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Abstract — Due to the expansion of distributed generation (DG), 

decentralized voltage control has been gaining traction as the 

leading strategy for the regulation of distributed energy 

resources (DERs) in low-voltage (LV) networks. However, this 

methods carries several, often overlooked, drawbacks that can 

compromise these grid’s voltage profile. In this thesis, we model 

several reduced circuit networks and a basic control algorithm, 

then expounding upon the issues of system instability and 

restrictions on the DERs’ power output. By managing each 

controller’s power gain, an alternating power controller is then 

put forward and simulated, after which the base network model 

is expanded upon. An alternate voltage error integration 

controller is lastly proposed, ameliorating the unpredictability 

of the error due to an unbalanced distribution of DERs. This 

thesis ultimately concludes that a decentralized control strategy, 

while feasible, cannot be applied in real-life without a much 

more in-depth study on its limitations. 

  

Index Terms — distributed energy resources, decentralized 

voltage control, system instability, alternating power controller, 

controller power gain, voltage error integration. 

I. INTRODUCTION 

Microgeneration has been steadily rising in prominence 

over the past two decades, and it’s reasonable to expect that it 

will continue to expand over the foreseeable future, 

particularly in developed countries [1]. The advent of smaller 

and affordable photovoltaic (PV) panels [2] has resulted in 

the considerable growth of scaled-down generation sites, 

located downstream in low-voltage (LV) electric networks. 

This trend has raised several pressing concerns within the 

pertaining academia seeing that most of the current 

distribution network’s infrastructure wasn’t conceived with a 

large concentration of distributed generation (DG) clusters in 

mind [3].  

The primary matter of contention relates to voltage rise, 

caused by the inversion of the regular power flow due to a 

significant number of installed DERs [4]. This is particularly 

relevant in situations where the reactance-to-resistance ratio 

is small, such as is the case with LV distribution networks. 

This unwanted deviation in the network’s voltage profile 

comes as a consequence of the inversion of the regular power 

flow, caused by the substantial injection of active power into 

the grid by the connected DG. The network’s functionality 

can thus be compromised as result, moreso when taking into 

account the problem of voltage cascading [5].  

Centralized control strategies, through which the profile 

would regulated by distributed network operator (DNO), have 

been proposed to counteract these situations. However, due to 

its unreliability and high cost, its decentralized counterpart 

has been gaining traction as a more practical alternative [6]-

[8]. With it, each local DER controller would autonomously 

regulate its injected power in order to maintain its nodal 

voltage within a fixed set-point, without any sort of external 

input. But while advantageous, the widespread adoption of 

this type of voltage control poses its significant share of 

underlying drawbacks, of which there’s a somewhat startling 

lack of effort to address. The most egregious of these pertains 

to a possible instability of the overall control algorithm, that 

is a divergence of the voltage error, not wholly avoidable 

without an overseeing master controller. Another concerns, 

the physical limitations of the equipment, which will place 

restrictions on power output, in tandem with present 

environmental conditions.  

In this work, we aim to demonstrate the large degree of 

frailty the decentralized control process has in terms of its 

stability, when pressed by the myriad of factors that affect a 

feeder network. Namely, demonstrating how easily the it is 

influenced by the number and distribution of the DERs, 

among other factors, as it’s extensively documented [9]. 

Concurrently, we also strived to put forward and properly 

experiment with an adequate theoretical voltage control 

scheme, as part of a wider strategy to consign micro-

producers as voltage regulators, that can (at least partially) 

counteract these flaws. 

The paper is organized as follow. In Section II, we define 

the basic network and algorithm model to be used throughout 

the work. In Section III, we showcase, and try to work 

around, its limitations in terms of algorithm convergence and 

injected power output. Section IV concerns the simulation 

results of the presented system. In Section V, the base grid 

circuit is further expanded upon, in order to study the system 

under more realistic conditions. In Section VI, an integral 

area based alternative controller is presented, as a means to 

counteract many of the previously presented faults. Finally, in 

Section VII we conclude this paper.     



