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Abstract—Approximate computing is a computation technique
which produces non exact results, but that are sufficiently
approximated for the purpose they were intended. Applications
in the areas of audio or video allow good enough approximations
to be used, since for the human being can not distinguish
them from the exact result or it can extract useful information
from the resulting noisy auditory or visual stimuli. Approximate
computing has as its main objective to trade the accuracy of the
output for savings in resources, such as energy, computation time
or circuit area.

In this article some existing techniques of approximate com-
puting are presented, which result of alterations of the system
at three levels: physical level, logic level and architectural level.
For the project of FIR filters with shift-adds architectures two
different approximate computing methods and algorithms are
proposed and developed, that aim to reduce the FIR filters
implementation (circuit area) and operation (power) costs. In the
first method the cost reduction is obtained by removing adders
from a base architecture and substituting them by other existing
partial sums. With this method gains in area and power up to
33% and 22.6%, respectively, were obtained with a signal-to-
noise ratio of 30 dB. In the second method resources are saved
by utilizing approximate adders, which introduce errors in k bits.
In this method reductions in area up to 56.7% and in power up
to 45.6% were obtained, for a signal-to-noise ration of 60 dB.

Index Terms—approximate computing, finite-impulse response
(FIR) filters, energy efficiency, approximate adders.

I. INTRODUCTION

THE increasing density of transistors by area unit at each
new CMOS technology node leads to an increasing power

consumption of the circuits, and that changed the digital circuit
design main goal from performance to energy efficiency [1].
In a wide variety of applications, e.g. multimedia or image
and audio processing, the result may contain some errors
without affecting too much its quality. For audio and video
applications, this happens as the human being is tolerable to
errors simply because it can extract useful information from
noisy stimuli, therefore in such applications it can be good
enough an approximate value rather than an completely exact
one.

The resilience to error of some applications can be explored
by using some techniques that are referred as approximate
computing. Approximate computing techniques that the ac-
curacy of the result of a computing system by saving some
resources, such as energy, implementation area and/or delay
[2]. These techniques can be applied at different abstraction
levels, such as the physical level, e.g. reducing the operating

voltage of a circuit, the logic level, e.g. modifying the logic
functions of an adder, and the architectural level, e.g. removing
components and wires along a path in a circuit.

Not all applications can make use of approximate computing
techniques, e.g. in a RISC processor the arithmetic blocks only
consume 6% of the total energy consumed by the processor
[3], which means that using approximating computing in such
a scenario will not yield significant savings in energy. More-
over, approximate computing may not be adequate to general
or programmable processors due to the fact that they are design
to execute generic applications which may not be tolerable to
errors [4]. However, there are some applications which use
intensively arithmetic operations and can be tolerant to errors,
i.e. it can be enough that the results of these applications are an
approximation of the real value. Some functions, implemented
by DSP blocks, such as digital filtering, by FIR or IIR
filters, or FFT, fall into this category of applications. These
functions use extensively multiplication and sum operations,
so by using approximate computing techniques in these basic
operations it can be possible to implement more energy-
efficient DSP blocks, knowing that their output can have some
error. It is important to refer that since approximate computing
techniques introduce some kind of error, it is necessary to
quantify this error, as much as possible, and the resulting
circuits should be evaluated in the context of the application
that they are design to execute.

In this paper two approximate computing methods for
the implementation in hardware of FIR filters with shift-
adds architectures are presented. One method works at the
architectural level an the other at the logic level, and both
have the main goal to reduce the FIR filter’s implementation
and operations costs. The approximate computing method at
the architectural level reduces the number of adders needed
to implement a FIR filter by removing some adders from
an already existing architecture, redoing after the necessary
connections in order to obtain the best approximations of the
values computed by the removed adders. The approximate
computing method at the logic level reduces the area needed
to implement a FIR filter by replacing some adders, also in
an already existing architecture, by simple adders that perform
an approximated computation, while maintaining a Signal to
Noise Ratio (SNR) close to a desired value.

The remainder of this paper is organized as follows: Section
II introduces approximate computing and presents some exist-
ing techniques of this area of investigation, divided in three
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different categories of approximation: physical level, logic
level, and architectural level. Section III describes the different
stages of implementing FIR filters, from their specifications to
their implementation in hardware. In this section, architectures
based on shifts, additions and subtractions are addressed in
particular. Section IV addresses the approximate computing
method at the architectural level, explaining its implementation
and presenting the experimental results for some FIR filters.
Section V introduces the approximate computing method
at the logic level. This method is based on a modified
adder/subtracter which errors are characterized. An algorithm
to use such approximate operators was developed for FIR
filters implementation and its result are evaluated on a set of
filters. Finally, Section VI concludes this paper.

II. APPROXIMATE COMPUTING

Approximate computing refers to an area of investigation
which includes an wide range of activities, which have the
common goal of finding solutions that allow computing sys-
tems to trade resources, e.g. implementation area or energy,
for the quality of the computed result [2].

Since the appearing of this area of investigation various
techniques in different levels of abstraction were proposed
[2], [5]. Methods at the physical level of abstraction include
methods that change the conditions of operation of a circuit,
such as the operating voltage, in order to reduce its power
consumption. Methods at the logic level of abstraction includes
techniques that alter a computing block, e.g. an adder or
a multiplier, logic functions in order to reduce the circuit
complexity, and therefore the area required to implement them,
or the energy consumption. The change of logic functions can
be performed at gate-level or at transistor-level. Modifications
of a circuit at a transistor-level, such as removing transistors,
changes the logic function performed by the circuit, and
for this reason these techniques are included in the logic
level. Methods at the architectural level refers to methods
that changes an architecture of a system, usually by removing
components and wires, in order to save resources.

