typically awaiting
load data, are excluded.

0xE5 - Attributable Performance Impact Event. Counts
every cycle there is an interlock that is because of
a load/store instruction waiting for data to calculate
the address in the AGU. Stall cycles because of a
stall in Wr, typically awaiting load data, are exclu-
ded.

0xE6 - Attributable Performance Impact Event. Counts
every cycle there is an interlock that is because
of an Advanced SIMD or Floating-point instruction.
Stall cycles because of a stall in the Wr stage, typi-
cally awaiting load data, are excluded.

0xE7 - Attributable Performance Impact Event Counts
every cycle there is a stall in the Wr stage because
of a load miss.

0xE8 - Attributable Performance Impact Event. Counts
every cycle there is a stall in the Wr stage because
of a store.

- - Two instructions architecturally executed. Counts
every cycle in which two instructions are architec-
turally retired. Event 0x08, INST RETIRED, always
counts when this event counts.

- - L2 (data or tag) memory error, correctable or non-
correctable.

- - SCU snoop filter memory error, correctable or non-
correctable.

- - Advanced SIMD and Floating-point retention active.

- - CPU retention active.

80

C
Cortex-A72 PMU events

81

82

Table C.1: Cortex-A72 PMU events [29].

Event Number Event mnemonic Event name

0x40 L1D CACHE LD Level 1 data cache access - Read

0x41 L1D CACHE ST Level 1 data cache access - Write

0x42 L1D CACHE REFILL LD Level 1 data cache refill - Read

0x43 L1D CACHE REFILL ST Level 1 data cache refill - Write

0x46 L1D CACHE WB VICTIM Level 1 data cache Write-back - Victim

0x47 L1D CACHE WB CLEAN Level 1 data cache Write-back - Cleaning and cohe-
rency

0x48 L1D CACHE INVAL Level 1 data cache invalidate

0x4C L1D TLB REFILL LD Level 1 data TLB refill - Read

0x4D L1D TLB REFILL ST Level 1 data TLB refill - Write

0x50 L2D CACHE LD Level 2 data cache access - Read

0x51 L2D CACHE ST Level 2 data cache access - Write

0x52 L2D CACHE REFILL LD Level 2 data cache refill - Read

0x53 L2D CACHE REFILL ST Level 2 data cache refill - Write

0x56 L2D CACHE WB VICTIM Level 2 data cache Write-back - Victim

0x57 L2D CACHE WB CLEAN Level 2 data cache Write-back - Cleaning and cohe-
rency

0x58 L2D CACHE INVAL Level 2 data cache invalidate

0x60 BUS ACCESS LD Bus access - Read

0x61 BUS ACCESS ST Bus access - Write

0x62 BUS ACCESS SHARED Bus access - Normal

0x63 BUS ACCESS NOT SHARED Bus access - Not normal

0x64 BUS ACCESS NORMAL Bus access - Normal

0x65 BUS ACCESS PERIPH Bus access - Peripheral

0x66 MEM ACCESS LD Data memory access - Read

0x67 MEM ACCESS ST Data memory access - Write

0x68 UNALIGNED LD SPEC Unaligned access - Read

0x69 UNALIGNED ST SPEC Unaligned access - Write

0x6A UNALIGNED LDST SPEC Unaligned access

0x6C LDREX SPEC Exclusive operation speculatively executed - LD-
REX

0x6D STREX PASS SPEC Exclusive instruction speculatively executed -
STREX pass

0x6E STREX FAIL SPEC Exclusive operation speculatively executed -
STREX fail

0x70 LD SPEC Operation speculatively executed - Load

0x71 ST SPEC Operation speculatively executed - Store

0x72 LDST SPEC Operation speculatively executed - Load or store

0x73 DP SPEC Operation speculatively executed - Integer data pro-
cessing

83

Table C.2: Cortex-A72 PMU events (continued)[29].