II. DECENTRALIZED SYSTEM MODELLING 

A. Low-Voltage Network Outline 

The modeling of LV networks behavior under unbalanced 

load and generation conditions requires a four-wire (three-

phase and neutral) full circuit representation. However, a 

proxy of the impedance matrix can be easily built for the 

nodes of interest based on cable ohmic characteristics and 

topology inspection [10]. Such impedance matrix encloses 

sufficient information to analyze voltage control algorithms 

as it represents the sensitivities of nodal voltages w.r.t power 

injections [5].  

In this thesis, we model several systems response to 

voltage control of single-phase connected DER with such a 

matrix. Two of those cases, models 6 and 9, are displayed in 

Fig. 1, representing the positioning of the three generators in 

the 3bus-by-3phase grid. 

 

Figure 1.  LV grid diagrams with three generators, one per phase (left – 

study model 6) and two on the same phase (right – sutdy model 9).  

Let us refer to the proxy of the impedance matrix by 

     and approximate the relationship between the voltage 

drop    and the variation of the net active      and reactive 

     power generation in each node through  

                               

where, the term     represents the reactance-to-resistance 

ratio, assuming it is constant throughout the entire grid, and   

is the grid’s  -by-  (  being the number of connected 

generators) resistance matrix.  

Assuming that the bus impedance between nodes is 

roughly the same both for the phase and neutral conductors, R 

can be written as: 

 
     

   
    

  
     

    
                            

         
      

where    
   stands for the smallest loop resistance between 

  and  , as in source-to-node trough   and then node-to-

source trough the neutral.  

Assuming the internodal resistance is of 0.2 pu (base 

100kVA for 400V), plus 0.4 pu between the source and the 

most upstream bus, we get the following impedance matrixes 

for the feeders of Fig.1, which we will be later using in our 

simulations.  
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B. Decentralized Controller Logic 

As [5] describes it, this iterative process can be summed 

up as in Table I. 

TABLE I: LOGICAL STEPS OF A VOLTAGE DEPENDENT Q(V)/P(V) CONTROLLER 

 tep   
                                         
                            

 tep   
             -                            
    and gains:                          

 tep   
                                                
               

 tep   
                  : 
                                               

Accordingly, the control and state equations concerning 
Step 2 and 3 are, respectively, given as 

                
            

                
            

                                         

where    and    represent the active and reactive power 

gains w.r.t. to the nodal voltage of each DER. By combining 
the three above equations, we can surmise the voltage update 
formula as: 

                                    

where     is a  -by-  identity matrix and          
       , which we will designate as the overall gain matrix. 

We can evaluate the convergence of this update formula 
through the eigenvalues of the matrix that serves as the 

coefficient for the last obtained iterative term   , which we 
will designate as               . Per [16], the stability 
conditions for such process are met iff the absolute values of 
the eigenvalues of     are all less or equal to one. 
Furthermore, if said values are also non-negative and real the 
system will converge in a non-oscillatory manner, returning to 
its steady state through exponential decay of the error. 

                                   
                                    

The above eigenvalues indicate that, with an unitary gain 
matrix        , the error behavior will be oscillatory for 
model 6 and unstable for 9. In this state, the algorithm will not 
converge to its set-point in an admissible manner for nearly all 
of the network schemes. In order to mitigate this liability the 
algorithm has to update its injected power more conservatively 
through an attenuation factor, thus enabling its convergence. 
As     is a fixed value, it falls upon the overall gain matrix 
    to act as the attenuator, allowing us to lessen the difference 
between the power values in-between iterative steps.  

This value can be rewritten as         , where α is the 
common (network-wide) gain factor, of which the eigenvalues 
of     are linearly dependent, and     is the controller specific 
gain. This latter will define       , which is the limit power 
gain of the system, as                      , putting the 
system at the threshold of instability. As we can comparatively 
measure a system’s robustness basing ourselves on this value, 
defining which     to use in each controller becomes critical. 