A. Methods at the physical level

The first techniques of approximate computing that ap-
peared used the method of voltage overscalling (VOS) [5].
Using the VOS method the computing elements are operated
at a lower voltage than the minimum voltage that ensures a
correct operation.

Lowering the operating voltage leads to a decrease in energy
consumption, since in CMOS circuits the energy consumed is
proportional to the operating voltage. The operating voltage
that ensures a correct operation is determined by the operating
frequency, which in turn is determined by the total delay of
the circuit. If the operating frequency remains the same but
the operating voltage is lowered, the result generated by this
circuit may be incorrect, due to the fact that some bits may not
have time to propagate to all components of the circuit within a
clock cycle, e.g. for a ripple carry adder (RCA) a carry may not
propagate to all necessary full adders (FA), leading to a inexact
result. There exists different VOS methods. Methods that lower

equally the operating voltage in the entire circuit are called
uniform VOS. Other methods called non-uniform VOS operate
more important components, i.e. the ones that compute the
most significant bits of the result, at higher voltages than the
components that generate the less significant bits, in order to
decrease the magnitude of the error introduced. Non-uniform
VOS methods are limited to the number of distinct voltage
levels available [6].

B. Methods at the logic level

Changing logic functions of a circuit can decrease its
complexity, leading to a simpler circuit, or decrease its power
consumption by lowering the switching activity. However, this
may resulte in some combinations of the inputs to generate
a incorrect result, but if the circuit complexity or power
consumption is decreased significantly, these circuits may be
of interest to applications resilient to errors. Next we will give
some examples of this kind of methods for a multiplier and
several adders.

1) Approximate multiplier: If we analyse the logic table
of a 2x2 bits multiplier, we notice that the only result that
needs four bits to be represented is the one corresponding to
112×112, which result is 10012. If we change this result to a
three bit one, being 1112 the closest one to the correct result,
we are allowing a error, of magnitude 2 (|7 − 9|), to occur,
however the circuit that implements this modified multiplier is
much simpler (having only 4 AND gates and 1 OR gate) than
the conventional one (that haves 5 AND gates and 2 XOR
gates).

In order to build larger multiplier blocks, the modified 2x2
bits multiplier can be used to calculate partial products and
then use conventional adders to sum these partial products.
It was shown that using these modified multiplier blocks, a
dynamic power reduction of 45.4% can be achieved, com-
paring to the conventional multiplier blocks, and using these
approximate multipliers in a FIR filter a energy consumption
reduction of 18.3% can be obtained [7].

2) AMA (Approximate Mirror Adder): The AMA adders
result of 5 different modifications to the implementation of
a FA, called the mirror adder, composed by 24 transistors.
Removing transistors from the mirror adder, and consequently
changing the logic functions, in such a way that short-circuits
and open-circuits do not occur, five different approximations
for a FA were obtained. Four of the approximate FA derived
have 8, 10 and 13 (two approximations have the same number
of transistors) fewer transistors than the conventional mirror
adder and one of the approximations uses only buffers. These
approximations present errors in the sum and carry-out bits
truth tables. The approximation that only uses buffers has the
most errors (4 in the sum bit truth table and 2 in the carry-out
truth table).

Using the approximation with only buffers, in the FAs that
generate the nine less significant bits of the result, for an image
compression application resulted in power savings of ≈ 60%
with a PSNR (peak signal-to-noise ratio) of 25.46 dB, while
using conventional adders resulted in a PSNR of 31.16 dB [4].
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3) AXA (Approximate XOR/XNOR-based Adder): Another
example of FA approximations obtained by removing transis-
tors of conventional FA implementations are the AXA adders.
These are derived of a XOR- and a XNOR-based implementa-
tions of a FA that are both realized with 10 transistors. Three
different AXA adders exist, AXA1, AXA2 and AXA3, having
8, 6 and 8 transistors, respectively. AXA1 is the one with most
errors in sum and carry-out truth tables (4 in the sum bit and
4 in the carry-out bit), AXA2 only has 4 errors in the sum bit
truth table and AXA2 only has 2 errors in the sum bit truth
table.

When compared to the XNOR-based implementation,
AXA1 has 76.09% less delay, AXA2 has 65.45% less static
power consumption and AXA3 has 30.57% less dynamic
power consumption [8].

4) LOA (Lower-part-OR Adder): Removing transistors is
not the only way of obtaining approximate computing blocks.
LOA adders are obtain by modifying the lower part, i.e. the
part that computes the less significant bits of the result, of a
conventional adder. A p-bit LOA adder has two different parts,
an exact part (composed by a n-bit conventional adder) and
an approximate part (composed by one AND gate and m OR
gates), where p = m+ n. Each of the m less significant bits
of the result are generated by an OR gate and the carry-in bit
of the exact part is generated by an AND gate connected to
the m− 1 bits of the operands.

Using LOA adders, along other approximate multiplier
blocks, for a neural network used in facial recognition showed
a 54% improvement in area, while maintaining equal be-
haviour to the neural network implemented with precise com-
puting blocks, only differing in the number of training epochs
[9].

5) ETA (Error-Tolerant Adder): The area needed to imple-
ment a computing block may not be the only resource that
approximate computing blocks tend to save. Sometimes is
desired that energy consumption is reduced, even if it implies
an increase in the area needed to implement such computing
blocks. ETA adders allows a decrease in energy consumption
by reducing the carry propagation within the adder. To do that,
a different addition arithmetic is introduced, which is divided
in two different parts, an exact part and an inexact one. The
exact part is performed in the conventional manner, while the
inexact part is an entirely different process. Addition in the
inexact part is done from the most significant bit (within this
part) to the less significant one. The addition in the inexact part
is performed as usual until both bits of the operands are ”1”,
when this happens the remaining bits (in the less significant
bit direction) are set to ”1”.