Event Number Event mnemonic Event name

0x74 ASE SPEC Operation speculatively executed - Advanced SIMD

0x75 VFP SPEC Operation speculatively executed - VFP

0x76 PC WRITE SPEC Operation speculatively executed - Software change
of the PC

0x77 CRYPTO SPEC Operation speculatively executed, crypto data pro-
cessing

0x78 BR IMMED SPEC Branch speculatively executed - Immediate branch

0x79 BR RETURN SPEC Branch speculatively executed - Procedure return

0x7A BR INDIRECT SPEC Branch speculatively executed - Indirect branch

0x7C ISB SPEC Barrier speculatively executed - ISB

0x7D DSB SPEC Barrier speculatively executed - DSB

0x7E DMB SPEC Barrier speculatively executed - DMB

0x81 EXC UNDEF Exception taken, other synchronous

0x82 EXC SVC Exception taken, Supervisor Call

0x83 EXC PABORT Exception taken, Instruction Abort

0x84 EXC DABORT Exception taken, Data Abort or SError

0x86 EXC IRQ Exception taken, IRQ

0x87 EXC FIQ Exception taken, FIQ

0x88 EXC SMC Exception taken, Secure Monitor Call

0x8A EXC HVC Exception taken, Hypervisor Call

0x8B EXC TRAP PABORT Exception taken, Instruction Abort not taken locally

0x8C EXC TRAP DABORT Exception taken, Data Abort, or SError not taken lo-
cally

0x8D EXC TRAP OTHER Exception taken – Other traps not taken locally

0x8E EXC TRAP IRQ Exception taken, IRQ not taken locally

0x8F EXC TRAP FIQ Exception taken, FIQ not taken locally

0x90 RC LD SPEC Release consistency instruction speculatively exe-
cuted – Load-Acquire

0x91 RC ST SPEC Release consistency instruction speculatively exe-
cuted – Store-Release

84

D
Available PAPI events on ARM Juno r2

platform

85

86

Table D.1: Available PAPI events on ARM Juno r2 platform.

Event name Description

BUS READ ACCESS Bus read access

BUS CYCLES Bus cycle

** LOCAL MEMORY ERROR Local memory error

BUS ACCESS Bus access

L2D CACHE WB Level 2 data cache WriteBack

L2D CACHE REFILL Level 2 data cache refill

L2D CACHE ACCESS Level 2 data cache access

L1D CACHE WB Level 1 data cache WriteBack

L1I CACHE ACCESS Level 1 instruction cache access

DATA MEM ACCESS Data memory access

BRANCH PRED Predictable branch speculatively executed

CPU CYCLES Cycles

BRANCH MISPRED Mispredicted or not predicted branch speculatively
executed

** UNALIGNED LDST RETIRED Procedure return, instruction architecturally execu-
ted, condition check pass

* BR IMMED RETIRED Software chnage of the PC, instruction architectu-
rally executed, condition check pass

* PC WRITE RETIRED Write to CONTEXTIDR, instruction architecturally
executed, condition check pass

** CID WRITE RETIRED Change to Context ID retired

* EXCEPTION RETURN Instruction architecturally executed (condition check
pass) Exception return

EXCEPTION TAKEN Exception taken

INST RETIRED Instruction architecturally executed

* ST RETIRED Store Instruction architecturally executed, condition
check

* LD RETIRED Load Instruction architecturally executed, condition
check

L1D TLB REFILL Level 1 data TLB refill

L1D CACHE ACCESS Level 1 data cache access

L1D CACHE REFILL Level 1 data cache refill

L1I TLB REFILL Level 1 instruction TLB refill

L1I CACHE REFILL Level 1 instruction cache refill

** SW INCR Instruction architecturally executed (condition check
pass) Software increment

Legend:

* - These events could not be read with UEFI 16.04 Flash (only in LTK kernel).

** - These events could not be read on both UEFI and LTK Flashes.

All shown PAPI events could not be available on the LSK kernel because the PAPI could not be

installed.

87

88

E
Description of each successfully

compiled benchmark

89

90

Table E.1: Description of each successfully compiled benchmark.

OpenBLAS

Saxpy Vector multiplication. y ← αx + y

Sgemv Matrix-Vector multiplication. y ← αAx + βy

Sgemm Matrix-Matrix multiplication. C ← αAB + βC

Sdot Dot product. dot← xTy

Sscal Vector multiplication. y ← αx

SPEC CPU2006

Bzip2 Compression

PARSEC

Blacksholes Option pricing with Black-Scholes Partial Differential Equation (PDE)

SD-VBS

Tracking Motion, Tracking and Stereo Vision

Texture synthesis Image Processing and Formation

Stitch Image Processing and Formation

Disparity Motion, Tracking and Stereo Vision

Mser Image Analysis

91

92

F
Benchmark’s experimental values

93

94

Table F.1: Benchmark’s solo values for each frequency.