III. LIMITS TO FULLY DECENTRALIZED VOLTAGE CONTROL 

A. Controller Power Gain through Inverse Impedance 

Now aware of the theoretical weight of     and     on the 
system’s stability, the next step will be to define the individual 
controller’s power gains. To avoid issues that would arise due 
to the spacing of the DERs, we chose to base these values on 
the inverse impedance “seen” by each controller. This results 
in         , where the latter is the inverse matrix of the 
diagonal of    , again reflecting the lack of information 
between generating nodes and the closest approximation to the 
ideal       (that would yield                    
      ). Adopting this strategy, models 6 and 9 yield: 

                                  
                                  

The core issue pertaining to the stability of a decentralized 
control scheme revolves around the influence between the 
various DERs connected throughout a feeder grid and an 
inherent lack of information available to their controllers. The 
most logical workaround would then be to eliminate this 
simultaneity, ensuring that only one controller updates at any 
given time. This would result in a triangular matrix    , whose 
eigenvalues would be equal to          and  , ensuring the 
system’s stability so long as         . While with a discrete 
decentralized controller, this would be hard to implement, 
later ahead we’ll be seeing a alternative control strategy that 
makes use of this. 

B. Limitations on Injected Power 

While capable, in theory, of solving any divergence in the 
voltage profile, if the stability criteria are met, the physical 
aspects of the electrical equipment will place other restrictions 
upon the system. The two main cap factors are the available 
active power   , defined by the quantity solar irradiance 
collected by the PV panel, and the generator’s overall capacity 
to inject reactive power. This latter will define an operational 
area for the DER in the form of a semi-circle in a       plane 
with a radius of   , its maximum apparent power. Due to this 
value, the following stipulation will be imposed: 

   
    

    
      

whereas        . Because of these limits, there is now a 
possibility that the state variable will not be able to converge 
to the intended set-point. As such, it becomes necessary to 
weigh in the initial conditions of the system when the 
controller is activated, specifically the voltage and power 
values at the beginning of the controller’s iterative sequence. 
Taking (4) into account, we can define Pf and  

f
 as the two 

power components’ values at the end of a successful iterative 
process. If we’re to assume that the system became bounded 
to the limit curve, we have that: 
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Solving for Pf, we get: 
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    (8) 

And seeing as Pf has to be a real number: 

                
                         (9) 

If the inequality holds, in addition to                , 

then the state variable is fully capable of converging to its set-

point   , since a set of coordinates         exists within the 

established boundaries. Moreover, from (8) we can determine 

that there’re possibly two solution sets of power coordinates 

in the limit curve. From these two point, we can trace a line in 

the       plane, whose equation can be taken from (7): 

              
          

It stands to reason then that all points contained in (10), 

and (6), are all valid solutions for the voltage error enclosed 

in   . This allows for some considerable leeway seeing that 

the network’s voltage profile will remain undisturbed so long 

as the injected nodal power “travels” along the line defined 

by (10). In fact, any line with a        slope will contain the 

all the power coordinates for one specific voltage profile, and 

with each iterative step we consecutively jump between 

several of these parallel lines, progressively closing in on 

(10). Those tangent to the limit curve (7) represent the highest 

attainable positive and negative shift in the DE ’s voltage, 

leading to another inequality that also needs to be valid, in 

tandem with (9): 

       
                          

C. Updated Control Algorithm 

Given    and   , it’s evident that the control algorithm in 

Table I will need to suffer several modifications to take in 

account these two new restricting parameters to its operation. 

Specifically, we chose to have only a single type of voltage 

dependent control operate at a time, meaning having either 

           or              , alternating between 

them as necessary. As we want to avoid a drop in the injected 

active power, we gave      precedence over its counterpart. 

Furthermore, we also introduced some degree of foresight to 

the controller, so that it doesn’t become bound to the limit 

curve. The updated logic is illustrated in Fig. 2 and described 

in Table II: 

 
Figure 2.        plane hypothetical representations the logical steps taken by 
the controller when correcting an instance of nodal voltage deviation, when 

using an the foresight strategy. Green vertical arrows represent     , purple 

horizontal arrows      and the red line the solution set of values per     .  



