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Abstract 

 

The growth of distributed generation (DG) presents a rising challenge for the regulation of the nodal 

profile in low-voltage (LV) networks. To lessen the impact caused by distributed energy resources 

(DERs), namely due to voltage rise, decentralized voltage control strategies have been gaining 

prominence. However, these methods carry several, often overlooked, drawbacks that can 

compromise a grid’s voltage profile. In this thesis, we examine such limitations, concurrently proposing 

an adequate autonomous system model that can act as a suitable workaround, within possibility. We 

model several reduced circuit networks and a basic control algorithm, then expanding upon the latter 

as the issues accrue. Of these, the main hindrance comes in the form of system instability, due to a 

non-convergent behavior of the algorithm, followed by restrictions on the generators’ power output. An 

alternating power controller is thus put forward, using each controller’s power gain as a means to 

ensure the system’s stability, and afterwards computationally simulated. The base network model is 

then expanded upon to account for the effects on stability that concentrating DG and distancing the 

generating busses have. We finalize with the proposal of an alternate voltage error integration 

based controller that removes the controllers’ operation simultaneity, responsible for the inherent 

unpredictability of the profile’s behavior tied to the unbalanced distribution of DERs through the 

phases. While theoretical feasible, this thesis ultimately demonstrates that the large-scale adoption of 

a decentralized strategy cannot go without a much more in-depth study on its limitations, particularly 

using a more realistic study scenario. 

 

Index terms – Distributed energy resources, decentralized voltage control strategy, system 

instability, alternating power controller, controller power gain, voltage error integration. 
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Resumo Analítico 

 

Com o crescimento de geração distribuída (GD), existe um desafio crescente em relação à 

regulação do perfil de tensão em redes de baixa tensão (BT). Para atenuar o impacto causado por 

elevações de tensão devido à inclusão de recursos de energia distribuídos (RED), estratégias de 

controlo de tensão descentralizadas têm ganhado tracção. Porém, estas estratégias acarretam  

desvantagens (frequentemente negligenciadas) que podem comprometer o perfil de uma rede 

eléctrica. Nesta tese, examinamos tais limitações, propondo concorrentemente um modelo de 

controlo autónomo que logre contorna-las, dentro do possível. Modelos de circuito reduzido e um 

algoritmo de controlo básico foram concebidos, desenvolvendo este último ao longo do trabalho. O 

principal entrave advém de instabilidade no sistema, devido à uma não-convergência do erro de 

tensão, seguido de restrições na potência gerada. Um controlador de potência alternado é então 

apresentado, utilizando o ganho de potência de cada gerador para assegurar a estabilidade, e 

depois simulado computacionalmente. A rede original é seguidamente expandida, contabilizado os 

efeitos que a concentração e a dispersão de GD têm na sua estabilidade. Finalizamos com a 

proposta de um controlador alternativo, baseado na integração da área do erro de tensão, que 

remove a simultaneidade operacional dos controladores responsável pela imprevisibilidade do 

comportamento do perfil, ligada à distribuição desequilibrada dos REDs pelas fases. Embora 

teoricamente factível, em última análise, esta tese demonstra que a adopção em larga escala de 

estratégias descentralizadas não pode ocorrer sem um estudo mais aprofundado sobre as suas 

limitações, particularmente recorrendo a um cenário de estudo mais realista. 

 

Palavras-chave – Recursos de energia distribuídos, estratégias de controlo de tensão 

descentralizadas, controlador de potência alternado, instabilidade no sistema, ganho de potência, 

integração da área do erro de tensão. 

 

 

 

 

 

 

 



III 
 

Table of Contents 

1 Introduction ...…...….…………………………………………..……………………………………… 1 

 1.1 State-of-the-art and Motivation ………...………………………………………………………. 1 

 1.2 Objective and Structure ………………………………………………………………………... 3 

2 Decentralized System Modeling ………………………………………………………………….. 5 

 2.1 Low-Voltage Network Outline …………………………………………………………………... 5 

 2.1.1 Reduced Circuit Characterization ……………………………………………………….. 5 

 2.1.2 Study Models ……………………………………………………………………………... 9 

 2.2 Decentralized Controller Logic ……………………………………….………………………. 12 

 2.2.1 Basic Voltage Control Algorithm ……………………………………………………….. 12 

 2.2.2 Algorithm Convergence Criteria ……………………………………………………….. 13 

 2.2.3 Instability and Oscillation Power Gain Threshold ……………………………………... 16 

3 Limits to Fully Decentralized Voltage Control ………………………………………………... 18 

 3.1 Approaches to the Controllers’ Power Gain ………………………………………………… 18 

 3.1.1 Common Network Gain …………………………………………………………………. 18 

 3.1.2 Gain through Inverse Impedance ……………………………………………………… 22 

 3.1.3 Alternative Strategies …………………………………………………………………… 25 

 3.2 Limitations on Injected Power …………………………………………………………………. 27 

 3.2.1 Generator Operational Area ……………………………………………………………... 27 

 3.2.2 Power Coordinates Solution Line Set …………………………………………………... 30 

 3.3 Updated Controller Logic ……………………………………………………………………... 32 

 3.3.1 Bounded to the Maximum Apparent Power Limit Curve ………………………………. 33 

 3.3.2 Active Power Shift by Foresight ………………………………………...………………. 34 

4 Simulation Results ………………………………………………………………………….……... 36 

 4.1 Establishing the Initial Voltage Error ………………………………………………………….. 36 

 4.2 Voltage Error Behavior and System Performance …………………………………………. 38 

 4.3 Power Gains and Optimal Performance ……………………………………………………… 46 

 4.4 Active and Reactive Power Curtailment ……………………………………………………… 48 

 4.5 Additional Alteration to the Algorithm ………………………………………………………... 53 

5 Expanding the Study Model ………………………………………………………………………... 54 

 5.1 Concentrated Distributed Generation ………………………………………………………... 54 

 5.1.1 Effects on Stability ………………………………………………………………...……… 54 

 5.1.2 Effects on the Initial Voltage Error ……………………………………………………… 56 

 5.2 Anchoring ………………………………………………………………………………………… 60 

 5.3 Dispersion of Distributed Generation …………………………………………………..……. 61 

 

 

 

 



IV 
 

6 Voltage Error Area Integration …………………………………………………………………… 66 

 6.1 Voltage Error Area Correction ………………………………………………………………... 67 

 6.2 Voltage Error Behavior and System Performance …………………………………………. 69 

 6.3 Dynamic Error Sampling ..……………………………………………………………………... 72 

 6.4 Applied to a Full Grid …………………………………………………………………………… 75 

7 Conclusions …………………………………………………………………………………………. 77 

 7.1 Summary ………………………………………………………………………………………... 77 

 7.2 Outlook ………………………………………………………………………………………….. 80 

Bibliography ………………………………………………………………………………………………... 81 

Annex A - MATLAB Code for Discrete Controller ……………………………..…………………... 82 

Annex B - MATLAB Code for Continuous Controller …………………………………………….. 84 

Annex C - MATLAB Code for ini_cond_error  Func. ………………………………………………. 87 

Annex D - MATLAB Code for matrixbuild  Func. …………………………………..……………... 88 

Annex E - MATLAB Code for pf3ph  Func. ………………………………………………………….. 90 

Annex F - MATLAB Code for setlineadj  Func. ……………………………………………………. 91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 
 

List of Figures 

Chapter 2 

2.1 Single line model of a feeder network with a load and a DER. 5 

2.2 Figurative example of a voltage rise in phase R,     , and the resulting voltage drop in phase T, 

    , induced by an active power injection change,     . 

7 

2.3 Four-wired LV test circuit used as a foundation for the study on DER injection. We can notice two 

generators (blue and red), and how their loop resistances    
   and    

   are obtained. Additionally, we 

can also see their common-path resistance (inside the purple box), from which the respective non-

diagonal terms of    , in this case   
     

  , will be derived from. 

9 

2.4 Plane representation of the stability criteria for the control system. If the eigenvalues of    ,     , are 

all contained within the pink area the system will be able to converge. Furthermore, this convergence 

will be non-oscillatory iff all eigenvalues are contained within the blue line segment. 

15 

 

Chapter 3 

3.1 Eigenvalue gradients    for the different study models, with         . Note that the colors are NOT 

indicative of the DERs themselves, as was the case in Table I and II. 

18 

3.2 Diagonal terms of        for the different study models, with         . 18 

3.3 Effects of distancing (i.e. adding more impedance) the DG cluster from the source bus on the 

maximum  . The topmost line represents the same example as Fig 3.2, with each subsequent line 

below representative of an gradual increase in the loop impedance between the cluster and the 

source. In matrix terms, this amounts to a                  increment when compared with the 

line immediately above. 

20 

3.4 Eigenvalue gradients    for the different study models, with          . Note that, again, the colors 

are NOT indicative of the DERs themselves, as was the case in Table I and II. 

22 

3.5 Diagonal terms of        for the different study models, with          . The colors ARE indicative of 

the DERs and we see that, for the same phase distribution, the terms of        are consistent per 

their positioning. 

22 

3.6 Comparison of the effects of distancing the DG cluster from the source bus with a common network 

(dotted lines) and an admittance based (full lines) power gain on the maximum  . As in Fig 3.3, the 

topmost line represents the same example as Fig 3.2, with each subsequent line below 

representative of an gradual increase in the loop impedance between the cluster and the source. In 

matrix terms, this amounts to a                  increment when compared with the line 

immediately above. 

24 

3.7 Global Horizontal Irradiation values for Continental Portugal. Source: Solargis, GHI Solar Map © 

2015. 

27 

3.8       plane representation of the maximum apparent power    (green semi-circumference) and the 

operational area of a generator (light green area), assuming      .    ,     and     denote the 

restrictions imposed on the system by the armature current, the field current, and the end region 

heating limit, respectively. Yellow areas represent the zones within    where the injected power 

violates the last two provisions. We opted to define    towards the rated VA as that limit will be more 

pertinent for cases of voltage spikes. 

 

28 



VI 
 

3.9       plane hypothetical representations of     , assuming that        for demonstrative 

purposes. The highlighted blue line segment contains all the possible solutions for active and 

reactive power. Two scenarios are shown; in the first the leftmost abscissa is positive while in the 

second its null due to the set restrictions. In a situation where      is equal to zero,      will be 

tangent to the semi-circumference. 

30 

3.10       plane hypothetical representations of the possible applications of the inherent properties of 

    . In the leftmost, we see how the system would handle an unexpected drop in available active 

power   , and in the rightmost how it would fix the power coordinates to a specific          . In 

both cases, the network’s voltage profile would remain unchanged despite the variation in the 

injected active and reactive power. 

31 

3.11 Examples of possible power coordinates solution sets in a [P,Q] plane, with each hypothetical line 

corresponding to a specific voltage profile, and     and     defining the generator’s operational 

range. 

31 

3.12       plane hypothetical representations the logical steps taken by the controller when correcting an 

instance of nodal voltage deviation, when using the    bounded strategy. Green vertical arrows 

represent     , purple horizontal arrows      and the red line the solution set of values per     . 

33 

3.13       plane hypothetical representations the logical steps taken by the controller when correcting an 

instance of nodal voltage deviation, when using an the foresight strategy. Green vertical arrows 

represent     , purple horizontal arrows      and the red line the solution set of values per     . 

34 

 

Chapter 4 

4.1-4.2 Evolution of the state variable error for the evenly-distributed per phase study model 1, with 

                (left) and                 (right), up to twenty iterations. 

38 
 

4.3-4.4 Evolution of the state variable error for the evenly-distributed per phase study model 2, with 

                (left) and                 (right), up to twenty iterations. 

39 

4.5-4.6 Evolution of the state variable error for the evenly-distributed per phase study model 3, with 

                (left) and                 (right), up to twenty iterations. 

39 

4.7-4.8 Evolution of the state variable error for the evenly-distributed per phase study model 4, with 

                (left) and                 (right), up to twenty iterations. 

40 

4.9-4.10 Evolution of the state variable error for the evenly-distributed per phase study model 5, with 

                (left) and                 (right), up to twenty iterations. 

40 

4.11-4.12 Evolution of the state variable error for the evenly-distributed per phase study model 6, with 

                (left) and                 (right), up to twenty iterations. 

41 

4.13-4.14 Evolution of the state variable error for the unevenly-distributed per phase study model 7, with 

                (left) and                 (right), up to twenty iterations. 

42 

4.15-4.16 Evolution of the state variable error for the unevenly-distributed per phase study model 8, with 

                (left) and                 (right), up to twenty iterations. 

42 

4.17-4.18 Evolution of the state variable error for the unevenly-distributed per phase study model 9, with 

                (left) and                 (right), up to twenty iterations. 

43 

4.19-4.20 Evolution of the state variable error for the unevenly-distributed per phase study model 10, 

with                 (left) and                 (right), up to twenty iterations. 

43 

4.21-4.22 Evolution of the state variable error for the unevenly-distributed per phase study model 11, 

with                 (left) and                 (right), up to twenty iterations. 

44 

 



VII 
 

4.23-4.24 Evolution of the state variable error for the unevenly-distributed per phase study model 12, 

with                 (left) and                 (right), up to twenty iterations. 

44 

4.25-4.26 Evolution of the state variable error for the unevenly-distributed per phase study model 13, 

with                 (left) and                 (right), up to twenty iterations. 

45 

4.27-4.28 Evolution of the state variable error for the unevenly-distributed per phase study model 14, 

with                 (left) and                 (right), up to twenty iterations. 

45 

4.29-4.30 Evolution of the control variables for the studied models 1 and 2, with                , up to a 

hundred iterations. 

48 

4.31-4.34 Evolution of the control variables for the studied models 3 through 6, with                , up 

to a hundred iterations. 

49 

4.35-4.38 Evolution of the control variables for the studied models 7 through 10, with                , up 

to a hundred iterations. 

50 

4.39-4.42 Evolution of the control variables for the studied models 11 through 14, with                , 

up to a hundred iterations. 

51 

4.43       plane hypothetical representations the logical steps taken by the controller when 

applying the abovementioned function, represented by the dashed yellow arrow. The dotted 

red line represents the        slope line. Note that both purple arrows, depicting the active 

power shift, have the same length. 

53 

 

Chapter 5 

5.1 Evolution of the state variable error with 6 DERs, for      , with the same initial values as the ones 

listed in Table XIV. 

58 
 

5.2 Evolution of the state variable error with 7 DERs, for      , with the same initial values as the ones 

listed in Table XIV. 

59 

5.3 General representation of the relation between the power gain and lag, and the shift created by the 

“reduction” of    . Notice how the lowest point in both curves is closer to their respective stability limit 

       rather than                 , which is the case for most scenarios involving unbalanced DG 

through RST. 

60 

5.4 Evolution of the Maximum Common Gain Factor for Study Model 6 in function of the line impedance 

coefficient  . 

62 

5.5 Evolution of the Maximum Common Gain Factor for Study Model 6 in function of the line impedance 

coefficient   (quadratic variant). 

63 

5.6 Evolution of the         and         ratios in function of the line impedance coefficient  : left → 

linear  increment (Fig 5.4), right → quadratic increment (Fig 5.5). The major difference between the 

two cases lies in that the         ratio plateaus just above 0.5 in the first case, indicating that 

               , while in the latter it decays towards zero as   increases, similar to        . 

64 

5.7 Comparison between the two different spacing methods. As stated, the bottom bus distribution 

results in a higher Maximum Common Gain Factor  , though the distance between generating 

busses     and     remains unaltered for both cases. 

64 

5.8 Evolution of the Maximum Common Gain Factor for a full 3bus-by-3phase node grid (9 DERs) in 

function of the line impedance coefficient  , for both spacing variants. 

65 

 

 

 



VIII 
 

Chapter 6 

6.1 Variation of the lag over a hundred simulations as a result of the extra term with a random 

value between     and     of        , for study model 6 (left) and the full grid scenario in 

Chapter 5 (right). The dotted lines represent their values without these fluctuations, and the 

red ones stand for the average lag. 

66 

6.2 Demonstrative example of an integral voltage error correction over a period of time. The 

algorithm will act upon the voltage difference only when the darken integral area surpasses a 

set limit   . 

68 

6.3 Hypothetical voltage error curve, and its respective means taken from the entire area and 

sampled from the dashed demarcation. The latter, as we can see, is closer to the error at the 

endmost, and thus more adequate for the controller to use as a basis for the consequent 

power shift. 

68 

6.4-6.5 Evolution of the state variable error for a continuous system, for study model 1, employing 

integration of the voltage error area, during a one second interval, with    . 

69 

6.6-6.7 Evolution of the state variable error for a continuous system, for study model 6, employing 

integration of the voltage error area, during a one second interval, with    . 

70 

6.8-6.9 Evolution of the state variable error for a continuous system, for study model 9, employing 

integration of the voltage error area, during a one second interval, with    . 

70 

6.10-6.11 Evolution of the state variable error for a continuous system, for study model 14, employing 

integration of the voltage error area, during a one second interval, with    . 

71 

6.13-6.14 Evolution of the state variable error for a continuous system, for study model 1, employing 

integration of the voltage error area and dynamic sampling, during a one second interval, with 

   . 

73 

6.15-6.16 Evolution of the state variable error for a continuous system, for study model 6, employing 

integration of the voltage error area and dynamic sampling, during a one second interval, with 

   . 

74 

6.17-6.18 Evolution of the state variable error for a continuous system, for study model 9, employing 

integration of the voltage error area and dynamic sampling, during a one second interval, with 

   . 

74 

6.19-6.20 Evolution of the state variable error for a continuous system, for study model 14, employing 

integration of the voltage error area and dynamic sampling, during a one second interval, with 

   . 

75 

6.21-6.22 Evolution of the state variable error in a full grid (9 DERs), following the same setup as the 

previous eight figures. Each color stands for one of the nine DERs connected to the feeder 

grid. 