An 32-bit ETA adder that performs this addition arithmetic,
which 20 bits are approximated, has a power-delay product
(PDP) 66.29% better than a conventional 32-bit RCA, with
only a 12.3 % increase in the number of transistors [10].

Other adders, ETAII, ETAIIM and ETAIV, were also pro-
posed, which divide a conventional adder (RCA or carry-select
adder) in several sub-adders, in order to improve the accuracy
and the power consumption. ETAIV revealed the best accuracy
and its PDP is 13.33% better than the ETA, however it needs
43% more transistors when compared to ETA [11], [12].

Fig. 1. n-bit copy of operand adder with k approximated bits [1].

6) Copy of operand adder: Energy consumption of a circuit
is often associated with the area that a circuit needs to be
implemented, since normally the more components a circuit
has the more energy it consumes. So one way of reducing
energy consumption is to simply reduce the area needed for
the implementation of a circuit. The copy of operand adder
proposes just that, and it reduces the area needed to implement
an RCA by completely removing FAs in the least significant
bits. A n-bit copy of operand adder is composed by a (n−k)-
bit RCA and a k-bit approximate adder, which simply copies
the k least significant bits of one of the operands to the k least
significant bits of the result. The carry-in bit of the (n−k)-bit
RCA corresponds to the k − 1 bit of the operand that has its
bits copied, as shown in the Fig. 1.

FIR filters implemented with this adder showed an area
reduction up to 18.8% and energy reduction up to 15.5%, with
signal-to-noise ratios (SNR) higher than 60 dB [1].

C. Methods at the architectural level

Another approach of approximate computing is to work at
a higher abstraction level, such as the architectural level. In
this level the entire architecture of a system can be modified
in order to achieve reductions of resources. One example of
an approximate method that works by changing a computing
system architecture is one that removes components and wires
along the path that has the lowest probability of being active
during the circuit operation [13]. This method uses simulations
in order to compute the paths probabilities of being active
and iteratively removes components and wires along the path
that as the lowest probability until a desired error limit,
imposed by the application that the circuit was design to
execute, is achieved. The error measurement is different for
each application, so this method is highly tied to the kind of
application it is applied to.

Another method for realizing architectures for approximate
computing, which was design for FIR filters is the algorithm
NAIAD [14]. This algorithm finds a set of coefficients for
the filter which yields architectures with a reduced number of
adders by allowing a small change in the filter specifications,
more specifically in the pass-band and stop-band ripples.

III. FIR FILTERS

Finite-impulse response (FIR) filters are usually used in
digital signal processing applications because they have de-
sired features, such as stability and linear phase [15]. The
design process of FIR filter implemented in hardware can be
divided in two different steps: i) coefficients are found given
the filter specifications; ii) the hardware architecture is chosen
and optimized.



4

Fig. 2. Frequency response magnitude of a low-pass filter [14].

The output of a N -tap FIR filter can be calculated using the
following expression:

y[n] =

N−1∑
i=0

hi · x[n− i], (1)

where N is the filter order, hi is the ith filter coefficient
and x[n − i] is the filter input delayed by i samples. The hi
coefficients, with i = 0, ..., N − 1, are determined according
to the filter frequency response specifications. For a low-pass
FIR filter the parameters for the frequency response are, in
general, the following:
• ωp - pass-band frequency.
• ωs - stop-band frequency.
• δp - pass-band ripple.
• δs - stop-band ripple.

For different kind of filters, such as high-pass, band-reject
or band-pass the parameters are different, however there’s
little difference on how the coefficients are found for these
filters. In order to undestand how these parameters change the
filter’s frequency response specifications, the magnitude of the
frequency response of a low-pass filter is shown in Fig. 2.

Given the filter specifications various methods, such as
windowing or Parks-McClellan [16], can be used to compute
the filter’s coefficients.

Having the filter’s coefficients, the next step for the FIR
implementation is choosing an architecture to use. The most
common architectures used are the direct form, obtained by
the straightforward implementation of (1), and the transposed
form, depicted in Fig. 3 and Fig. 4, respectively. These two
architectures need the same number of multipliers, adders and
registers to be implemented, however they differ in the size of
the registers, critical path and input capacitance [15].

Knowing that the filter’s coefficients are pre-determined and
realizing multipliers in hardware leads to an increase in area,
delay and energy consumption, more efficient architectures for
implementing a FIR filter in hardware are used [17]. These
architectures use only adders and shifts to realize the necessary
multiplications and use several techniques exists to minimize
the number of adders needed to implement the filter. In order
to comprehend how a multiplication by a constant can be

Fig. 3. Direct form of a N -tap FIR filter [14].

Fig. 4. Transposed form of a N -tap FIR filter [14].

realized only by sums and shifts let’s take the example of
the multiplication y = 11x. If we write the constant 11 in a
binary representation we get 1011, so the multiplication can
be written in the form y = (1011)x = x � 3 + x � 1 + x,
which corresponds to two additions and two left-shifts.

Analysing the transposed form of a FIR filter, depicted in
Fig. 4, we notice that the input is multiplied, in parallel, by
different constants. The block that performs these multipli-
cations is called a MCM (Multiple Constants Multiplication)
block. Since these multiplications are performed in parallel
and can be realized using only additions and shifts, the partial
sums can be shared among the multiplications, thus reducing
the number of adders needed to implement this block.