TABLE II: LOGICAL STEPS OF A VOLTAGE DEPENDENT Q(V)/P(V) 

CONTROLLER, WITH Q(V) PRECEDENCE AND FORESIGHT  

 tep   
                                         
                            

 tep   
             -                       and 
gain:                              

 tep   

Check if   
    

          
  

                              

                    -                       
and gain:                         
                          

 tep   
                                               
                

 tep   
                  : 
                                               

 

IV. SIMULATION RESULTS 

A. Voltage Error Behavior and System Performance 

Before the error behavior and system performance can be 

simulated, we’ll first need to establish a set of initial values 

for the nodal voltages of each grid configuration. As we’ll 

want them to represent a more or less realistic scenario, that 

could be encountered in any practical feeder network, we 

made use of a simple power-flow MATLAB code to calculate 

a satisfactory set of values for the initial error. The results 

yielded by the simulation are: 

                               
                               

For a first behavior study, we’ll ignore all of the initial 

power conditions and restrictions, focusing solely on voltage 

error, with a set-point       . Furthermore, as to compare 

the error’s overdamped and oscillating behavior respectively, 

for the left graphs we’ll have a                , as the 

oscillatory threshold is half of the instability’s, and for the 

right                . We’ll also take note the speed of the 

algorithm, i.e. the number of iterations it takes for the 

maximum voltage error to drop below a certain value, in this 

case     , even if it’s beyond the displayed  0 iterations. 

 
Figure 3.  Evolution of the state variable error for study model 6, with 

                (left) and                 (right), up to 20 iterations. 
Below each graph is the number of iterations until            ≤     . 

 
Figure 4.  Evolution of the state variable error for study model 9, with 

                (left) and                 (right), up to twenty iterations. 
Below each graph is the number of iterations until            ≤     . 

As predicted, with the given overall power gains, the 

generators managed to successfully correct their own voltage 

error, relying solely on their own autonomous control system. 

In the left graphs, we notice that when the both systems are 

overdamped, and despite the dissimilar initial voltage values, 

all error curves tend to coalesce together, approaching    at 

the same rate after the first few iterations. The algorithm’s lag 

is also equal for these, likely owing the slight differences in 

   for each model. However, despite this very fact, for 

                the speed with which the error amplitude 

decays is much more visibly distinct for each configuration. 

Though not noticeable with the two chosen models, given 

the remainder we can take other conclusions pertaining to the 

nodal voltage. Overall, with an unbalanced distribution of the 

DERs through the three phases, it takes a greater amount of 

time for the algorithm to correct a network’s profile deviation 

Another, it’s that its average initial error tends to be greater in 

situations with unbalance distribution of loads, due to the 

addition of a mutually induced increase for same-phase nodal 

voltages. In addition, the disparity between the voltage in the 

three nodes tends to be more pronounced when they’re 

clustered together.  

Matrix-wise, the greater the difference between the 

magnitudes of a matrix’s diagonal and the sum of their 

respective non-diagonal terms (diagonal dominance), the 

faster the algorithm will be able to correct the voltage error 

for the corresponding configuration. Seemingly minute 

difference in configuration can cause significant differences 

in both behavior and performance, which is in line with our 

previous conclusion that the algorithm’s efficiency is directly 

correlated with the influence each DER exerts on one 

another: the lesser the better. 

Another question one could ask, based on what was seen 

above, is what specific   can provide the best speed for each 

system. Again through simulations, we’ve found the range of 

gains that produce the fewest iterations for the two models: 

                               
                               

while, with all the other models in mind,                
appears the best universal compromise. 



B.  Active and Reactive Power Curtailment 

While the chosen controller power gain will have an 

effect on the difference between initial and final values, the 

solution set is ultimately the same regardless, seeing that    is 

independent of    . This means that the power gain only 

determines where in line      the controller ends up in, and 

as such we can always readjust the coordinates to fit any 

criteria we wish. This can be done with each iteration, as 

moving along a        slope line does not change the 

voltage profile, or at the very end of the process. As we’ll 

want to curtail the drop in active power first and foremost, 

and to demonstrate this property of     , we’ll showcase the 
latter as to obtain the lowest possible   . Therefore, each 

final value in the following graphs represent the minimal 

variations of active power necessary to correct the deviation, 

with         and        .  