76 

 

 

 

 

 



IX 
 

List of Equations 

               
         

  
 6 

                   6 

                       6 

                           6 

         
      

        
   

  
        

   
                            

         
 7 

         
   

    

  
     

    
                            

         
 7 

(7)    
   

   
                   

   
     

                     
                                   

         
 7 

                              8 

                           13 

                           13 

                                          13 

                                    13 

                    14 

               

                     

                     

                     
  16 

                                        16 

                                    16 

       
                                                 

         
  

        
              

16 

       
                                           

        
        

   

                       
16 

     
                                                   

                                           
16 

                         

 

   

   17 

                                           17 



X 
 

                                   17 

       
                                                  

  

        
         

  
17 

       
                                            

        
  

       
   

17 

            
 

              
    17 

         

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

       

 
            

 
       

 
 
 
 
 

 
 
 
 
  
 
 
 
 

 25 

       
    

    
  28 

                                    29 

                                   29 

     
    

      
               

    
 

         
 

29 

                                           
 
   29 

                       30 

                                   32 

 

 

 

 

 

 

 

 

 



XI 
 

List of Tables 

                                      10 

                                         11 

                                                                   12 

                                                                         14 

                                                                     19 

                                                                       23 

                                                                                          
                   

33 

                                                                                           
                     

34 

                                                                  37 

                                                                   37 

                                                         46 

                                                            46 

                                                                   55 

                                                                       55 

 

 

 

 

 

 

 

 

 

 

 

 

 



XII 
 

Nomenclature 

   distributed generation 

   low-voltage 

    distributed energy resource 

    distributed network operator 

   photovoltaic 

      network phases, neutral 

   initial nodal voltage 

   generated voltage 

   voltage set-point 

   voltage error 

      generated reactive, active power 

       initial reactive, active injected power 

      final (post-correction) reactive, active injected power 

   maximum apparent power 

   available active power 

  bus-to-bus line impedance 

     network’s internodal line reactance-to-resistance ratio 

    reduced resistance matrix 

   initial conditions variable 

     inverse diagonal resistance matrix 

          voltage dependent reactive, active power controller 

   power factor 

      controller reactive, active power gain 

    overall gain matrix 

  common gain factor 

    controller specific power gain 

    iteration coefficient matrix 

     eigenvalues of the iteration coefficient matrix 

  eigenvalue gradient 

       instable behavior threshold overall gain matrix 

       oscillatory behavior threshold overall gain matrix 

   voltage error area set-point 

 

 

 

 

 

 



XIII 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Chapter 1 

Introduction 

 

1.1 State-of-the-art and Motivation 

Microgeneration, defined as local small-scale production of renewable electric power by traditional 

consumers as to achieve energetic self-sufficiency and/or to sell it back to the Distribution Network 

Operator (DNO), has been steadily rising in prominence over the past two decades. And, in light of the 

present-day tendency towards achieving a sustainable development, it is reasonable to expect that it 

will continue to expand over the foreseeable future, particularly in developed countries as an integral 

cornerstone of a larger energetic sustainability model [1]-[3]. The advent of smaller and, perhaps most 

importantly, affordable photovoltaic (PV) panels, as a direct outcome of an expanding and ever-

evolving manufacture process of PV components [4], has resulted in the considerable growth of 

scaled-down generation sites located downstream in the low-voltage (LV) electric network. This trend 

has raised several pressing concerns within the pertaining academia seeing that most of the current 

distribution network’s infrastructure wasn’t originally conceived to have a large number of distributed 

generation (DG) clusters connected to it [5]. Naturally, this issue becomes tied to the notion of a grid’s 

hosting capacity: the limit of Distributed Energy Resource (DER) penetration under which a power 

system can effectively operate, expounded in [6]. 

 

The primary matter of contention is related to the phenomenon of voltage rise, which can be 

observed in distribution networks, where the reactance-to-resistance ratio is small (such as is the case 

with LV), with a significant number of installed DERs [7]. This unwanted deviation in the network’s 

voltage profile comes as a consequence of the inversion of the regular power flow, caused by the 

substantial injection of active power into the grid by the connected DG. As the name implies, in 

addition to causing an unbalance in the grid’s nodal voltage values, these occurrences will often also 

raise their values past their safety limits. The network’s functionality as a whole can thus be 

compromised, and perhaps even paralyzed in a worst case scenario. Compounding the issue further, 

due to the decentralized nature of production, the load distribution throughout the LV networks 

(typically three-phased in Europe) will invariably be unbalanced owing to the inherently single-phase 

characteristics of the DG elements. In such circumstances, a corrective voltage reduction in one 

phase will result in a proportional increase in the remaining two phases’ nodes, which in turn may 

cause them to go over the limit, thus perpetuating the problem [8]. It’s this issue of voltage cascading 

that will further exacerbate the negative impact of the previously mentioned instances of voltage rise, 

and will be and will be at the core of the matter when designing a control strategy for the DG system. 
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In order to avoid these situations, it has been proposed, and extensively researched as in [9]-[11], 

that the each individual nodal voltage be regulated directly by the DNO. The company would monitor 

the entire grid around-the-clock, compiling the gathered data and using it to ensure that its voltage 

profile remains stabilized, issuing remote orders to all of the individual power controllers, which 

regulate the power injected by each DER. This is referred to as a centralized control strategy. 

Adopting such approach would allow for a maximization of a network’s overall hosting capacity, while 

at the same time ensuring a fairer distribution of the incurred burden, spreading it as evenly as 

possible throughout its users. However, such degree of control is too heavily reliant on intra-network 

communications, making it less than optimal given the ever-present possibility of disruptions and/or 

delays in said links. Moreover, the sheer scale of the existing (and projected) DG makes this method 

considerably difficult and costly to implement due to the amount of supplementary equipment that is 

required for its proper execution. Ultimately, the hefty price associated with such investment would be 

passed on to the micro-producers, making it economically unappealing to both them and the PV 

manufacturers. 

 

On account of the aforementioned disadvantages, distributed (i.e. decentralized) voltage control 

strategies have been gaining prominence as a more practical alternative to the above method [12]-

[14]. Their general aim is to have the injected active and reactive power in each of the generating 

nodes regulated in an autonomous manner, based solely on the observed nodal voltage, by a local 

power controller, without any (or at times minimal) input from an outside source, be it the DNO or the 

remaining DERs. In essence, each individual controller would be responsible for keeping the voltage 

of its respective node fixed at a certain preset value, automatically increasing or decreasing the power 

injected to the grid to counterbalance any detected deviations. Theoretically, this self-dependency 

would reduce the impact DG has on any feeder network’s voltage profile to a virtual non-issue, thus 

keeping it largely undisturbed. Couple that with a dispensable study of the network’s intricate 

topological details and a more cost-competitive investment in infrastructure, makes this approach all 

the more ideal for the often poorly characterized LV grids and in the face of rapidly expanding number 

of DG installations. 

 

However, despite its many benefits (enumerated and otherwise), adopting a fully decentralized 

voltage control stratagem poses its significant share of underlying drawbacks, of which there’s been a 

somewhat startling lack of effort to address. The most egregious of all pertains to stability of a 

distribution network’s voltage profile, which cannot be wholly guaranteed without any sort of master 

controller to oversee the control system’s operation. Examples due a lack thereof, ranging from 

voltage oscillation to outright crippling spikes and/or drops in grid’s nodes, have already been 

documented [15]. Beyond the absence of a supervising mechanism, we can conjecture that the 

above-mentioned phenomenon of voltage rise is the main contributor for these occurrences, alongside 

the unbalanced load conditions throughout the grid and limitations inherent to the controllers’ 

electronics.  
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Overall, there seems to be a worrying underestimation of just how the entire autonomous control 

process is influenced by the number and distribution of the DERs, and how it affects the calculated 

power flow solution. And, as a consequence, how small variations in the grid’s scheme, be it the 

inclusion/removal or simply altering a generator’s position, can yield vastly different results in terms of 

initial voltage deviation, error behavior and final values for the injected power. Finally, there’s also the 

ubiquitous environmental factor and the various physical limits of the pertinent electrical equipment to 

take into account, which will inevitably place further constraints relating to the generators’ power 

output. 

 

1.2 Objective and Structure 

The scope of this work is thus to properly identify and then expound on these inherent concerns 

lying at the heart of a fully decentralized voltage control scheme, that chiefly arise as a consequence 

of voltage rise occurrences in downstream distribution networks with concentrated DG. In particular, 

we aim to demonstrate the large degree of fallibility in an autonomous control system when it comes to 

its stability, that is its ability to correct any deviation from the voltage profile set-point, when pressed by 

the myriad of factors that affect a feeder network. Concurrently, we’ll also strive to propose and 

properly test an adequate theoretical voltage control scheme, as part of a wider strategy to consign 

micro-producers as voltage regulators, that can (at least partially) counteract these flaws. 

 

We’ll start in Chapter 2 by defining a suitable model for a LV network to use as our base, as well 

as an array of study cases derived from it. Employing then a basic voltage control algorithm, we’ll 

study the problems that may arise during its operational period, gradually building a more robust 

system for the controllers, to lessen the encountered issues. As stated before, ensuring that the 

control algorithm remains stable stands as the most pressing drawback of a fully decentralized control 

scheme. Our main focus in the following chapters will hence fall upon determining and analyzing the 

convergence of the evaluated control algorithm, as its iterative nature can compromise the 

convergence of its state variable (i.e. the nodal voltage) to its predefined set-point.  

 

It’s through delineating the system’s tipping-point, relating to its stability, that in Chapter 3 we’ll be 

able to then compare the different methodologies that can be employed for the controllers power 

gains. Properly defining these values becomes critical in this context, as they'll will greatly influence 

the behavior of the voltage error, and thus the convergence of the state variable and performance (i.e. 

speed) of the system's operation. Beyond stability, we'll also define the restrictions on injected power, 

inherent to the physical attributes of a DER. While these won't affect the algorithm's convergence, their 

presence necessitates a reevaluation nonetheless, so that a generator can properly operate within its 

defined operational area. 
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Beyond theoretical assessments, Chapter 4 is dedicated to testing the system's behavior and 

performance with the aforementioned conditioning, via computer simulations run through MATLAB. 

These trials will focus primarily on analyzing its speed and the final  obtained values for the injected 

power, as a means to corroborate the previously exposed hypotheses. 

 

After running through the base criteria and testing phase, Chapter 5 expands upon the original 

network, in an effort to shift from ideal conditions towards more realistic ones, to demonstrate how the 

controllers’ performance changes (or, in this specific case, deteriorates). The two main focus will be on 

the concentration and dispersion of DG. The former concerns the inclusion of more generators onto 

the same 3bus-by-3phase grid, and how these inclusions adversely affect both stability, performance, 

and the initial voltage error. The latter relates to the distancing of the generating busses, by increasing 

the in-between line impedance, and how it can be used to better isolate DG clusters from another, 

thus enhancing the overall system robustness. 

 

The study will conclude in Chapter 6 with a concise examination into a time-based voltage error 

integration method as a possible alternative to the discrete iterative algorithm presented up until that 

point. The motivation for this stems from the inclusion of voltage fluctuations in the generating nodes, 

that greatly disturb the system's operation, exacerbating its performance issues. To counteract these 

inconsistencies, rather than a constant operation, the controller will only act upon a voltage deviation 

when the integral error area surpasses a certain set-point, then basing the corrective power shift on its 

average. 

 

By the point we reach our conclusions, we hope that we’ll be able to provide a better understanding 

of the underlying issues that plague a fully decentralized voltage control scheme, while contributing 

with a viable voltage regulation strategy for micro-producers, as was originally requested of this work. 
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Chapter 2 

Decentralized System Modeling 

 

2.1 Low-Voltage Network Outline 

First and foremost, for us to elaborate on the possible methods for voltage control in downstream 

LV networks, it’s necessary to assemble a suitable model of a basic feeder network under unbalanced 

load and generation conditions. All arranged so that we can use it to simulate the behavior of the 

different state and control variables involved. To study the voltage variation resultant from DER 

injections, the typical methodology dictates the compilation of the nodal admittance matrix and 

Thévenin impedances, which in turn are necessary to calculate the power flow. To compose the 

former, it becomes essential to know all of the intricate details of the feeder network, such as its 

overall configuration, arrangement and characteristics of every single wire that composes it. Given the 

sheer complexity and scope of the involved LV networks, this analysis naturally comes off as a highly 

impractical for any intended examination of the voltage variation, this one included. 

 

2.1.1 Reduced Circuit Characterization 

A more viable alternative is therefore preferable. As it’s more thoroughly delineated in [6], a 

substitute impedance matrix can be built based solely on the network’s nodes that are connected to a 

DER, and consequently much more pertinent to our interest. Not only is the resulting proxy vastly 

more simplified than its counterpart, this reduced circuit characterization is based on a simplistic 

topological inspection of a standard three-phased (plus neutral) feeder network and the cables ohmic 

characteristics, making it less information demanding. Such impedance matrix encloses sufficient 

information to analyze voltage control algorithms as it represents the sensitivities of nodal voltages 

with regard to power injections [8]. 

 

Before tackling the four-wire case, however, we’ll first take a look at the hypothetical example 

presented below. 

 

            Single line model of a feeder network with a load and a DER. 

 

Calculating the approximate voltage drop     in the line between bus    and    in          , with 

         and          representing respectively the net real and reactive power associated 

with the DER generator, we arrive at the expression: 
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Considering the latter’s voltage value as unitary (in per unit), we attain: 

  

                   

 

If one then assumes that the load at each generating node remains more or less equal, and by 

applying the principal of linearity in    , a subsequent voltage drop increase or decrease will be the 

result solely of the variation in the DER’s injected power. Therefore: 

  

                       

 

Going back to    , assuming that the voltage at the source bus    remains constant, we can conclude: 

 

                           

 

Expanding now     to a three-phase (R,S,T) plus neutral (N) system, the proxy impedance matrix 

will be equal to              or, if the network’s internodal line reactance-to-resistance ratio     is 

constant throughout its entirety, further simplified to                 . 

 

As a result,     will have the same  -by-  dimensions, with   being the number of connected DER 

generators, and the remaining terms become  -length vectors representing the voltage and injected 

power at each generating node. The diagonal terms of     express the total upstream resistance seen 

by each DER, that is to say, the sum of both the source-to-node   trough   resistance    
 

 and the 

node-to-source trough the neutral   resistance    
 . Moreover, the non-diagonal terms of the matrix 

are representative of the influence a variation of the injected power in one of the nodes will have on 

the voltage of its remaining counterparts, and are affected not only by the distance to the source but 

also the grid configuration itself. Fig 2.2 showcases an illustrative example of the effect of an induced 

voltage rise      has on both phase R and its propagating effect on phase T     .  

 

As shown below, the phasorial sum of     with the orthogonal projection of the neutral voltage rise 

   
      in phase R, results in an overall drop of the amplitude in T. As the expression of the new 

voltage is indicative of, this phenomenon results from the mutually shared neutral resistance    
  

between the two phases, assuming in this case that both are equally distant to the source  . Further 

supposing, that the neutral currents are all delayed and advanced by 120º degrees in relation to one 

another and in-phase with their respective line-to-neutral voltages, we can estimate that      

       
      . 
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            Figurative example of a voltage rise in phase R,     , and the resulting voltage drop in phase T,     , 

induced by an active power injection change,     .      

 

Applying this assumption to a feeder network with a  -number of DERs, each single one possibly 

connected to different phases and with varying distances to the source, we can write the terms of the 

resistance matrix     as: 

 

     
      

        
   

  
        

   
                            

         
     

 

where        denotes what is known as the common-path resistance between   and   which, as the 

name implies, refers to the overlapping source-to-node resistance seen by the two generating nodes, 

both through   and  . Going further as to consider that the cable impedance between two buses of 

the grid, connected or otherwise, is always the same in both the three phases and the neutral,     can 

simplified into:  

 

     
   

    

  
     

    
                            

         
     

 

where    
   stands for the smallest loop resistance between   and  , in other words whichever    

 
    

  

and    
 

    
  is the smallest of the two. Combining     and    , we lastly arrive at the general 

expression for a feeder network’s phase-to-neutral voltage profile variation at a generating node  , 

when subjected to alterations in the injected power in a node  : 

 

   
   

   
                   

   
     

                     
                                   

         
     

 

or expanded in matrix form to take in account simultaneous fluctuations in the DER injection: 
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With the intent to verify the relative accuracy of the proposed approximation, several tests were 

conducted, comparing the theoretical model resistance matrix with that obtained in practice through 

power-flow study, using a several grid configurations and loading situations. Results show that for light 

loads, both active and reactive, and purely resistive cables, the error for the taken approach is in the 

magnitude of   , well within what could be considered a satisfactory margin. As the reactance-to-

resistance ratio rises, this error increases as expected, reaching the order of 10% with a        , and 

nearly to 20% with a heavier load. However, given that that the scope of this work chiefly concerns 

itself with issues occurring at low voltage networks, where the     is small, and at periods where the 

overall DER load is relatively light, we can surmise that the proposed reduced circuit characterization 

is more than appropriate for usage in any follow-up calculations and simulations for the remainder of 

this study.  
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2.1.2 Study Models 

Having acquired a method to construct a resistance matrix, serving as a stand-in for the impedance 

    seeing as                 , out of a simplified analysis of any given four-wire feeder network, we 

now need to define a spectrum of exemplary grid models to be subjected for review. These study 

cases will serve to illustrate a broad range of situations that can potentially be found in any typical LV 

network with DG, allowing for a more comprehensive assessment of the evolution of their voltage 

profile based on the variation of the injected power. Perhaps more important, it will be the comparison 

between the different configurations that will be illustrative of the sensitivity inherent to integration of 

DERs so far downstream, especially when it comes to the effects of an unbalanced load. This 

examination will demonstrate how fragile these systems’ stability can be, based on the positioning of 

the generators and the characteristics of the electrical cables alone, and how the simple act of moving 

a single generator can be potently compromising. Ultimately, it’ll also aid us in building a robust model 

for a distributed control solution to mitigate the innate problems that arise with the high concentration 

of DG clusters and the subsequent inversion of the power flow, and draw conclusions about its 

limitations. 

 

Firstly, we will characterize the LV test feeder, in this case a standard four-wire circuit with five 

busses (including the source), as seen below in Fig 2.3. To simplify future calculations, and in line with 

the reduced circuit characterization we’ve chosen to employ, the cable impedance between two nodes 

is considered equal throughout the entire network, as is the reactance-to-resistance ratio. For trialing 

purposes, three DER generators will be connected to this grid, spread throughout the three most 

downstream busses in a number of possible arrangements, to simulate the effects an unbalanced load 

will have on the overall evolution of the voltage profile at their nodes. With this archetype, we can 

provide a reasonable theoretical evaluation on the behavior of the nodal voltage under single-phase 

distributed generation, particularly on the effects of voltage rise which will then factor in the 

development of a decentralized control system. Moreover, it provides a basis that can be further 

expanded upon with the insertion of more DERs and/or busses. 

 

            Four-wired LV test circuit used as a foundation for the study on DER injection. We can notice two 

generators (blue and red), and how their loop resistances    
   and    

   are obtained. Additionally, we can also see 

their common-path resistance (inside the purple box), from which the respective non-diagonal terms of    , in this 

case   
     

  , will be derived from. 
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Table I and Table II provide 14 distinct cases in total, all the possible non-redundant combinations 

for the relative positioning to the leftmost generator in a 3bus-by-3phase grid by the remaining two, 

each numerated from one to fourteen. The former pertains to an equal distribution of DG through the 

phases, only varying the distance of each to the source, while the latter contains the remainder, where 

more than one generator is connected to one phase. These will be used as the fundamental examples 

from which we’ll to draw our main conclusions, ranging from its effects on stability to the behavior of in 

autonomous voltage control. A simplified diagram of the test feeder circuit is displayed in the second 

column, representing busses 2, 3 and 4 from Fig. 2.3, illustrating the position of the three DERs for 

each test model. The rightmost section contain the resulting resistance matrix for the feeder’s 

configuration, assuming an internodal impedance of         , for a         and a       base, which 

will figure predominantly in the coming simulations. These matrixes are arranged so that their diagonal 

terms are ordered from lowest, corresponding to the generator closest to the source, to highest, 

corresponding to the farthest.  
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For convenience’s sake, and from here on out, we’ll be keeping the same color mnemonic used in Tables I 

and II. The blue coded DER will correspond to the first line of the matrix    , that is the closest to the source, with 

the red DER representing the last, i.e. the farthest, and the green DER standing in-between the two.  
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2.2 Decentralized Controller Logic 
In response to the challenge that arises from the introduction of DG in downstream LV networks, 

chiefly concerning the stability of its voltage profile and the health of its various hardware components, 

we now move to discuss the basics of the power regulating method we are to employ. The commonly 

practiced solution for occurrences of overvoltage in the generating nodes, resulting from the 

unbalanced conditions often found in real-life scenarios, revolves around disconnecting the pertaining 

DER from the grid, thus reducing its voltage, as per    . This approach is referred to as an ON/OFF or 

    type controller. However, we’ve to consider the interconnectivity between generators since, as we 

saw, any change in the injected power will have a propagating effect. While shutting down a DER may 

resolve the issue in the connecting node, such action may lead to a substantial rise in the voltage of 

the remaining phases, hence the negative non-diagonal terms of    , and possibly inducing another 

instance of overvoltage, requiring additional shutdowns. This cascading effect may lead to an overall 

major loss in DER power generation from the slightest violations of the set voltage boundaries. Thus a 

controller design hinging on a less drastic power curtailment, as a means to regulate the voltage 

profile, is a preferable alternative. The objective is to keep the power curtailment to a minimum, thus 

maximizing the available of DG, while attain a controller capable of eliminating any voltage violation. 