Several different methods that try to minimize the number
of adders needed to implement a MCM block have been
proposed and can be divided in two categories: CSE (Common
Subexpression Elimination) and GB (Graph based) methods
[15]. The CSE methods represent the constants under a number
representation, such as binary or CSD (Canonical Signed
Digit), and then the most common subexpressions are shared
between the constant multiplications. The GB methods use
graphs to find the intermediate subexpressions that can be
shared, to yield the minimum number of operations. GB
methods generally find better solutions, however they require
more computational resources. An example of solutions given
by an CSE and a GB method, for the multiplication by the
constants 51 and 77, where only 4 and 3 operations are needed,
respectively, is shown in Fig. 5. If the multiplication by 51 and
77 were done in separate 6 operations would be needed.

FIR filters with the architectures that only use additions,
subtractions and shifts, known as shift-adds architectures, will
be the target for the approximate computing methods proposed
in the following sections.

IV. FIR FILTERS - APPROXIMATE COMPUTING AT THE
ARCHITECTURAL LEVEL

In this section an approximate computing method, at the
architectural level, for the implementation in hardware of
FIR filters, with shift-adds architectures, is proposed. The
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(a) (b)

Fig. 5. Solution given for the multiplication by the constants 51 and 77 by
a: (a) CSE method, (b) GB method

main goal of this method is to reduce the area needed for
the implementation of a FIR filter, by removing adders and
rewire the necessary connections within an existing MCM
block, while trying to minimize the overall error at the MCM
block outputs. An exhaustive and a heuristic algorithm that
implements this method is presented. The results of this
method for 10 FIR low-pass filters are also presented within
this section.

A. Proposed method

In order to reduce the area needed to implement the MCM
block, with a shift-adds architecture, adders within this block
can be removed. When we remove an adder the node where
its result was connected is left unconnected, so this node must
be rewire to somewhere else. One way of reconnecting this
node is to connect it to one of the remaining adders or to the
input of the MCM block, which may compute similar values,
considering shifts, to the adder that was removed.

This modifications may alter the final result presented at the
outputs of the MCM block, i.e. it can introduce some error
when comparing to the unchanged MCM block. In order to
choose the best adders to remove and the best re-routing of the
unconnected nodes, i.e. the ones that lead to a smaller error
in the MCM block outputs, the total error E was chosen to
compare the different options and it was defined as:

E =

N∑
i=1

|ỹi − yi|, (2)

where ỹi is the ith output of the modified MCM block, with
input equal to 1, and yi is the ith output of the original MCM
block, also with input equal to 1.

In order to find a solution which yields a small value of
E, given a number of adders to remove, an exhaustive and a
heuristic algorithm were developed and will be presented in the
following subsections. Both algorithms start with an existing
MCM block architecture which was obtained by computing
the filter coefficients with the Parks-McClellan method, then
quantifying those coefficients with a chosen number of bits

Fig. 6. Shift-adds architecture of the MCM block of the example FIR filter.

and finally applying a GB method (Hcub [18]) to obtain the
shift-adds architecture.

B. Exhaustive algorithm

The exhaustive algorithm searches for the solution which
yields the smallest E value, given a number of adders to
remove, Nsub. It tries every possible combination with Nsub

adders and keeps the one with the smaller E value.
For every combination of adders tested the following steps

are performed: i) the adder, belonging to the combination
tested, with the smallest depth is removed; ii) the node left
unconnected is connected to the adder, with a depth smaller
to the adder removed, or to the input which has the closest
value, considering shifts to the left, to the one computed by
the removed adder; iii) the values computed by the remaining
adders are updated; iv) steps i), ii) and iii) are repeated for
every adder in the combination to test; v) E value is calculated.

In order to comprehend better how this algorithm works
let’s take an example for a MCM block generated for a 10-tap
filter with ωs = 0.1π, ωp = 0.5π and coefficients, quantified
with 10 bits, −22,−13, 60, 193, 302, 302, 193, 60,−13,−22.
The shift-adds architecture of this MCM block is shown in
Figure 6, where the free in hardware shift operations are shown
in light grey and adders/subtractors in dark red, and the value
computed by each operation is indicated.

Suppose we want to remove 2 adders from the MCM
block and the combination being tested is removing the adder
that computes 15x and the adder that computes 193x. The
algorithm starts by removing the 15x adder since it’s the one
with the smaller depth, then it checks what’s the best way to
reconnect the node left unconnected. Since the 15x adder has
depth 1 it can only use the input to connect it, and in this
case it chooses a left shift by 4 bits which results in 16x,
which is the closest value of 15x that is available. Next the
values computed by the remaining adders are updated due to
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the previous modification. These values are updated to the
following (starting from the top left adder and excluding the
removed 15x adder): 17x, 12x, 14x, 152x and 208x. Finally
the same process is applied to the 193x adder (now 208x),
where the node which is left unconnected after the removal
of the 193x adder is connected to the 12x adder (former 11x)
and shifted to the left by 4 bits, resulting in a computed value
of 192x. Completed the removal of the two adders the E value
is computed, which in this case is 20.

The same process is performed to all other combinations
and it is kept the one which yields the lowest value of E.

C. Heuristic algorithm

When the number of adders in the starting MCM block
architecture increases, the number of combinations that need
to be tested can be too much for the exhaustive algorithm to
give a solution in a reasonable time. To address this issue a
heuristic algorithm was developed, and it speeds up the search
for a solution by reducing the number of combinations to test.