 
Figure 5.  Evolution of the control variables for study model 6 (left) and 9 

(right), with                , up to a hundred iterations. At the end of the 

iterative process, a last readjustment along each respective      was made to 

minimize   . In both these final shifts, the network’s voltage profile remains 
unchanged, similarly as to those exemplified in Fig. 3 and Fig. 4. 

And the final values for the injected power: 

        

                       

                      

                      

                            

 

        

                      
                      

                      

                            

 

It’s immediately observable that for study model 9 the 

total power shift, both active and reactive, is less than that 

required for model 6, despite sharing a very similar    and 

DER configuration. The same holds true for every model 

with more than one generator per phase in comparison to 

those with only one, even when the general initial voltage 

error for the former is greater or roughly equal than the 

latter’s. 

 

This occurs because any change in the nodal voltage of a 

DER, rise or fall, will produce an identical response along the 

line. Thus, because of the way the DG network is configured, 

same phase-connected generators will mutually help each 

other eliminating their overvoltage, generally lessening the 

needed decrement in injected power for each one. In turn, this 

also abates the induced voltage hike in the other two-phases, 

allowing for a similarly smaller power shift to correct the 

deviation as the controller no longer has to compensate as 

much for said increase. However, this can also work against 

the system, as when same-phase nodes have opposite error 

signals necessitating then an increase in the injected power, 

which can naturally be problematic given the set restrictions. 

Moreover, we saw that by using the properties of      we 

can also manipulate the injected power to better suit our 

needs, whether it be to minimize    (or    instead), fix     

to a certain ratio, or even the set a desired power factor. More 

importantly, the trace it leaves allows to ascertain the relative 

positioning of each generators’ solution set for the given 

initial parameters. It also permits a more accurate gauging of 

the relative shifts in active power, independent of the chosen 

gain, as it will always lead to the same results regardless of 

   .  
 

V. EXPANDING THE STUDY MODEL 

A. Concentrated Generation 

Though we in previous Section we verified the feasibility 

of the decentralized voltage control strategy, at the same time 

we’ve also ascertained how the initial conditions for voltage 

(  ) and injected power (   and   ) can affect this process, 

possibly even precluding it. Same goes for the configuration 

sensible eigenvalues that dictate whether or not the system is 

stable. It’s within reasonable expectation that any feeder 

network in real life will have a higher number of generators 

injecting power into it than the three we’ve worked with so 

far, with different patterns of distribution. Thus, it becomes 

imperative for our study to expand the LV circuit model, to 

analyze the impact on the behavior of the control and state 

variables as the resistance matrix     is gradually morphed 

and, more crucially, the viability of the autonomous control 

scheme as it does. 

First we’ll evaluate what occurs when we gradually ‘fill’ 

the nine node circuit grid, from three DERs to six, then to 

nine. To assess the relative stability between each case, we’ll 

again resort to comparing the diagonal terms of the maximum 

stability overall gain matrix       . Due to the number of 

possible combinations for generator distribution, we elected 

to pick the worst possible cases for each configuration, being 

those that generates the highest possible     . The results were 

as follow: 

                        
                        
                        

 



It is not at all surprising to observe that a higher number 

of connected DERs invariably leads to a necessary decrease 

in the overall gain to assure the system’s stability, yet another 

indication of its precariousness in relate to the generators. 

This cut results from the overarching algorithm struggling to 

juggle and consolidate the power flow of more generators in 

order to maintain an adequate voltage profile. Interestingly, it 

also seems that maximum gradient caps off when two of the 

phases are completely filled, starting with upwards of six 

DERs. Ultimately, the inclusion of more DERs ultimately 

means more possible grid configurations, which in turn 

means more ways that each generator play off each other, 

exacerbating all of these concerns as we strive predict what 

kind of ripple effects might originate from such scenarios. 

One of such issues pertains to the system’s performance. 

As the system juggles with an increasing number of DERs, 

and thus an equally growing number of added elements to the 

network’s power flow, it’s natural to assume that the speed 

with which it can resolve any of these deviation will tend to 

lower, as seen above. However, such assumption may not be 

as straightforward as it initially appears. To showcase this 

intrinsic complexity, we’ve repeated the same simulations for 

3+ DERs, this time with the intent of obtaining the number of 

iterations the system requires so that                , 

for       (    near the oscillation threshold) and       

(    near the stability threshold). 