 

2.2.1 Basic Voltage Control Algorithm 

For these reasons, and in lieu of the conclusions arrived at back in section 2.1, our basic voltage 

control algorithm relies on the discrete integration of the voltage error, obtained by the difference 

between its current value and a previously set-point   . As we will want to maximize the injected 

active power as much as possible, this value will be           , in which      stands for the 

maximum allowed nodal voltage and    the safety tolerance. By employing gradual and consecutive 

adjustments to both the injected active and reactive power based on this error, it will be able to 

counteract any irregularity it detects, until the nodal voltage reaches its desired set-point. This iterative 

process algorithm, as [8] describes it, can be summed up as in the following table: 

 

          
                                                                

       
                                                         

           

       
             -                                and gains 
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Accordingly, and with     in mind, the control and state equations concerning Step 2 and 3 of Table 

III are respectively given as: 

 

               
            

 

                           

 

                                          

 

where    and    represent the active and reactive power gains w.r.t. to the nodal voltage of each DER. 

As seen by (7), the interconnectivity of each DER generator means any form of power correction will 

have effects on the remainder, mathematically represented by the non-null terms for the reduced 

resistance matrix. In an ideal case scenario, these gains would be equal to the inverse matrix of     and 

    respectively, requiring the algorithm to run only for one iteration to correct the original error. For an 

autonomous local control, where DER is responsible for regulating their own voltage with local 

information only, the non-diagonal elements of these sensitivity matrices are null, reflecting the lack of 

outside input each decentralized controller has in the feeder grid. 

 

This method is not without its setbacks. Being an iterative process, such form of control brings 

about several key concerns in theory alone. Chief among them, the possibility of the system being 

unable to properly converge due to its innate characteristics or, to a lesser degree of severity, having 

oscillations occurring during its process. The number of necessary iterations for the voltage to enter an 

acceptable range is also important, as, in a real life situation, it’s in our best interest that any instances 

of overvoltage be corrected as swiftly as possible as to limit any risks placed on the grid’s perceived 

quality of service. Thus, a great deal of this work will revolve around the evaluation of the system’s 

convergence properties. That is to say, whether or not the controller is able to reach the desired value 

given the network configuration, its power gain and the various restrictions placed on both the state 

and control variables. It becomes essential then that we execute a thorough analysis of the impact 

each of these aspects has on the performance of the controller, as to define a suitable control strategy 

for the regulation of DERs in heavily clustered sections of the LV distribution network. 

 

2.2.2 Algorithm Convergence Criteria  

By combining equations      ,       and     , we can surmise the voltage update formula for the 

local control process as: 
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where     is a  -by-  identity matrix and                 , which we will designate as the overall 

gain matrix. We can evaluate the convergence of this update formula through the eigenvalues of the 

matrix that serves as the coefficient for the last obtained iterative term   , which we will designate as: 

 

                    

 

Per [16], the stability conditions for such process are met iff the absolute values of the eigenvalues 

of      are all less or equal to one. Furthermore, if said values are also non-negative and real the 

system will converge in a non-oscillatory manner, returning to its steady state through exponential 

decay of the error. As an illustrative example, in Table IV we showcase the eigenvalues for each of the 

fourteen models of Table I and II with an unitary gain matrix          : 
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           Plane representation of the stability criteria for the control system. If the eigenvalues of    ,     , are all 

contained within the pink area the system will be able to converge. Furthermore, this convergence will be non-

oscillatory iff all eigenvalues are contained within the blue line segment.    

 

As we can see, based on the above Table and Figure, only one of the models currently satisfies 

both the stability and the non-oscillation clause, and almost half of them are unstable altogether, all of 

which refer to unevenly phase-distributed models. This last fact is our first clue that the allotment of 

more than one generator per phase, as we will likely encounter in a real-life scenario for DG, 

contributes greatly to a system’s lack of stability. Mathematically and matrix-wise, this is seen by the 

presence of positive non-diagonal terms in    , which become negative in    , with values closer to 

those of the diagonal ones, which causes the observed greater dispersal between eigenvalues in the 

later examples, as it’ll be discussed in further detail ahead. Therefore, much of the goal concerning the 

guaranteeing a system’s stability will revolve around diminishing the influence these terms have in the 

eigenvalues of    , which in practice means decreasing the clout each DER has on its neighbors 

through the controller’s power gain  . 

  

With the obtained eigenvalues, we can judge that, in its current state, the algorithm will not 

converge to its voltage set-point in an admissible manner for nearly all of the network schemes, 

regardless of any given initial conditions. Therefore, in order to mitigate this vulnerability, it becomes 

necessary for the algorithm to update the power injections more conservatively through an attenuation 

factor, thus enabling its convergence. As     is an inherently fixed value, it falls upon the overall gain 

matrix     to act as the attenuating coefficient, allowing us to reduce the difference between the power 

values in-between consecutive iterative steps. The larger this attenuation (that is the smaller the terms 

of     get), the lesser the weight of the resistance matrix product will be over    , which will tend 

towards the identity matrix, and thus a set of eigenvalues closer to one. However, while lowering the 

power gains will help stabilize the system, they will also make the corrective process slower which, as 

stated before, can also be detrimental. As such, we must strive to find a compromise between speed 

and robustness of the local control process. 
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2.2.3 Instability and Oscillation Power Gain Threshold 

Taking this mindset into account, we will discuss and study the various formats     can take in 

order to find the composition that will best suit our intended goal. Of our particular interest, will be 

determining the limit power gain of the system, that is to say, from which set of    does the system 

error begins behaving in a non-convergent manner and, to a lesser degree, begins experiencing 

oscillations. In mathematical terms, with      referring to the eigenvalues of    , one needs to find the 

respective       and       so that                      , and                            with 

                      . These eigenvalues are obtained through the determinant of the matrix: 

 

          

                     

                     

                     
       

 

which will result in the third degree polynomial equation: 

 

                                        

 

with its coefficients being equal to: 

 

                                    

 

                                                 
  

        
         

                     
       

 

                                                
        

        
   

                                                                                     
       

 

Writing the overall gain matrix as         , where     is the controller specific power gain, 

individual to each DER generator, and   the common gain factor, equal throughout the system, we 

can transform (14) into: 

 

                                                   

                                           

     

 

Given its composition,      can factorized into the general expression: 
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which allows us to conclude that the eigenvalues of     are linearly dependent of the common gain 

factor  , with a gradient    solely dependent on the controller gain     and the reduced resistance 

matrix    . Moreover, we can determine the value of    by applying     to     , the former resulting 

in              , which yields     , and with      we get that             , serving as 

the corollary that a large enough attenuation will always bring the system into stability. Incidentally, 

from these results, we can additionally derive that               . 

 

Expanding upon     , if we are to replace   with        , we will obtain another third degree 

polynomial general equation, equal to:   

 

                                           

 

whose coefficients are given by: 

 

                                   

 

                                                  
  

        
         

                             
       

 

                                               
        

        
           

 

By calculating the roots of the polynomial     , we will attain the gradient for each eigenvalue, which 

in turn allows us to determine the        through: 

 

       
 

              
         

 

It can be said with confidence then that, we can comparatively measure a system’s robustness 

basing ourselves on this value, and thus the choice of which     is the most suitable for the power 

controller chiefly revolves around it. Namely, we should strive to minimize               , while 

simultaneously maximizing    , as we will want the algorithm to have the highest possible speed while 

still maintaining its stable behavior. 
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Chapter 3 

Limits to Fully Decentralized Voltage Control 

 

3.1 Approaches to the Controllers’ Power Gain 

Next, we will be looking at several arrangements for each individual controller’s power gains, to get 

a better understanding of    ’s and    ’s influence, now that we are aware of their theoretical weight 

on the general behavior of the system, and so that we can define a strategy for future study. 

 

3.1.1 Common Network Gain 

The first, and most basic, approach to the question pertaining the magnitude of the DER controller 

power gain will be to apply an equal value throughout the entire network. In other words, make it that 

       , and as a result, that         . The example showcased in the below graphs and table refer 

to such a case, where    , exhibiting the two robustness factors,           and       .    

 
           Eigenvalue gradients    for the different study models, with         . Note that the colors are NOT 

indicative of the DERs themselves, as was the case in Table I and II. 

 
           Diagonal terms of        for the different study models, with         . 
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As expected, the configurations where phase distribution is uneven (models 7 through 14) have the 

worst response to a controller’s power gains, as seen by the higher absolute values for the maximum 

gradients that in turn translate into lower overall gains for the stability threshold. More important, 

however, is that the above figures allow us to visualize that a slight change in the system’s 

configuration can seriously compromise its health. Looking specifically between models 1 and 2, we 

see that the rearrangement of a single generator to the next downstream bus (see Table I) causes 

quite the considerable drop in       , from   to      . These values continue to decrease the more we 

concentrate DG on downstream buses, further away from the DER closest to the source bus.  
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To better assess the effects these alterations accrue in the value of the limit power gain, we can 

check the difference between two even-phase (  through  ) models limit power gains, with said 

models differing only by the positioning of a single DER further downstream. Ordering model transition 

by the value of the drop in       , we get:            ;            ;            ;            ; 

           ;            ;            ;            . As it can be observed, the steepest 

declines occur in situations where the increase in the difference between the impedances of the 

generator closest to the source and the one farthest is the largest. Specifically, the worst observed 

case is a result of a DER jumping two busses downstream while the remainder stay at the most 

upstream (   ) or, if we put it matrix-wise, with             and                . While not 

negligible, it appears that moving a DER between the two delimitating generators has much less 

impact on the value of        than the prior. This phenomenon can also be observed in the remaining 

study cases as well, though they generally possess a much lower tolerance than the first six, likely a 

result of the uneven distribution of DG through the three phase-lines of the feeder grid. 

 

Regardless, it’s obvious that the relative arrangement of the connected DERs plays a fundamental 

role in determining the range of common network power gain each controller can operate on without 

putting the convergence of their algorithm in jeopardy. Any change, however minor, to the positioning 

of the generators can have unforeseen consequences, and variations on the latter should not be made 

without careful consideration. As it can easily be discern by the equations in the previous chapter, we 

already know that        will be inversely proportional to the bus-to-bus line impedance  , as such 

factor can be folded into the common gain factor  . Another aspect we can measure the effect of on 

       is the distance of the whole three generator cluster to the source bus  , as shown by Fig 3.3 

where we increase the distance (that is the, line impedance) between latter and the most upstream 

DER. 

 
           Effects of distancing (i.e. adding more impedance) the DG cluster from the source bus on the maximum 

 . The topmost line represents the same example as Fig 3.2, with each subsequent line below representative of 

an gradual increase in the loop impedance between the cluster and the source. In matrix terms, this amounts to a 

                 increment when compared with the line immediately above. 
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Unlike an overall increase of the line impedance   throughout the entire grid, this distancing does 

not decrease        in an inversely proportional like manner. We can observe that as the graph lines 

progresses further down, the disparity between the        for the evenly distributed models is lessened, 

and the same goes between those spread between two phases. Eventually, with enough distance, this 

difference would become insignificant, resulting in a step graph where each step would represent a 

different distribution of the generators through  ,   and  . This means that, the further the cluster is 

downstream, the less susceptible it will be to changes in configuration, as long as they don’t pertain to 

its phases. 

 

Nevertheless, as it has been made patent above, distance of any kind has an adverse 

repercussion on the overall system’s stability when considering a single fixed value for all controllers’ 

power gain. Further taking into account real-life implications for micro-producers, especially seeing 

they have little to no say on the distance to the provider and between one another, it makes this 

strategy less than practicable. Thus, to help mitigate these issues, the more sensible approach to take 

will then be for the gains to be somehow reflective of the distance their respective DERs are from the 

source bus. 
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3.1.2 Gain through Inverse Impedance 
One parameter we can employ to add dynamism to the power gains is the very numerical reflection 

of distance, that being the terms of resistance matrix     itself. In an ideal situation, with centralized 

control, every controller would be capable of communication with the rest of the network, and thus 

able to report any changes in its DER power injection so the others could compensate appropriately. 

Algorithmically, the overall gain matrix     would be made equal to the inverse resistance matrix      , 

resulting in                   , whose eigenvalues are naturally null as well. As a consequence, 

          , meaning that the voltage error behavior would always be critically damped. However, as 

stated in an earlier chapter,     has to invariably be a diagonal matrix, as to reflect each controller’s 

inherent lack of information about the impedances “seen” by other DERs in decentralized control. Still, 

we can take this ideal scenario into account by approximating     to      . Instead of the full inverse 

matrix each controller will only operate with inverse of their respective loop resistance    
  , which put 

together form what we will designate as the inverse diagonal resistance matrix     . As before: 

 
           Eigenvalue gradients    for the different study models, with          . Note that, again, the colors are 

NOT indicative of the DERs themselves, as was the case in Table I and II. 

 
           Diagonal terms of        for the different study models, with          . The colors ARE indicative of the 

DERs and we see that, for the same phase distribution, the terms of        are consistent per their positioning. 
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The first noticeable aspect is the fact that very little variation is observable between the eigenvalue 

gradients for models with a similar allocation of DER through the network’s three phases. Indeed, the 

lines of Fig 3.4 are almost approximate to a step graph, not at all unlike to what was witnessed in Fig 

3.3 with a progressive distance increase between the cluster and the source. With this approach, the 

relative positioning between each connected generator does not affect the system’s susceptibility to 

the common gain factor   as it did when he had         . One only was to look at the discrepancy 

between the    of models 1 and 5 for both strategies to appreciate this difference in results. Moreover, 

this also extends to limit gains       , whose main contributing factor for their values appears to be the 

distance to the source     and the number of connected DERs per phase, rather than their relative 

positioning. The topmost line (blue) in Fig 3.5, indicative of the most upstream generator and thus with 

a fixed distance to the source, more or less only experiences changes in its power gain due a shift in 

the     configuration, again unlike what occurred in the beforehand strategy. 
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To obtain a better perception of the contrast between a common network gain and one based on 

the inverse of the loop resistance, we can repeat the same experience we’ve displayed on Fig 3.3, 

where we measure the outcome of moving the DG cluster downstream. A proper comparison point 

would be their common gain factor   for       , which is dependent on the maximum absolute value of 

the gradients   , both of which are presented in Fig 3.6. On that note, whereas        was inversely 

proportional to   in the first method, in the second it will remain constant since, due the inverse nature 

of     in the latter, equations (18.1-3) are independent from the line impedance. 

  

 
           Comparison of the effects of distancing the DG cluster from the source bus with a common network 

(dotted lines) and an admittance based (full lines) power gain on the maximum  . As in Fig 3.3, the topmost line 

represents the same example as Fig 3.2, with each subsequent line below representative of an gradual increase 

in the loop impedance between the cluster and the source. In matrix terms, this amounts to a              

    increment when compared with the line immediately above. 

 

As demonstrated in the above graph, the dislocation of the DG cluster does not have nearly the 

same amount of influence it has on        as it had in the previous case arrangements for the power 

gains. This means that, maintaining the same common gain factor  , we can reasonably make the 

guarantee that the magnitude of the terms in the resistance matrix     will not adversely affect the 

system’s stability by applying this strategy. For example, we can assure that the algorithm will 

preserve its convergence for every model from 1 to 6 should      . Overall, the distance, or in other 

words the feeder resistance seen by each DER, will play a much less important role when it comes to 

factoring in into the system’s stability, as it was intended when devising this method. This reasoning is 

not only applicable to the source-to-cluster distance but also the distances between the generators 

inside the cluster, as we’ve adjudged from Fig 3.4 and Fig 3.5. Consequently, the crux of the matter 

now towards the ramifications of a unbalanced phase distribution in the feeder network, and whether 

or not we can mitigate its effects. 
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3.1.3 Alternative Strategies 
Segueing from the last section, we can propose several different approaches for the defining a DG 

cluster’s overall gain matrix    . As we mentioned beforehand, the core issue pertaining to the stability 

of a decentralized control scheme revolves around the influence between the various DERs connected 

throughout a feeder grid and an inherent lack of information available to their controllers. The former is 

mathematically reflected by the non-diagonal terms of    , and the latter by the diagonal aspect of    . 

Looking at the makeup of matrix    , the most straightforward solution to lessen the influence of other 

generators’ injected power is simply eliminate its non-diagonal terms altogether. Specifically, make it 

so that only one     is non-null, which will produce a triangular matrix    , as seen by     . 

Characteristically, its eigenvalues will be equal to its main diagonal, which in this case would be 

         with the remainder being 1s. In practice, this entails that each individual controller be 

updated one at a time, subsequently generating a        with terms comprised of     
  , which is 

incidentally the highest collective set of values for the overall gains.      

 

    

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

       

 
            

 
       

 
 
 
 
 

 
 
 
 
  
 
 
 
 

      

 

Simulations corroborate this conclusion. Considering the diagonal of     in a          format, their 

results determined that to maximize the possible common gain factor  , or in other words to minimize 

              , the   and   variables would have to be null. This applies to every study model and 

regardless of the terms’ arrangement. Tangentially, they’ve also concluded that the highest possible   

is attained solely with either   and/or   lower than zero, unusable as power gains since it would lead to 

a positive feedback for the state variable error. It’s easy to see however that this method can become 

too time-consuming, as the more generators are connected to a grid, the longer the average wait will 

be for a correction for a voltage deviation to occur, which in certain cases may prove damaging to the 

network’s infrastructure. There’s also the question of organizing a time schedule for an entire group of 

incommunicable DERs, which will be subject to variations with each newly installed or uninstalled 

generator, making a perfect synchronization of their controller’s an overly complex problem to handle.  