By running the exhaustive algorithm for MCM blocks with
a few adders it was noticed that increasing the number of
adders to remove, Nsub, by one, the solution found generally
included all the adders removed in the previous solution for
the same MCM block, i.e. with a Nsub value smaller by one.
So the heuristic algorithm, in order to decrease the number of
combinations to test, starts with Nsub = 1, finds a solution,
exactly in the same way as the exhaustive algorithm, and
keeps this solution. Next, it increases Nsub by one and finds
a solution, but now only searching combinations that includes
the adder removed for Nsub = 1, and saves this new solution.
The same process is applied, searching only combinations that
includes all adders removed in the previous solution, until
Nsub reaches the desired value, i.e. the number of adders to
remove.

D. Results

The method proposed was tested, using the heuristic algo-
rithm, in 10 different FIR low-pass filters. The specifications,
as well the synthesis results, of the filters tested are presented
in Table I, where ωp and ωs are the pass-band and stop-band
frequencies, N the filter order, # bits the number of bits used
to represent each coefficient, δp and δs the pass-band and stop-
band ripples, MA the number of adders in the MCM block
and TA the total adders in the FIR filter architecture.

These filters where described in VHDL, using the two’s
complement representation, defining the input with the same
number of bits used to represent the coefficients and the
output with twice the bits of the input. Next, these filters were
synthesised using the synthesis tool Synopys Design Vision TM

version C-2009.06-SP3 and the generic cell library Faraday TM

UMC L180. The area was obtained by the synthesis tool and
the dynamic power was calculated, also by the synthesis tool,
using a static probability of 50% and a toggle-rate of 50% for
all inputs (except for the clock and clear inputs).

The next step was to obtain the approximate filters by
choosing values for Nsub = 1, ..,MA − 1 and applying the
heuristic algorithm for each filter. The frequency response
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Fig. 8. Relative error of the stop-band ripple.

of each filter was obtained and the pass-band and stop-band
ripples were compared with the ripples in the respective exact
filter. Figures 7 and 8 show the results for the relative errors
of the pass-band and stop-band ripples. In a general way
the relative error of δp increases as the percentage of adders
removed in the MCM block increases. Removing less than
20% of adders of the MCM block, introduces a relative error of
δp smaller than 7% for all filters (except for filter 1 which has
a 36% error with one adder removed). When the percentage
of adders removed is lower than 50% the relative error of δp
is kept lower than 50% for all filters. The filters which have
the highest relative error of δp are the ones, for these set of
filters, with lower value of δp in the exact filter, as expected.
The maximum relative error for δs is lower than 50% for all
filters. For less then 70% removed adders the relative error of
δs it is lower than 6.5% for filters 5, 6, 7, 8 and 10, which
are the filters with more adders in the exact MCM block. The
filters that have the largest relative error for δs for a percentage
of adders removed lower than 70% are the ones with less
adders in the exact MCM block.

Comparing the results gave by this method for filters 1,4
and 9 with the algorithm NAIAD [14], is shown that this
method yields filters with a lower number of total adders, as
seen in Table II. However NAIAD can generate filters with
significantly lower ripples (except for δp in filter 4).

Another way to evaluate the quality of the approximate
filters obtained is to use the signal-to-noise ratio (SNR) metric.
The SNR was measured by generating a white Gaussian noise
signal with 2000 samples and filtering this signal by the exact
and the approximate filters. The noise then corresponds to the
difference of the filtered signal using the approximate filter
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TABLE I
SPECIFICATIONS AND SYNTHESIS RESULT OF THE TESTED FILTERS.

FIR filter ωp/π ωs/π N # bits δp (dB) δs(dB) MA TA
Area

(µm2)

Dynamic
power
(mW )

1 0.300 0.50 30 9 0.0923 -44.13 7 28 21436 35.60
2 0.150 0.25 40 16 0.1027 -38.66 23 62 70055 102.04
3 0.100 0.15 50 8 0.7710 -22.73 7 52 33262 56.28
4 0.042 0.14 60 10 0.0758 -42.53 11 66 52021 88.47
5 0.150 0.20 60 16 0.2343 -31.51 31 90 101008 146.98
6 0.120 0.18 80 16 0.0476 -45.11 38 117 135096 204.97
7 0.120 0.15 80 16 0.3751 -27.45 38 117 137718 203.01
8 0.180 0.20 100 16 0.5219 -24.67 47 146 168647 257.97
9 0.200 0.24 105 8 0.9157 -21.70 7 69 56225 109.98
10 0.200 0.22 120 16 0.3463 -28.13 54 173 201525 310.90

TABLE II
COMPARISION WITH NAIAD [14]

NAIAD Aprox. Method
Filter TA δp(dB) δs(dB) TA δp(dB) δs(dB)
1(Nsub = 3) 30 0.0274 -50 25 0.9530 -39.37
4(Nsub = 2) 72 0.1036 -60 64 0.0575 -42.52
9(Nsub = 5) 109 0.0864 -40 64 0.7739 -21.43

and the filtered signal using the exact filter. This measure
was taken 10 times for each approximate filter and an average
SNR value was obtained. Next the approximate filters with an
average SNR value close to 90, 80, 70, 60, 50, 40 and 30 dB
were described in VHDL and synthesised in the same way as
the exact filters. The area and dynamic power were obtained
for each synthesised approximate filter and compared to the
respective exact filter, which yields the results presented in
Table III.

The higher savings in area and power occurs for filters with
MA > 11, for instance at a 40 dB SNR level these filters
have an average reduction in area and power of 21.8% and
12.6%, respectively, while other filters only have an average
reduction of 3.4% and 1.7% in area and power, respectively.
For SNR higher than 65 dB area and power savings are lower
than 5% and 3%, respectively.

With this method significant area and power reductions can
be achieved at the expense of the filter’s quality, however
because it is a method at the architectural level which removes
adders, and subsequently rewires the unconnected nodes, the
filter’s quality degradation is significant for a small reduction
in area and power. So in the next section an approximate
computing method at the logic level, is presented in order
to reduce the error introduced at each partial sum.