 
TABLE III: INITIAL VALUES FOR THE NODAL VOLTAGE AND SUBSEQUENT 

SYSTEM PERFORMANCE 

       

        
   

    

            

                                

  
                       

                       
      

  

                       

                       

                       

      

A cursory glance at the results indicates that, while do we 

notice a change in the system’s performance with an increase 

of generation, it doesn’t appear to be proportionally related 

with the amount of generators in operation. As we suspected, 

it’s not the actual number of DE s that influences the speed 

with which the controlling algorithm can correct disturbances 

in the network’s voltage profile. The speeds between each 

setup seem to own their dissimilarity to a variety of factors, 

not least of which being the initial values for the nodal 

voltage, both in magnitude and in disparity between one 

another. 

 

Upon subsequent examinations, we can conclude that 

when the error in one or more nodes is fully eliminated or 

significantly reduced while that of the others remains 

relatively higher. The controllers pertaining to the former, in 

an attempt to keep their nodal voltages mostly fixed, will act 

as a sort of anchor for the system, thus slowing it down. 

Mathematically,     is effectively reduced in size, increasing 

the maximum common gain factor α. This anchoring 

phenomenon caused by one of the controller’s reaching its 

end goal ahead of its companions also explains why an 

oscillatory response is preferable (in terms of speed) to an 

overdamped reduction of the error. 

B. Dispersed Generation 

Previously, we demonstrated how the superficially simple 

matter of adding an extra generator or simply readjusting 

one’s position in the feeder grid can lead to drastic changes in 

both performance and stability wise. Having seen the effects 

of concentrating generation, we’ll now observe the opposite, 

that this measuring what influence distance ‒ the impedance 

             seen by each individual DER and its       
       derivatives ‒ has on the  bus-by-3phase node grid. 

As one would’ve expected, preliminary simulations have 

confirmed that accruing the line impedance between the 

generating busses does improve the stability limit. However, 

despite upwards of a hundred times its original value, this 

increase in intermodal resistance does not result in an equally 

significant improvement. Ideally, and supposing one DER per 

bus, if the generating busses were properly isolated from one 

another, then the following generalization could be made for 

   : 

     
     
        
           

               

However, we can only make this simplification when the 

ratio between the impedances seen by adjacent busses tends 

towards zero as the distance between them increases. While 

this is true for the two busses closest to the source, the same 

cannot be said between the two farthest from it. Therefore, to 

make use of the distance to our benefit we’ll have to increase 

the relative distance between the generating busses rather 

than simply adding identical increments. One possible 

solution, as an example, would be to distance the busses by a 

logarithmic factor instead, as seen in the figure below: 

 
Figure 6.  Comparison between the two spacing methods. The bottom bus 

distribution results in a higher Maximum Common Gain Factor  . The 

distance between generating busses     and     are the same for both cases. 



These conclusions can also apply for situations where we 

have more than one DER connected per bus. Though the 

presence of more than one generator per bus would make it 

impossible to generalize     as a triangular matrix, the busses 

can still be isolated from one another. Ideally, we would get a 

situation similar to study model 1 (not shown here), with 3 

DERs connected to the same bus, with a Maximum Common 

Gain Factor       instead of  . The yielded results are 

indeed applicable for any number of generators (and busses), 

and their distribution throughout a feeder grid. Dispersing 

distributed generation has thus a somewhat noteworthy 

benefit in that it can provide a certain security margin when 

changing a network’s DG profile, as with sufficient (and 

appropriate) distance between the connecting busses we can 

assure that decentralized voltage control system remains 

stable throughout the alteration. 

VI. VOLTAGE ERROR AREA INTEGRATION 

A. Voltage Error Area Correction 

Throughout the study so far, it was been considered that a 

feeder’s network voltage profile suffers alterations solely as a 

result of the variation in one or more of the DE ’s injected 

power. However, natural fluctuations in the node’s voltage 

(and injected power) will invariably occur, owing to the 

characteristics of a LV network and a multitude of outside 

factors, which up until now we’ve neglected to properly take 

into consideration when simulating our chosen control 

algorithm. Likewise, it was also considered that the algorithm 

operates in both an instantaneous and persistent manner for 

all DG, not accounting for any sort of time lag in the control 

process. These indiscriminate influences have the potential to 

disrupt the algorithm’s progression at an inopportune time, 

particularly when the system is operating with its power 

coordinates are near any of the imposed limits. Therefore, in 

the interest of obtaining a more efficient voltage regulation 

system, an alternate strategy for the voltage control process is 

proposed. 