 

Though not an ideal alternative, this approach can be used as a basis to find one that might. One 

way to avoid these (potently crippling) time delays would be to trigger each DER controllers in groups 

dependent of certain criteria, rather than individually. This could either be bus-by-bus, though that 

would still retain most of the same problems in spread-out clusters, or timing the adjustment based on 

the connected phase. The latter would narrow the interval between updates to a fixed amount, 

independent of the number of DERs, and take advantage of the fact that two or more generators 

connected to the same phase can mutually assist one another in correcting a potential overvoltage. 

However, practical issues continue to persist with any timestamp activation, chief among them 

pertaining to coordination within the DG cluster and slowness when compared with          .    
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Taking inspiration from the second approach, one twist that could be added to its principle leading 

to another possible proposition, that being the utilization of phase-specific gain factors. Let us assume 

that the diagonal of     is written as [     
        

        
  ],      being the new coefficients, should 

generator   and   be connected to the same phase then      . Again through simulations, we’ve 

determined that, for our study models, such a configuration produces a higher average gain than with 

a inverse diagonal resistance matrix     . Its one major drawback is that to acquire the various   , a 

study of the feeder network makeup would be necessary, an inconvenient (and ultimately an 

impediment) for an autonomous control solution whose main purpose is to avoid such exercise.     

 

Regardless of conjectures, what both theory and simulation have allowed to conclude is that the 

negative effect on the system’s stability originating from multiple generators’ influence, especially 

marked in an unbalanced distribution through    , lie in the simultaneity of their power controllers’ 

operation. Thus, the best course of action to guarantee the safety of the convergence process is to 

eliminate this concurrence altogether. Though we’ve discussed the drawbacks of applying such 

measures, later ahead we’ll be proposing a different methodology for voltage control that allows to 

implement this rationale without sacrificing on the subject of prolonged time delays or synchronization 

between DERs. 
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3.2 Limitations on Injected Power 

In theory alone, the described voltage dependent power controller could resolve any deviation in a 

network’s voltage profile, so long as the stability criteria pertaining to the eigenvalues of the iterative 

algorithm are met. However, as often is the case, in reality the physical characteristics of the electrical 

equipment, in conjunction with existing environmental conditions, will invariably place restrictions on 

the maximum power available to the system at any given time. Thus, the magnitude of the voltage 

spike (or drop) that triggers the controller’s activation and the values of the control variables at the 

start of the iterative sequence will now have to be weighed in, since the calculated power adjustment 

might be simply beyond the machine’s capabilities.  

 

3.2.1 Generator Operational Area 

The first inhibiting factor to consider, and also the most evident, is that of the quantity of sunlight 

available to a DER to convert into electrical energy. A photovoltaic cell’s power output will entirely 

depend on weather conditions, whose patterns tend to vary from region to region and may hinder the 

collection of solar radiation. Mathematically, the available active power    to a PV cell is a product 

between its surface area, the solar irradiance (          ), and its overall energy conversion 

efficiency, with a recorded maximum of 46% in laboratory conditions, and between        in 

practical conditions [17]. As an example, in the Greater Lisbon area we have an average Global 

Horizontal Irradiance of around          , meaning a     meter solar panel is be able to produce 

       on average, supposing a     efficiency. 

 

 
           Global Horizontal Irradiation values for Continental Portugal. Source: Solargis, GHI Solar Map © 2015. 
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Besides its active component, restrictions also exist relating to the injection of reactive power by a 

DER. A generator is commonly rated with a maximum apparent power output, specified for a rated 

voltage and power factor   . Thus, during its operational periods, a DER’s capability to inject reactive, 

and by association active, power into the grid will also be limited by a VA cap. This value is defined by 

three main aspects: the armature current limit, the field current limit, and the end region heating limit 

[18]. Together, they’ll define the operational area for the generator, that, for the sake of not adding any 

unnecessary complexity, we will define as a semi-circle in a       plane, with the maximum apparent 

power    as its radius. 

 

 
                 plane representation of the maximum apparent power    (green semi-circumference) and the 

operational area of a generator (light green area), assuming      .    ,     and     denote the restrictions 

imposed on the system by the armature current, the field current, and the end region heating limit, respectively. 

Yellow areas represent the zones within    where the injected power violates the last two provisions. We opted to 

define    towards the rated VA as that limit will be more pertinent for cases of voltage spikes. 

 

Per the defined area of operation,    will impose the following stipulation upon the controller: 

 

  
    

    
       

 

whereas    has to be greater than zero, seeing a generator cannot receive active power from the grid, 

and less or equal than the available active power    . 
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Because of these operational breakdown thresholds, there is now the tangible possibility that the 

controlling algorithm’s state variable may not be able to reach the intended set-point. It becomes 

necessary then to ascertain if it’s possible to find a solution within the acceptable range of values from 

any given set of initial conditions. To do so, we hearken back to     . If we define   ,    and    as the 

state and control variables at the onset of the controller’s activation and   ,    and    as their 

respective values at the end of a successful correction, we obtain: 

 

                                    

 

considering additionally that the system became bounded to the limit curve defined by   , we’ll have 

that   
    

    
 . Reducing all initial conditions and system presets to a single variable   : 

 

                                   

     

We can then solve      for   , getting: 

 

           
           

          
    

         

 

    
      

               
    

 

         
 

     

 

And as    must be a real number, we come to the conclusion that: 

 

           
    

        

 

                                      
 
        

 

If the above inequality is valid, in addition to the previously stated restrictions for the active power 

               , then the system state variable for   will be fully capable of converging to the 

intended value   , as a set of coordinates         exists within the established boundaries. From the 

acquired expression, we can also perceive how the system’s ability to handle deviations is directed 

correlated to the initial and preset values. A system with a higher     and   , will accommodate for a 

higher discrepancy between    and   , in concurrence with an opposite signal    and   .  
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3.2.2 Power Coordinates Solution Line Set 

Moreover, from      we can determine that there are two points in the limit curve where the value 

of   , and consequently   , satisfy the needed corrective shift. With these two sets of coordinates, we 

can trace a line in the       plane, whose equation is derived from     : 

 

                       

 

It stands to reason then that all points contained within the area defined by the    radius semi-circle, 

the plane delimitated by the maximum and minimum allowed active power, and line (27) are all valid 

solutions to correct the given voltage deviation      . 

 

 
                 plane hypothetical representations of     , assuming that        for demonstrative purposes. 

The highlighted blue line segment contains all the possible solutions for active and reactive power. Two scenarios 

are shown; in the first the leftmost abscissa is positive while in the second its null due to the set restrictions. In a 

situation where      is equal to zero,      will be tangent to the semi-circumference. 

 

Equation      allows for some significant leeway when controlling each generator’s power output, 

seeing that the network’s voltage profile will remain undisturbed so long as the injected power 

coordinates “travel along” their corresponding blue line, as exemplified in Fig. 3.9. For instance, this 

feature becomes useful in situations where there’s a sudden drop in    (e.g. from a sudden shift in 

luminosity) as it lets a controller readjust its DER’s output without triggering the activation of its 

counterparts in the DG cluster, as a consequence of the voltage disturbances it would incite otherwise. 

Another benefit would be if we desire to set the machine to a specific   , though this would only be 

possible if the blue line crosses paths with the one defined by the angle   (see Fig. 3.8). What’s more, 

application of this property only entails the use of the equations slope value, itself easily obtainable 

through reactance-to-resistance ratio, while    can be calculated once the algorithm reaches any point 

in the line segment.  
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                  plane hypothetical representations of the possible applications of the inherent properties of     . 

In the leftmost, we see how the system would handle an unexpected drop in available active power   , and in the 

rightmost how it would fix the power coordinates to a specific          . In both cases, the network’s voltage 

profile would remain unchanged despite the variation in the injected active and reactive power. 

 

We can also gauge that any line with a        slope contains all the power coordinates 

corresponding to one specific voltage profile. Based on the initial values for the network’s nodal 

voltage and power injected by the generators, with each iterative step, we consecutively jump between 

several of these parallel lines, progressively closing in on the one that holds the set of the latter that 

can fix the former to the desired set-point. Starting from any staging point, a shift to a right line 

represents an increase in the nodal voltage, while to the left will cause a decrease.  

 

 
           Examples of possible power coordinates solution sets in a [P,Q] plane, with each hypothetical line 

corresponding to a specific voltage profile, and     and     defining the generator’s operational range. 
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In the above figure, point (1) depicts any staging point the algorithm might find itself in at a given 

time, be it the initial, final or anywhere in between. (2) and (3) relate to the power coordinates that will 

produce the highest attainable positive and negative shift in the DER’s voltage respectively. We can 

thus define the range of operation for the controller using the points where line      is tangent with the 

limit semicircle, those being                                            , resulting in    

                   , and              , resulting in       . In relates to these expressions, 

and in tandem with     , the inequality: 

 

                                      

 

also needs to be valid for the algorithm to successfully reach a solution, seeing as, otherwise, the 

correspondent line      will not overlap with the operational area of the generator. 

 

3.3 Updated Controller Algorithm 

Given the limitations imposed by maximum available active power    and the maximum apparent 

  , it’s evident that the control algorithm describe in length in Table III will have to suffer several 

modifications to take in account these two new restricting parameters to its operation. The former is 

reasonably straightforward to implement, making so that for every  :                     
  

       . The latter issue requires more consideration, as we’ll need to carefully juggle between the two 

types of voltage dependent power controller,      and     , seeing that we’ll want to avoid exceeding 

the bounded limit     . In essence, the core of the subject matter invariably revolves around the 

handling of the controller’s two distinct power gains      and       We’ve identified two possible 

strategies for defining the exact values of      and     , based on the previously obtained overall gain 

matrix    . 

 

Both these strategies involves using only one type of voltage dependent control at any given time. 

This means that, for each individual iterative step, we’ll either have           , for an active power 

shift, or              , for a reactive power shift, alternating between them as necessary by setting 

the opposite gain as zero. Seeing that the most numerous, and most detrimental, instances of voltage 

deviation are cases of overvoltage, entailing a corrective drop in the injected power, and it’s in our 

interest to avoid a decrease in the DER’s active power output whenever possible, it was decided that 

     will take precedence over its counterpart. Thus, when the autonomous controller is springs into 

action, it’ll first try to correct the voltage difference by adjusting the generator’s    with      , while 

keeping    unchanged, until it either eliminates the discrepancy by itself or the apparent power 

surpasses the limit dictated by   . Upon the latter occurrence,      will then trigger, curtailing the 

active power to correct the violation, until      is allowed to continue its operations. How the controller 

acts when it reaches the limit curve is also subject to two different methodologies. 
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3.3.1 Bounded to the Maximum Apparent Power Limit Curve  

As a first option, we can simply ensure that whenever the reactive power variation infringes     , 

an additional adjustment is done to   , so that the set of power values remains bounded to the limit 

curve until one of the possible solutions is reached.   

 

          
                                                                 

                                         

       
                                                         

           

       
             -                                

                             

       

Check if   
    

          
  

                              

                    -                 : 

   
          

          
 ; 

       
                                               

                                          

       
                   

                                             ; 

 

 
                  plane hypothetical representations the logical steps taken by the controller when correcting an 

instance of nodal voltage deviation, when using the    bounded strategy. Green vertical arrows represent     , 

purple horizontal arrows      and the red line the solution set of values per     . 
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3.3.2 Active Power Shift by Foresight 

Alternatively, we can introduce some degree of foresight to the controller. Rather than constantly 

fixing the apparent power to its allowed maximum, it can detect beforehand if the next shift in reactive 

power will carry the coordinate set beyond the boundaries of the    semi-circle. When such situation 

occurs, it’ll instead make use of an active power shift, and will continue to do so until a subsequent 

reactive shift is possible again. In essence, we make use of      to unblock     ’s path. 

 

           
                                                                 

                                           

       
                                                         

           

       
             -                                

                             

       

Check if   
    

          
  

                              

                    -                                

                                                   

       
                                              

                                          

       
                   

                                             ; 

 

 
                  plane hypothetical representations the logical steps taken by the controller when correcting an 

instance of nodal voltage deviation, when using an the foresight strategy. Green vertical arrows represent     , 

purple horizontal arrows      and the red line the solution set of values per     . 
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If we are to compare these two solutions, it appears that the second option is the more preferable. 

For one, the number of corrective power adjustments, active and reactive, in the first case is invariably 

going to be larger, as moving along the limit curve inevitably entails the use of both types. Discerning 

the stability of this process also becomes exceedingly difficult due to the introduction of a squared 

factor for the update equation     , that adds a fair amount of complexity to the calculations. The 

interchangeability between Q(V) and P(V) in terms of convergence, as     remains constant 

regardless of which is used, means that both the algorithm speed and voltage error behavior are the 

same if we were to have no power related restrictions. Moreover, that we avoid skirting too close to 

the   , as fluctuations in both state and control variables naturally tend to occur, is another factor in 

the latter’s favor. Finally, through additional simulations, we’ve appraised that the bounded option 

often behaves poorly with an uneven distribution of DERs through the phases, a very high likelihood in 

a real life scenario. 
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Chapter 4 

Simulation Results 

With all the necessary theoretical groundwork laid down, we now move to testing stage of this 

work, as to corroborate the suppositions made in the previous chapters and to better understand the 

effects a decentralized controller has on the evolution of a network’s voltage profile. All practical 

studies are realized through computer simulations running with MATLAB programming language, and 

compiled with the eponymous PC software. The results are divided into two separate sections, each 

pertaining, correspondingly, to the evolution of the voltage error and the injected power throughout the 

controller’s process. As mentioned in Chapter 3, given the interchangeability between Q(V) and P(V) 

in terms of convergence, the behavior of the nodal voltages is independent of the type of combination 

between the two types of power adjustment. In short, its error response will be the same regardless of 

the initial conditions for active and reactive power, plus   , provided that      and      hold true. As 

such, we can study these two aspects in separate sections, so we can dedicate more of our focus 

onto either the control and state variables at a time. 

 

All MATLAB code used for these simulations is fully detailed in Annexes A through F. 

  

4.1 Establishing the Initial Voltage Error 

Before beginning commencing the study itself, we’ll first need to establish a set of initial values for 

the nodal voltages of each grid configuration presented in Chapter 2. Given the different positioning of 

the generators, it’s natural to assume that a voltage rise phenomenon will result in equally different 

values for the voltage deviation in each DER, relative to one another. Thus, as we’ll want these values 

to represent a more or less realistic scenario that could be encountered in any practical feeder 

network, we made use of a simple power-flow code to calculate a satisfactory set of values for the 

initial conditions of the state variable. Any subsequent alteration to the initial voltages   , as to gauge 

the system’s response to small alterations, will have a basis in these settings, that range on average 

between a    and    deviation (max.    ) in relation to the predetermined   . 

 

The following two tables present the results yielded by the simulation of the power flow for the 

feeder grid in Fig 2.3.   

 

(For network models number 1 through 6, the generated voltage for each of the three DERs, being 

respectively                       , remains constant. Number 7 through 13, we add a     factor to 

the corresponding DERs that share the same phase, as to represent their mutual generation effect. 

For model 14, this addition is increased to    , given that all three are connected in line. This choice 

was also made so that      and      remain valid for the chosen    and    described in the injected 

power part of this chapter, with         .) 
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As a superficial glance of the results can tell, the incremental effects resulting from voltage rise 

tend to be more pronounced the more DERs are clustered together. Looking at the figures from Table 

IX, and judging by the total difference in relation to the set-point   , we see that the least severe errors 

occur in models where less generators are connected to the same bus. In the same vein, reducing the 

distance between both ends of the cluster, and concentrating the DERs on its downstream end, also 

contributes towards a lower voltage deviation. For Table X, we witness a similar situation, though the 

average error tends to be greater due to the addition of a mutually induced increase for same-phase 

nodal voltages. 

 

There is, however, an unusually high discrepancy for model 8, when compared with the other 

figures. From what can be surmised, this seems to stem from the fact that, unlike the other cases from 

7 to 13, the two same-phase generators are positioned further downstream than in the other models. 

This inference is corroborated by reconfiguring the algorithm’s code, as to add additional distance 

between the cluster and the source bus, and an increase in the line impedance. The new results show 

that an increment in either parameter aggravates the magnitude of the voltage spikes for the DERs 

that share a phase with another. The contrary occurs to those that are alone, where we see an 

alleviation of the overvoltage for the same generated voltage. 
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A further analysis of the code and results seems to suggest that another reason behind this 

discrepancy may stem from the lack of generation in one or two of the phases. As the nodal voltage in 

these empty lines progressively decreases (the decay of which accelerates the further the cluster is 

from the source and with the line impedance), the amplitude of the voltage in the remaining phases 

will inevitably rise, as expounded in Chapter 2. It is yet another attestation of the substantial impact 

simple DER distribution on a feeder network has on the system’s viability. This, in particular, is an 

aspect that will be further delineated upon when we move to study a full-grid. 

  

4.2 Voltage Error Behavior and System Performance 

For a first behavior study, we’ll have the preset values so that the algorithm only has to employ 

Q(V) to reach the set-point voltage, here       . For that, we’ll simply start with a    and    high 

enough that P(V)’s activation won’t be necessary. Furthermore, as to compare the error’s overdamped 

and oscillating behavior respectively, we’ll have one instance where                  and another 

where                 . We’ll also note the speed of the algorithm, that is the number of iterations it 

takes for the maximum voltage error to drop below a certain value, in this case     , even if it’s 

beyond the displayed 20 iterations. Finally, the results are once more divided, between the evenly and 

unevenly distributed models, to underline the differences between the two situations. The leftmost 

graphs display the overdamped error behavior, and the right ones the oscillatory. 

  
                                  

                    Evolution of the state variable error for the evenly-distributed per phase study model 1, with 

                (left) and                 (right), up to twenty iterations.  

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

Iterations

V
o
lt
a
g
e
 E

rr
o
r 

(x
1
0

- 3
)

0 5 10 15 20

0

5

10

15

20

Iterations

V
o
lt
a
g
e
 E

rr
o
r 

(x
1
0

- 3
)

               



39 
 

  
                                    

                    Evolution of the state variable error for the evenly-distributed per phase study model 2, with 

                (left) and                 (right), up to twenty iterations.  

  
                                   

                    Evolution of the state variable error for the evenly-distributed per phase study model 3, with 

                (left) and                 (right), up to twenty iterations. 
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                    Evolution of the state variable error for the evenly-distributed per phase study model 4, with 

                (left) and                 (right), up to twenty iterations. 

  
                                   

                     Evolution of the state variable error for the evenly-distributed per phase study model 5, with 

                (left) and                 (right), up to twenty iterations. 
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                      Evolution of the state variable error for the evenly-distributed per phase study model 6, with 

                (left) and                 (right), up to twenty iterations. 

 

The Lag below each graph refers to the number of necessary iterations until                 

and, to reiterate, the graphs colors refer to each of the generators as presented in Tables I and II. 