V. FIR FILTERS - APPROXIMATE COMPUTING AT THE
LOGIC LEVEL

In the previous section, a method that removes entire adders
from the MCM block, in order to reduce the area needed for
the FIR filter implementation, was introduced. In this section a
method that has the same goal, i.e. reduce the area needed for
FIR filter to be implemented in hardware, but follows an entire
different approach from the previous method is presented.

TABLE III
SYNTHESIS RESULTS OF APPROXIMATE FILTERS.

Nsub
SNR
(dB)

Area
Red.
(%)

Power
Red.
(%)

Filter 1
1 46.9 2.16 1.52
3 41.0 8.20 4.23
6 28.0 15.54 6.42

Filter 2
1 76.8 1.73 0.98
3 67.9 4.95 2.72
6 60.1 8.71 4.70
9 52.1 12.66 7.24

17 40.1 24.58 12.97
20 29.8 34.96 22.59

Filter 3
1 35.7 1.09 0.16
3 29.8 1.34 1.48

Filter 4
1 46.2 0.80 1.19
3 40.2 3.29 2.29
6 31.2 3.31 3.31

Filter 5
1 79.4 0.73 0.66
3 69.0 2.46 1.73
8 59.8 6.25 3.64

18 49.4 14.66 4.51
25 40.5 22.05 11.37
29 31.0 32.09 19.71

Filter 6
1 78.8 0.46 0.38
5 71.0 2.70 1.92

16 59.7 9.06 5.92
27 50.3 19.00 12.18
30 41.7 21.39 13.29
34 29.3 25.10 13.54

Nsub
SNR
(dB)

Area
Red.
(%)

Power
Red.
(%)

Filter 7
1 84.3 0.58 0.49
4 71.4 2.67 1.55

10 59.7 6.12 3.42
19 50.9 12.72 11.03
30 39.4 20.02 13.51
33 27.5 28.02 15.60

Filter 8
1 86.0 0.53 -0.03
5 79.1 2.14 0.98

10 69.4 4.48 2.81
18 59.9 8.55 4.54
30 49.4 15.56 8.19
39 39.3 21.40 11.80
45 28.5 32.97 20.84

Filter 9
1 38.1 1.09 0.16
3 32.2 1.34 1.48

Filter 10
1 86.5 0.52 0.45
4 80.5 1.64 1.13

12 70.8 5.14 3.00
20 60.4 8.63 4.61
37 50.3 15.65 8.53
45 39.8 21.74 11.52
50 32.1 26.02 12.64

The method introduced in this section tries to replace the
conventional adders, in the MCM block and in the register-add
block of an existing FIR filter architecture, with approximate
adders, which need a smaller area to be implemented. The
approximated adder used is introduced as well the algorithm
implementation of the method and results are shown for 10
different low-pass FIR filters.

A. Approximate adder

The approximate adder used corresponds to the copy of
operand adder [1]. This adder was chosen because it is based
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(a) (b)

Fig. 9. Operation perform by a 4-bit copy of operand with k = 2.

on a RCA, which is one of the most area-efficient conventional
adders, and the approximate part of this adder does not need
any logic gates to be implemented. In Fig. 1 a n-bit copy
of operand adder with k approximated bits is shown. This
adder calculates the result by copying the k less significant
bits (LSB) of one of the operands to the k LSB of the result
and then it uses a conventional RCA to compute the remaining
bits of the result. The RCA has a carry-in bit that corresponds
to the k− 1 bit of the operand that has its LSB copied to the
result. Let’s assume from now on that the operand that has its
bits copied is the operand A.

Mathematically, the result of the operation realized by this
approximated adder can be computed in the following manner:
i) the k LSB of the operand B are subtracted from the operand
B, resulting in B′; ii) A and B′ are summed; iii) the k − 1
bit of the operand A, shifted by one bit to the left, is added to
the previous result. An example of the addition of two 4-bit
numbers, A = 1011 and B = 0011, done by a 4-bit copy
of operand adder with k = 2 is shown in Fig. 9(a) and the
decomposition of this operation is shown in Fig. 9(b). For this
example the error made by the approximate adder is 1, because
the correct result would be 14 instead of 15.

To use this approximate adder in the MCM block of a FIR
filter, we need to consider that often one of the operands is a
value that was previously left shifted. This causes the LSB of
that operand to be always ”0”, which means that it is not
necessary an adder with the same bit-length as the largest
operand. An example of an exact and an approximate sum
for the case where the B operand was previously left shifted
by 2 bits is depicted in Fig. 10. For this example the error
made by the approximate adder is 4 (27− 23).

The approximation is now done at the bits after the left
shift in order to ensure that area is saved, because in the exact
sum there’s no need to have an adder to compute the LSB
corresponding to the shift. For simplification purposes it was
defined that the operand that has its bits copied to the result
would be the operand that was not left shifted.