Thus far, the current algorithm basis its operation on a 

discrete numerical integration of the error: for each new 

iteration, the control variable is updated based on the current 

difference between the state variable and the intended set-

point. The former’s value is, as such, the linear combination 

of every previously obtained state variable error, with a set 

coefficient    here corresponding to the controller’s power 

gains their respective nodal voltage. Shifting to a temporal 

(continuous) basis, the summation in the above expression 

would be turned into an integral, that is the total area between 

the voltage error curve and the x-axis, for an equivalent 

interval of time. 

We can use this integral value as the benchmark that’ll 

dictate when a controller “steps in” to regulate the injected 

power of its DER, as opposed to its continual operation. To 

that effect, we can make it so that a controller acts upon a 

voltage deviation only when the integral area surpasses a 

defined limit   . The error would then be estimated from the 

total area, thus mitigating the concerns that may arise due to 

the introduction of the aforementioned fluctuations. 

 
Figure 7.  Demonstrative example of an integral voltage error correction 

over a period of time. The algorithm will act upon the voltage difference only 

when the darken integral area surpasses a set limit   . 

Though the area that a controller takes into account is 

tallied from the last moment the error was zero, given the 

innately oscillatory behavior of the network’s voltage profile, 

utilizing such average might not be ideal. Because of this and 

other factors, the calculated mean error might diverge 

significantly from its actual value at the onset of a power 

shift. For the sake of a more precise adjustment, we can have 

the mean error be taken solely from a fixed segment of time 

directly before the readjustment in the injected power. 

Overall, limiting the controllers’ intervention on a whole 

works for the system’s benefit, as it avoids unnecessary shifts 

in active and reactive power that result from oscillations in 

the nodal voltage. Yet, its most significant advantage is that it 

practically guarantees that no two generating nodes will vary 

their injected power simultaneously. As mentioned in Section 

III, it’s the concurrence between the operation of the various 

controllers that it’s at the core of the instability issue for 

decentralized power control. Assuring that a maximum of one 

controller   is acting at any given time, then the eigenvalues 

of     will be equal to   and             , considering 

         . The algorithm’s convergence is thus guaranteed 
so long as      , regardless of the number of DERs and 

their configuration throughout the feeder network. 

B. Voltage Error Behavior and System Performance 

Using this new paradigm, we simulated the evolution of 

the voltage error for the previous study models. We’ve 

considered that each controller, upon activation, executes its 

power adjustment within a millisecond, sampling the last ten 

milliseconds of the voltage error for reference, with voltage 

error area set-point of        . Left graphs showcase the 

error progression without fluctuations, and opposite side with. 

Under each are the timestamps for the controller’s activation. 

 
Figure 8.  Evolution of the voltage error for model 6, employing integration 

of the voltage error area, during a one second interval, with    .*  



 
Figure 9.  Evolution of the voltage error for model 9, employing integration 

of the voltage error area, during a one second interval, with    .*  

*(Note that the right graph on both figures represents only one possible 

outcome of the error’s evolution, due to the randomized nature of the voltage 

fluctuations.) 

As we can observe, although the voltage error does not 

converge in a manner similar as the examples in Section IV, 

there’s at least a significant reduction in all cases during the 

presented time interval. Not only that, given the nature of its 

controllers, this system comes to prioritize the correction of 

the highest and most lasting discrepancies, another useful trait 

to have as to safeguard the network’s health. Regarding the 

differences between the left and right sides, the main standout 

appears to be that the latter is more prone to have larger 

amplitudes in its “oscillations”. At any rate, both sides still 

manage to achieve a comparable reduction their error. 