 

As predicted, with each given overall power gain, all the generators connected to the grid managed 

to successfully correct their own voltage deviation, relying solely on their own autonomous control 

system. From the left graphs, we immediately notice that when the system is overdamped, and 

despite the dissimilar initial voltage values, all error curves tend to coalesce together, approaching    

at the same rate after the first few iterations. This can also be verified for system’s where one or more 

of the initial voltages start below   . The algorithm’s lag is near constant for                , likely 

owing its slight differences to the disparity in    for each model. For                , the speed with 

which the error amplitude decays is visibly more distinct for each studied configuration. Though 

certainly dependent on the relative positioning of the DERs, unlike with was the case with the voltage 

rises, it seems that there’s no pattern from which we can infer how the configuration itself affects the 

speed. However, as we can see in the oscillating wave graphs, two of the errors invariably become in 

phase opposition to the remaining third. Moreover, the total sum of these three errors rapidly tends 

towards zero, well within the 20 iterations. 

 

Moving to the unevenly distributed models: 
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                      Evolution of the state variable error for the unevenly-distributed per phase study model 7, 

with                 (left) and                 (right), up to twenty iterations. 

  
                                   

                      Evolution of the state variable error for the unevenly-distributed per phase study model 8, 

with                 (left) and                 (right), up to twenty iterations. 
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                      Evolution of the state variable error for the unevenly-distributed per phase study model 9, 

with                 (left) and                 (right), up to twenty iterations. 

  
                                  

                      Evolution of the state variable error for the unevenly-distributed per phase study model 10, 

with                 (left) and                 (right), up to twenty iterations. 
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                      Evolution of the state variable error for the unevenly-distributed per phase study model 11, 

with                 (left) and                 (right), up to twenty iterations. 

  
                                  

                      Evolution of the state variable error for the unevenly-distributed per phase study model 12, 

with                 (left) and                 (right), up to twenty iterations. 
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                      Evolution of the state variable error for the unevenly-distributed per phase study model 13, 

with                 (left) and                 (right), up to twenty iterations. 

  
                                   

                      Evolution of the state variable error for the unevenly-distributed per phase study model 14, 

with                 (left) and                 (right), up to twenty iterations. 
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As it was to be expected, with an unbalanced distribution of the DERs through the three phases, it 

takes a greater amount of time for the algorithm to correct the voltage deviation, in both instances. In 

addition, the error curves for the under-oscillation gain no longer tend to a single exponential arc, and 

the speed throughout the models lacks the consistency it had. The pattern of two nodal voltages being 

in phase opposition to a third is however present still, given the reciprocal nature for DERs’ voltage 

when connected to the same phase. The sole exception is logically 14, where all three generators are 

coupled to the same line and, thus, all in phase. One conclusion we can arrive at is that, speed-wise, 

putting as much distance possible between same phase connected generators improves the 

algorithm’s performance significantly, as exemplified by models 9, 11 and 13 when compared with the 

remainder. 

 

In matrix terms, this is seen by the diagonal terms of the downstream generators being superior to 

their non-diagonal counterparts, that’s to say those in the same line, by an additional margin. For 

example, the sole difference between models 12 and 13 is that the latter’s     is     greater than the 

former’s. However, this seemingly minute difference results in the process’s speed being cut in more 

than half, despite 13 having a larger set of initial voltages. (For test purposes, the same was simulated 

by giving both the same initial deviation, and this observation still holds.) 

 

In succinct, the greater the difference between the (absolute) values of a matrix’s diagonal and the 

sum of their respective non-diagonal terms, be it of its row or column, the faster the algorithm will be 

able to correct the voltage error for the corresponding configuration. That is to say, the closer     is to 

a diagonally dominant matrix the more the system’s performance will be improved. This is in line with 

our previous conclusion that the algorithm’s efficiency is directly correlated with the influence each 

DER exerts on one another: the lesser the better. 

 

 

 

4.3 Power Gains and Optimal Performance 

Figures 4.1 through 4.28 are representative of the voltage error behavior for a power gain close to 

its respective thresholds for oscillation (left) and instability (right). It becomes clear when comparing 

both sides, that     plays a major influence in determining the speed with which the algorithm can 

eliminate the given discrepancy. One can then ask the question which specific     can provide the 

best speed for each system, and whether or not we can determine an universal value for it, applicable 

to all configurations. Again making use of the previously used MATLAB code, through trial and error, 

we’ve managed to find the range of gains that produce the shortest lag: 
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Again, as we’ve seen so far, both the best achieved speeds and the range of gains that allow them 

follow the same logic as they did when we studied the results illustrated in the graphs above. A more 

even and spaced-out distribution of the DERs results in a more rapid resolution of the deviation, with a 

lower percentage of        needed. (Case in point, we notice that model 9’s speed is identical to most 

evenly-distributed models, and his initial range is also similar, reinforcing the previously made 

statement.) While the optimal percentage of        rises the higher the difference between    and   , 

we can still define the best overall gain based on the typical range of values we can expect for 

instances of voltage rise. Based on the obtained initial values and the above factors, setting   to     

appears to be the best compromise, should we need to pick a gain to apply it for all configurations. In 

relation to the inverse diagonal matrix [  ] this is an approximate factor of     for models 1 through 6, 

    for 7 through 13 and     for 14. Should we want to avoid any form of oscillation,            is then 

the best possible power gain. 

 

Having witnessed the behavior of the nodal voltage in each connection node, we now move to the 

study of the algorithm’s control variables, that is the injected active   and reactive power  , during the 

same iterative process seen above. Aside from the graphical evolution of both variables, we’ll take a 

vested interest in the required variation of injected power necessary to achieve the intended goal of 

eliminating the same presented instance of overvoltage. Unlike the case with the voltage study, where 

   and    only determined if it was possible for the algorithm to converge on    per      and     , due 

to the presence of the limiting factors of    and    these initial values will affect the final outcome of 

the process, in both behavior and final value. 
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4.4 Active and Reactive Power Curtailment 

The chosen controller power gain will have an effect on the difference between the yielded and 

initial values,    and    seen in    , as well. However, seeing that    is independent of    , the 

solution line is ultimately the same regardless of the chosen value for overall gain, or even the logical 

steps the algorithm takes. This means that     only determines where in line      will the controller 

lead a DER’s       set to, and as such we can always readjust the coordinates to fit any criteria we 

wish. This can be done with each iteration, as moving along a        slope line does not change the 

voltage profile, or at the very end of the process. To demonstrate this property of      type lines, 

we’ve showcase the latter option in the graphs below, using the already determined              . As 

we’ll want to curtail the drop in active power first and foremost, the final shift is focused on obtaining 

the lowest possible   . Therefore, each value below the graphs represent the minimal variations of 

active power necessary to correct the deviation for each model case, along with the sum of their 

absolute values.  

 

For every generator, again color coded according to Tables I and II, we’ve picked a         and 

       , while    is the same as in the voltage error study (Tables IX and X). Below each graph is 

the variation of active and reactive power at the end of the iterative process, for each generator and 

the absolute total, after a readjustment along the respective solution line set      as to minimize   . 

 

  

                                

                                                

                                              

                                              

                                                                  

                     Evolution of the control variables for the studied models 1 and 2, with                , up to a 

hundred iterations.  
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                     Evolution of the control variables for the studied models 3 through 6, with                , up 

to a hundred iterations. 
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                     Evolution of the control variables for the studied models 7 through 10, with                , up 

to a hundred iterations. 

0.92 0.93 0.94 0.95

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

P (pu)

Q
 (

p
u
)

0.91 0.92 0.93 0.94 0.95

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

P (pu)
Q

 (
p
u
)

0.93 0.94 0.95

-0.42

-0.4

-0.38

-0.36

-0.34

-0.32

-0.3

-0.28

-0.26

-0.24

P (pu)

Q
 (

p
u
)

0.93 0.94 0.95 0.96

-0.45

-0.4

-0.35

-0.3

-0.25

P (pu)

Q
 (

p
u
)



51 
 

  
                                  

                                          

                                              

                                        

                                                                  

 

  
                                  

                                             

                                              

                                         

                                                                  

                     Evolution of the control variables for the studied models 11 through 14, with                , 

up to a hundred iterations. 
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We can see that, for the schemes with more than one generator per phase (7 through 14),           

is, on average, less than that required when there’s only one DER per phase, even when the general 

initial voltage error for the former is greater or roughly equal than the latter’s. This occurs due to the 

fact that, as explained in Chapter 2, any change in the nodal voltage of a DER, rise or fall, will produce 

an identical response along the line. Thus, because of the way the DG network is configured, same 

phase-connected generators will mutually help each other eliminating their overvoltage, lessening the 

needed decrement in injected power for each one. In turn, this also abates the induced voltage hike in 

the other two-phases, allowing for a similarly smaller power shift to correct the deviation as the 

controller no longer has to compensate as much for said increase. The differences between each 

model’s various    are also mirrored by the obtained   . 

 

However, this can also work against the system. As when those two error signals become 

opposite, causing the controllers to start working against each other, one increasing the injected 

power to rise the nodal voltage to   , and the other doing the opposite. This can lead to situations 

(such as in 10, 12 and 14) where the final difference for certain generators is positive, and the sum 

total is higher compared with the other cases. This means that a DER ultimately ended up having to 

injected more power to correct a rise in its nodal voltage, which can naturally be problematic given the 

set restrictions. This incongruity is all more the detrimental during the first iterations, where the error 

amplitude is greater, and, because of it, is more serious when the       values, and to a lesser 

degree those of the next iterations, are in signal opposition. Indeed, for model 14, a small decrement 

of 0.01 in   
  is enough to cause a violation of      and     . 

 

Aside from this, the other significant aspect we can detect is the diagonal shifts that occur at the 

end of the process, as a result of the readjustment through     . In all cases the network’s voltage 

profile remains unchanged, similarly as to those exemplified in Fig. 4.1 to Fig. 4.28. The trace it leaves 

allows to ascertain the relative positioning of each generators’ solution set for the given initial 

parameters. It also permits a more accurate gauging of the relative shifts in active power, independent 

of the chosen gain, as it will always lead to the same results regardless of    . Moreover, using the 

properties of      we can also manipulate the injected power to suit our needs, whether it be to 

minimize    instead, fix     to a certain ratio, or even the set a desired power factor.  
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4.5 Additional Alteration to the Algorithm 

Another poignant detail, and again for 14, we notice that there are two diagonal shifts in the graph. 

The reason for this is, due to the way it was programmed, the algorithm became ‘stuck’ if it needed to 

increase either the injected active or reactive power, but couldn’t because of the placed restrictions. 

Thus, we needed to add an extension to the code as to ‘unstuck’ it. With the chosen method, should 

the algorithm detect that a shift in active power will go over the limit (either    or    , the power 

coordinates will shift down a        slope line, settling in the midway point between the two points 

where it intercepts the limit semi-circumference. Should that point’s abscissa be bigger than   , then it 

will settle on that value instead. Seeing as this line has the same slope as     , the voltage throughout 

this readjustment also remains the same, while freeing up the highest ‘breathing space’ available for 

the controller to operate on. In MATLAB, this is achieved through an additional function in the 

algorithm. What we see in the graph for 14 is a consequence of this, the leftmost line being the mid-

process shift, and the other the one to minimize   . 

 

 
                 plane hypothetical representations the logical steps taken by the controller when applying the 

abovementioned function, represented by the dashed yellow arrow. The dotted red line represents the        

slope line. Note that both purple arrows, depicting the active power shift, have the same length. 
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Chapter 5 

Expanding the Study Model 

 

As observed in the previous section, through MATLAB simulations we’ve managed to obtain a 

theoretical result demonstrating the potential feasibility of the proposed decentralized voltage control 

strategy. Despite a lack of communication between the connected DERs, we’ve determined that with a 

proper power gain value     we’re able to correct instances of voltage rise in the connection nodes. 

However, at the same time, we’ve also ascertained how the initial conditions for voltage (  ) and 

injected power (   and   ) can affect this process, possibly even precluding it. Namely, though the 

system may be able to converge, the physical limitations of the equipment (mainly    and   ) can 

potentially hinder this correction. Moreover, up until this point, all the work realized has been based on 

a 3bus-by-3phase grid model with only 3 DERs connected to it. It’s well within reasonable expectation 

that any feeder network in a real life scenario will have a higher number of generators injecting power 

into it at any given time. As such, it becomes imperative for our study to expand the LV circuit model, 

the objective being to analyze the impact on the behavior of the control and state variables as the 

resistance matrix     gradually morphs and, more crucially, the viability of the autonomous control 

scheme as it does. 

 

Therefore, this chapter is dedicated to examining the impact these additions will produce on the 

autonomous system model. To begin with, we’ll be making use of the same 3bus-by-3phase grid, to 

appraise the effects of concentrating DERs within the same area, then expanding it beyond, into a 3-

by-  network, for the purposes of studying the consequences of spacing out clusters of generation. 

The main objective will be to evaluate how these changes influence the stability of the system, by 

again evaluating the previously discussed assessment criteria of using the eigenvalues of         

      , and its capability given the limitations on power output. 

 

5.1 Concentration of Distributed Generation 

Our first step will be to evaluate what occurs when we gradually ‘fill’ the nine node circuit grid 

described in Chapter 2, until we connect an equal number of DERs. To assess the relative stability 

between each case, we’ll again gauge the eigenvalue gradients    and the diagonal terms of the 

maximum stability overall gain matrix       . Due to the number of possible combinations for generator 

distribution throughout the network, we elected to pick the worst possible cases for each, those being 

the distribution that generates the highest possible     . 

 

5.1.1 Effects on Stability 

Retreading the same steps seen in Chapter 2, particularly (20), by first obtaining the eigenvalues 

with a common gain factor    , we can then acquire their gradients and, subsequently, the        

with their highest absolute value. 
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It is not at all surprising to observe that a higher number of connected DERs invariably leads to a 

necessary decrease in the overall gain to assure the system’s stability, yet another indication of its 

precariousness in relation to the generators. This decrease results from the overarching algorithm 

struggling to juggle and consolidate the power flow of more generators in order to maintain an 

adequate voltage profile. It’s also worth mentioning that, as we’ve seen with the 3 generator study 

models, the combinations that originate the worst results in terms of the eigenvalues of         

       are those that concentrate more DERs in one phase, in lieu of distributing them more evenly 

through RST. For example, with six generators, a balanced 2-per-phase distribution results in a more 

robust system than 3-per-phase (with one being empty), and any combination in between. 

Additionally, their placement relative to the source bus also impacts the stability, though to a lesser 

degree than that of the phase distribution. Interestingly, it also seems that maximum gradient caps off 

when two of the phases are completely filled, starting with upwards of six DERs, and it should be 

noted that with a full grid two of the gradients have the listed value.  

 

Having seen how the concentration of DERs influences the inherent stability of the autonomous 

system, we move on towards discussing what implication exist in relation to the initial values of its 

variables.  
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As seen in Chapter 3,   ,    and    play an important role in determining whether or not the 

system is physically able to correct its voltage profile due the generator’s limitations, represented 

chiefly by    and   . The initial value for the state variable is in itself mostly dependent on the 

configuration of the DERs, due to the aforementioned phenomenon of voltage rise that occurs in 

three-phase LV grids. One of the first conclusions we can arrive at is that a fuller, but still balanced, 

grid results in a more uniform voltage profile. That is, there’s a lessening discrepancy between the 

various    as we connect more generators, provided there’s an equal distribution through    , much 

like what was witnessed in Chapter 4. 

 

The issue pertaining to the magnitude of the voltage deviation is mostly tied with    and   . 

Whether over or under   , a successful correction is dependent on whether there’s enough ‘room’ for 

the system to maneuver the two variables in, given the existing caps. This was seen in Chapter 3 with 

    . Instances of a nodal voltage dropping below the desired value (mainly as a result of a voltage 

rise in another phase and/or a drop somewhere in the same phase) are thus more prejudicial to the 

system than it spiking, as that would entail an increase in that DER’s injected power to counteract it. 

Due to the abovementioned limits in power output, which given its typical values while on operation 

are more likely to hinder the system as    approaches    or   , this might prove difficult to 

accomplish.  

 

Moreover, on account of these induced drops in nodal voltage, there will be situations where some 

nodal voltages are below    while the remainder are still above it. This lends another layer of 

complexity as one section of the individual controllers tries to compensate the deviation by increasing 

its power output while the other by decreasing it. As we’ve seen for model 14, this might even result in 

a positive change in active power for one or more generators, even though all of its initial voltage 

values were higher than the desired value. The inclusion of more DERs ultimately means more 

possible grid configurations, which in turn means more ways that each generator play off each other, 

exacerbating all of these concerns as we strive predict what kind of ripple effects might originate from 

such scenarios. 

 

5.1.2 Effects on the Initial Voltage Error 

One of such issues pertains to the system’s performance. As stated before, it’s in our interest that 

our autonomous control strategy be able to resolve any occurrences of overvoltage to avoid 

degradation of the associated electrical equipment, and potentially endangering the network’s 

integrity. As the system juggles with an increasing number of DERs, and thus an equally growing 

number of added elements to the network’s power flow, it’s natural to assume that the speed with 

which it can resolve any of these deviation will tend to lower, as seen by the decreasing   in Table 

XIII. However, one only needs to look at the results presented in Chapter 4 to see that such 

assumption is not as straightforward as it may appear initially.  
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There are numerous factors that come into play when influencing with which speed the system acts 

can act upon any deviations of its voltage profile, not least of which being the magnitude and disparity 

between the initial voltage values. Both factors are influenced by the DERs’ distribution on the grid, 

which will also determine the weight of the diagonal members in the resistance matrix    . The 

multitude of elements derived from the network’s configuration alone makes it hard to trace a reliable 

model based solely on the number of connected generators. To showcase this intrinsic complexity, 

we’ve realized similar simulations as those in Table XIII, this time with the intent of obtaining the 

number of iterations the system requires so that                , for       (    near       ) and 

      (    near       ). 

          

                                                                         

        

        
  *      

    

            

                                            

                                       

                                

  
                       

                                     
       

  
                       

                              
       

  
                       

                       
      

  

                       

                       

                                     

       

  

                       

                       

                               

       

  

                       

                       

                       

      

*values adjusted so that                  for comparative purposes 
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A cursory glance at the results indicates that, while do we notice a change in the system’s 

performance with incremental DG, such change in lag does not appear to be proportionally related 

with the amount of generators connected to the feeder grid. As we suspected, it’s not the actual 

number of DERs that influences the speed with which the controlling algorithm can correct 

disturbances in the network’s voltage profile. And, once more in line with conclusions taken in Chapter 

4, we can also immediately conclude that a better performance (i.e. speed of correction) is achieved 

through an oscillatory error response. Still, though we failed to find any proof of causality between 

performance and the number of DERs, Table XIV nonetheless provides some insight as to how the 

former is affected by the latter’s presence. 

 

The speeds between each setup seem to own their dissimilarity to a variety of factors, not least of 

which being the initial values for the nodal voltage, both in magnitude and in disparity between one 

another. This also goes in tandem with the same established rule of thumb that a system acts more 

efficiently upon deviations of its voltage profile if the DG is balanced throughout its phases. Moreover, 

the presence of additional non-diagonal members in the resistance matrix    , that will influence each 

DER controller, also adversely affects the algorithm’s speed as it adds more varying elements to the 

multinomial expression of the error, as stated by     . Taking into account all of these factors, we can 

get situations like a fully-filled grid (9 DERs) that, despite the smaller magnitude and fewer 

discrepancies between its nodal voltages, remains slower than a system with two thirds of its 

generation (6 DERs). Yet, at the same time, the latter is also faster than that of a feeder network with 

only three generators. Looking at the behavior of nodal voltage error for two of the presented cases, 

and noting that each colored line in the below graphs represents a different DER: 

 
           Evolution of the state variable error with 6 DERs, for      , with the same initial values as the ones 
listed in Table XIV. 