In MCM blocks there’s also the need of having subtractors,
which are implemented, normally, with conventional adders
by negating one of the operands and setting the carry-in bit
to ”1”. Notice that approximate adders don’t have a carry-in
input, so the subtractors are realized only by negating one of
the operands, assuming in this way a -1 error. For subtractors
the B operand is always the one to be negated and the k bits
that are copied to the result correspond to the k LSB of the

(a) (b)

Fig. 10. Sum of 11 with 3, where the B operand was left shifted by 2 bits
with a: (a) Exact adder, (b) Approximate adder with k = 2.

operand that was not previously left shifted.
Mathematical models of the approximate adder and approx-

imate subtractor were derived and described as follows:
Adder:

sum = a+ b+ e(A,B), (3)

e(A,B) = Ak+sB−12
k+sB −

k+sB−1∑
i=sB

Bi2
i. (4)

Subtractor:

sub = a− b+ e−(A,B), (5)

e−(A,B) =



− 2sB +Ak+sB−12
k+sB −

k+sB−1∑
i=sB

Bi2
i,

if sB 6= 0, sA = 0;

− 1 +Bk+sA−12
k+sA −

k+sA−1∑
i=sA

Ai2
i,

if sA 6= 0, sB = 0.
(6)

where a =
∑n−1

i=0 Ai2
i, b =

∑n−1
i=0 Bi2

i, sum is the result of
the adder, sub the result of the subtractor, sA the number of
bits operand A was left shifted, sB the number of bits operand
B was left shifted, e(A,B) the error function of the adder and
e−(A,B) the error function of the subtractor.

Having defined how the approximate adders will be used in
the architecture of FIR filter it is necessary to find where to
use the approximate adders and how many approximate bits
they should have, in order to not degrade too much the filter’s
quality. In the next subsection is presented a search algorithm,
which uses the models derived for the adder and subtractor,
that was developed for finding a solution to this problem.

B. Search algorithm

The approximate adder and subtractor presented in the
previous subsection can be used to replace conventional
adders/subtractors in an existing FIR filter architecture in order
to reduce the area needed to implement it, however they also
introduce some error in the filter’s response.

This error needs to be quantified in order to evaluate the
filter’s output quality. We could try to compare the approxi-
mate filter frequency response with the exact one, however the
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approximate adder/subtractor is not a linear operator, which
makes the approximate filter also non-linear. Another way
of measure the approximate filter’s output quality is to use
the SNR, as explained in Subsection IV-D. The algorithm
presented in this subsection uses the SNR metric in order to
evaluate the quality of a possible solution.

If we consider all the possible combinations of which adders
should be approximate and how many approximate bits they
should have, we can infer that an algorithm that considers
all these possibilities would be computationally demanding,
even for small filters. In order to have a smaller search space,
adders were grouped in different groups. Adders within the
same group have the same number of approximate bits. The
first group includes all adders in the register-add block of the
filter and other groups are created with adders of the MCM
block, in which adders of the same group have the same depth
in the MCM block’s adder-tree.

The first step of the algorithm is to create a simulation
model of the starting FIR filter architecture, using the models
presented in the previous subsection, which has as parameters
the number of approximate bits , k, of each group of adders.
This will allow to compute the SNR for various approximate
filters. If k = 0 in a group it means that the adders of that
group are exact.

The second step is to find a set of ks (one for each group)
that maximizes the area saved and keeps the SNR value close
to a desired value. The set of ks is found by applying the
following iterative process: i) all groups start with k = 0;
ii) the value of k is increased by one in one of the groups,
keeping the k value in the other groups; iii) the SNR value is
computed; iv) repeat ii) and iii) for each group and save the set
of ks that yield the highest SNR value; v) starting with the set
of ks saved in iv) repeat ii), iii) and iv) until the desired SNR
value is reached. The highest k value possible of each group
is equal to the number of bits the filter’s coefficients were
represented, since this corresponds to the smallest number of
bits an adder can have. When a group reachs the highest k
possible it is ignored in the subsequent iterations.

C. Results

The approximate computing method at the logic level was
tested for the same 10 low-pass FIR filters as the method
introduced in Section IV, where its specifications as well
synthesis results are presented in Table 2. For each exact filter
the method was applied for the desired SNR values of 80,
70, 60, 50, 40 and 30 dB. The obtained approximate filters
were described in VHDL, using two’s complement number
representation, realizing the existing negations of the MCM
block using exact adders, defining the input with the same
number of bits as the coefficients and the output with twice the
number of bits of the input. Then these filters were synthesized
and area and dynamic power values were obtained in the same
way as for the exact filters.

Table IV presents the area and dynamic reductions obtained,
where it is possible to see that area reductions up to 63.15%
and power reductions up to 52.22% were achieved. Filters
2,5,6,7,8 and 10, which its coefficients were represented with

TABLE IV
SYNTHESIS RESULTS OF APPROXIMATE FILTERS.

SNR
(dB)

Area
Red.
(%)

Power
Red.
(%)

Filter 1
68.7 1.06 -2.78
59.0 15.54 14.00
49.1 21.17 18.88
40.0 32.06 29.70
30.5 39.44 37.29

Filter 2
79.2 31.32 21.69
68.2 37.82 29.06
59.6 56.65 44.90
49.5 56.67 43.93
39.7 54.98 43.06
29.6 54.94 42.97

Filter 3
51.1 2.01 -2.87
40.7 6.67 1.14
31.7 25.53 23.51

Filter 4
72.8 1.30 -6.42
64.8 4.97 -2.64
51.9 19.16 12.25
37.3 39.36 27.50
29.6 46.20 34.92

Filter 5
76.0 32.12 26.98
68.2 37.05 25.27
58.4 42.57 31.53
49.9 46.56 37.09
38.9 47.37 35.96
31.0 48.21 37.00

SNR
(dB)

Area
Red.
(%)

Power
Red.
(%)

Filter 6
77.8 31.20 22.15
66.3 44.18 33.73
58.6 56.35 45.55
48.8 58.38 48.08
37.3 57.32 46.91
29.5 55.20 45.10

Filter 7
75.2 32.06 20.69
67.7 35.71 24.76
57.6 44.46 35.95
49.0 47.02 39.54
39.5 48.04 40.54
29.9 49.16 41.66