C. Dynamic Error Sampling 

The large oscillations on the right come as the result of an 

deficient estimate on the controller’s part. The sampled 

average error is inferior to the actual error at the onset of its 

activation, resulting in a shift of the injected power that does 

not lower (or increase) the nodal voltage past    within an 

allotted time tick. As a consequence, the value of the error 

integral will not reset, causing the controller to activate again, 

using roughly the same sampled error as a basis. This 

effectively results in nodal voltage variation to double.  

The simplest workaround would be to ensure that    , 

so that the controller would naturally overcompensate for any 

possible discrepancies between the sampled and actual error, 

ensuring that it goes through zero (resetting    in the 

process) within a single tick. However, if   is too low, its 

effects might end up being negligible, while if it is too high, it 

may induce more of the same oscillations we’re attempting to 

lessen. Simply reducing the sample period would likewise be 

a limited scope resolution.  

Beyond these small fluctuations, it’s again the generators’ 

mutual influence that lies at the heart of the issue. If within a 

controller’s sampling period a change in the nodal voltage 

were to occur, due to a different controller’s activation, then 

the calculated average will be significantly different than its 

current error. As such, we can make it so that a controller is 

able to automatically readjust its sampling period should it 

detect a large rise or fall in its voltage within a short interval. 

 

 Adopting this new sampling methodology, with      , 

we repeated the previous set of simulations.. 

 
Figure 10.  Evolution of the voltage error for model 6, employing integration 

of the voltage error area with dynamic sampling, during a one second 
interval.  

 
Figure 11.  Evolution of the voltage error for model 9, employing integration 

of the voltage error area with dynamic sampling, during a one second 

interval.  

It’s readily obvious that the graphs on opposite sides are 

nearly identical, a fact that is further hammered in by their 

near equal timestamps. The error behavior with the added 

fluctuations also remains more or less consistent, with only a 

few differences of a couple milliseconds in its timestamps 

from simulation to simulation. The large error oscillations 

that cropped up in the previous figures are also, for the most 

part, eliminated. Thus, it’s presumable to say that the effect of 

these random fluctuations have on the system’s error has been 

effectively lessen, although for relatively small amplitudes 

only.  

VII. CONCLUSIONS 

As underlined in the introduction, the avowed objective of 

this work was to propose such a theoretical operable control 

strategy, that could (in a future instance) be employed by 

micro-producers to regulate their own operation without the 

need of oversight from any external entity. Throughout the 

paper, we’ve strived to develop a voltage control scheme that 

could eliminate or minimize the impact of these inherent 

inadequacies, yielding two results in the form of the 

Alternating Q(V)/P(V) Controller and the Voltage Error Area 

Integration Controller. 



The results of this thesis demonstrate that implementing a 

decentralized voltage control strategy for DG in a LV 

network can indeed be feasible, in theory. Despite the 

numerous issues that plague it, such as the pervasive threat of 

instable behavior and lacking performance, it is possible to 

circumvent them through adequate planning of the 

controllers’ gains and their control algorithm. However, as 

noted by German military theorist Helmuth von Moltke, “No 

battle plan survives contact with the enemy”. That’s to say, 

when theory is pitted against the real world, the latter will 

invariably come out on top. 

In spite of our efforts to factor in several limiting factors 

into our calculations and solutions, such as restrictions on 

injected power and voltage fluctuations, the results obtained 

throughout this work were still drawn from a simplified 

scenario rather than a realistic one. And even presented with 

such model conditions, we’ve still encountered a significant 

number of complications, that can prove nonetheless critical 

to the control system’s operation, and possibly a death knell 

to the near-future widespread adoption of decentralized 

control strategies. Future, more in-depth and in practice, 

studies are thus believed to be required to properly gauge the 

realistic viability of the autonomous option in real-life LV 

distribution networks. Even so, it’s hoped that the provided 

strategies, even if not viable as practical solutions, can at least 

serve as a stepping stone towards the formulation of a 

workable decentralized control scheme. 

More importantly, it was our goal throughout the course 

of this work to draw attention to the inherent limitations of 

decentralized voltage control, shining a light on a previously 

poorly studied field of research, and hopefully stimulate a 

broader discussion within the pertaining academia on the 

topic. 
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