0 5 10 15 20 25 30 35 40

-5

0

5

10

15

20

25

30

35

Iterations

V
o
lt
a
g
e
 E

rr
o
r 

(x
1
0

- 3
)



59 
 

 
            Evolution of the state variable error with 7 DERs, for      , with the same initial values as the ones 

listed in Table XIV. 

 

A close examination of Fig. 5.1 and 5.2 reveals that in the second graph, with approx. 20 iterations, 

the system (mostly) manages to correct the error in three of the seven nodes, with the remaining four 

generators still possessing  comparatively high errors. However, it would still take a hundred or so 

more iterations (126 in total) of the algorithm before the error on all nodes is considered successfully 

curtailed while in the first case, where the error decays at a similar ratio for every DER, it would only 

take 80 iterations. Another way by which we case inspect it is by tallying the individual lags, where in 

the former it takes only 15 iterations (out of 126) for one of the controller to drop its absolute error 

below the      margin while, in the latter, 59 iterations (out of 80) are necessary.  
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5.2 Anchoring 

From the analysis of the Figs. 5.1 and 5.2, we can then infer that when the error in one or more 

nodes is fully eliminated or significantly reduced while that of the others remains relatively higher, the 

controllers pertaining to the former, in an attempt to keep their nodal voltages mostly fixed, will act as 

a sort of anchor for the system, thus slowing it down. Mathematically, from (11), he have that the 

iterative process can be summed up as             , with   being a fixed value in the same vein 

as           . Should a controller   curtail its error well ahead of its counterparts, we’d have that 

  
      

  and, as such,      
  can now also be considered a fixed term in the iterative equation 

  
         

         
         

    , becoming   
         

         
        

     .  

 

In essence, from an iteration standpoint, the coefficient matrix     is reduced from  -by-  to    

  -by-      as a result. That is, the system is effectively working with less DERs. Consequently, per 

Table XIII, reducing     in size will typically translate into an increase for the maximum stability gain 

      . This relates to another conclusion taken early from Table XIV and Chapter 4: that an oscillatory 

error response produces a faster response in systems with unbalanced phases distribution. If        

were to increase then, with the same  , the optimal area of operation would be drawn away from the 

present controller’s power gain, therefore resulting in a slower iterative process as illustrated in the 

below graph. 

 
           General representation of the relation between the power gain and lag, and the shift created by the 

“reduction” of    . Notice how the lowest point in both curves is closer to their respective stability limit        rather 

than                 , which is the case for most scenarios involving unbalanced DG through RST. 

 
This anchoring phenomenon caused by one of the controller’s reaching its end goal ahead of its 

companions also explains why the optimal power gains for performance are all past the oscillation 

threshold. The presence of oscillation would make it much more difficult for the system to find itself in 

a situation where   
      

 , thus avoiding the reduction of the iteration coefficient matrix    . In the 7 

DERs example, with       (for a stability limit of         ), only one of the errors was found to be 

curtailed well in advance of the others, with a resultant lag of only 63 iterations, half of those required 

for a non-oscillatory response. 
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As established in Chapter 3, a great deal of the issues that plague a decentralized control strategy 

derive from the simultaneity of the controllers’ operation, which if centralized would lead to each 

individual state variable error falling at a similar, optimal rate. The key to achieve an equilibrated 

reduction of the error is thus having the initial conditions of the system conform with its parameters as 

to best emulate this situation. From    , we know that a shift in the injected power is calculated 

through the product of the gain and the current error,           . A controller will have a higher 

power gain the further upstream it is connected, due to it being inversely proportional to    , so in order 

to obtain an equal    and/or    the error it acts upon should be lower to compensate for it. That is to 

say, higher gains should act on a smaller errors, and vice-versa, as to enable a balanced reduction of 

error throughout the entire network. This conclusion leaves the door open for a possible study and 

implementation of dynamic gains         , as to enhance the system’s performance. 

 

5.3 Dispersion of Distributed Generation 

In the previous section, it was demonstrated how the superficially simple matter of adding an extra 

generator or simply readjusting one’s position in the feeder grid can lead to drastic changes in both the 

it’s controller performance and, in worst case scenario, compromise its stability altogether. This again, 

corroborating what was stated in previous chapters of this work concerning the fickleness of an 

autonomous control strategy in the face of slight changes the distribution of its DERs. As mentioned in 

the beginning of this section, having seen how the system responds to an increasing concentration of 

DG across a 3bus-by-3phase node grid, the following course of action concerns the effects of spacing 

said generation. That is, measuring what influence distance ‒ the impedance              seen by 

each individual DER and its              derivatives ‒ has on the system.  

 

Back again to Chapter 3, we observed how distancing the main generation cluster from the source 

bus affected the maximum common gain factor   with which the system could work (Fig 3.6), and 

ultimately how it influenced our choice of an admittance-based controller specific gain    . Further 

elaborating on that study, we shall dedicate this portion of Chapter 5 to the ramifications of creating 

distance, not only between the generators and the source, but also between each generating bus, in 

essence creating separate clusters of generation. As an initial postulation, we can say that increasing 

the impedance between said clusters will further isolate them from one another, likely lessening the 

(negative) effects that arise due to mutually induced generation and thus improving the system’s 

overall robustness. 

 

It’s worth reiterating that varying the value of the bus-to-bus line impedance   itself does not affect 

the system in terms of stability as, per (17), the eigenvalue gradients are solely dependent on the 

product of matrix     and         : any increment/decrement in     would be met in kind by an equal 

decrement/increment in its inverse value    . That said, a simulation was conducted to gauge the 

system’s stability parameters ‒                        
     ‒ response to a linear increase in the 

distance between the generating busses, using study model 6 as a start off point.  
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           Evolution of the Maximum Common Gain Factor for Study Model 6 in function of the line impedance 

coefficient  . 

 

From          (   ), we see a growth in the maximum common gain factor growing in the form 

of an exponential curve, with an asymptote approximately around      . It is thus confirmed that 

placing a higher impedance between the DERs can help to improve the stability limit of the control 

scheme, mainly by electrically isolating the generating busses. Yet, with a hundred time the value that 

of the study model, one would reasonably expect that given the sheer distance (and isolation) 

between the generators’ busses that the system would behave more similarly to a situation where 

each generator is by its lonesome. That is, closer to    , as seen in Table XIII. To get a more 

defined sense of the differences between the original and the extended network, one only has to 

analyze and compare matrix                for both     and       (with       ): 

 

          
                

                
                

              
                

                
                

  

 

It’s immediately perceptible that the left side of matrix     remains unchanged, even with the 

increased distance between the generating busses, while the right side values decrease by an order 

of magnitude, with the conspicuous exception of    . These differences can be easily discerned by 

looking at the general composition of     relative to each DER’s distance. Its diagonal will always be 

equal to        , as          regardless of the feeder network’s composition. Furthermore, for 

this case in particular, we have that                       , when      which will also be 

independent of  . As for the right side of the matrix,     remains constant while both     and     

increase, from     to      and from     to      respectively, and thus                  

            decreases proportionally to the latter. It’s this equivalent increment that explains why 

                does not decrease at a similar rate to what is seen for the other two right sided 

values, and ultimately the reason that the asymptote in Fig 5.4 is located around       and not   

 , as expected for an electrically isolated system. 

 

    

    

    

    

    

    



63 
 

0 20 40 60 80 100
1.6

1.7

1.8

1.9

2

x

M
a
x
im

u
m

 C
o
m

m
o
n
 G

a
in

 F
a
c
to

r

Should all terms on the right side of the matrix scale down at a similar scale, then it could be said 

that     could be approximated to a triangular matrix with an appropriately high  , and thus, owing to 

the properties of said matrixes: 

 

          
     
        
           

                          

 

However, while         and         decrease at a comparable pace,         does not, and as a 

result remains in the same order of magnitude as the elements on the left of the diagonal, meaning 

that this generalization cannot be made. Therefore, to take better advantage of distancing generating 

busses, we’ll have to increase the relative distance between them (4 and 5 specifically), rather than 

simply adding identical increments. For example, one possible solution would be to distance these two 

busses by a factor of    instead: 

 

 

 

 

 

 

 

 

 

 

 

           Evolution of the Maximum Common Gain Factor for Study Model 6 in function of the line impedance 

coefficient   (quadratic variant). 

 

Right away, the changes concerning the Maximum Common Gain Factor are perceptible. The 

graph asymptote is no longer located near      , but rather somewhere closer to     (which 

further simulations extending the range of   corroborate). Comparatively, for the same value of     we 

obtain in the example demonstrated in Fig 5.4, we here obtain a       , in contrast to the previous 

case where it was (approx.) at       . The difference between the two above cases becomes all the 

more evident when we compare the decay of         and        , as illustrated in the graphs below: 
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           Evolution of the         and         ratios in function of the line impedance coefficient  : left → linear  

increment (Fig 5.4), right → quadratic increment (Fig 5.5). The major difference between the two cases lies in that 

the         ratio plateaus just above 0.5 in the first case, indicating that                , while in the latter 

it decays towards zero as   increases, similar to        .   

 

As Fig. 5.6 demonstrates, in order to maximize the advantage afforded with the dispersal of DG, as 

to improve the system’s robustness when it comes to its stability, the ratios between bordering DER 

busses have to tend towards zero as their distance towards the source increases. In summary, the 

key to better isolate the generating busses, and thus to reduce the effects originating from mutual 

influences between the generators, is to maximize the relative distance between them. The logarithmic 

   spacing seen in Fig. 5.5 is one such instance. Another alternative, as a possible example, would be 

to space the busses in way so that                , where       and both refer to distinct busses, 

not DERs. (In this case that would be                ). Either case would ensure that the right-

sided elements of matrix     would gradually become closer to zero, allowing to approximate it to 

triangular matrix, with all the characteristics referenced above.   

 
 

 

 

 

 

 

 

 

 

 

           Comparison between the two different spacing methods. As stated, the bottom bus distribution results in 

a higher Maximum Common Gain Factor  , though the distance between generating busses     and     remains 

unaltered for both cases. 
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These conclusions can also apply for situations where we have more than one DER connected per 

phase and/or per bus. The former only entails the removal of the      factor from some of the non-

diagonal members of    , as per    , and consequently    , and as such follows the same reasoning 

detailed above, which is solely dependent on the relative distance between busses. For the latter, 

though the presence of more than one generator per bus makes it impossible to generalize     into a 

triangular matrix, the busses can still be isolated from one another. Ideally, we would get a situation 

similar to study model 1, where 3 DERs are connected to the same bus, with a Maximum Common 

Gain Factor       . Running the same tests for Fig 5.4 and 5.5, only with 9 DERs, we obtain: 

 

 
 

 

 

 

 

 

 

 

 

 

 

           Evolution of the Maximum Common Gain Factor for a full 3bus-by-3phase node grid (9 DERs) in function 

of the line impedance coefficient  , for both spacing variants. 

 

We witness a comparable situation as when using study model 6 as a reference. A quadratic 

spacing results in a higher Maximum Common Gain Factor than its linear variant, with an asymptote in 

the vicinity of      . As was anticipated, this serves as evidence that as    , the controllers in 

each of the increasingly isolated busses will start to behave like they did in study model 1. The yielded 

results are equally applicable for any number of generators (and busses), and their distribution 

throughout a feeder grid. Dispersing distributed generation has thus a somewhat noteworthy benefit in 

that it can provide a certain security margin when changing a network’s DG profile, as with sufficient 

(and appropriate) distance between the connecting busses we can assure that decentralized voltage 

control system remains stable throughout the alteration. 

 

 

 

 

 

 

       

          



66 
 

Chapter 6 

Voltage Error Area Integration 

 

In all of the scenarios studied so far, it was been considered that a feeder’s network voltage profile 

suffers alterations solely as a result of the variation in one or more of the DER’s injected power.  

However, as seen before, real world conditions will preclude this presumption. Natural fluctuations in 

the node’s voltage (and injected power) will invariably occur, owing to the characteristics of a LV 

network and a multitude of outside factors, which up until now we’ve neglected to properly take into 

consideration when simulating our chosen control algorithm. Moreover, we’ve also considered that the 

controlling algorithm operates in both an instantaneous and persistent manner for all DG, until all of 

the voltage deviations are corrected, not accounting for the distance induced lag between each of 

these nodes and their respective controller’s reaction time. These influences have the potential to 

disrupt the algorithm’s progression at an inopportune time, particularly when the system is operating 

with its power coordinates are near any of the imposed limits, as it can lead to a violation of clause 

     and/or     . To showcase the impact of these fluctuations, seemingly neglectful as they might 

appear, can have in the performance, we repeated the simulations for study model 6 and the full grid 

scenario, adding a random factor to the nodal voltage, based on its initial error, at the end of each 

iteration.  

  

          Variation of the lag over a hundred simulations as a result of the extra term with a random value between 

    and     of the initial error        , for study model 6 (left) and the full grid scenario in Chapter 5 (right). 

The dotted black lines represent their values without these fluctuations, and the red ones stand for the average 

lag.  

 

While the system is still able to steady the voltage profile to an acceptable level, curtailing the error 

below the considered threshold of     , its performance suffers a major hit, made all the more 

egregious by the presence of more DERs, as noticed when comparing the graphs side-by-side. (For 

the left, the worst obtained result nears 50 iterations, from the original 16, while on the right it goes 

beyond  6000, from 56.)  
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Ultimately, we can conclude that factoring in even the smallest of variations to the network voltage 

has resulted in a considerably larger (on average) time interval between the system’s activation and 

suitable correction of the deviation, especially when it has to handle a higher number of generators. 

Another foregone inference that can be taken from this verifiable data is that a greater range of 

fluctuations will further exacerbate the performance deterioration. 

 

Furthermore, the existence of these inherent irregularities in the voltage profile will make it 

impossible for any control scheme to fixate the nodal voltage to a predetermined value, only 

minimizing the absolute error below a certain limit, as seen above. This in turn requires constant 

updates to the injected power from the controllers, of varying degree, as each attempt to counteract 

these fluctuations. Moreover, if we also factor in a certain delay to the controller response, the error 

would’ve oscillated again making said adjustment either excessive or insufficient to correct the new 

discrepancy. Therefore, finding a more suitable criterion for triggering the voltage control process, 

other than simply having a non-null difference between the state variable and the intended value, 

becomes a necessity if we’re to have an efficient voltage regulation system. This will become the 

focus of this section. 

 

6.1 Voltage Error Area Correction 

Thus far, the algorithm, used as the building foundation for much of our study and its conclusions, 

basis its operation on a discrete numerical integration of the error: with each new iteration, the control 

variable    is updated based on the current difference between the state variable    and the intended 

set-point   . The former’s value is, as such, the linear combination of every previously obtained state 

variable error, with a set coefficient    here corresponding to the controller’s power gains their 

respective nodal voltage. 

 

           

 

   

                                               

 

If we were to shift to a temporal (continuous) basis, the summation in the above expression would be 

turned into an integral. That is, in a graphical representation, the cumulative sum of the state variable 

error would be translated to the total area between the voltage error curve and the x-axis, for an 

equivalent interval of time. It is from this integral value that we can construct our new approach for 

local voltage based power controller. Dividing the total area by the correspondent time interval allows 

us to estimate an average error for the controller to act upon, mitigating the concerns that arise due to 

the introduction of the aforementioned fluctuations. Not only that, this integral can also serve as the 

benchmark that dictates when a controller will “step in” to regulate the injected power of its DER, as 

opposed to its continual operation. To that effect, we can make it so that a controller acts upon a 

voltage deviation only when the integral area surpasses a defined limit   , as demonstrated in the 

figure below.  
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           Demonstrative example of an integral voltage error correction over a period of time. The algorithm will 

act upon the voltage difference only when the darken integral area surpasses a set limit   .  

 

From an electronic standpoint, the controller would function by registering the nodal voltage 

periodically, adding each of the (appropriately small for a better approximation) time ticks’ error until 

the sum reaches an established maximum analogous with   . Upon such occasion, the corrective 

power shift will then be determined by averaging said error by the time interval, the algorithm using the 

same alternating Q(V)/P(V) logic as in the discrete process. The integral area taken into account is 

tallied from the last moment the error was zero, meaning the count is reset every time the error signal 

switches, as a consequence of any power shift or due to the natural oscillatory behavior of the state 

variable. Ultimately, the new control strategy’s goal becomes not so much as to correct the voltage 

value itself but rather its average, drawing it to a point where the voltage error fluctuations gravitate 

around zero. However, given the previously seen influence that multiple DERs can have on the 

evolution of the network’s voltage profile and its inherently oscillatory behavior, utilizing such average 

might not be ideal. Given those factors, the calculated mean error might diverge significantly from its 

actual value at the onset of a power shift. For the sake of making a more precise adjustment, we can 

have the mean error be taken solely from a fixed segment of time directly before the readjustment in 

the injected power, putting more weight into the latest instances. 

 

           Hypothetical voltage error curve, and its respective means taken from the entire area and sampled from 

the dashed demarcation. The latter, as we can see, is closer to the error at the endmost, and thus more adequate 

for the controller to use as a basis for the consequent power shift. 
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Limiting the controllers’ intervention on a whole works for the system’s benefit, as it avoids 

unnecessary shifts in active and reactive power that would come as a result of the natural oscillations 

in the nodal voltage. Yet, perhaps the most significant advantage this voltage control method brings to 

the table, aside from the drastically reduced number of corrective shifts, is that it practically 

guarantees that no two generating nodes will vary their injected power simultaneously. As mentioned 

in Chapter 3, when discussing the possibility of alternative control strategies, it’s the concurrence 

between the operation of the various controllers that it’s at the core of the instability issue for a 

decentralized power control scheme. For a discrete iterative process, it was the eigenvalues of the  -

by-  matrix     that determined whether or not the system was convergent (and oscillatory). The same 

remains valid for the continuous process, however here we can easily determine the eigenvalues 

beforehand, even without prior knowledge of the resistance matrix    . Assuring that a maximum of 

one controller   is acting at any given time, then we’ll have a situation similar to     , where the 

eigenvalues of     will be equal to   and             , considering          . The algorithm’s 

convergence is thus guaranteed so long as      , regardless of the number of DERs and their 

configuration throughout the feeder network. 

 

6.2 Voltage Error Behavior and System Performance 

With this new paradigm in mind, we moved on to simulate the evolution of the voltage error for 

study models 1, 6, 9 and 14 (with the same initial conditions as in Chapter 4), using a variation of the 

previously utilized MATLAB code to reproduce the algorithm on a temporal scale. We’ve considered 

that each controller, upon activation, executes its power adjustment within a millisecond, sampling the 

last ten milliseconds of the voltage error for reference, with voltage error area set-point of        . 