OpenBLAS

Cortex-A72 (big) Cortex-A53 (LITTLE)

Saxpy f0 f1 f2 f0 f1 f2

CPI 1,013 1,012 1,012 1,300 1,301 1,301

Power Cluster [mW] 232,53 443,20 664,03 69,64 130,39 191,47

Power System [mW] 745,24 750,93 768,04 746,04 745,25 742,40

#Total Instructions 1500247299

Cortex-A72 (big) Cortex-A53 (LITTLE)

Sgemv f0 f1 f2 f0 f1 f2

CPI 1,011 1,009 1,012 1,301 1,301 1,301

Power Cluster [mW] 240,91 461,73 689,41 70,89 132,20 195,45

Power System [mW] 748,53 747,48 746,19 749,27 750,09 752,00

#Total Instructions 2593101984

Cortex-A72 (big) Cortex-A53 (LITTLE)

Sgemm f0 f1 f2 f0 f1 f2

CPI 0,624 0,624 0,624 1,340 1,344 1,343

Power Cluster [mW] 418,16 815,99 1227,80 115,38 228,04 334,56

Power System [mW] 755,18 767,99 768,00 748,11 756,58 757,03

#Total Instructions 2291902269

Cortex-A72 (big) Cortex-A53 (LITTLE)

Sdot f0 f1 f2 f0 f1 f2

CPI 1,010 1,011 1,011 1,305 1,305 1,305

Power Cluster [mW] 233,07 442,67 665,59 69,56 129,07 190,53

Power System [mW] 745,25 750,93 716,81 746,04 750,93 750,93

#Total Instructions 1506845772

Cortex-A72 (big) Cortex-A53 (LITTLE)

Sscal f0 f1 f2 f0 f1 f2

CPI 1,015 1,015 1,015 1,281 1,281 1,281

Power Cluster [mW] 233,31 443,29 664,98 69,75 130,89 193,09

Power System [mW] 752,48 755,95 760,12 750,08 753,14 753,66

#Total Instructions 3729911229

SPEC CPU2006

Cortex-A72 (big) Cortex-A53 (LITTLE)

Bzip2 f0 f1 f2 f0 f1 f2

CPI 0,538 0,539 0,538 1,109 1,109 1,109

Power Cluster [mW] 246,07 469,61 703,15 73,72 138,64 204,00

Power System [mW] 746,06 742,45 742,80 741,30 741,28 736,72

#Total Instructions 2852058201

95

Table F.2: Benchmark’s solo values for each frequency (continued).

PARSEC

Cortex-A72 (big) Cortex-A53 (LITTLE)

Blacksholes f0 f1 f2 f0 f1 f2

CPI 1,206 1,208 1,207 1,515 1,523 1,524

Power Cluster [mW] 220,7 416,2 624,5 83,8 157,1 232,3

Power System [mW] 771,1 771,0 775,3 760,7 762,7 761,3

#Total Instructions 2428090722

SD-VBS

Cortex-A72 (big) Cortex-A53 (LITTLE)

Tracking f0 f1 f2 f0 f1 f2

CPI 0,664 0,667 0,667 1,440 1,439 1,439

Power Cluster [mW] 243,20 462,41 693,87 65,97 121,43 179,58

Power System [mW] 746,64 744,47 750,83 740,76 745,74 743,76

#Total Instructions 2612055004

Cortex-A72 (big) Cortex-A53 (LITTLE)

Texture synthesis f0 f1 f2 f0 f1 f2

CPI 0,690 0,692 0,689 1,413 1,413 1,412

Power Cluster [mW] 244,99 468,32 699,88 67,20 124,20 183,00

Power System [mW] 742,40 742,59 716,20 742,39 745,60 742,39

#Total Instructions 1985513902

Cortex-A72 (big) Cortex-A53 (LITTLE)