Filter 8
81.8 27.13 21.17
75.3 31.29 23.17
63.2 43.84 31.19
48.4 63.15 52.22
39.8 60.60 49.67
29.5 57.41 46.78

Filter 9
40.0 15.19 10.49
28.8 28.11 23.58

Filter 10
84.5 24.51 14.77
74.1 30.70 20.95
62.1 38.10 30.65
47.5 57.64 47.69
39.2 57.77 47.34
29.7 57.56 47.18

16 bits, obtained the highest area and power reductions. In
these filters for a SNR close to 80 dB the average area
and power reductions were 29.7% and 21.2%, respectively.
In filters 1,3,4 and 9 the highest SNR obtained was inferior
to 70 dB, and the average area and power reductions for a
SNR close to 40 dB was 23.3% and 17.2%, respectively.
It is possible to notice some negative values for the power
reduction, which may occurred due to the way the synthesis
tool calculated the power consumption.

In Table V, where are represented the number of approx-
imate bits used in each adder group of each approximate
filter synthesized, it is possible to notice that, generally, the
group which has the highest number of approximate bits is the
one that includes the register-add block adders. We then can
conclude that the most area savings occured within this block,
since this block is generally the one which contains the highest
number of adders. We can also notice that the groups which
contains the adders with the lowest depth (second group) in the
MCM block adder-tree is generally the one with least number
of approximate bits, which means that errors in these adders
are amplified due to left shifts along the adder tree, and thus
generating errors that affects the filter’s quality too much.

The method presented in this section obtains better area
and power savings than the method presented in [1], where
reductions of 18.8% and 15.5% in area and power, respec-
tively, were obtanied for 16-bit coefficients FIR filters, with
a SNR of 80 dB. The increase of area and power reductions,
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TABLE V
NUMBER OF APPROXIMATE BITS IN EACH ADDER GROUP.

SNR
(dB)

# approximate bits
in each group

Filter 1
70 [1,0,0,0]
60 [4,0,0,0]
50 [5,0,0,3]
40 [7,0,0,4]
30 [8,0,2,6]

Filter 2
80 [12,0,3,2,6,8,6,8]
70 [14,0,5,4,8,10,7,11]
60 [16,2,6,6,10,11,8,12]
50 [16,4,8,8,11,13,10,14]
40 [16,6,10,9,13,15,12,15]
30 [16,7,11,11,15 ,16,14,16]

Filter 3
50 [1,0,0]
40 [2,0,0]
30 [5,0,0]

Filter 4
70 [1,0,0]
60 [2,0,0]
50 [5,0,0]
40 [7,1,0]
30 [8,2,3]

Filter 5
80 [13,0,0,0,2,11]
70 [14,1,2,0,3,12]
60 [15,3,3,2,5,14]
50 [16,4,5,4,7,15]
40 [16,6,7,6,8,16]
30 [16,8,8,7,10,16]

SNR
(dB)

# approximate bits
in each group

Filter 6
80 [12,0,0,5,5,6]
70 [14,1,0,6,7,7]
60 [15,3,2,8,8,9]
50 [16,4,4,9,10,11]
40 [16,7,6,11,12,13]
30 [16,8,7,13,13,14]

Filter 7
80 [12,0,2,0,4,7,4,11]
70 [13,0,4,0,6,8,6,12]
60 [15,2,5,3,7,10,7,13]
50 [16,4,7,5,9,11,9,15]
40 [16,6,9,6,11,13,11,16]
30 [16,7,10,8,12,15,13,16]

Filter 8
80 [11,0,0,0,5]
70 [12,0,0,2,7]
60 [14,1,0,3,8]
50 [16,4,4,7,12]
40 [16,6,6,8,13]
30 [16,8,7,10,15]

Filter 9
40 [3,0,0]
30 [5,0,2]

Filter 10
80 [10,0,0,2,5,9]
70 [12,0,0,4,6,11]
60 [14,0,2,5,8,13]
50 [16,4,6,8,11,16]
40 [16,6,8,10,13,16]
30 [16,7,10,12,15,16]

while maintaining the same SNR value, is due to the fact
that different approximations for the MCM block’s adders are
considered, while in [1] adders in this block have all the same
approximation. It is also worth to mention that the method
presented in this section revealed greater area and power
reductions, for the same SNR value, than the method presented
in Section IV, since it reduces area also in the register-add
block (where the biggest savings occured) and allows a better
fine-tuning of the error introduced in the filter.

VI. CONCLUSION

Approximate computing has being presented as a viable op-
tion to reduce implementation costs in applications resilient to
error, allowing some errors to occur in its outputs. However the
results should be maintain qualitatively acceptable, according
to the usage they are design for. In this paper two approximate
computing methods for FIR filter implementation in hardware
were presented, one at the architectural level and another at
the logic level.

The first method reduced the area needed for the FIR filter
implementation, by removing adders in the MCM block of
an existing shift-adds architecture and making the necessary
connections to minimize the error at its outputs. This method
achieved reductions in area and power up to 33% and 22.6%,
respectively, with a SNR of 30 dB. The second method reduced
the area by replacing the conventional adders in an existing
shift-adds FIR filter architecture by an approximate adder [1],
which copies k bits of one of the operands to the result and

needs less area to be implemented. This method achieved
better area and power savings than the first method, presenting
for a SNR of 60 dB savings in area and power up to 56.7%
and 45.6%, respectively. This savings result not only from
the MCM block but also frim the register-adder block, in
which more adders area avalilable an can be replaced without
increasing to much the erros on the output. It was also shown
that errors in adders with low depth in the MCM block leads
to greater errors at its outputs than in highest depth adders, due
to left shifts along the adder-tree which magnifies the error.
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