  
                                                   

                                     
 

                                                     

                                       
 

                    Evolution of the state variable error for a continuous system, for study model 1, employing 

integration of the voltage error area, during a one second interval, with    . 
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                    Evolution of the state variable error for a continuous system, for study model 6, employing 

integration of the voltage error area, during a one second interval, with    . 

 

  
                                   

                                 
 

                                                   

                                                   
 

                    Evolution of the state variable error for a continuous system, for study model 9, employing 

integration of the voltage error area, during a one second interval, with    . 
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                      Evolution of the state variable error for a continuous system, for study model 14, employing 

integration of the voltage error area, during a one second interval, with    . 

 

Left graphs showcase the error progression without fluctuations in the nodal voltage, and opposite 

side with. Beneath each are the timestamps for each individual controller’s activation. Note that any 

right graph represents only one possible outcome of the error’s evolution, due to the randomized 

nature of the fluctuations. The DERs are again color coded, according to Table I and II. 

 

As we can observe, although the voltage error does not converge in a manner similar as the 

examples in Chapter 4, there’s at least a significant reduction in all cases during the presented time 

interval. Of particular note, study model 14 is able to curtail its error despite the common gain factor 

being equal to one, which would’ve resulted in instability before (where         
          ). This 

serves as evidence that this criteria for voltage control manages to avoid the drawbacks that crop up 

from concurrent alterations in the injected power throughout the grid, eliminating the concern of having 

to establish a specific   based on DG distribution. Not only that, given the nature of its controllers, this 

system will come to prioritize the correction of the current highest and most lasting discrepancies first, 

a fact which is corroborated by the timestamps in Figs. 6.4 through 6.11, another useful trait to have 

as to safeguard the network’s health. Regarding the differences between the left and right sides, 

without and with voltage fluctuation respectively, the main standout appears to be that the latter is 

more prone to have larger amplitudes in its “oscillations”. At any rate, these cases still manage to 

achieve a comparable reduction in error to their left counterparts, in both the presented graphs and in 

subsequent tests, for the same time interval.  
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6.3 Dynamic Error Sampling 

Another standout aspect from the above graphs, those with fluctuations in particular, is that several 

of its timestamps have a double activation period (             in Model 1 for example), and are 

graphically paralleled by large oscillations in the voltage error (in that same instance, the error goes 

from approx.      to lower than      ). These are the result of an insufficient estimate on the 

controller’s part, that is the sampled average error is inferior to the actual error at the onset of its 

activation, resulting in a shift of the injected power that does not lower (or increase) the nodal voltage 

past    with a single shift in power. As a consequence, the value of the error integral will still be above 

  , causing the controller to activate again immediately afterwards, using roughly the same sampled 

error as a basis. This effectively results in nodal voltage variation to double, often way past what is 

necessary to curtail its error. While this phenomenon might come as a consequence of the still 

iterative simulation model we’re employing, it nonetheless highlights a concern that the sampling 

method displayed in Fig 6.3 might not be sufficient for the controller to gauge an accurate estimate of 

the voltage error. Not to mention, an increased activation period runs the risk of having two or more 

controllers operating simultaneously, losing the main advantage this type of controller has over its 

discrete equivalent. An alternative or expanded methodology for the controller to better estimate the 

voltage error comes then as advantageous.  

 

The simplest solution would be to make it that    , so that the controller would naturally 

overcompensate for any possible discrepancies between the sampled and actual error, ensuring that it 

goes through zero (resetting    in the process) with a single adjustment in the injected power. 

However, while this may help to offset the random variations in the nodal voltage, it cannot be said to 

be entirely reliable. If   is too low, its effects might end up being negligible, while if it is too high, it may 

induce more of the same oscillations we’re attempting to lessen. Simply reducing the sample period 

would likewise be a limited scope resolution. 

 

A careful analysis of the graphs shows that, beyond these small fluctuations, it’s again the 

generators’ mutual influence on one another that lies at the heart of the issue. If within a controller’s 

sampling period a change in the nodal voltage were to occur, due to a different controller’s activation, 

then the average calculated by the former will be significantly different than its current error. (Notice 

again in Model #1 that all cases of double activation periods occur less than 10 milliseconds – the 

sample period – after the previous.) Going by the logic applied when first determining the sampling 

method, we can make it so that a controller is able to automatically readjust its sample period should it 

detect a significant rise or fall in its nodal voltage within a short interval of time. That is, it will shorten 

the sample period by placing its start point at the moment said variation takes place, as it’s illustrated 

in Fig 6.12. Note that the fixed period will still remain in effect as to counteract any gradual changes in 

the nodal voltage that would not be detected otherwise (see the cosine wave in Fig 6.3). In essence, 

this means that the sample period is defined by whichever     or     is the smallest, while the 

common gain factor   should be chosen based on the expected amplitude of the voltage fluctuations.  
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            Fixed interval sampling vs. dynamic interval sampling. As we can see, integrating the right dashed area 

will result in a more precise reduction of the voltage error than with the area on the left. The controller measures 

    by pinpointing the last instance where a substantial variation of the nodal voltage took place, as opposed to 

    which is fixed.       

 

Adopting this new sampling methodology, and choosing a      , we repeated the previous set of 

simulations, with the same initial conditions. Each controller will readjust its sampling time if it detects 

a the nodal voltage variation larger than      within a millisecond. Again, left graphs showcase the 

error progression without fluctuations, and opposite side with. 

 

  
                                               

                                   
 

                                                

                                  
 

                      Evolution of the state variable error for a continuous system, for study model 1, employing 

integration of the voltage error area and dynamic sampling, during a one second interval, with    . 
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                      Evolution of the state variable error for a continuous system, for study model 6, employing 

integration of the voltage error area and dynamic sampling, during a one second interval, with    . 

 

  
                                   

                      
 

                                   

                      
 

                      Evolution of the state variable error for a continuous system, for study model 9, employing 

integration of the voltage error area and dynamic sampling, during a one second interval, with    . 
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                      Evolution of the state variable error for a continuous system, for study model 14, employing 

integration of the voltage error area and dynamic sampling, during a one second interval, with    . 

 

Side-by-side, it’s readily obvious that the graphs on opposite sides are nearly identical, a fact that is 

further hammered in by their near equal timestamps. And unlike the examples on display in Figs 6.4 to 

6.11, the error behavior with the added fluctuations remains more or less consistent, with only a few 

differences of a couple milliseconds in its timestamps from simulation to simulation. The large error 

oscillations that cropped up in the previous examples are also, for the most part, eliminated. Thus, it’s 

presumable to say that the effect of these random fluctuations have on the system’s error has been 

effectively curtailed, though only for relatively small amplitudes. Larger fluctuations will necessitate an 

increase in both  , again to make sure that    is reset during a single tick of the controller, and in the 

dynamic sampling voltage variation threshold, so that it can correctly detect the when its nodal voltage 

is being influenced by another generator’s operation. 

 

6.4 Applied to a Full Grid 

Lastly, in the interest of obtaining a fuller picture, we can take another look at the example of a full 

grid scenario tested in Chapter 5. As Figs. 6.21 and 6.22 show, the two graphs also share the same 

degree of similarity seen in the previous cases, both visually and in their timestamps. Another 

noteworthy fact is that the controllers for generators 4, 5 and 6 never activate during the 1 second 

interval, relying solely on the surrounding DERs to correct their voltage deviation. 

0 0.2 0.4 0.6 0.8 1

-20

-10

0

10

20

30

40

t(s)

V
o
lt
a
g
e
 E

rr
o
r 

(x
1
0
-3

)

0 0.2 0.4 0.6 0.8 1

-20

-10

0

10

20

30

40

t(s)

V
o
lt
a
g
e
 E

rr
o
r 

(x
1
0
-3

)

                



76 
 

  
                                               

                                               

                                               

                      

 

                                               

                                               

                                               

                      

 

                     Evolution of the state variable error in a full grid (9 DERs), following the same setup as the 

previous eight figures. Each color stands for one of the nine DERs connected to the feeder grid. 

 

Compare it with the discrete method of voltage control, where all nine controllers would be 

operating concurrently, tripling the power shifts in relation to the 3 DER study models. Going back to 

Fig 6.1, without fluctuations it took 56 iterations for the discrete system to curtail the error below     , 

tallying about          shifts in the injected power total. Upon further testing, we found that for the 

voltage error integration it takes only    , nearly 5 times less. (For study model 6, it was         

against  .) The discrepancy only increases if we were to factor in the fluctuations, were it took the 

former an average of 1500 iterations, meaning              shifts, to satisfy the requirements. 

This serves to highlight the other major advantageous that integrating the error area has over the 

discrete iterative process, that being reducing its reliance on the autonomous power controllers to 

safeguard the network’s voltage profile. 

 

Note also that all performance matters of the voltage integration system are tied to   : the lower its 

value, the faster the system will act upon the error. (For example, halving    in the above figures 

would result in the same graphs, only for a time interval of 0.5 seconds instead of 1.) However, there’s 

an ostensible lower limit to this parameter dictated by the controllers’ own response time, as it’s 

paramount that their operation period do not overlap which, as stated before, could cause an 

imbalance in the system, similar to stability issues that plagued the discrete process. 
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Chapter 7 

Conclusions 

The significant expansion of microgeneration in recent years has resulted in a renewed focus on 

the issue of DG regulation within the pertaining academic community, given its noted impact on 

network quality of service, not to mention security and reliability. As placing the DNO in charge of the 

regulation process, the so-called centralized control strategy, carries significant associated costs and 

a crippling dependence on usually fickle communication links, decentralized approaches are being 

promoted as the more practical and economical alternatives. However, while appealing taken at a 

glance, several underlying concerns regarding the adoption of these control approaches, chiefly 

stemming from the single-phase nature of the DER elements, have gone unrecognized or 

inadequately defined so far. Their existence, and general ignorance of, poses a potential false step in 

the establishment of autonomous systems as the new paradigm in DG power control.  

 

7.1 Summary 

As underlined in the state-of-the-art, the avowed objective of this work was to propose such a 

theoretical operable control strategy, that could (in a future instance) be employed by micro-producers 

to regulate their own operation without the need of input or oversight from any external entity. Also 

anticipated in the opening chapter, a large portion of this study came to concern the identification and 

subsequent detailed examination of the most conspicuous stumbling blocks that arise with said 

independence, namely stability, performance and restrictions on the power output. In tandem, 

throughout the paper, we’ve strived to develop a voltage control scheme that could eliminate or 

minimize the impact of these inherent inadequacies, yielding two results in the form of the Alternating 

Q(V)/P(V) Controller (Table VIII - Chapter 3) and the Voltage Error Area Integration Controller 

(Chapter 6). 

 

We started in Chapter 2 by demonstrating the principle behind the voltage rise phenomenon, that 

occurs in three-phase grids with single-phase DERs, and how it can be translated into a reduced 

resistance matrix     for the a four-wire feeder circuit model. It’s in the non-diagonal elements of this 

matrix, representing the generators’ mutual influence on one another, that the heart of the studied 

issue of stability lies. Defining first both a set of fourteen basic study models, whose minute 

differences revealed the extensive effects DER distribution has on the system performance further 

ahead, and basic control algorithm, a criteria for convergence was established based on the 

eigenvalues of the derived matrix    . The existence of this benchmark, rooted in each controller 

specific power gain     as opposed to the common gain  , allows us to calculate the maximum 

allowed gain        given a specific network’s configuration, through    . It’s this set of values, which 

define the algorithm’s limitations for the convergent (and thus stable) behavior of the voltage error, that 

became our standard of comparison for the different network configurations and control options, as it 

gauges the former’s robustness.  
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 Chapter 3 dealt with the evolution of the base algorithm, transforming it into the one that was to be 

utilized in the succeeding simulations. We first arrived at the conclusion that the best option for the 

controllers was to base their specific power gain     on the inverse impedance seen by their 

respective DER, as it counteracts the effects of the generators’ distance to the source bus. 

Additionally, we’ve discovered that by eliminating the simultaneity of the control process, that is have 

no two controllers operating at the same time, any common gain factor   between 0 and 2 could 

guarantee the system’s stability. Such methodology would later be studied in Chapter 6. Beyond gains 

and stability concerns, we also weighted in the physical characteristics of the equipment, which will 

invariably impose restrictions on the power injected into the grid by a generator, mathematically 

represented by a    radius semi-circle. While this limit curve does not compromise the algorithm 

convergence in itself, it may act as a roadblock, making it impossible for the nodal voltage to reach its 

set-point. Furthermore, in order for the system to successfully maneuver within its operational area, 

the controller will have to alternate between regulating its reactive, Q(V), or its active power, P(V), 

exclusively. In order to avoid any unnecessary drops in the injected active power, we opted for an 

algorithm that gives precedence to the former, meaning that will only fall back on the latter if it 

encounters the limit curve. Lastly, we identified the line segment      which contains all possible sets 

of solutions for the given initial conditions. This, and any line segment with the same slope, can be 

navigated by the system without it disturbing the voltage profile, which is helpful when a certain power 

factor is desired or when drops occur in the available active power. 

 

With the fundamentals laid out, in Chapter 4 we proceeded to simulate the study models with the 

updated algorithm, using MATLAB. Being necessary to run the program, we began by computing a set 

of initial voltage values based on each study model, which naturally came to yield dissimilar results 

owing to the different positioning of the DERs in the 3bus-by-3phase grid and the occurrence of 

voltage rise. Also as expected, the effects of the latter are more pronounced in situations where 

there’s more concentration of DG, both in busses and in phases. In general, what we can take from 

the simulations is that small differences in positioning of the generators produce non-negligible 

variations in both voltage error behavior and system performance, particularly for higher common 

gains. Alluded since the beginning, the collected results from the tests have indeed corroborated that 

an unbalanced distribution of generators throughout the grid’s phases induces a higher lag, and a 

somewhat lower total power shift for both types due to same-phase reciprocal influences. The latter 

even resulted in some situations where the injected power counter-intuitively rose, despite the initial 

nodal voltage being greater than the set-point. Furthermore, the best performances are achieved 

within the oscillatory range of the common gain factor, typically found around                     . 

Last of all, an additional function was added to the algorithm, due to a situation encountered in one of 

the study models, to allow for more breathing space to the controller. 

 

 

 



79 
 

The follow-up Chapter 5 was dedicated to the expansion of the original network model, studying 

the system’s response to a larger concentration of DG in the same 3-bus network and the effects of 

increasing the impedance (i.e. electrical distance) between those same busses. Unsurprisingly, the 

inclusion of more DERs further lowers the maximum common gain factor  , weakening the robustness 

of the system, though not to the extent that was initially feared, with its value leveling when two of the 

phases are filled. Nevertheless, each extra element contributes with yet another degree of unwanted 

complexity, as can be noted in the obtained sets for each set of initial nodal voltage based on the 

number of connected generators. Performance with high concentration of DG is mostly tied with the 

initial conditions of the system, its biggest hinder being instances of anchoring, where one (or more) 

voltage error is corrected well ahead of its peers. This in turn will cause its respective controller to act 

as an anchor to the remainder, as it tries to hold its own nodal voltage in place. Thus, the system will 

correct more swiftly its overall voltage profile if the detected errors progress towards zero at a similar 

pace. Spacing wise, the conclusion we reached was that in order to isolate the generating busses 

more effectively, the relative distance between concurrent ones has to be maximized, rather than 

applying simple increments in line impedance. The resulting grid would have its busses not equidistant 

from one another, but rather spaced in logarithmic fashion, which allows us to obtain a higher 

maximum common gain factor with the same distance between the most downstream and upstream 

bus. 

 

Finally, in Chapter 6, we saw to the proposal of continuous basis algorithm, as opposed to the 

discrete one used till that point, as part of a voltage error integration based controller. The impetus for 

elaborating on this methodology stemmed mainly from the erratic patterns in system performance 

when applying a small random fluctuation factor to the nodal voltage, whose lag is on average 

substantially higher, especially with a large number of DERs. In essence, by adopting this method, a 

controller’s operation would only be triggered when the voltage error integration area surpasses a 

certain set limit, then readjusting the injected power based on a sample of said area. Not only would 

this curtail the impact natural voltage fluctuations have on the system’s operation but, more 

importantly, it removes the simultaneous aspect of the control process, assuming that no two 

controller’s operations can overlap. As mentioned above, a large share of the stability issue in 

decentralized voltage control is thus eliminated, removing any pressing concerns over the distribution 

of the DERs over the feeder, though power limits and performance remain a matter of consequence. 

Another benefit came with the shorter number of power shifts necessary to reach a solution set, that is 

to correct the same initial voltage error, compared to the discrete algorithm. 
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7.2 Outlook 

In conclusion, the results of this thesis demonstrate that implementing a decentralized voltage 

control strategy for DG in a LV network can indeed be feasible, in theory. Despite the numerous 

issues that plague it, such as the pervasive threat of instable behavior and lacking performance, it is 

possible to circumvent them through adequate planning of the controllers’ gains and adjustments to 

their algorithm. However, as noted by German military theorist Helmuth von Moltke, “No battle plan 

survives contact with the enemy”. That’s to say, when theory is pitted against the real world, the latter 

will invariably come out on top. 

 

In spite of our efforts to factor in several limiting factors into our calculations and solutions, such as 

restrictions on injected power and voltage fluctuations, the results obtained throughout this work were 

still drawn from a simplified scenario rather than a realistic one. And even presented with such model 

conditions – a constant- parameter network model, a constant reactance-to-resistance ratio (   ), no 

external perturbations in injected power, ideal initial conditions, a balanced load for non-generating 

nodes, instant reaction times, etc. – we’ve still encountered a significant number of complications, that 

can prove nonetheless critical to the control system’s operation, and possibly a death knell to the near-

future widespread adoption of decentralized control strategies. Future, more in-depth and in practice, 

studies are thus believed to be required to properly gauge the realistic viability of the autonomous 

option in real-life LV distribution networks. It’s nonetheless hoped that the provided strategies, even if 

not viable as practical solutions, can at least serve as a stepping stone towards the formulation of a 

workable decentralized control scheme, much like the original base algorithm was expanded 

throughout the work in response to the encountered issues.  

 

More importantly, throughout the course of this thesis, it was our intention to draw attention to the 

inherent limitations of decentralized voltage control, shining a light on a previously poorly defined field 

of research, and hopefully stimulate a broader discussion within the pertaining academia on the topic. 
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Annex A – MATLAB Code for Discrete Controller 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%Discrete alternating Q(V)/P(V) controller%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clc; clear all; clf; 

  

%reactance-to-resistance ratio 

XoR=.1;  

  

%grid position matrix: 0-empty node, 1-generating node 

%   0   1    2   3   4  ... 