Stitch f0 f1 f2 f0 f1 f2

CPI 0,644 0,644 0,643 1,355 1,355 1,355

Power Cluster [mW] 241,48 461,33 691,09 67,22 124,66 183,74

Power System [mW] 742,43 746,91 750,81 739,55 743,50 736,72

#Total Instructions 2617650281

Cortex-A72 (big) Cortex-A53 (LITTLE)

Disparity f0 f1 f2 f0 f1 f2

CPI 0,898 0,897 0,897 1,337 1,336 1,337

Power Cluster [mW] 226,77 431,96 644,36 73,92 138,69 204,22

Power System [mW] 744,59 747,43 750,80 737,26 738,74 735,43

#Total Instructions 1585389190

Cortex-A72 (big) Cortex-A53 (LITTLE)

Mser f0 f1 f2 f0 f1 f2

CPI 0,779 0,780 0,780 1,392 1,392 1,392

Power Cluster [mW] 237,81 452,57 677,91 69,51 129,31 190,72

Power System [mW] 742,43 746,06 747,37 739,61 740,08 745,26

#Total Instructions 2506552802

96

Table F.3: Benchmark’s solo values for each frequency (continued).

Custom Benchmarks

Cortex-A72 (big) Cortex-A53 (LITTLE)

CPU bound f0 f1 f2 f0 f1 f2

CPI 1,169 1,169 1,169 1,124 1,124 1,124

Power Cluster [mW] 210,68 397,87 593,11 72,17 135,33 200,63

Power System [mW] 748,53 752,54 746,06 742,40 744,37 742,38

#Total Instructions 2225002565

Cortex-A72 (big) Cortex-A53 (LITTLE)

MEM bound f0 f1 f2 f0 f1 f2

CPI 2,686 3,552 4,009 3,793 5,191 5,792

Power Cluster [mW] 228,95 404,40 589,26 78,46 139,37 202,71

Power System [mW] 833,16 844,80 848,46 805,93 819,20 816,36

#Total Instructions 635032500

97

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Abstract

	Resumo
	Resumo
	Resumo

	Index
	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	List of Acronyms
	List of Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Main contributions
	1.4 Outline

	2 ARM big.LITTLE heterogeneous platform
	2.1 ARM big.LITTLE Versatile Express Juno r2 Architecture
	2.1.1 ARMv8-A Instruction Set Architecture (ISA)
	2.1.2 Cortex-A72 and Cortex-A53 Microarchitecture

	2.2 ARM Juno r2 Performance Measure Unit
	2.2.1 APB energy meters registers
	2.2.2 PAPI performance counters

	2.3 ARM Scheduling approaches
	2.3.1 Cluster Migration
	2.3.2 In Kernel Switching (CPU Migration)
	2.3.3 Global Task Scheduling (GTS)
	2.3.4 Energy-Aware Scheduling (EAS)
	2.3.5 Scheduling in ARM big.LITTLE

	2.4 Dynamic Voltage and Frequency Scaling
	2.4.1 Linux CPUFreq governors
	2.4.2 Linux scheduling policies

	2.5 Summary

	3 State of the Art: Scheduling based on Game Theory
	3.1 Game Theory
	3.1.1 The Prisoner’s Dilemma
	3.1.2 Non-Cooperative Game Theory and Nash Equilibrium Background
	3.1.3 Cooperative Game Theory and Nash Bargaining Solution Background

	3.2 State of the Art: Scheduling based on Game Theory
	3.2.1 Problem Definition
	3.2.2 Game theoretic approaches

	3.3 Summary

	4 Framework
	4.1 Framework general overview
	4.1.1 Auction based approach
	4.1.2 Game theoretic approach

	4.2 Framework implementation in ARM Juno r2 board
	4.3 Time and Power prediction for several frequencies
	4.3.1 Task execution time
	4.3.2 Task instantaneous power consumption

	4.4 Summary

	5 Experimental Evaluation
	5.1 Experimental setup
	5.2 Benchmarks
	5.3 Experimental results
	5.4 Summary

	6 Conclusions
	6.1 Future work

	References
	A PMU events on ARMv8-A architecture
	B Cortex-A53 PMU events
	C Cortex-A72 PMU events
	D Available PAPI events on ARM Juno r2 platform
	E Description of each successfully compiled benchmark
	F Benchmark's experimental values