%R  O - O - |O - O - O -...| 

%S  O - O - |O - O - O -...| 

%T  O - O - |O - O - O -...| 

%           |<-start point 

pDER=[ 1 0 0 ; 

       0 1 0 ; 

       0 0 1 ]; 

%number of elements (DERs)    

nDER=nnz(pDER);   

  

%voltage set-point 

vx=1.1; 

  

%build reduced circuit resistance matrix and calculate initial voltage 

[R,v0]=matrixbuild(pDER); 

  

%reactance, coductance and susceptance matrices 

X=XoR*R;G=R^-1;B=X^-1; 

  

%common gain factor 

alpha=1.0; 

%controller power gains, active (kp) and reactive (kq) 

k=diag(R).^-1*alpha;kp=k;kq=k/XoR; 

  

%eigenvalues 

lamb=eig(eye(nnz(pDER))-R*diag(k)); 

  

%setting initial values 

%%voltage 

v=v0; 

%%active power 

p0(1:nDER,1)=0.95; 

%%reactive power 

q0(1:nDER,1)=-0.3; 

%%maximum apparent power == semi-circle radius 

sM=1.035; 

%%maximum available active power 

pA(1:nDER,1)=sM; 

  

%initial condition variable: equation (24) 

c0=(G*(vx-v0)+p0)*XoR^-1+q0; 

  

%system checks 

%%checks if system is stable 

if any(abs(lamb)>1) 

    disp('--System is instable') 

    return 

%%checks if set-point is reachable under current conditions 

elseif ini_cond_error(c0,sM,XoR,pA)==0 

    return 

end 

  

%record initialization 

vout(:,1)=v0; p=p0; pout(:,1)=p0; q=q0; qout(:,1)=q0; lag=0; 

  

%number of iterations 

N=100; 
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%main loop 

for i=2:N 

  

    %maximum active and reactive power 

    pM=min(sqrt(sM^2-q.^2),pA); 

    qM=sqrt(sM^2-p.^2); 

     

    %runs through all DERs 

    for j=abs(1:nDER)     

        %activates P(V) if next activation of Q(V) puts apparent power over 

        %the limit 

        if abs(q(j)+kq(j)*(vx-v(j)))>abs(qM(j)) 

            %activates meanshiftpoint function when necessary (see Section 4.5) 

            if p(j)+kp(j)*(vx-v(j))>pM(j) || p(j)+kp(j)*(vx-v(j))<=0 

                [p(j) q(j)]=meanshiftpoint(p(j),q(j),XoR,sM,pA(j)); 

            end 

            %executes active power shift 

            p(j)=p(j)+kp(j)*(vx-v(j)); 

            %keeps power within limits 

            p(j)=min(pM(j),max(0,p(j))); 

        %otherwise activates Q(V) per standard 

        else 

            %executes reactive power shift 

            q(j)=q(j)+kq(j)*(vx-v(j)); 

            %keeps power within limits 

            q(j)=min(qM(j),max(-qM(j),q(j))); 

        end 

    end   

  

    %updates voltage based on previous shifts 

    v=v0+R*(p-p0)+X*(q-q0); 

     

    %adds random fluctuation factor (if wanted) 

    %v=v-0.01*(v0-vx)+0.02*(v0-vx).*rand(nDER,1); 

     

    %updates record 

    vout(:,i)=v; pout(:,i)=p; qout(:,i)=q; 

  

    %checks if error threshold has been reached to estimate the lag 

    if lag==0 && (mean(abs(v-vx))<10^-4) 

        lag=i-1; 

    end 

end 

  

%final active power drop curtailment 

[p q]=setlineadj(p,q,p0,q0,sM,XoR,1); 

v=v0+R*(p-p0)+X*(q-q0); vout(:,i)=v; pout(:,i)=p; qout(:,i)=q; 

  

%chose plot: 1-[P,Q] cartesian plot, 2-voltage error  

plottype=0; 

  

if plottype==1 

    youtp(1)=sM; 

    youtn(1)=-sM; 

    xout(1)=0; 

    for j=2:3*N+1 

        youtp(j)=youtp(j-1)-(sM)/(3*N); 

        youtn(j)=-youtp(j); 

        xout(j)=sqrt((sM)^2-youtp(j)^2); 

    end 

    for i=1:nDER 

        hold on 

        plot(  pout(i,1:N),qout(i,1:N), xout,youtp,'k', xout,youtn,'k') 

        hold on 

    end 

    axis([min(min(pout))-0.01 max(max(pout))+0.01 min(min(qout))-0.005 max(max(qout))+0.005]) 

    line([0 sM],[0 0], 'Color', 'k', 'LineStyle', ':'); 

    xlabel('P (pu)') 

    ylabel('Q (pu)') 

elseif plottype==2 

    plot(0:N-1,(vout(:,:)-vx)*10^3) 

    axis([-0.1 N (min(min(vout-vx))-0.001)*10^3 (max(max(vout-vx))+0.001)*10^3]) 

    xlabel('Iterations') 

    ylabel('Voltage Error (x10^-3)') 

    line([0 N],[0 0], 'Color', 'k', 'LineStyle', ':'); 

end 
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Annex B – MATLAB Code for Continuous Controller 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%Voltage error area integration alternating Q(V)/P(V) controller%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc; clf; clear all 

  

%reactance-to-resistance ratio 

XoR=.1; 

  

%grid position matrix: 0-empty node, 1-generating node 

%   0   1    2   3   4  ... 

%R  O - O - |O - O - O -...| 

%S  O - O - |O - O - O -...| 

%T  O - O - |O - O - O -...| 

%           |<-start point 

pDER=[ 1 0 0 ; 

       0 1 0 ; 

       0 0 1 ]; 

%number of elements (DERs)    

nDER=nnz(pDER); 

  

%voltage set-point 

vx=1.1; 

  

%build reduced circuit resistance matrix and calculate initial voltage 

[R,v0]=matrixbuild(pDER); 

  

%reactance, coductance and susceptance matrices 

X=XoR*R;G=R^-1;B=X^-1; 

  

%common gain factor 

alpha=1.1; 

%controller power gains, active (kp) and reactive (kq) 

k=diag(R).^-1*alpha;kp=k;kq=k/XoR; 

  

%eigenvalues 

lamb=eig(eye(nnz(pDER))-R*diag(k)); 

  

%setting initial values 

%%voltage 

v=v0; 

%%initial error 

verr(:,1)=vx-v0; 

%%voltage variation 

dvout(1:nDER,1)=0; 

%%active power 

p0(1:nDER,1)=0.95; 

%%reactive power 

q0(1:nDER,1)=-0.3; 

%%maximum apparent power == semi-circle radius 

sM=1.035; 

%%maximum available active power 

pA(1:nDER,1)=sM; 

  

%initial condition variable: equation (24) 

c0=(G*(vx-v0)+p0)*XoR^-1+q0; 

  

%system checks 

%%checks if system is stable 

if any(abs(lamb)>1) 

    disp('--System is instable') 

    return 

%%checks if set-point is reachable under current conditions 

elseif ini_cond_error(c0,sM,XoR,pA)==0 

    return 

end 

  

%record initialization 

vout(:,1)=v0; p=p0; pout(:,1)=p0; q=q0; qout(:,1)=q0; lag=0; 

  

%operation timespan (in milliseconds) 

N=1000*1.0; 
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%voltage error area set-point 

Ax=1; 

  

%sampling timespan (in milliseconds) 

n=10; 

  

%time parameters initialization 

A(1:nDER)=0; trig(1:N)=0; temp(1:nDER)=0; lerr(1:nDER)=0; ss(1:nDER)=1; 

  

for i=2:N %alterar k para i 

     

    %maximum active and reactive power 

    pM=min(sqrt(sM^2-q.^2),pA); 

    qM=sqrt(sM^2-p.^2); 

     

    %stops two controllers from acting in the same iteration of the loop 

    %this better simulates an actual continuous base controller 

    flag=0; 

     

    %runs through all DERs 

    for j=1:nDER 

  

        %resets time parameters if voltage error switches signal 

        if i~=2 && ((verr(j,i-1)/verr(j,i-2))<=0 || abs(verr(j,i-1))<10^-9)  

            A(j)=0; temp(j)=0; ss(j)=i-1; 

        end 

         

        %accrues error area and timer 

        A(j)=A(j)+verr(j,i-1)/1; 

        temp(j)=temp(j)+1; 

       

        %detects large shift in voltage, sets new sample border 

        if abs(dvout(j,i-1))>1*10^-3 

            ss(j)=i-1; 

        end 

         

        %detects when error area surpasses set-point 

        if ( abs(A(j))>=Ax ) && flag==0 

            %records trigger time 

            trig(i)=j; 

  

            %adjusts sample border  

            if k-1-ss(j)>n 

                ss(j)=i-1-n; 

            end 

            span=numel(verr(j,ss(j):i-1)); 

             

            %activates P(V) if next activation of Q(V) puts apparent power 

            %over the limit 

            if abs(q(j)+kq(j)*sum(verr(j,ss(j):i-1))/span)>abs(qM(j))  

                %activates meanshiftpoint function when necessary 

                if p(j)+kp(j)*sum(verr(j,ss(j):i-1))/span>pM(j) || 

p(j)+kp(j)*sum(verr(j,ss(j):i-1))/span<=0 

                    [p(j) q(j)]=meanshiftpoint(p(j),q(j),XoR,sM,pA(j)); 

                end 

                %executes active power shift based on average error 

                p(j)=p(j)+kp(j)*sum(verr(j,ss(j):i-1))/span; 

                %keeps power within limits 

                p(j)=min(pM(j),max(-pM(j),p(j))); 

            %otherwise activates Q(V) per standard 

            else 

                %executes reactive power shift based on average error 

                q(j)=q(j)+kq(j)*sum(verr(j,ss(j):i-1))/span; 

                %keeps power within limits 

                q(j)=min(qM(j),max(-qM(j),q(j))); 

            end 

            flag=1; 

        end  

    end 

     

    %updates voltage based on previous shifts 

    v=v0+R*(p-p0)+X*(q-q0); 

     

    %adds random fluctuation factor (if wanted) 

    %v=v-0.01*(v0-vx)+0.02*(v0-vx).*rand(nDER,1); 
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    %updates record 

    vout(:,i)=v; verr(:,i)=vx-v; dvout(:,i)=v-vout(:,i-1); 

    pout(:,i)=p; qout(:,i)=q; Aout(:,i)=A; 

     

    %checks if error threshold has been reached to estimate the lag (in s) 

    if lag==0 && (mean(abs(v-vx))<10^-4) 

        lag=(i-1)*10^-3; 

    end 

     

end 

  

%triggers record 

[row col val]=find(trig); 

trig=[col/1000 ; val]; 

ct=trig(1, size(trig,2))*1000; 

  

%chose plot: 1-[P,Q] cartesian plot, 2-voltage error 

plottype=0; 

  

t=(1:N)/1000; 

if plottype==1 

    youtp(1)=sM; 

    youtn(1)=-sM; 

    xout(1)=0; 

    for j=2:3*N+1 

        youtp(j)=youtp(j-1)-(sM)/(3*N); 

        youtn(j)=-youtp(j); 

        xout(j)=sqrt((sM)^2-youtp(j)^2); 

    end 

    for i=1:nDER 

        hold on 

        plot(  pout(i,1:N),qout(i,1:N), xout,youtp,'k', xout,youtn,'k') 

        hold on 

    end 

    axis([min(min(pout))-0.01 max(max(pout))+0.01 min(min(qout))-0.005 max(max(qout))+0.005]) 

    line([0 sM],[0 0], 'Color', 'k', 'LineStyle', ':'); 

    xlabel('P (pu)') 

    ylabel('Q (pu)')    

elseif plottype==2 

    plot(t,(vout(:,:)-vx)*10^3) 

    line([0 N/1000],[0 0],'Color', 'k') 

    axis([0 N/1000 (min(min(vout-vx))-0.001)*10^3 (max(max(vout-vx))+0.001)*10^3]) 

    xlabel('t(s)') 

    ylabel('Voltage Error (x10^-3)') 

end 
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Annex C – MATLAB Code for ini_cond_error  Func. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%Function checks if given initial conditions%%  

%%allow the system to reach the set-point    %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [check] = ini_cond_error(c0,sM,XoR,pA) 

  

err(1:4)=0; 

  

%coefficients of function (23), solved for pf 

a=1+XoR^-2; b=-2*c0*XoR^-1; c=c0.^2-sM^2; 

  

%checks (26) 

if any( sqrt(1+XoR^2)*sM - abs(c0*XoR) <0 ) 

    err(1)=1; 

end 

%checks (28), lower limit     

if any(c0<-sM) 

    err(2)=1; 

end 

%checks (28), higher limit 

if any(c0>sM*XoR^-1*sqrt(1+XoR^2)) 

    err(3)=1; 

end 

%checks for available active power 

if pA(1)<min(roots([a b(1) c(1)])) || pA(2)<min(roots([a b(2) c(2)])) || pA(3)<min(roots([a 

b(3) c(3)])) 

    err(4)=1; 

end 

  

%error message 

if any(err~=0) 

    check=0; 

    disp('Initial conditions do not allow for successful correction') 

    if err(1)==1 

        disp('--Inequality 25 violated')     

    end 

    if err(2)==1 

        disp('--Inequality 27 (lower) violated') 

    end 

    if err(3)==1 

        disp('--Inequality 27 (higher) violated') 

    end 

    if err(4)==1 

        disp('--Not enough active power available') 

    end 

else 

    check=1; 

end 

 

 

 

 

 

 

 



88 
 

Annex D – MATLAB Code for matrixbuild  Func. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%Function builds resistance matrix under reduced circuit conditions and%%  

%%then calculates the powerflow to determine the initial voltage values %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function [R,v0] = matrixbuild(pDER) 

  

%bus-to-bus line impedance 

zz=0.2; 

  

N=numel(pDER); NZ=nnz(pDER); 

R(1:NZ,1:NZ)=0; pos(1:NZ,3)=0; 

count=0; nDER=1; z=zz*4; 

  

for i=1:N/3 

     

    %runs through the three phases 

    for j=abs(1:3) 

        count=count+1; 

        %if it detects a DER... 

        if pDER(j,i)~=0 

  

            %...it calculates the distance of its associated non-diagonal 

            R(nDER,nDER:NZ)=-z/4; 

            R(nDER:NZ,nDER)=-z/4; 

            %...and its own...  

            R(nDER,nDER)=z; 

             

            %saves DER position on the grid 

            pos(nDER,:)=[count,j,i]; 

   

            %checks for same-phase DERs 

            for k=1:i-1 

                if pDER(j,k)~=0 

                    %changes matrix term accordingly 

                    R(nDER,pDER(j,k))=R(pDER(j,k),pDER(j,k)); 

                    R(pDER(j,k),nDER)=R(pDER(j,k),pDER(j,k)); 

                end 

            end 

            pDER(j,i)=nDER; 

            nDER=nDER+1; 

        end 

    end 

    %moves to next downstream bus 

    z=z+zz*2; 

end 

  

%generated voltage, up until 9 DERs (+9 are randomized between 0.96-0.97) 

vg=[0.9615 0.9601 0.9651 0.9642 0.9632 0.9656 0.9677 0.9645 0.9690 0.96+0.0099*rand(1,NZ-9)]'; 

  

%factors samme-phase co-generation into the generated voltage 

for j=1:3 

    for i=nonzeros(pDER(j,:)) 

        vg(i)=vg(i)+(nnz(pDER(j,:))-1)*0.1; 

    end 

end 

  

A = R;   

b = ones(NZ,1)*1.1 - vg(1:NZ); 

f = ones(NZ,1); 

[x,fval,exitflag,output,lambda] = linprog(f,[],[],A,b); 

  

g(1:N)=0; 

for i=1:NZ 

   g(pos(i,1))=-x(i); 

end 

  

a(2+N/3:2)=0; a(1,1)=1; a(1,2)=2; 

for i=2:1+N/3 

    a(i,1)=a(i-1,1)+1; 

    a(i,2)=a(i-1,2)+1; 

end 

nn=length(a)+1; 
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sb = 100; %kVA 

vb = .4;  %kV 

ib = sb/sqrt(3)/vb; %A 

zb = vb^2/sb*1e3 ;  %Ohm 

z(1:nn) = zz; 

  

%load map 

sr (1:nn) = [ 0+1i*0  0+1i*0  g(1:3:N)+1i*0]; 

ss (1:nn) = [ 0+1i*0  0+1i*0  g(2:3:N)+1i*0]; 

st (1:nn) = [ 0+1i*0  0+1i*0  g(3:3:N)+1i*0]; 

s = [sr; ss; st]; 

  

%set loads for unconnected nodes 

for i=3:length(s) 

    cog=nnz(s(:,i)); 

    for j=1:3 

        if s(j,i)==0 && cog>=1 

            s(j,i)=s(j,i)+0.1; 

        end 

    end 

end 

  

%calculate power flow 

[vphase, vneutral, eps] = pf3ph(a, z, s, 1.06, 1., 50); 

  

%retrieves value for the DER nodes 

for k=1:NZ 

    v0(k)=vphase(pos(k,2),pos(k,3)+2); 

end 

v0=v0'; 

  

%set mean v0 as 1.12 (if wanted) 

% v0=v0+(1.12-mean(v0)); 
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Annex E – MATLAB Code for pf3ph  Func. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%Function that calculates powerflow%% 

%%created by Prof. Pedro Carvalho   %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [mvp, mvn, eps, in] = pf3ph (t, z, s, vr, el, ni) 

p=t(:,1); f=t(:,2); w=length(p)+1; 

vp(1,1:w) = vr; al=exp(-j*pi*2/3);vn(1:3,1:w)=0.0; 

for h=2:3 vp(h,1:w)=vp(h-1,1:w)*al; end   

va = vp-vn; ia=conj(s.*abs(va).^el./va); 

for it=1:ni va=vp-vn; ip=conj(s.*abs(va).^el./va); in=-sum(ip); 

for  k=w-1:-1:1 n=f(k); m=p(k); in=-sum(ip); ip(:,m)=ip(:,m)+ip(:,n); end 

eps = norm(max(abs([ia-ip]))); 

  

% if (eps>1e-4) ia=ip; mvp=0;mvn=0;eps=inf; else mvp=abs(vp-vn);  

% mvn=abs(vn(1,:)); return;  end 

  

mvp=abs(vp-vn); 

mvn=abs(vn(1,:)); 

  

for  k=1:1:w-1 n=f(k); m=p(k); vn(:,n)=vn(:,m)-z(k)*in(n);  

vp(:,n)=vp(:,m)-z(k)*ip(:,n); end; ia=ip; end % pms carvalho 2010 
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Annex F – MATLAB Code for setlineadj  Func. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%Function that minimizes active power variation based on (27)%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [padj qadj] = setlineadj(p,q,p0,q0,sM,XoR,mode) 

  

padj=p; qadj=q; 

  

if mode==1 

    c0=q+XoR^-1*p; 

    for j=1:3 

        if sqrt(p0(j)^2+(-XoR^-1*p0(j)+c0(j))^2)<=sM 

            padj(j)=p0(j); 

            qadj(j)=-XoR^-1*p0(j)+c0(j); 

        else 

            if p(j)<p0(j) 

                padj(j)=max(roots([ (-XoR^-1)^2+1 2*c0(j)*(-XoR^-1) c0(j)^2-sM^2 ])); 

            else 

                padj(j)=min(roots([ (-XoR^-1)^2+1 2*c0(j)*(-XoR^-1) c0(j)^2-sM^2 ])); 

            end 

            qadj(j)=-XoR^-1*padj(j)+c0(j); 

        end 

    end 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


